WO2023207578A1 - 一种固含量稳定的无机氧化物固态电解质分散液 - Google Patents

一种固含量稳定的无机氧化物固态电解质分散液 Download PDF

Info

Publication number
WO2023207578A1
WO2023207578A1 PCT/CN2023/087525 CN2023087525W WO2023207578A1 WO 2023207578 A1 WO2023207578 A1 WO 2023207578A1 CN 2023087525 W CN2023087525 W CN 2023087525W WO 2023207578 A1 WO2023207578 A1 WO 2023207578A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
inorganic oxide
solid electrolyte
oxide solid
solid content
Prior art date
Application number
PCT/CN2023/087525
Other languages
English (en)
French (fr)
Inventor
邱纪亮
杨琪
王加加
郭鲁新
俞会根
Original Assignee
北京卫蓝新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫蓝新能源科技有限公司 filed Critical 北京卫蓝新能源科技有限公司
Publication of WO2023207578A1 publication Critical patent/WO2023207578A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium batteries, and in particular to an inorganic oxide solid electrolyte dispersion with stable solid content for lithium batteries and a preparation method thereof.
  • Solid-liquid hybrid lithium-ion batteries are currently an advanced technology in the battery field.
  • Using inorganic oxide solid electrolytes to replace part of the organic electrolytes can not only increase energy density but also improve battery safety.
  • the safety issues of high-silicon negative electrodes are significant.
  • a protic solvent is used as the solvent of the inorganic oxide solid electrolyte dispersion during the simultaneous coating process. It has good compatibility with the slurry and has better coating effect.
  • Protic solvents are generally compounds containing hydroxyl or amino groups, such as deionized water, ethanol, ethylene glycol, isopropyl alcohol, etc., which can provide lone pairs of electrons and protons; the surface of inorganic oxide solid electrolytes usually contains a large number of oxygen atoms or in Adsorbed dangling hydrogen bonds in air.
  • the hydroxyl or amino functional group of the protic solvent interacts with the inorganic oxide solid electrolyte to form hydrogen bonds, which helps it to be evenly and stably dispersed in the solvent, so it can be used without In the organic oxide solid electrolyte dispersion, a protic solvent is used to disperse the system, resulting in a system with good stability.
  • inorganic oxide solid electrolytes are easy to dissociate into lithium ions.
  • the protons provided by the protic solvent will promote the precipitation of lithium ions, making Li-H exchange more serious, affecting the surface charge state of the inorganic oxide solid electrolyte, causing particle agglomeration and increasing the size of the solid electrolyte.
  • This type of inorganic oxide solid electrolyte exhibits strong alkalinity in water. Therefore, it is necessary to screen the types of inorganic oxide solid electrolytes, use electrolytes with weak Li-H exchange, and use inorganic oxide solid electrolytes with pH ⁇ 9 when dispersed in water as the standard. Matching with protic solvents can improve the performance of inorganic oxide solid electrolytes. Dispersion stability.
  • the inorganic oxide solid electrolyte obtained by the traditional solid-phase method is ground and dispersed into hundreds of nanometer-sized particles. It is difficult to form a stably dispersed colloid in the solvent and can only form a suspension. The stability of suspension is far worse than that of colloid. Due to the gravity of the particles, they will settle quickly, making it more difficult to achieve. In the prior art, some people disperse the inorganic oxide solid electrolyte in a solvent to obtain a dispersion system, and use the dispersion system in the production of lithium batteries.
  • the solid electrolyte dispersion system used either adds dispersants and other additives, which complicates the system and adversely affects the composition and performance of the lithium battery; or the system is controlled to have a low solid content and is slightly stable within a certain period of time through complex processes.
  • the solid content of this kind of low solid content dispersion liquid is generally less than 20w%.
  • the lower solid content will lead to low system concentration, which is not conducive to controlling the input amount.
  • adding more solvents to the lithium battery production slurry will seriously affect the slurry concentration. , and will have an adverse impact on subsequent lithium battery production.
  • the currently known dispersant-free low-solid content dispersion systems cannot exist stably for a long time. When left for a long time ( ⁇ 20 days), the solid electrolyte will also appear to settle and stratify, which will also be detrimental to the use of materials. effect.
  • inorganic oxide solid electrolyte dispersion when stored and transported, it will face the problem of settling caused by standing still for a long time.
  • inorganic oxide solid electrolyte particles will gradually sink in the vertical direction due to gravity.
  • they When left standing for a long time, they will solidify and form hard blocks that cannot be dispersed again.
