WO2023208249A1 - 一种钼合金管靶材的制备方法、钼合金管靶材和用途 - Google Patents

一种钼合金管靶材的制备方法、钼合金管靶材和用途 Download PDF

Info

Publication number
WO2023208249A1
WO2023208249A1 PCT/CN2023/095630 CN2023095630W WO2023208249A1 WO 2023208249 A1 WO2023208249 A1 WO 2023208249A1 CN 2023095630 W CN2023095630 W CN 2023095630W WO 2023208249 A1 WO2023208249 A1 WO 2023208249A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
target material
molybdenum
molybdenum alloy
alloy tube
Prior art date
Application number
PCT/CN2023/095630
Other languages
English (en)
French (fr)
Inventor
王广达
熊宁
弓艳飞
牛曼
季鹏飞
杨亚杰
王凤权
刘洁
Original Assignee
安泰科技股份有限公司
安泰天龙钨钼科技有限公司
安泰天龙(北京)钨钼科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰科技股份有限公司, 安泰天龙钨钼科技有限公司, 安泰天龙(北京)钨钼科技有限公司 filed Critical 安泰科技股份有限公司
Publication of WO2023208249A1 publication Critical patent/WO2023208249A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F2003/166Surface calibration, blasting, burnishing, sizing, coining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the invention belongs to the technical field of powder metallurgy, and specifically relates to a preparation method of molybdenum alloy tube target material, molybdenum alloy tube target material and uses.
  • Thin film transistors serve as drive elements for display panels and use Al or Cu as the main wiring material.
  • Al or Cu is in direct contact with Si, thermal diffusion will be formed due to thermal processing during the preparation process, deteriorating the performance of the thin film transistor. Therefore, it is necessary to provide a laminated wiring film between Al/Cu and Si.
  • Mo and molybdenum alloys such as Mo-Nb and Mo-Ti have good corrosion resistance, heat resistance, and good adhesion to the substrate, and can be used to prepare laminated wiring films.
  • the laminated wiring film after the laminated wiring film is formed on the substrate, it may be left in the atmosphere for a long time.
  • semiconductor films using oxides need to be heated in an aerobic environment to improve performance and stabilize them. Therefore, there is a strong demand for enhancing the oxidation resistance of laminated wiring films.
  • the resin film used in portable, lightweight, and flexible display panels is more moisture-permeable than glass substrates, so the laminated wiring film needs to have higher moisture resistance.
  • the moisture resistance and oxidation resistance of materials such as pure Mo and Mo-Ti are not sufficient, and oxidation may occur, causing a significant increase in the resistance value of Al or Cu.
  • the patent "CN2012102930608” discloses a molybdenum alloy target for laminated wiring films. In order to improve the moisture resistance and oxidation resistance of pure molybdenum coatings, a certain amount of Ni and Ti are added to the molybdenum, which helps to stabilize electronic components. manufacturing and improving reliability.
  • the patent "CN2014100909230” discloses a molybdenum alloy target for electronic components.
  • the oxidation resistance is improved by adding Ni, and the moisture resistance can be improved by adding W element.
  • the patent "CN2017114460697” discloses a molybdenum alloy target composition containing Ni, Nb, Ti and other elements, which can better improve the moisture resistance and oxidation resistance of pure molybdenum and maintain a low film resistance.
  • the above-mentioned patent jointly improves the moisture resistance and oxidation resistance of the molybdenum target sputtering film by adding a certain amount of Ni, Ti or W and other elements to the molybdenum matrix, and maintains a low resistance value.
  • targets are mainly prepared through hot isostatic pressing (HIP). As the length of the target increases, the HIP forming size is seriously restricted by the size of the HIP equipment, making it impossible to mass-produce high-performance molybdenum alloy targets.
  • tubular target products of different lengths cannot be prepared through deformation methods such as extrusion and forging.
  • the purpose of this application is to provide a method for preparing a molybdenum alloy tube target material, a molybdenum alloy tube target material, and uses.
  • the molybdenum alloy tube target material provided by this application after adding rhenium element, increases the plastic toughness of the target material and improves the deformation processing ability of the target material.
  • the molybdenum alloy tube target material can be refined in grain size through extrusion molding in the subsequent preparation process.
  • this application effectively improves target performance and processing capabilities by adding a small amount of rhenium in combination with other ingredients.
  • the first aspect of this application provides a method for preparing a molybdenum alloy tube target, which includes the following steps:
  • Powder mixing Weigh the raw materials according to the mass fraction of each element in the molybdenum alloy tube target material, and mix them evenly to obtain molybdenum alloy powder;
  • the molybdenum alloy tube target material in terms of mass percentage, includes: Ni: 10 ⁇ 30% (for example 12%, 15%, 20%, 25%), Ti: 5 ⁇ 25% (such as 6%, 8%, 10%, 15%, 20%), Re: 0.5 ⁇ 5% (such as 0.7%, 0.9% , 1.2%, 1.5%, 2%, 2.5%, 3%, 4%), M: 0-15% (such as 1%, 3%, 5%, 8%, 10%, 13%), M is Cr , at least one of Zr, Ta and Nb, the M is used to replace part of Ti, the balance is Mo and inevitable impurities, and the mass percentage of Mo in the molybdenum alloy tube target is not less than 50 % (e.g. 52%, 60%, 70%);
  • Cold isostatic pressing Put the mixed powder into the mold and perform cold isostatic pressing to obtain the first blank;
  • Hot isostatic pressing subject the first blank to hot isostatic pressing to obtain a second blank
  • Extrusion molding Extruding the second blank to obtain a third blank
  • Annealing treatment annealing the third blank.
  • Ni can improve the oxidation resistance of the film layer formed by the target material of the present application, and Ti can improve the moisture resistance of the film layer. Adding appropriate amounts of both can not only ensure the oxidation resistance and moisture resistance of the film layer , it can also ensure the low resistance of the wiring film and does not affect the etching speed of the etchant.
  • a small amount of Re element is added to the molybdenum alloy tube target material of this application.
  • the addition of a specific proportion of rhenium element works together with the specific proportion of other elements in the molybdenum alloy to enable rhenium to exert the "rhenium effect" in the molybdenum alloy and improve the molybdenum alloy.
  • Re element By adding Re element to the molybdenum alloy tube target, the deformation performance of the target can be improved, and cracks will not occur during large deformation processing. Since the target structure has fine grains, the optimal molybdenum alloy composition ratio is obtained The target grain size difference is particularly small and the grains are uniform.
  • the film thickness prepared by the target provided by this application is more uniform and the sputtering speed is faster.
  • the amount of Re element exceeds 5%, on the one hand, the cost increases, and on the other hand, when the Re element is added excessively, Re can form an alloy phase with other elements, affecting the subsequent coating effect.
  • the amount of Re element is less than 0.5%, it cannot effectively refine the grains and enhance the plasticity of the target.
  • the M element in this application has the effect of enhancing the moisture resistance of the target coating and can be used to partially replace Ti, which also has moisture resistance. This element can also improve the oxidation resistance of the target coating. However, from the perspective of the interaction of various components in the target material, it is preferred that the M element can only partially replace Ti.
  • the preparation method of the above-mentioned molybdenum alloy tube target further includes:
  • Shaping shaping the first blank after cold isostatic pressing
  • the molybdenum alloy tube target material includes, in terms of mass percentage: Ni: 10 ⁇ 30% (such as 12%, 14%, 18%, 20%, 25%), Ti: 5 ⁇ 25% (For example, 6%, 8%, 10%, 13%, 16%, 19%, 23%), Re: 1 ⁇ 5% (for example, 1.2%, 1.5%, 2%, 3%, 4%), M: 0-5% (such as 0.5%, 1%, 2%, 3%, 4%), the balance is Mo and inevitable impurities, and the mass percentage content of Mo in the molybdenum alloy tube target is not less than 60% (e.g. 61%, 65%, 70%, 80%).
  • the raw materials include: molybdenum powder, purity ⁇ 3N5, the Fisher particle size range of molybdenum powder is preferably 2.5 ⁇ 4 ⁇ m; nickel powder, purity ⁇ 3N, Fisher particle size range of nickel powder
  • the particle size range is preferably 2 ⁇ 3 ⁇ m; and a titanium source, the titanium source is titanium powder or titanium hydride, the purity of the titanium powder is ⁇ 3N, the Fibonacci particle size range of the titanium powder is preferably 2 ⁇ 4 ⁇ m, and the purity of titanium hydride is ⁇ 2N,
  • the Fisher particle size range of titanium hydride is preferably 2 to 4 ⁇ m; the purity of rhenium powder is ⁇ 4N, and the Fisher particle size of the rhenium powder is preferably 2 to 4 ⁇ m.
  • the titanium element in the molybdenum alloy tube target is added in the form of molybdenum-titanium alloy powder;
  • the molybdenum-titanium alloy powder is obtained by mixing part of the molybdenum powder in the raw material with titanium hydride powder and then undergoing reduction treatment. ;
  • the molybdenum-titanium alloy powder has a molybdenum-titanium mass ratio of 90:10 to 70:30 (for example, 85:15, 80:20, 75:25).
  • the reduction treatment is performed in a hydrogen atmosphere, the temperature of the reduction treatment is 500 ⁇ 900°C (such as 600°C, 700°C, 800°C), and the reduction treatment The time is 2 ⁇ 8h (3h, 4h, 5h, 6h).
  • the gas flow rate is determined according to the size of the reduction furnace, and the pressure is only slightly positive.
  • Titanium hydride is selected as the titanium source in order to make the prepared molybdenum-titanium alloy powder more uniform; titanium powder can also be used directly as the source for direct mixing, but the uniformity of the powder is not as good as the titanium hydride-doped molybdenum powder reduction process.