  • unstable solid content will lead to The solid content of each position in the dispersion system is different.
  • the unevenness of the dispersion will seriously affect the accuracy of the materials used, and ultimately affect the consistency of the finished product.
  • the sedimentation of the dispersion during the production process will cause the electrolyte to remain in the slurry circulation area such as the pipes of the mixing equipment, and slowly deposit over time.
  • the agglomerates formed will block the pipelines and cause damage to the production equipment.
  • Solving the problem of solid content stability of dispersion liquid can be solved by reducing particle size, centrifugation, adding dispersant, ultrasonic dispersion, etc.
  • Patent CN113540688A introduces a preparation method and application of membrane coating materials.
  • the dispersion liquid is obtained by dispersing LATP, Li-Al double metal hydroxide and binder in a solvent, and finally the porous extrusion is uniformly coated on the separator to obtain a coating material.
  • the selected LATP particles are 300-900nm
  • the solvent is the organic solvent NMP
  • polyvinyl alcohol is used as the dispersant to obtain a dispersion with a solid content of 20-37%.
  • This method introduces a special dispersant, but it affects the purity of the system. Even if a dispersant is added, the dispersion cannot be stable for a long time without agglomeration or sedimentation.
  • Patent CN114073946A introduces a graphene oxide/titanium dioxide composite nanomaterial and its preparation method and application.
  • the method is to stir and ultrasonically disperse graphene oxide and polymer-coated titanium dioxide nanoparticles in water or ethanol solution, and then mix and stir. , obtaining a composite material with good dispersion and long-term stability. material.
  • the method requires titanium dioxide particles to be 5 to 100 nm and a dispersion solid content of 0.01 to 0.1%, which increases production costs and is difficult to scale up production.
  • the use of ultrasonic technology can only play a role in dispersion. Ultrasound cannot break large particles of solid electrolytes. Moreover, the amplification of ultrasonic technology is difficult, and the sound waves generated are very harmful to the environment and human body.
  • Patent CN201810560205.3 introduces a method for preparing a dispersion with stable solid content using a dispersant combined with low-temperature centrifugation technology.
  • a gradient distribution of solid content occurs during the centrifugation process.
  • the solid content of the dispersion is uneven, which is not conducive to controlling the amount of active ingredients when blending the electrolyte slurry.
  • a dispersant is introduced, which is selective for the system and affects the overall purity.
  • the method to improve the stability of the inorganic oxide solid electrolyte material dispersion is mainly to use additives and reduce the solid content.
  • the present invention provides an inorganic oxide solid electrolyte dispersion with stable solid content and a preparation method thereof.
  • This dispersion uses a protic solvent and selects an inorganic oxide solid electrolyte with weak lithium ion dissociation ability. It does not use a dispersant and sets a high solid content.
  • the solid content of each position of the dispersion can be kept stable and the particles dispersed when left to stand for a long time. No agglomeration occurs, and it can be used directly without ultrasonic dispersion treatment, which reduces the use of solvents and reduces preparation and transportation costs.
  • the inorganic oxide solid electrolyte dispersion consists of an inorganic oxide solid electrolyte and a solvent, without additives;
  • the solvent is a protic solvent
  • the solid content of the dispersion is 25% to 85%;
  • the stable solid content means that the solid content change value of the dispersion after standing for 30 days is less than 2%.
  • the inorganic oxide solid electrolyte is NASICON type electrolyte, LiSICON type electrolyte, Li 1-x1 Ti 1-x1 M1 x1 OPO 4 , Li 1+x2 H 1-x2 Al(PO 4 )O 1-y M 2y , LiAlPO 4 F x3 (OH) 1-x3 , at least one of Na- ⁇ / ⁇ ”-Al 2 O 3 , wherein M1 is selected from at least one of Nb, Ta and Sb, and M is selected from F, Cl, Br and at least one of I, 0 ⁇ x1 ⁇ 0.7, 0 ⁇ x2 ⁇ 1, 0 ⁇ x3 ⁇ 1, 0 ⁇ y ⁇ 0.1.