  • the powder mixing is carried out in a ball mill tank with a ball-to-material ratio of 1:1 to 2:1.
  • the air is pumped to negative pressure and then filled with argon gas.
  • the argon gas pressure in the ball mill tank is one atmosphere.
  • the mixing time is 10h-16h (such as 12h, 14h), and the rotation speed is 50-300r/min.
  • the pressing pressure of the cold isostatic pressing is 150 ⁇ 200MPa (for example, 170MPa, 190MPa), and the pressure holding time is 5 ⁇ 20 minutes (for example, 8 minutes, 10 minutes, 15 minutes, 18 minutes).
  • the mold is a tubular mold made of stainless steel.
  • the cold isostatic pressing process of the present application can make the relative density of the first blank be 55-65%.
  • the heat preservation temperature of the hot isostatic pressing is 900°C ⁇ 980°C (for example, 920°C, 940°C, 960°C)
  • the pressure is 100-170MPa (for example, 120MPa, 140MPa, 160MPa)
  • the holding time is 2-5h (such as 3h, 4h).
  • the hot isostatic pressing process of the present application can make the density of the second billet formed of certain molybdenum alloy components reach 100%.
  • a high-temperature sintering step can be added between the hot isostatic pressing and cold isostatic pressing steps to improve the sintering effect of the alloy components. , further improving the density of the blank.
  • the extrusion is a cooling extrusion
  • the starting temperature of the extrusion is 1100-1400°C (for example, 1150°C, 1200°C, 1300°C)
  • the end temperature of the extrusion is 900-1400°C. 1100°C (such as 950°C, 1000°C, 1050°C).
  • the second blank is put into a muffle furnace and heated in an air or argon atmosphere with a holding temperature of 1100-1400°C and a holding time of 30-120 minutes (for example, 40 minutes, 60 minutes, 80 minutes, 100 minutes), start each pass of extrusion after coming out of the oven.
  • the cooling extrusion specifically means that the heating and insulation temperature before the subsequent extrusion is lower than the heating and insulation temperature before the previous extrusion;
  • the heating and heat preservation temperature before the subsequent extrusion is reduced by greater than 0 and less than or equal to 100°C (for example, 10°C, 20°C, 40°C, 50°C, 60°C) based on the heating and heat preservation temperature before the previous pass of extrusion. , 80°C);
  • the extrusion deformation rate of each pass of extrusion is 15-25% (for example, 17%, 19%, 21%, 23%), and the total deformation amount of extrusion molding is 40-80% (for example, 50%). %, 60%, 70%).
  • Controlling the starting temperature of extrusion within the range of 1100-1400°C will achieve better extrusion molding effects.
  • the nickel When the starting temperature of extrusion is too high, the nickel will melt and cause serious oxidation.
  • the starting temperature of extrusion When the starting temperature of extrusion is low, the blank will easily crack during the extrusion molding process.
  • Control the end temperature of extrusion molding at 900-1100°C (such as 1050°C, 1100°C, 1150°C) to ensure molding performance and avoid cracking.
  • Controlling the extrusion deformation rate of each pass to 15 ⁇ 25% can make full use of the deformation performance of the material.
  • the deformation rate is too large, it will cause the blank to crack during the extrusion deformation process.
  • the temperature of the pass should be controlled within 100°C. To maintain good strength and plasticity of the material and avoid cracking.
  • the annealing treatment is performed in an argon atmosphere
  • the annealing temperature is 1000 ⁇ 1300°C (for example, 1050°C, 1100°C, 1150°C, 1200°C, 1250°C)
  • the annealing holding time is 60 to 120 minutes (for example, 70 minutes, 80 minutes, 90 minutes, 100 minutes, 110 minutes).
  • Controlling the annealing temperature within this range can eliminate the anisotropy of the extruded target and obtain a molybdenum alloy tube target with a uniform structure and fine grains.
  • the annealing temperature is lower than 1000°C, the target structure will be uneven.
  • the annealing temperature is higher than 1300°C, the crystal grains will grow abnormally and mixed crystals will appear, which will affect the subsequent sputtering coating effect of the target.
  • a uniform fine-grained target material with a grain size of ⁇ 100 ⁇ m eg, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m
  • a grain size of 4-5 levels can be obtained.
  • the molybdenum alloy tube target prepared in this application has fine grains, and its sputtering rate is faster than that of a target with coarse grains. Moreover, the target grain size difference is small (even distribution), and the thickness distribution of the film deposited by target sputtering is more uniform. The quality of thin films sputtered using the molybdenum alloy tube target prepared in this application can be greatly improved.
  • the second aspect of this application provides a molybdenum alloy tube target prepared by the above method.
  • the molybdenum alloy tube target has a grain size ⁇ 100 ⁇ m (eg, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m), and the grain size is 4-5 levels.
  • the third aspect of this application provides the application of the above-mentioned molybdenum alloy tube target material.
  • the molybdenum alloy tube target is attached to the main conductive layer of the laminated wiring film for electronic components by sputtering to form a metal covering layer, and the electronic components are flat-panel displays, thin-film solar energy or semiconductor devices.
  • the molybdenum alloy tube target can refine the grain size, and obtain a uniform fine-grained target with a grain size of ⁇ 100 ⁇ m and a grain size of 4-5.
  • the molybdenum alloy tube target prepared in this application has fine grains, and the sputtering rate is faster than the sputtering rate of targets with coarse grains. Moreover, the target grain size difference is small (uniform distribution), and the thickness distribution of the film deposited by target sputtering is more uniform. The quality of thin films sputtered using the molybdenum alloy target prepared in this application can be greatly improved.
  • Figure 1 is a schematic diagram of the microstructure morphology of the molybdenum alloy tube target prepared in the embodiment of the present application.
  • the Re element will exert the "rhenium effect" in molybdenum, improving the room temperature plasticity of the material, reducing the plastic-to-brittle transition temperature, and refining the grains.
  • the deformation of the target can also be improved.
  • Performance, large-sized plate targets can be prepared through deformation methods such as extrusion, and targets with uniform fine grains can be obtained through annealing.
  • the powder particle sizes mentioned in the following examples are Fisher particle sizes, and the ratios are mass ratios.
  • the yield rate referred to in the following examples is the number of qualified tube blanks obtained after extrusion deformation/the number of hot compacts subjected to extrusion deformation*100%.
  • a molybdenum alloy tube target and a preparation method including the following steps:
  • Step 1 Mix pure Mo powder with a purity of 3N5, a particle size of 3.5 ⁇ m; Ni powder with a purity of 3N, a particle size of 3.2 ⁇ m; TiH2 powder with a purity of 3N, a particle size of 3.4 ⁇ m; Rhenium powder with a purity of 4N, a particle size of 4 ⁇ m, according to the elements in the target material
  • the mass ratio Mo:Ni:Ti:Re 60:20:18:2, equipped with 140Kg raw materials.
  • titanium is to add all the titanium hydride powder to part of the raw material molybdenum powder, and then reduce it at 800°C for 4 hours in a hydrogen atmosphere to obtain the reduced molybdenum-titanium alloy powder (the mass of molybdenum element and titanium element in the molybdenum-titanium alloy powder The ratio is 1:1), and then add the molybdenum-titanium alloy powder to the remaining powder to be mixed;
  • Step 2 Put the powder obtained in step 1 into a ball mill tank with a ball-to-material ratio of 1:1, pump to negative pressure, fill with argon to reach one atmospheric pressure, mix for 13 hours, and rotate at 200 r/min;
  • Step 3 Put the mixed powder obtained in Step 2 into a tubular mold made of stainless steel, and perform cold isostatic pressing with a pressing pressure of 200MPa and a holding time of 10 minutes;
  • Step 4 Shape the CIP tubular compact obtained in step 3 to make the geometric dimensions of the blank complete;
  • Step 5 Put the pressed compact shaped in step 4 into the bag, pump the air to 10 -1 Pa, keep pumping for 5 hours, and seal;
  • Step 6 Perform hot isostatic pressing (HIP) on the package in step 5.
  • the insulation temperature is 920°C
  • the pressure is 120MPa
  • the insulation and pressure holding time is 4 hours;
  • Step 7 Remove the coating in step 6 by machining to ensure that the outer circular surface of the tube target is flat and has no bulges.
  • the outer diameter of the tube blank is 180mm and the inner diameter is 140mm;
  • Step 8 Put the tube blank obtained in step 7 into the muffle furnace, heat it in the air atmosphere, the extrusion starting temperature is 1350°C, the holding time is 90 minutes, the extrusion deformation rate of each pass is 15 ⁇ 25%, and the extrusion deformation rate of each pass is 15 ⁇ 25%.
  • the previous heat preservation temperature is 50°C lower than the previous pass.
  • the heat preservation time before each pass of extrusion is 90 minutes.
  • the end temperature of extrusion deformation is about 980°C.
  • the size of the tube blank is 120mm outer diameter and 100mm inner diameter;
  • Step 9 Machine the inner and outer surfaces of the tube blank obtained in Step 8 to obtain a tube blank with an outer diameter of 115mm and an inner diameter of 105mm;
  • Step 10 The tube blank obtained in step 9 is annealed in an Ar gas atmosphere at an annealing temperature of 1100°C and a holding time of 90 minutes to obtain a uniform fine-grained tube with a grain size of 66 ⁇ m-92 ⁇ m and a grain size of level 4. For details, see figure 1.