  • the inorganic oxide solid electrolyte is preferably Li 1+x4+n Al x4 Ti 2-x4 Si n (P 1-n/3 O 4 ) 3 , Li 1+x4+n Al x4 Ge 2-x4 Si n ( P 1-n/3 O 4 ) 3 , Na 1+x4 Al x4 Ti 2-x4 Si n (P 1-n/3 O 4 ) 3 , Na 1+x5 Zr 2 Si x5 P 3-x5 O 12 , Li 1+x5 Zr 2 Si x5 P 3-x5 O 12 , Li 14 Zn(GeO 4 ) 4 , Li 1-x1 Ti 1-x1 M1 x1 OPO 4 , Li 1+x2 H 1-x2 Al(PO 4 ) At least one of O 1-y M 2y , LiAlPO 4 F x3 (OH) 1-x3 and Na- ⁇ / ⁇ ”-Al 2 O 3 , wherein M1 is selected from at least one of Nb, Ta and Sb, M is selected from at
  • the inorganic oxide solid electrolyte is at least one of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , LiTiOPO 4 , and LiHAl(PO 4 ) 0.96 F 0.08. A sort of.
  • the protic solvent includes at least one of deionized water, ethanol, ethylene glycol, isopropanol, and acetonitrile.
  • the solid content of the inorganic oxide solid electrolyte dispersion is related to the particle size of the inorganic solid electrolyte in the dispersion
  • the solid content of the dispersion is 25%-70%; when the particle size of the inorganic oxide solid electrolyte is 300nm-2 ⁇ m, the solid content of the dispersion is 35%-85 %.
  • the particle size of the inorganic oxide solid electrolyte in the dispersion is 50nm-300nm.
  • the solid content is 25%-70%, when the particle size of the inorganic oxide solid electrolyte in the dispersion is 300 nm-1 ⁇ m, the solid content is 35%-85%.
  • the change in particle size was less than 5%.
  • Another invention point of the present invention is a method for preparing an inorganic oxide solid electrolyte dispersion, which specifically includes the following steps:
  • the particle size of the inorganic oxide solid electrolyte powder in step 1) is 0.1 to 100 ⁇ m.
  • the mass ratio of grinding media, inorganic oxide solid electrolyte and solvent is (1-20):1: (0.17-4).
  • the grinding medium uses 0.1-10 mm grinding beads, the grinding linear speed in step 2) is 4-20 m/s, and the grinding time is 0.5-72 h.
  • the application of the inorganic oxide solid electrolyte dispersion in lithium batteries according to the present invention includes application in liquid batteries and solid batteries.
  • the specific application method includes direct application or application after dilution to negative electrode surface coating, negative electrode particle surface coating, and separator coating.
  • the present invention uses the pH value of the inorganic oxide solid electrolyte in water as a basis for screening.
  • the inorganic oxide solid electrolyte with strong Li-H exchange ability is strongly alkaline in water.
  • the solvent promotes the solid state of the inorganic oxide.
  • the occurrence of the electrolyte surface exchange process changes the charge state on the particle surface.
  • the surface charge of the inorganic oxide solid electrolyte particles changes, and the particles tend to agglomerate rather than disperse.
  • the Li-H exchange capacity is weak and is affected by protons.
  • the solvent has little influence and can rely on hydrogen bonds, electrostatic forces and van der Waals forces to remain stable in the solution.
  • the solid-content stable dispersion prepared by the present invention has a certain fluidity during the preparation process and after the preparation is completed. As the standing time increases, the viscosity of the dispersion gradually increases, and the solid content of the system is maintained to be almost the same as when the preparation is completed.
  • the inorganic oxide solid electrolyte particles will not settle during the standing process. The principle is: due to the high solid content of the dispersion, most of the solvent is combined by the inorganic particles through electrostatic-dipole forces and becomes a combined solvent, while only a small part of the solvent is a free solvent, providing fluidity. During the ball milling process, the particles in the dispersion collide with the ball mill beads to provide energy, causing part of the combined solvent to become a free solvent.
  • the dispersion has a certain fluidity and meets the processing requirements.
  • the free solvent is gradually attracted by the inorganic particles and becomes a combined solvent.
  • the fluidity of the dispersion decreases and the viscosity increases, preventing the inorganic particles from settling in the dispersion. This phenomenon is not likely to occur at low solid content, because when the proportion of free solvent is high, the effect of the solute combined with the solvent cannot significantly increase the viscosity of the slurry, eventually leading to particle settlement. In actual use, the solid content can be increased to prevent settlement after being left standing for a long time.
  • the present invention uses a protic solvent and an inorganic oxide solid electrolyte with weak lithium ion dissociation ability to match to prepare an inorganic oxide solid electrolyte dispersion.
  • the particles are not easy to agglomerate and have high particle size stability. It can be used for surface coating of negative electrode plates to improve The wetting effect of the solid electrolyte coating and the negative electrode improves the safety performance of the negative electrode.