  • the tube target material obtained in this example has no cracks, and the yield is 100%.
  • a molybdenum alloy tube target and a preparation method including the following steps:
  • Step 1 Mix pure Mo powder with a purity of 3N5, a particle size of 3.8 ⁇ m; Ni powder with a purity of 3N, a particle size of 2.4 ⁇ m; TiH2 powder with a purity of 3N, a particle size of 3.0 ⁇ m; Rhenium powder with a purity of 4N, a particle size of 3.5 ⁇ m, according to the target material
  • the addition of titanium is to add all the titanium hydride powder to part of the raw material molybdenum powder, and reduce it at 750°C in a hydrogen atmosphere.
  • Step 2 Put the powder obtained in step 1 into a ball mill tank with a ball-to-material ratio of 1:2, pump to negative pressure, fill with argon to reach one atmospheric pressure, mix for 15 hours, and rotate at 200 r/min;
  • Step 3 Put the mixed powder obtained in Step 2 into a tubular mold made of stainless steel, and perform cold isostatic pressing with a pressing pressure of 200MPa and a holding time of 8 minutes;
  • Step 4 Shape the CIP tubular compact obtained in step 3 to make the geometric dimensions of the blank complete;
  • Step 5 Place the shaped compact in step 4 into the bag, pump air to 10 -2 Pa, keep pumping for 4 hours, and seal;
  • Step 6 Perform hot isostatic pressing (HIP) on the package in step 5.
  • the insulation temperature is 940°C
  • the pressure is 150MPa
  • the insulation and pressure time is 3 hours;
  • Step 7 Remove the cover in step 6 by machining to ensure that the outer circular surface of the tube target is flat and has no bulges.
  • the outer diameter of the tube blank is 200mm and the inner diameter is 120mm;
  • Step 8 Put the tube blank obtained in step 7 into the muffle furnace, heat it in the air atmosphere, the extrusion starting temperature is 1300°C, the holding time is 90 minutes, the extrusion deformation rate of each pass is 15 ⁇ 25%, and the extrusion deformation rate of each pass is 15 ⁇ 25%.
  • the front insulation temperature is 50°C lower than the previous pass.
  • the insulation time before each pass of extrusion is 90 minutes.
  • the end temperature of extrusion deformation is about 1050°C.
  • the size of the tube blank is 150mm outer diameter and 130mm inner diameter;
  • Step 9 Machine the inner and outer surfaces of the tube blank obtained in Step 8 to obtain a tube blank with an outer diameter of 145mm and an inner diameter of 135mm;
  • Step 10 The tube blank obtained in step 9 is annealed in an Ar gas atmosphere at an annealing temperature of 1250°C and a holding time of 90 minutes to obtain a uniform fine-grained tube with a grain size of 60 ⁇ m-85 ⁇ m and a grain size of level 5.
  • the tubular target material obtained in this example has no cracks, and the yield is 100%.
  • a molybdenum alloy tube target and a preparation method including the following steps:
  • Step 1 Mix pure Mo powder with a purity of 3N5, a particle size of 3.2 ⁇ m; Ni powder with a purity of 3N, a particle size of 3.5 ⁇ m; TiH2 powder with a purity of 3N, a particle size of 3.5 ⁇ m; Rhenium powder with a purity of 4N, a particle size of 3.5 ⁇ m, according to the target material
  • the addition of titanium is to add 40% mass ratio of titanium hydride to part of the molybdenum powder, and reduce it at 800°C in a hydrogen atmosphere. 3h, obtain the reduced molybdenum-titanium alloy powder, and add the molybdenum-titanium alloy powder to the remaining powders to be mixed;
  • Step 2 Put the powder obtained in step 1 into a ball mill tank with a ball-to-material ratio of 1:1, pump to negative pressure, fill with argon to reach one atmospheric pressure, mix for 16 hours, and rotate at 200 r/min;
  • Step 3 Put the mixed powder obtained in Step 2 into a tubular mold made of stainless steel, and perform cold isostatic pressing with a pressing pressure of 150MPa and a holding time of 15 minutes;
  • Step 4 Shape the CIP tubular compact obtained in step 3 to make the geometric dimensions of the blank complete;
  • Step 5 Put the pressed compact shaped in step 4 into the bag, pump out the air to 10 -1 Pa, keep pumping out for 6 hours, and seal;
  • Step 6 Perform hot isostatic pressing (HIP) on the package in step 5.
  • the insulation temperature is 920°C
  • the pressure is 170MPa
  • the insulation and pressure holding time is 3 hours;
  • Step 7 Remove the wrapping in step 6 by machining to ensure that the outer circular surface of the tube target is flat and has no bulges.
  • the outer diameter of the tube blank is 240mm and the inner diameter is 100mm;
  • Step 8 Put the tube blank obtained in step 7 into the muffle furnace, heat it in the air atmosphere, the extrusion starting temperature is 1350°C, the holding time is 120 minutes, the extrusion deformation rate of each pass is 15 ⁇ 25%, and the extrusion deformation rate of each pass is 15 ⁇ 25%.
  • the front insulation temperature is 50°C lower than the previous pass.
  • the insulation time before each pass of extrusion is 90 minutes.
  • the end temperature of extrusion deformation is about 1080°C.
  • the size of the tube blank is 160mm in outer diameter and 130mm in inner diameter;
  • Step 9 Machine the inner and outer surfaces of the tube blank obtained in Step 8 to obtain a tube blank with an outer diameter of 155mm and an inner diameter of 135mm;
  • Step 10 The tube blank obtained in step 9 is annealed in an Ar gas atmosphere at an annealing temperature of 1250°C and a holding time of 60 minutes to obtain a uniform fine-grained tube with a grain size of 55 ⁇ m-80 ⁇ m and a grain size of level 5.
  • the tubular target material obtained in this example has no cracks, and the yield is 100%.
  • a molybdenum alloy tube target and a preparation method including the following steps:
  • Step 1 Mix pure Mo powder with a purity of 3N5 and a particle size of 3.8 ⁇ m; Ni powder with a purity of 3N and a particle size of 3.5 ⁇ m; TiH2 powder with a purity of 3N and a particle size of 3.2 ⁇ m; Rhenium powder with a purity of 4N and a particle size of 2.8 ⁇ m, according to the target material.
  • Step 2 Put the powder obtained in step 1 into a ball mill tank with a ball-to-material ratio of 1:2, pump to negative pressure, fill with argon to reach one atmospheric pressure, mix for 16 hours, and rotate at 200 r/min;
  • Step 3 Put the mixed powder obtained in Step 2 into a tubular mold made of stainless steel, and perform cold isostatic pressing with a pressing pressure of 200MPa and a holding time of 10 minutes;
  • Step 4 Shape the CIP tubular compact obtained in step 3 to make the geometric dimensions of the blank complete;
  • Step 5 Place the shaped compact in step 4 into the bag, pump air to 10 -2 Pa, keep pumping for 4 hours, and seal;
  • Step 6 Perform hot isostatic pressing (HIP) on the package in step 5.
  • the heat preservation system is 930°C, the pressure is 150MPa, and the heat preservation and pressure holding time is 4 hours;
  • Step 7 Remove the cover in step 6 by machining to ensure that the outer circular surface of the tube target is flat and has no bulges.
  • the outer diameter of the tube blank is 220mm and the inner diameter is 100mm;
  • Step 8 Put the tube blank obtained in step 7 into the muffle furnace, heat it in the air atmosphere, the extrusion starting temperature is 1350°C, the holding time is 90 minutes, the extrusion deformation rate of each pass is 15 ⁇ 25%, and the extrusion deformation rate of each pass is 15 ⁇ 25%.
  • the front insulation temperature is 50°C lower than the previous pass.
  • the insulation time before each pass of extrusion is 90 minutes.
  • the end temperature of extrusion deformation is about 1080°C.
  • the size of the tube blank is 165mm in outer diameter and 135mm in inner diameter;
  • Step 9 Machine the inner and outer surfaces of the tube blank obtained in Step 8 to obtain a tube blank with an outer diameter of 160mm and an inner diameter of 140mm;
  • Step 10 The tube blank in Step 9 is annealed in an Ar gas atmosphere at an annealing temperature of 1200°C and a holding time of 100 minutes to obtain a uniform fine-grained tube with a grain size of 70 ⁇ m-100 ⁇ m and a grain size of level 4.
  • the tube target material obtained in this example has no cracks, and the yield is 100%.
  • the obtained target has a grain size of 55 ⁇ m-85 ⁇ m and a grain size of level 5.
  • the tubular target material obtained in this example has no cracks, and the yield is 100%.
  • the molybdenum alloy tube target prepared in Comparative Example 1 has many cracks and needs to be machined to remove the cracked parts, which affects the utilization rate of the material.
  • the molybdenum alloy tube target prepared in Comparative Example 2 was difficult to deform, and serious cracking occurred in the first pass of extrusion, making it impossible to deform.
  • Re when the Re content is high, Re can form an alloy phase with other elements, affecting the subsequent coating effect.
  • the size of some grains exceeds 100 ⁇ m, and the uniformity of grains is poor.
  • the tube target in this comparative example cracked, and the yield was 50%.
  • Example 2 The same as Example 1, the only difference is that in the extrusion process of this comparative example, the heating and heat preservation temperature of each pass is lowered by 120°C based on the previous heating and heat preservation temperature.
  • the grain size of the tubular target obtained in this comparative example is 90 ⁇ m-160 ⁇ m, and the grain uniformity is poor.
  • the tube target material obtained in this embodiment has cracks, and the yield is less than 50%.
  • Example 2 The same as Example 1, the only difference is that the annealing temperature is 1350°C.
  • the molybdenum alloy tube target prepared in Comparative Example 6 has a larger grain size, ranging from 120 ⁇ m to 200 ⁇ m, with a grain size of 1-3 levels, mixed crystals, and larger grains in some parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种钼合金管靶材的制备方法、钼合金管靶材和用途,属于粉末冶金技术领域。该靶材是将原料粉末经冷等静压成型、包套、热等静压、挤压成型、退火等工序制备而成,制备得到的靶材以质量百分比计,包括Ni:10~30%,Ti:5~25%,Re:0.5~5%,M:0-15%,M为Cr、Zr、Ta、Nb中的至少一种,其中M用于替代部分Ti,余量为Mo和不可避免的杂质,Mo在钼合金管靶材中的质量百分比含量不低于50%。制备的靶材塑韧性好,变形能力较好,晶粒细小均匀。用制备的靶材溅射沉积的薄膜的厚度分布更均匀,可通过溅射方式附着在电子部件用层叠配线膜的主导电层上形成金属覆盖层,用于平面显示器、薄膜太阳能和半导体装置等。