  • the present invention provides a method for preparing an electrolyte dispersion with stable solid content.
  • the obtained dispersion has excellent solid content stability without settling, effectively preventing dispersion in actual production.
  • problems such as sedimentation and agglomeration during liquid storage, waste of resources during transportation, uneven dispersion caused by effective solid sedimentation during feeding, and problems such as sedimentation and agglomeration of suspended liquid that blocks the pipeline when the pipeline is retained.
  • the present invention does not require the use of additives, improves the purity of the system, and reduces the selectivity of solvents and dispersing materials.
  • the present invention increases the solid content of the dispersion, reduces the amount of solvent, and reduces the cost.
  • the present invention improves the component ratio in the method of grinding and preparing the dispersion, and the preparation method is simple and easy to scale up production.
  • the solid content stability testing steps are as follows:
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 200 nm, 500 parts by weight of 0.1mm zirconium balls, and 300 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the pH 6.45;
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 185 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 43 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the pH 6.45;
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 0.6mm zirconium balls, and 185 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 18 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 42 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the pH 6.45;
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 100 parts by weight of ethanol into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 100 parts by weight of ethylene glycol into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of LiHAl(PO 4 ) 0.96 F 0.08 powder with a particle size of 3 ⁇ m, 500 parts by weight of 0.6mm zirconium balls, and 90 parts by weight of deionized water into the grinding chamber and stir evenly.
  • LiHAl(PO 4 ) 0.96 F 0.08 powder with a particle size of 3 ⁇ m
  • 500 parts by weight of 0.6mm zirconium balls and 90 parts by weight of deionized water into the grinding chamber and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of LiHAl(PO 4 ) 0.96 F 0.08 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 100 parts by weight of ethanol into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of LiTiOPO 4 powder with a particle size of 3 ⁇ m, 500 parts by weight of 0.6mm zirconium balls, and 100 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of LiTiOPO 4 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2 mm zirconium balls, and 100 parts by weight of ethanol into the grinding chamber, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 7 La 3 Zr 2 O 12 powder with a particle size of 3 ⁇ m, 500 parts by weight of 0.6 mm zirconium balls, and 150 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the pH 13.15;
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of LiTiOPO 4 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 100 parts by weight of deionized water into the grinding chamber, and stir evenly.
  • the grinding time is 1 hour.
  • Grind Linear speed 10m/s.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 400 parts by weight of ethanol into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Tables 1 and 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, and 100 parts by weight of n-hexane into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 1 Add 100 parts by weight of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 powder with a particle size of 3 ⁇ m, 500 parts by weight of 2mm zirconium balls, 230 parts by weight of water and 1 part by weight of the dispersant PVDF into the grinding cavity, and stir evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • Step 3 Ultrasonically disperse the dispersion liquid described in Step 2 evenly.
  • the prepared dispersion was subjected to dispersion solid content stability test and dispersion particle size stability test. The results are shown in Table 1 and Table 2.
  • the dispersion liquid of the present invention has excellent solid content stability and particle size stability. After standing for 30 days, the solid content change rate of the upper and lower layers was less than 2%, and the particle size change rate was less than 5%. From Examples 2 and 4, 3 and 6, it can be seen that when the types and amounts of electrolyte materials and dispersion solvents are the same, the stability of the slurry solid content increases as the particle size decreases. From Examples 3 and 4, it can be It is seen that the stability of slurry solid content increases with the increase of solid content.
  • Comparative Examples 1 and 2 that inorganic oxide solid electrolyte materials with high pH in water are easy to agglomerate in protic solvents, and their sedimentation cannot be prevented by increasing the solid content. It can be seen from Example 12 and Comparative Example 3 that it is difficult to improve the solid content stability of large particles with a particle size greater than 2 ⁇ m by increasing the solid content, because the interaction between the large particles and the solvent is too weak and is more affected by gravity. It can be seen from Example 7 and Comparative Example 4 that the stability of the solid content of the slurry decreases significantly after the solid content decreases.
  • Comparative Example 5 It can be seen from Comparative Example 5 that the difference between aprotic solvent and solid electrolyte particles There is no interaction, even if the solid content is increased, uniform dispersion cannot be achieved. It can be seen from Comparative Example 6 that the method of adding a dispersant to improve the stability of the solid content at a low solid content is not ideal, which is also related to the selection of the dispersant. It can be seen from Comparative Example 7 that the low solid content and small particle size dispersion obtained by centrifugation still cannot completely avoid the settlement problem after standing for a long time.