Description

一 种钼合金管靶材的制备方法、钼合金管靶材和用途 技术领域
本发明属于粉末冶金技术领域,具体涉及一种钼合金管靶材制备方法、钼合金管靶材和用途。
背景技术
随着液晶显示器、显示面板等平面显示装置的技术升级换代,需要进行配线膜的低电阻化。同时,随着平板显示器的大画面、高精细度、高速响应化,以及柔性面板的大型化,也要求较低的膜电阻水平。
薄膜晶体管(TFT)作为显示面板的驱动元件,使用Al或Cu作为主配线材料。但是如果Al或Cu与Si直接接触,会在制备过程中由于热加工形成热扩散,使得薄膜晶体管性能恶化。因此,在Al/Cu和Si之间需要设置层叠布线膜。
Mo及Mo-Nb、Mo-Ti等钼合金具有较好的耐腐蚀性、耐热性,而且与基板的密合性较好,可用于制备层叠布线膜。但是在制备过程中,基板上形成层叠配线膜后,有时会长时间放置于大气中。同时,在显示面板安装信号电缆时,有时需在大气中加热,而且在使用氧化物的半导体薄膜中,为提高性能和稳定化,需要在有氧环境下加热处理。因此,增强层叠配线膜的耐氧化性的需求很强烈。另外,便携性的轻型、柔性显示面板使用的树脂膜与玻璃基板相比,具有透湿性,需要层叠配线膜具有较高的耐湿性。但是纯Mo、Mo-Ti等材料的耐湿性和耐氧化性并不充分,有时会产生氧化,造成Al或Cu的电阻值显著增加的问题。
专利《CN2012102930608》,公开了一种层叠布线膜用钼合金靶材,为了改善纯钼镀膜的耐湿性和耐氧化性,在钼中添加了一定数量的Ni和Ti,有助于电子部件的稳定制造并提高可靠性。
专利《CN2014100909230》公开了一种电子部件用钼合金靶材,通过添加Ni提高耐氧化性,添加W元素可以提高耐湿性。
专利《CN2017114460697》,公开了一种含有Ni,Nb,Ti等元素的钼合金靶材成分,可以较好的改善纯钼的耐湿性和耐氧化性,并保持较低的膜电阻。
上述专利通过在钼基体中添加一定量的Ni、Ti或W等元素,共同提高钼靶材溅射膜的耐湿性、耐氧化性,并保持较低的电阻值。但是靶材的制备主要通过热等静压(HIP)成型,随着靶材长度的增大,HIP成型尺寸严重受制于HIP设备的尺寸,无法批量化生产高性能的钼合金靶材。而且,由于钼合金靶材的成型性差,无法通过挤压、锻造等变形方式来制备不同长度的管状靶材产品。
发明内容
针对上述问题,本申请的目的在于提供一种钼合金管靶材制备方法及钼合金管靶材、用途。
本申请提供的钼合金管靶材,在添加铼元素后,增加了靶材的塑韧性,提高靶材的变形加工能力。钼合金管靶材经过后续制备过程中的挤压成型,可以细化晶粒尺寸。另外考虑到铼的价格比较昂贵,本申请通过添加少量的铼与其他成分配合,有效起到改善靶材性能和加工能力的作用。
为实现上述目的,本申请采用以下技术方案:
本申请第一方面提供一种钼合金管靶材的制备方法,包括以下步骤:
混粉:按钼合金管靶材中各元素的质量分数分别称取原料,混合均匀,得到钼合金粉末;所述钼合金管靶材以质量百分比计,包括:Ni:10~30%(例如12%、15%、20%、25%),Ti:5~25%(例如6%、8%、10%、15%、20%),Re:0.5~5%(例如0.7%、0.9%、1.2%、1.5%、2%、2.5%、3%、4%),M:0-15%(例如1%、3%、5%、8%、10%、13%),M为Cr、Zr、Ta、Nb中的至少一种,所述M用于替代部分Ti,余量为Mo和不可避免的杂质,且Mo在所述钼合金管靶材中的质量百分比含量不低于50%(例如52%、60%、70%);
冷等静压成型:将混合后的粉末放入模具中,进行冷等静压成形,获得第一坯料;
热等静压成型:将所述第一坯料进行热等静压成型,获得第二坯料;
挤压成型:将所述第二坯料进行挤压成型,获得第三坯料;
退火处理:将所述第三坯料进行退火处理。
本申请钼合金管靶材成分中Ni可以提高由本申请靶材形成的膜层的耐氧化性,Ti可以提高膜层的耐湿性,二者适量添加不仅可以保证膜层的耐氧化性和耐湿性,还能保证配线膜的低电阻,不影响刻蚀剂的刻蚀速度。
本申请钼合金管靶材中添加了少量的Re元素,特定比例的铼元素的添加,与钼合金中特定比例的其他元素共同作用,使铼在该钼合金中发挥“铼效应”,改善钼合金的室温塑性,降低塑脆转变温度,细化晶粒等。通过在该钼合金管靶材中添加Re元素,可提高靶材的变形性能,在大变形量加工时也不会产生裂纹,由于靶材组织晶粒细小,优选的钼合金组分配比得到的靶材晶粒级差特别小,晶粒均匀,本申请提供的靶材制备的膜层厚度更均匀,溅射速度更快。当Re元素用量超过5%时,一方面是成本增加,另一方面是Re元素的添加过量时,Re可与其它元素形成合金相,影响后续镀膜效果。当Re元素用量小于0.5%时,则不能起到有效的细化晶粒以及增强靶材塑性的效果。
本申请中M元素具有增强靶材镀膜的耐湿性的作用,可用于部分替换同样具有耐湿性的Ti,该元素还可以改善靶材镀膜的抗氧化性等。但从靶材中各种成分相互作用的角度出发,优选M元素仅仅可以部分替代Ti。
在一些实施方案中,上述钼合金管靶材的制备方法还包括:
整形:将所述冷等静压成型后的所述第一坯料进行整形;
包套:在所述热等静压成型前,将所述整形后的所述第一坯料放入包套中,抽真空密封;
去除包套:在所述热等静压成型后,将所述第二坯料的所述包套用机加工去除;
机加工:在所述退火处理前,将所述第三坯料进行机加工。
在一些实施方案中,所述钼合金管靶材以质量百分比计,包括:Ni:10~30%(例如12%、14%、18%、20%、25%),Ti:5~25%(例如6%、8%、10%、13%、16%、19%、23%),Re:1~5%(例如1.2%、1.5%、2%、3%、4%),M:0-5%(例如0.5%、1%、2%、3%、4%),余量为Mo和不可避免的杂质,且Mo在所述钼合金管靶材中的质量百分比含量不低于60%(例如61%、65%、70%、80%)。
在此优选成分范围下,所述钼合金管靶材的各项性能更优。
在一些实施方案中,所述混粉步骤中,所述原料包括:钼粉,纯度≥3N5,钼粉的费氏粒度范围优选为2.5~4μm;镍粉,纯度≥3N,镍粉的费氏粒度范围优选为2~3μm;以及钛源,所述钛源为钛粉或氢化钛,钛粉的纯度≥3N,钛粉的费氏粒度范围优选为2~4μm,氢化钛的纯度≥2N,氢化钛的费氏粒度范围优选为2~4μm;铼粉,纯度≥4N,所述铼粉的费氏粒度优选为2~4μm。
在一些实施方案中,所述钼合金管靶材中的钛元素以钼钛合金粉末的形式加入;所述钼钛合金粉末是将原料中的部分钼粉与氢化钛粉末混合后经还原处理获得;
优选地,所述钼钛合金粉末的钼钛质量比为90:10~70:30(例如85:15、80:20、75:25)。
优选地,在制备钼钛合金粉末的过程中,所述还原处理在氢气气氛中进行,所述还原处理的温度为500~900℃(例如600℃、700℃、800℃),所述还原处理的时间为2~8h(3h、4h、5h、6h)。
上述氢气还原处理中,气体流量根据还原炉膛大小而定,压力为微正压即可。选用氢化钛作为钛源是为了使制备的钼钛合金粉末更加均匀一致;也可以直接使用钛粉作为来源直接混料,但粉末均匀性不如采用氢化钛掺钼粉还原工艺。
在一些实施方案中,所述混粉在球磨罐中进行,球料比1:1~2:1,抽气至负压后再充入氩气,优选球磨罐中氩气压力为一个大气压,混合时间10h-16h(例如12h、14h),转速为50-300r/min。
在一些实施方案中,所述冷等静压成型中,所述冷等静压成形的压制压力150~200MPa(例如170MPa、190MPa),保压时间5~20分钟(例如8分钟、10分钟、15分钟、18分钟)。优选地,所述模具为不锈钢制作的管状模具。
本申请的冷等静压工艺可以使所述第一坯料的相对密度为55~65%。
在一些实施方案中,所述热等静压成型的保温温度为900℃~980℃(例如920℃、940℃、960℃),压力100-170MPa(例如120MPa、140MPa、160MPa),保压时间2-5h(例如3h、4h)。
本申请的热等静压工艺可以使某些钼合金组分形成的所述第二坯料的致密度达到100%。
对于仅经过热等静压工艺无法实现坯料致密度达到100%的情况,可以在所述热等静压成型和冷等静压成型步骤之间增加高温烧结步骤,以提高合金组分的烧结效果,进一步提高坯料的致密度。
在一些实施方案中,所述挤压成型为降温挤压,所述挤压成型的开始温度1100~1400℃(例如1150℃、1200℃、1300℃),所述挤压成型的结束温度900-1100℃(例如950℃、1000℃、1050℃)。在进行每道次挤压前,将所述第二坯料放入马弗炉中,空气或氩气气氛加热,保温温度1100-1400℃,保温时间30~120分钟(例如40分钟、60分钟、80分钟、100分钟),出炉后开始所述每道次挤压。
所述降温挤压具体为后一道次挤压前的加热保温温度低于前一道次挤压前的加热保温温度;
优选地,后一道次挤压前的加热保温温度在前一道次挤压前的加热保温温度的基础上降低大于0小于等于100℃(例如10℃、20℃、40℃、50℃、60℃、80℃);
优选地,所述挤压的每道次挤压变形率15~25%(例如17%、19%、21%、23%),所述挤压成型的总变形量40-80%(例如50%、60%、70%)。
将挤压开始温度控制在1100-1400℃范围内,挤压成型的效果较好。挤压开始温度过高时,镍会融化,并且导致氧化严重,挤压开始温度较低时,挤压成型过程中坯料易开裂。将挤压成型结束温度控制在900-1100℃(例如1050℃、1100℃、1150℃),以保证成型性能,避免开裂。
将每道次挤压变形率控制在15~25%,可以充分利用材料的变形性能,变形率过大时,会造成挤压变形过程中坯料开裂,同时将道次降温控制在100℃以内,以维持材料良好的强度和可塑性,避免开裂。
在一些实施方案中,所述退火处理在氩气气氛下进行,退火温度1000~1300℃(例如1050℃、1100℃、1150℃、1200℃、1250℃),退火保温时间60~120分钟(例如70分钟、80分钟、90分钟、100分钟、110分钟)。
将退火温度控制在此范围,可以消除挤压后靶材的各向异性,获得组织均匀,晶粒细小的钼合金管靶材。当退火温度低于1000℃时,会导致靶材的组织不均匀,当退火温度高于1300℃会导致晶粒异常长大,出现混晶,这均会影响靶材后续溅射镀膜的效果。
在一些实施方案中,经所述退火处理后,可获得晶粒尺寸≤100μm(例如60μm、70μm、80μm、90μm),晶粒度4-5级的均匀细晶靶材。
本申请制备的钼合金管靶材晶粒细小,溅射速率比晶粒粗大的靶的溅射速率快。而且靶材的晶粒尺寸相差较小(分布均匀),靶溅射沉积的薄膜的厚度分布更均匀。用本申请制备的钼合金管靶材溅射所得的薄膜的质量可得到大幅度的改善。
本申请第二方面提供了采用上述方法制备的钼合金管靶材。
在一些实施方案中,钼合金管靶材的晶粒尺寸≤100μm(例如60μm、70μm、80μm、90μm),晶粒度4-5级。
本申请第三方面提供了上述钼合金管靶材的应用。钼合金管靶材通过溅射的方式附着在电子部件用层叠配线膜的主导电层上形成金属覆盖层,所述电子部件为平面显示器、薄膜太阳能或半导体装置等。
与现有技术相比,本申请的有益效果是:
1)在添加铼元素后,增加了靶材的塑韧性,提高靶材的变形加工能力。
2)钼合金管靶材经过后续制备过程中的挤压成型,可以细化晶粒尺寸,可获得晶粒尺寸≤100μm,晶粒度4-5级的均匀细晶靶材。
3)本申请通过添加少量的铼与其他成分配合,有效起到改善靶材性能和加工能力的作用。
4)本申请制备的钼合金管靶材晶粒细小,溅射速率比晶粒粗大的靶的溅射速率快。而且,靶材晶粒尺寸相差较小(分布均匀),靶溅射沉积的薄膜的厚度分布更均匀。用本申请制备的钼合金靶材溅射所得的薄膜的质量可得到大幅度的改善。
附图说明
图1为本申请实施例制备的钼合金管靶材的微观组织形貌示意图。
实施方式
以下实施例对本申请的内容做进一步的详细说明,本申请的保护范围包含但不限于下述各实施例。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用药品或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
Re元素在钼中会发挥“铼效应”,改善材料的室温塑性,降低塑脆转变温度,细化晶粒等作用,通过在钼合金管靶材中添加Re元素,还可以提高靶材的变形性能,可以通过挤压等变形方式,来制备大尺寸的板状靶材,通过退火处理,得到具有均匀细晶的靶材。
以下通过具体实施例对本申请进行详细说明。
如无特殊说明,以下实施例中所指粉末粒度均为费氏粒度,比例为质量比。
本申请实施例中晶粒度级别测试依据标准为《GB/T6394 金属平均晶粒度测定方法》。  
以下实施例所指成品率为挤压变形后得到的合格管坯数量/进行挤压变形的热压坯的数量*100%。
实施例1:
一种钼合金管靶及制备方法,包含如下步骤:
步骤1:将纯度3N5的纯Mo粉,粒度3.5μm;纯度3N的Ni粉,粒度3.2μm;纯度3N的TiH2粉,粒度3.4μm;纯度4N的铼粉,粒度4μm,按照靶材中各元素质量比Mo:Ni:Ti:Re=60:20:18:2,配置140Kg原料。其中钛的添加为在部分原料钼粉中加入全部氢化钛粉末中,然后在氢气气氛中于800℃还原4h,获得还原后的钼钛合金粉末(钼钛合金粉末中钼元素和钛元素的质量比为1:1),然后再将钼钛合金粉末添加入其余要混合的粉末中;
步骤2:将步骤1的得到的粉末,放入球磨罐中,球料比1:1,抽气至负压,充入氩气至一个大气压,混合时间13h,转速为200r/min;
步骤3:将步骤2得到的混合后的粉末放入不锈钢制作的管状模具中,进行冷等静压成形,压制压力200MPa,保压时间10分钟;
步骤4:将步骤3得到的CIP管状压坯进行整形,使坯料几何尺寸规则完整;
步骤5:将步骤4整形后的压坯放入包套中,抽气至10 -1Pa,保持抽气5h,密封;
步骤6:将步骤5的包套进行热等静压(HIP),保温温度为920℃,压力120MPa,保温保压时间4h;
步骤7:将步骤6的包套机加工去除,保证管靶外圆面平整,无凸起,管坯外径180mm,内径140mm;
步骤8:将步骤7得到的管坯放入马弗炉中,空气气氛加热,挤压开始温度1350℃,保温时间90分钟,每道次挤压变形率15~25%,每道次挤压前的保温温度相比前一道次降温50℃,每道次挤压前的保温时间均为90min,挤压变形结束温度为980℃左右,管坯尺寸为外径120mm,内径100mm;
步骤9:将步骤8所得管坯机加工内外表面,得到外径115mm,内径105mm的管坯;
步骤10:将步骤9获得的管坯进行Ar气气氛下退火处理,退火温度1100℃,保温时间90分钟,得到晶粒尺寸66μm-92μm,晶粒度4级的均匀细晶管材,具体可参见图1。
本实施例得到的管靶材无裂纹,成品率100%。
实施例2:
一种钼合金管靶及制备方法,包含如下步骤:
步骤1:将纯度3N5的纯Mo粉,粒度3.8μm;纯度3N的Ni粉,粒度2.4μm;纯度3N的TiH 2粉,粒度3.0μm;纯度4N的铼粉,粒度3.5μm,按照靶材中各元素质量比Mo:Ni:Ti:Re=73:15:10:2,配置200Kg原料,其中钛的添加为在部分原料钼粉中加入全部氢化钛粉末中,在氢气气氛中于750℃还原4h,获得还原后的钼钛合金粉末(钼钛合金粉末中钼元素和钛元素的质量比为2:1),将钼钛合金粉末添加入其余要混合的粉末中;
步骤2:将步骤1的得到的粉末,放入球磨罐中,球料比1:2,抽气至负压,充入氩气至一个大气压,混合时间15h,转速为200r/min;
步骤3:将步骤2得到的混合后的粉末放入不锈钢制作的管状模具中,进行冷等静压成形,压制压力200MPa,保压时间8分钟;
步骤4:将步骤3得到的CIP管状压坯进行整形,使坯料几何尺寸规则完整;