  • the prepared dispersion can be mixed into the negative electrode for use, or coated on the surface of the negative electrode sheet, or coated on the surface of the negative electrode material, which can improve the electrical performance and safety performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及锂电池技术领域,公开了一种固含量稳定的无机氧化物固态电解质分散液,其将无机氧化物固态电解质和溶剂按照一定比例混合后研磨获得。分散液中溶剂为质子溶剂,无机氧化物固态电解质为不解离锂离子或不易解离锂离子的电解质材料。该无机氧化物固态电解质分散液可用于锂离子电池,与现有使用水为溶剂的工序兼容性佳。同时本发明制备的分散液无任何添加剂,分散液长时间静置后其中的无机氧化物固态电解质不沉降、团聚,解决了电池生产中无机氧化物固态电解质分散液的运输、存储以及上料时出现的颗粒沉降问题。

Description

一种固含量稳定的无机氧化物固态电解质分散液
相关申请的交叉引用
本申请要求2022年04月27日提交的中国专利申请202210454939.X的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及锂电池技术领域,尤其涉及一种锂电池用固含量稳定的无机氧化物固态电解质分散液及其制备方法。
背景技术
固液混合型锂离子电池是目前电池领域发展的先进技术,利用无机氧化物固态电解质取代部分有机电解质不仅能提高能量密度还能提高电池安全性。高硅负极的安全性问题显著,为提高该负极的安全性,需要在负极极片表面涂布固态电解质。无机氧化物固态电解质在负极极片表面涂布时,需要将其处理成分散液。为了提升固态电解质涂层和负极的浸润效果,所以在同步涂覆的过程中,使用质子型溶剂作为无机氧化物固态电解质分散液的溶剂,与浆料的兼容性佳,涂布效果更好。
质子溶剂一般为含有羟基或氨基的化合物,如:去离子水、乙醇、乙二醇、异丙醇等,其能提供孤对电子和质子;无机氧化物固态电解质表面通常含有大量氧原子或在空气中吸附的悬挂氢键。质子溶剂的羟基或氨基官能团与无机氧化物固态电解质相互作用形成氢键,有助于其在溶剂中均匀且稳定地分散,所以在无 机氧化物固态电解质分散液中,使用质子溶剂分散,组成的体系稳定性佳。但部分无机氧化物固态电解质容易解离出锂离子,质子溶剂提供的质子会促进锂离子析出,使Li-H交换更加严重,影响无机氧化物固态电解质的表面电荷状态,导致颗粒团聚,增大了分散的难度,降低了分散液的稳定性,这类无机氧化物固态电解质在水中表现出强碱性。因此需要对无机氧化物固态电解质进行种类筛选,使用Li-H交换弱的电解质,以在水中分散时pH<9的无机氧化物固态电解质为标准,与质子溶剂匹配可提高无机氧化物固态电解质的分散稳定性。
此外传统固相法获得的无机氧化物固态电解质经研磨分散后为百纳米级别的颗粒在溶剂中难以形成稳定分散的胶体,只能形成悬浊液。悬浊液的稳定性远差于胶体,由于颗粒的重力作用很快便会沉降,实现难度较大。现有技术中也有人将无机氧化物固态电解质分散在溶剂中获得分散体系,并将该分散体系用于锂电池生产中。但其使用的固态电解质分散体系要么加入分散剂等添加剂,使得体系复杂化,对锂电池组成和电池性能产生不利影响;要么控制体系为低固含量并通过复杂工艺获得在一定时间内稍微稳定的分散液体系。这种低固含量分散液固含量一般低于20w%,较低的固含量会导致体系浓度低,不利于控制投料量且较多的溶剂加入到锂电池生产浆料中会严重影响浆料浓度,并对后续锂电池生产产生不利影响。同时目前已知的无分散剂低固含量分散液体系也无法长时间稳定存在,当长时间(≥20天)放置时,固态电解质也会出现沉降分层现象,对物料的使用也会产生不利作用。
同时,无机氧化物固态电解质分散液在存储、运输时,会面临长时间静置导致的沉降问题。存储时无机氧化物固态电解质颗粒由于重力作用会逐渐向竖直方向下沉,长时间静置时会固结形成硬块无法再次分散。同时固含量不稳定会导致 分散液体系中各个位置的固含量不一,分散液的不均匀会严重影响用料时的精度,最终影响成品的一致性。在生产过程中分散液沉降会导致电解质在混浆设备的管道等浆料流通区域残存,并随着时间慢慢沉积,形成的结块会堵塞管路,导致生产设备的损坏。
解决分散液固含量稳定性问题可以通过减小粒度、离心处理、添加分散剂、超声分散等方式。
减小颗粒粒度可以使悬浊液变成具有胶体性质的分散液,保持稳定不沉降。这种方式存在的问题是把颗粒粒径做小非常困难,随着粒子半径的减小,破碎需要的能量也会成倍增加,加工难度高。
除了减小粒径以外,也有人用离心的方法获得低固含量小粒径的分散液以维持其固含量稳定,但是这种方法一般获得的分散液固含量通常低于5%。这样就会造成运输过程中需要转移大量溶剂,分散液运输成本的大量提高,在增加了成本也增加了安全风险。
专利CN113540688A介绍了一种隔膜涂覆材料的制备方法和应用。通过将LATP、Li-Al双金属氢氧化物和粘结剂分散在溶剂中得到分散液,最后多孔挤压均匀涂覆在隔膜上得到涂覆材料。选用的LATP颗粒在300-900nm,溶剂为有机溶剂NMP,使用聚乙烯醇做分散剂,得到固含在20-37%的分散液。该方法引入了特殊的分散剂,但是影响体系纯度,即使添加分散剂也无法实现分散液长期稳定不团聚、不沉降。
专利CN114073946A介绍了一种氧化石墨烯/二氧化钛复合纳米材料及其制备方法和应用,该方法通过将氧化石墨烯和聚合物包覆二氧化钛纳米粒子分别在水或乙醇溶液中搅拌超声分散,再混合搅拌,得到分散性良好且长期稳定的复合材 料。但是所述方法要求二氧化钛粒子为5~100nm,分散液固含量0.01~0.1%,增加了生产成本,不易放大生产。采用超声工艺只能起到分散的作用,对于大颗粒的固态电解质超声无法起到破碎作用,且超声工艺放大困难,产生的声波对环境和人体危害很大。
专利CN201810560205.3,介绍了一种分散剂结合低温离心技术制备固含量稳定分散液的方法。该方法在离心过程中出现固含量梯度分布的现象,分散液固含量不均一,不利于电解质浆料掺混时控制有效成分份量,且引入了分散剂,对体系具有选择性,影响整体纯度。
综合上述研究成果,普遍认为提高无机氧化物固态电解质材料分散液稳定性的方法主要是从使用添加剂和降低固含量入手。但是这些方法难以同时兼具操作简单,无杂质引入,长期稳定,可扩大生产,节约成本的要求。
发明内容
针对现有技术存在的上述问题,本发明提供了一种固含量稳定的无机氧化物固态电解质分散液及其制备方法。这种分散液采用质子型溶剂且选择锂离子解离能力弱的无机氧化物固态电解质,不使用分散剂,设置高固含量,可以在长期静置时分散液各位置固含量保持稳定,分散颗粒不发生团聚,不用超声分散处理可直接使用,减少了溶剂的使用量,降低了制备和运输成本。
所述无机氧化物固态电解质分散液由无机氧化物固态电解质和溶剂组成,无添加剂;
所述溶剂是质子溶剂;
所述分散液的固含量为25%~85%;
所述固含量稳定是指分散液静置30天后的固含量变化值小于2%。
所述的无机氧化物固态电解质分散液,其特征在于:
所述无机氧化物固态电解质是NASICON型电解质、LiSICON型电解质、Li1-x1Ti1-x1M1x1OPO4、Li1+x2H1-x2Al(PO4)O1-yM2y、LiAlPO4Fx3(OH)1-x3、Na-β/β”-Al2O3中的至少一种,其中M1选自Nb、Ta和Sb中的至少一种,M选自F、Cl、Br和I中的至少一种,0≤x1≤0.7,0<x2<1,0<x3<1,0<y<0.1。
所述无机氧化物固态电解质优选为Li1+x4+nAlx4Ti2-x4Sin(P1-n/3O4)3、Li1+x4+nAlx4Ge2-x4Sin(P1-n/3O4)3、Na1+x4Alx4Ti2-x4Sin(P1-n/3O4)3、Na1+x5Zr2Six5P3-x5O12、Li1+x5Zr2Six5P3-x5O12、Li14Zn(GeO4)4、Li1-x1Ti1-x1M1x1OPO4、Li1+x2H1-x2Al(PO4)O1-yM2y、LiAlPO4Fx3(OH)1-x3和Na-β/β”-Al2O3中的至少一种,其中M1选自Nb、Ta和Sb中的至少一种,M选自F、Cl、Br和I中的至少一种,0≤x1≤0.7,0<x2<1,0<x3<1,0<x4<0.6,0<x5<3,0<y<0.1,0<n<3;
更优选的,所述无机氧化物固态电解质是Li1.4Al0.4Ti1.6(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、LiTiOPO4、LiHAl(PO4)0.96F0.08中的至少一种。
优选的,所述质子溶剂包括去离子水、乙醇、乙二醇、异丙醇、乙腈中的至少一种。
所述无机氧化物固态电解质分散液的固含量与分散液中无机固态电解质的颗粒大小有关;
当无机氧化物固态电解质的颗粒大小为10nm-300nm时,分散液固含量为25%-70%;当无机氧化物固态电解质的颗粒大小为300nm-2μm时,分散液固含量为35%-85%。
优选的,所述所述分散液中无机氧化物固态电解质的颗粒大小为50nm-300nm 时,固含量为25%-70%,所述分散液中无机氧化物固态电解质的颗粒大小为300nm-1μm时,固含量为35%-85%。
所述分散液静置30天后,粒径变化值小于5%。
本发明另一个发明点为一种无机氧化物固态电解质分散液的制备方法,具体包括以下步骤:
1)混合:将研磨介质、无机氧化物固态电解质粉末和溶剂加入研磨腔体。
2)研磨;将在研磨腔中混合好的研磨介质、无机氧化物固态电解质粉末和溶剂研磨。
优选的,所述步骤1)中无机氧化物固态电解质粉体粒径为0.1~100μm。