步骤5:将步骤4整形后的压坯放入包套中,抽气至10 -2Pa,保持抽气4h,密封;
步骤6:将步骤5的包套进行热等静压(HIP),保温温度为940℃,压力150MPa,保温保压时间3h;
步骤7:将步骤6的包套机加工去掉,以保证管靶外圆面平整,无凸起,管坯外径200mm,内径120mm;
步骤8:将步骤7得到的管坯放入马弗炉中,空气气氛加热,挤压开始温度1300℃,保温时间90分钟,每道次挤压变形率15~25%,每道次挤压前保温温度相比前一道次降温50℃,每道次挤压前的保温时间均为90min,挤压变形结束温度为1050℃左右,管坯尺寸为外径150mm,内径130mm;
步骤9:将步骤8所得管坯机加工内外表面,得到外径145mm,内径135mm的管坯;
步骤10:将步骤9获得的的管坯进行Ar气气氛下退火处理,退火温度1250℃,保温时间90分钟,得到晶粒尺寸60μm-85μm,晶粒度5级的均匀细晶管材。
本实施例得到的管状靶材无裂纹,成品率100%。
实施例3:
一种钼合金管靶及制备方法,包含如下步骤:
步骤1:将纯度3N5的纯Mo粉,粒度3.2μm;纯度3N的Ni粉,粒度3.5μm;纯度3N的TiH 2粉,粒度3.5μm;纯度4N的铼粉,粒度3.5μm,按照靶材中各元素质量比Mo:Ni:Ti:Re=70:15:10:5,配置70Kg,其中钛的添加为在部分钼粉中加入40%质量比的氢化钛,在氢气气氛中于800℃还原3h,获得还原后的钼钛合金粉末,将钼钛合金粉末添加入其余要混合的粉末中;
步骤2:将步骤1的得到的粉末,放入球磨罐中,球料比1:1,抽气至负压,充入氩气至一个大气压,混合时间16h,转速为200r/min;
步骤3:将步骤2得到的混合后的粉末放入不锈钢制作的管状模具中,进行冷等静压成形,压制压力150MPa,保压时间15分钟;
步骤4:将步骤3得到的CIP管状压坯进行整形,使坯料几何尺寸规则完整;
步骤5:将步骤4整形后的压坯放入包套中,抽气至10 -1Pa,保持抽气6h,密封;
步骤6:将步骤5的包套进行热等静压(HIP),保温温度为920℃,压力170MPa,保温保压时间3h;
步骤7:将步骤6的包套机加工去掉,保证管靶外圆面平整,无凸起,管坯外径240mm,内径100mm;
步骤8:将步骤7得到的管坯放入马弗炉中,空气气氛加热,挤压开始温度1350℃,保温时间120分钟,每道次挤压变形率15~25%,每道次挤压前保温温度相比前一道次降温50℃,每道次挤压前的保温时间均为90min,挤压变形结束温度为1080℃左右,管坯尺寸为外径160mm,内径130mm;
步骤9:将步骤8所得管坯机加工内外表面,得到外径155mm,内径135mm的管坯;
步骤10:将步骤9所得的管坯进行Ar气气氛下退火处理,退火温度1250℃,保温时间60分钟,得到晶粒尺寸55μm-80μm,晶粒度5级的均匀细晶管材。
本实施例得到的管状靶材无裂纹,成品率100%。
实施例4:
一种钼合金管靶及制备方法,包含如下步骤:
步骤1:将纯度3N5的纯Mo粉,粒度3.8μm;纯度3N的Ni粉,粒度3.5μm;纯度3N的TiH 2粉,粒度3.2μm;纯度4N的铼粉,粒度2.8μm,按照靶材中各元素质量比Mo:Ni:Ti:Re=74:15:10:1,配置150Kg;其中钛的添加为在部分原料钼粉中加入全部氢化钛粉末中,然后在氢气气氛中于800℃还原4h,获得还原后的钼钛合金粉末(钼钛合金粉末中钼元素和钛元素的质量比为2:1),将钼钛合金粉末添加入其余要混合的粉末中;
步骤2:将步骤1的得到的粉末,放入球磨罐中,球料比1:2,抽气至负压,充入氩气至一个大气压,混合时间16h,转速为200r/min;
步骤3:将步骤2得到的混合后的粉末放入不锈钢制作的管状模具中,进行冷等静压成形,压制压力200MPa,保压时间10分钟;
步骤4:将步骤3得到的CIP管状压坯进行整形,使坯料几何尺寸规则完整;
步骤5:将步骤4整形后的压坯放入包套中,抽气至10 -2Pa,保持抽气4h,密封;
步骤6:将步骤5的包套进行热等静压(HIP),保温制度为930℃,压力150MPa,保温保压时间4h;
步骤7:将步骤6的包套机加工去掉,保证管靶外圆面平整,无凸起,管坯外径220mm,内径100mm;
步骤8:将步骤7得到的管坯放入马弗炉中,空气气氛加热,挤压开始温度1350℃,保温时间90分钟,每道次挤压变形率15~25%,每道次挤压前保温温度相比前一道次降温50℃,每道次挤压前的保温时间均为90min,挤压变形结束温度为1080℃左右,管坯尺寸为外径165mm,内径135mm;
步骤9:将步骤8所得管坯机加工内外表面,得到外径160mm,内径140mm的管坯;
步骤10:将步骤9的管坯进行Ar气气氛下退火处理,退火温度1200℃,保温时间100分钟,得到晶粒尺寸70μm-100μm,晶粒度4级的均匀细晶管材。
本实施例得到的管靶材无裂纹,成品率100%。
实施例5
步骤1,将纯度3N5的纯Mo粉,粒度3.8μm;纯度3N的Ni粉,粒度2.4μm;纯度3N的TiH2粉,粒度3.4μm;纯度4N的铼粉,粒度4μm;Cr的原料为铬粉,粒度3.5μm,按照靶材中各元素质量比Mo:Ni:Ti:Re:Cr=60:20:16:2:2,配置140Kg原料;其中钛的添加为在部分原料钼粉中加入全部氢化钛粉末中,然后在氢气气氛中于800℃还原4h,获得还原后的钼钛合金粉末(钼钛合金粉末中钼元素和钛元素的质量比为1:1),将钼钛合金粉末添加入其余要混合的粉末中;
后续步骤同实施例1。
得到的靶材晶粒尺寸55μm-85μm,晶粒度5级。
本实施例得到的管状靶材无裂纹,成品率100%。
对比例1
除挤压成型工艺参数不同于实施例1以外,其余制备方法与实施例1相同。本对比例的挤压成型工艺中道次变形量为30%。
在挤压成型的第一道次,坯料出现表面裂纹,在挤压成型的第二道次,坯料开裂。
对比例1制备的钼合金管靶材开裂较多,需机加工去除开裂部位,影响材料的利用率。
对比例2
除未添加铼元素外,其余制备方法与实施例1相同。
对比例2制备的钼合金管靶材变形困难,在挤压第一道次即发生严重开裂,无法进行变形处理。
对比例3
该对比例按照靶材中各元素质量比Mo:Ni:Ti:Re=69:15:10:6,配置140Kg原料;其余与实施例3相同。
对比例3制备的钼合金管靶材,成本大大提高,而且铼含量过高,反而增加了变形的困难程度,变形过程中坯料表面出现裂纹。
同时,Re含量较多时,Re可与其它元素形成合金相,影响后续镀膜效果。
部分晶粒尺寸超过100μm,晶粒均匀性差。
本对比例的管靶材产生裂纹,成品率50%。
对比例4
与实施例1相同,区别在于挤压开始温度1500℃。
对比例4的挤压开始温度过高,坯料中镍局部融化,并且导致表面氧化严重,坯料的热塑性变差,在挤压过程中,造成坯料开裂。
对比例5
与实施例1相同,区别仅在于本对比例的挤压工艺中,每道次加热保温温度在前一次加热保温温度基础上降温120℃。
本对比例得到的管状靶材晶粒尺寸为90μm-160μm,晶粒均匀性差。
本实施例得到的管靶材产生裂纹,成品率小于50%。
对比例6
与实施例1相同,区别仅在于退火温度为1350℃。
对比例6制备的钼合金管靶材晶粒尺寸较大,为120μm~200μm,晶粒度1-3级,出现混晶,局部有较大晶粒。
以上对本申请进行了详述。对于本领域技术人员来说,在不脱离本申请的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、比例和条件下,在较宽范围内实施本申请。虽然本申请给出了特殊的实施例,应该理解为,可以对本申请作进一步的改进。总之,按本申请的原理,本申请欲包括任何变更、用途或对本申请的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。

Claims (10)

  1. 一种钼合金管靶材的制备方法,其特征在于,包括以下步骤:
    混粉:按钼合金管靶材中各元素的质量分数分别称取原料,混合均匀,得到钼合金粉末;其中,所述钼合金管靶材,以质量百分比计,包括Ni:10~30%,Ti:5~25%,Re:0.5~5%,M:0-15%,M为Cr、Zr、Ta、Nb中的至少一种,所述M用于替代部分Ti,余量为Mo和不可避免的杂质,且Mo在所述钼合金管靶材中的质量百分比含量不低于50%;
    冷等静压成型:将混合后的粉末放入模具中,进行冷等静压成形,获得第一坯料;
    热等静压成型:将所述第一坯料进行热等静压成型,获得第二坯料;
    挤压成型:将所述第二坯料进行挤压成型,获得第三坯料;
    退火处理:将所述第三坯料进行退火处理;
    所述挤压成型为降温挤压,所述挤压成型的开始温度1100~1400℃,所述挤压成型的结束温度900-1100℃;以及
    在进行每道次挤压前,将所述第二坯料放入马弗炉中,空气或氩气气氛加热,保温温度1100-1400℃,保温时间30~120分钟,出炉后开始所述每道次挤压;
    所述降温挤压具体为后一道次挤压前的加热保温温度依次低于前一道次挤压前的加热保温温度;
    所述后一道次挤压前的加热保温温度为在所述前一道次的加热保温温度基础上降低大于0小于等于100℃;
    所述挤压的每道次挤压变形率15~25%,所述挤压成型的总变形量40-80%;
    所述退火处理在氩气气氛下进行,退火温度1000~1300℃,退火保温时间60~120分钟。
  2. 如权利要求1所述的钼合金管靶材的制备方法,其特征在于,还包括:
    整形:将所述冷等静压成型后的所述第一坯料进行整形;
    包套:在所述热等静压成型前,将所述整形后的所述第一坯料放入包套中,抽真空密封;
    去除包套:在所述热等静压成型后,将所述第二坯料的所述包套用机加工去除;
    机加工:在所述退火处理前,将所述第三坯料进行机加工。
  3. 如权利要求2所述的钼合金管靶材的制备方法,其特征在于,所述钼合金管靶材以质量百分比计,包括Ni:10-30%,Ti:5-25%,Re:1-5%,M:0-5%,所述M为Cr、Zr、Ta、Nb中的至少一种,所述M用于替代部分Ti,余量为Mo和不可避免的杂质,且Mo在所述钼合金管靶材中的质量百分比含量不低于60%。
  4. 如权利要求1所述的钼合金管靶材的制备方法,其特征在于,所述混粉步骤中,所述原料包括:钼粉,纯度≥3N5,钼粉的费氏粒度范围为2.5~4μm;镍粉,纯度≥3N,镍粉的费氏粒度范围为2~3μm;以及钛源,所述钛源为钛粉或氢化钛,钛粉的纯度≥3N,钛粉的费氏粒度范围为2~4μm,氢化钛的纯度≥2N,氢化钛的费氏粒度范围为2~4μm;铼粉,纯度≥4N,所述铼粉的费氏粒度为2~4μm。
  5. 如权利要求4所述的钼合金管靶材的制备方法,其特征在于,所述钼合金管靶材中的钛元素以钼钛合金粉末的形式加入;所述钼钛合金粉末是将原料中的部分钼粉与氢化钛粉末混合后经还原处理获得。
  6. 如权利要求5所述的钼合金管靶材的制备方法,其特征在于,所述钼钛合金粉末的钼钛质量比为90:10~70:30;
    在制备所述钼钛合金粉末的过程中,所述还原处理在氢气气氛中进行,所述还原处理的温度为500~900℃,所述还原处理的时间为2~8h。
  7. 如权利要求1-6任一项所述的钼合金管靶材的制备方法,其特征在于,所述混粉在球磨罐中进行,球料比1:1~2:1,抽气至负压后再充入氩气,球磨罐中氩气压力为一个大气压,混合时间10h-16h,转速为50~300r/min;
    所述冷等静压成型中,所述冷等静压成形的压制压力150~200MPa,保压时间5~20分钟;
    所述热等静压成型的保温温度为900℃~980℃,压力100-170MPa,保压时间2-5h。
  8. 一种如权利要求1-7任一项所述方法制备的钼合金管靶材。
  9. 根据权利要求8所述的钼合金管靶材,其特征在于,所述钼合金管靶材的晶粒尺寸≤100μm,晶粒度4-5级。
  10. 权利要求8或9所述的钼合金管靶材的应用,其特征在于,所述应用为钼合金管靶材通过溅射的方式附着在电子部件用层叠配线膜的主导电层上形成金属覆盖层,所述电子部件为平面显示器、薄膜太阳能或半导体装置。
PCT/CN2023/095630 2022-05-23 2023-05-22 一种钼合金管靶材的制备方法、钼合金管靶材和用途 WO2023208249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565049.6A CN114939661B (zh) 2022-05-23 2022-05-23 一种钼合金管靶材的制备方法、钼合金管靶材和用途
CN202210565049.6 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023208249A1 true WO2023208249A1 (zh) 2023-11-02