优选的,所述步骤1)中,研磨介质、无机氧化物固态电解质和溶剂的质量比例为(1~20):1:(0.17~4)。
优选的,所述研磨介质采用0.1~10mm研磨珠,步骤2)中研磨线速度4~20m/s,研磨时间为0.5~72h。
本发明所述的无机氧化物固态电解质分散液在锂电池中的应用,包括应用于液态电池和固态电池。
具体的所述的应用方法,包括直接应用于或稀释后应用于负极表面涂覆、负极颗粒表面包覆、隔膜涂覆。
本发明根据无机氧化物固态电解质在水中pH值作为筛选依据,具有强的Li-H交换能力的无机氧化物固态电解质在水中呈现强碱性,在质子溶剂中分散时溶剂促进了无机氧化物固态电解质表面交换过程的发生,改变了颗粒表面的电荷状态,无机氧化物固态电解质颗粒表面电荷发生变化,颗粒趋于团聚而不是分散。而对于在水中分散时pH<9的无机氧化物固态电解质,Li-H交换能力弱,受到质子 溶剂的影响小,可以依靠氢键、静电力和范德华力在溶液中保持稳定。
本发明制备的固含量稳定分散液在制备过程中以及制备完成后有一定的流动性,随着静置时间增长,分散液粘度逐渐增大,并维持体系固含量和制备完成时相比几乎不变,无机氧化物固态电解质颗粒不会在静置过程中发生沉降。其中的原理为:由于分散液固含量高,大部分的溶剂被无机颗粒通过静电-偶极作用力结合,成为结合溶剂,仅有少部分的溶剂为自由溶剂,提供流动性。在球磨破碎的过程中分散液中的颗粒与球磨珠发生碰撞提供能量,使部分结合溶剂成为自由溶剂,分散液有一定流动性,满足加工要求。当球磨加工结束,分散液静置时,自由溶剂逐渐被无机颗粒吸引成为结合溶剂,分散液流动性降低,粘度增大,阻止了无机颗粒在分散液中沉降。在低固含量的情况下这种现象不易发生,因为自由溶剂占比高时,溶质结合溶剂的作用无法明显提高浆料粘度,最终导致颗粒沉降。实际使用中可以提高固含量防止长时间静置沉降。
与现有技术相比,本发明的有益效果为;
1、本发明采用质子溶剂和锂离子解离能力弱的无机氧化物固态电解质匹配制备无机氧化物固态电解质分散液,颗粒不容易团聚,粒度稳定性高,可用于负极极片表面涂覆,提升固态电解质涂层和负极的浸润效果,提升负极安全性能。
2、本发明提供的一种固含量稳定的电解质分散液的制备方法,通过提高分散液固含量,获得的分散液具有优异的固含量稳定性,不发生沉降,有效防止了在实际生产中分散液储存时沉降结块,运输时资源浪费、上料时有效固体沉降导致的分散液不均匀,和管道留存时悬浊液沉降结块堵塞管路的问题。
3、本发明无需使用添加剂,提高了体系纯度,减少了对溶剂和分散材料的选择性
4、本发明提高了分散液的固含量,减少了溶剂用量,降低了成本。
5、本发明在研磨制备分散液方法上进行成分比例改进,制备方法简单,易放大生产。
具体实施方式
下面结合实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属于本发明的保护范围。
分散液固含量稳定性测试方法:
使用烘干法测试分散液的固含量,固含量稳定性测试步骤如下:
1.取制备好的分散液测试固含量,记录为初始固含量。
2.取100ml分散液于150ml实验瓶中,将实验瓶密封静置30天。30天后取实验瓶中距离液面5mm处1ml分散液,测试固含量,记为分散液上层固含量w1。取实验瓶中距离瓶底5mm处1ml分散液,测试固含量,记为分散液下层固含量w2。
3.利用上下层固含量值w1和w2与初始固含量w0偏差衡量分散液固含量稳定性S。其中,上层固含量变化值为S1=|w1-w0|/w0×100%,下层固含量变化值为S2=|w2-w0|/w0×100%;S1和S2的值越小,表明浆料越稳定。
分散液粒度稳定性测试方法:
使用纳米粒度仪测试分散液的粒度,所用溶剂与分散液溶剂一致,粒度稳定性测试步骤如下:
1.取制备好的分散液测试固含量,记录为初始平均粒度D0。
2.取100ml分散液于150ml实验瓶中,将实验瓶密封静置30天。30天后取实验瓶中距离液面5mm处1ml分散液,测试固含量,记为分散液上层粒度值D1。取实验瓶中距离瓶底5mm处1ml分散液,测试固含量,记为分散液下层粒度值D2。
3.利用上下层粒度值D1和D2与初始粒度值D0偏差衡量分散液粒度稳定性T。其中,浆料上层颗粒粒度变化值为T1=|D1-D0|/D0×100%,下层颗粒粒度变化值为T2=|D2-D0|/D0×100%;T1和T2的值越小,表明分散液粒度越稳定。
实施例实例1:
步骤一:将粒径200nm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份0.1mm锆球、300重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用砂磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和去离子水进行研磨,研磨成固含量25.15wt%,D50=10nm的分散液浆料,研磨时间为7小时,研磨线速度=20m/s;