Family

ID=82909750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095630 WO2023208249A1 (zh) 2022-05-23 2023-05-22 一种钼合金管靶材的制备方法、钼合金管靶材和用途

Country Status (2)

Country Link
CN (1) CN114939661B (zh)
WO (1) WO2023208249A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939661B (zh) * 2022-05-23 2023-11-03 安泰天龙(北京)钨钼科技有限公司 一种钼合金管靶材的制备方法、钼合金管靶材和用途
CN115502403A (zh) * 2022-09-29 2022-12-23 宁波江丰电子材料股份有限公司 一种大尺寸、高致密度钼靶材的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180399A (en) * 1976-09-28 1979-12-25 The Foundation: The Research Institute For Special Inorganic Materials Molybdenum base composite materials reinforced with continuous silicon carbide fibers and a method for producing the same
CN106567048A (zh) * 2016-11-10 2017-04-19 洛阳科威钨钼有限公司 一种大型高纯钼合金旋转靶材的制造方法
CN108213440A (zh) * 2017-12-25 2018-06-29 安泰天龙钨钼科技有限公司 一种钼铼合金管材的制备方法
CN109065425A (zh) * 2018-07-06 2018-12-21 健康力(北京)医疗科技有限公司 用于ct球管的阳极靶盘及其制备方法
CN110000391A (zh) * 2019-02-28 2019-07-12 株洲硬质合金集团有限公司 一种钼管的制备方法
CN110158042A (zh) * 2019-05-08 2019-08-23 东莞市欧莱溅射靶材有限公司 一种钼铌合金旋转靶材及其制备方法
CN114134462A (zh) * 2021-11-29 2022-03-04 宁波江丰电子材料股份有限公司 一种MoTiNiNb靶材及其制造方法和用途
CN114939661A (zh) * 2022-05-23 2022-08-26 安泰天龙(北京)钨钼科技有限公司 一种钼合金管靶材的制备方法、钼合金管靶材和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029710A1 (en) * 2011-04-10 2014-01-30 The Governors Of The University Of Alberta Production of technetium from a molybdenum metal target
CN102321871B (zh) * 2011-09-19 2013-03-20 基迈克材料科技(苏州)有限公司 热等静压生产平板显示器用钼合金溅射靶材的方法
CN104439247B (zh) * 2014-12-30 2017-08-29 山东昊轩电子陶瓷材料有限公司 钼合金靶材的制备方法
CN111036893B (zh) * 2019-12-13 2022-03-08 安泰天龙钨钼科技有限公司 一种钼铼合金管材的挤压制备方法
CN114293160A (zh) * 2021-12-20 2022-04-08 洛阳高新四丰电子材料有限公司 一种钼合金溅射靶材的制备工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180399A (en) * 1976-09-28 1979-12-25 The Foundation: The Research Institute For Special Inorganic Materials Molybdenum base composite materials reinforced with continuous silicon carbide fibers and a method for producing the same
CN106567048A (zh) * 2016-11-10 2017-04-19 洛阳科威钨钼有限公司 一种大型高纯钼合金旋转靶材的制造方法
CN108213440A (zh) * 2017-12-25 2018-06-29 安泰天龙钨钼科技有限公司 一种钼铼合金管材的制备方法
CN109065425A (zh) * 2018-07-06 2018-12-21 健康力(北京)医疗科技有限公司 用于ct球管的阳极靶盘及其制备方法
CN110000391A (zh) * 2019-02-28 2019-07-12 株洲硬质合金集团有限公司 一种钼管的制备方法
CN110158042A (zh) * 2019-05-08 2019-08-23 东莞市欧莱溅射靶材有限公司 一种钼铌合金旋转靶材及其制备方法
CN114134462A (zh) * 2021-11-29 2022-03-04 宁波江丰电子材料股份有限公司 一种MoTiNiNb靶材及其制造方法和用途
CN114939661A (zh) * 2022-05-23 2022-08-26 安泰天龙(北京)钨钼科技有限公司 一种钼合金管靶材的制备方法、钼合金管靶材和用途

Also Published As

Publication number Publication date
CN114939661B (zh) 2023-11-03
CN114939661A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2023208249A1 (zh) 一种钼合金管靶材的制备方法、钼合金管靶材和用途
TWI521077B (zh) 平面面板顯示器用配線膜形成用濺鍍靶
JP5432550B2 (ja) Al基合金スパッタリングターゲットおよびその製造方法
TWI403600B (zh) 濺鍍靶及接合型濺鍍靶及其製作方法
WO2023186188A1 (zh) 一种钼合金靶材及其制备方法和应用
US20110192719A1 (en) Sputtering target for forming thin film transistor wiring film
WO2021046927A1 (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
JP4237479B2 (ja) スパッタリングターゲット、Al合金膜および電子部品
JP2002327264A (ja) 薄膜形成用スパッタリングターゲット
CN111958333A (zh) 一种钕铝靶材溅射面的抛光工艺
CN114855131A (zh) 一种钼合金靶材制备方法、钼合金靶材和应用
JP2010074017A (ja) 密着性に優れた薄膜トランジスター用配線膜およびこの配線膜を形成するためのスパッタリングターゲット
CN111850490A (zh) 一种二元钼合金溅射靶材及其制备方法
JP2005029862A (ja) 薄膜形成用スパッタリングターゲット
US7789948B2 (en) Hydrogen separation membrane, sputtering target for forming said hydrogen separation membrane, and manufacturing method thereof
US8097100B2 (en) Ternary aluminum alloy films and targets for manufacturing flat panel displays
CN104342574B (zh) 铜合金溅射靶及铜合金溅射靶的制造方法
JP2001059170A (ja) スパッタリングターゲット
TWI632248B (zh) Aluminum alloy sputtering target, aluminum alloy film, display device and input device
CN114892134B (zh) 一种钼合金管靶材及其制备方法和用途
CN113584366B (zh) 一种铌合金溅射靶材及其制备方法
JP5207120B2 (ja) 熱欠陥発生がなくかつ密着力に優れた液晶表示装置用配線および電極
JPH10147860A (ja) Al系スパッタリング用タ−ゲット材およびその製造方法
CN118048546A (zh) 钼合金溅射靶材及其制备方法
CN114959595B (zh) 溅射用高纯铝钕合金靶材及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795681

Country of ref document: EP

Kind code of ref document: A1