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例2:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、185重量份去离子水加入研磨腔体,搅拌均匀。其中 1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和去离子水进行研磨,研磨成固含量35.15wt%,D50=190nm的分散液浆料,研磨时间为16小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例3:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、43重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和去离子水进行研磨,研磨成固含量68.95wt%,D50=298nm的分散液浆料,研磨时间为12小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例4:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份0.6mm锆球、185重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用砂磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末 和去离子水进行研磨,研磨成固含量35.11wt%,D50=310nm的分散液浆料,研磨时间为2小时,研磨线速度=20m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例5:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、18重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和去离子水进行研磨,研磨成固含量84.34wt%,D50=1910nm的分散液浆料,研磨时间为3小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例6:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、42重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和去离子水进行研磨,研磨成固含量70.88wt%,D50=413nm的分散液浆料,研磨时间为8小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例7:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、100重量份乙醇加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和乙醇进行研磨,研磨成固含量49.56wt%,D50=320nm的分散液浆料,研磨时间为12小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例8:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ge1.6(PO4)3粉末、500重量份2mm锆球、100重量份乙二醇加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ge1.6(PO4)3在10mL水中分散时,pH=6.85;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ge1.6(PO4)3粉末和乙二醇进行研磨,研磨成固含量50.15wt%,D50=356nm的分散液浆料,研磨时间为8小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例9:
步骤一:将粒径3μm的100重量份LiHAl(PO4)0.96F0.08粉末、500重量份0.6mm锆球、90重量份去离子水加入研磨腔体,搅拌均匀。其中1gLiHAl(PO4)0.96F0.08在10mL水中分散时,pH=8.04;
步骤二:使用砂磨机将在研磨腔中混合好的锆球、LiHAl(PO4)0.96F0.08粉末和去离子水进行研磨,研磨成固含量53.13wt%,D50=403nm的分散液浆料,研磨时间为1小时,研磨线速度=20m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例10:
步骤一:将粒径3μm的100重量份LiHAl(PO4)0.96F0.08粉末、500重量份2mm锆球、100重量份乙醇加入研磨腔体,搅拌均匀。其中1gLiHAl(PO4)0.96F0.08在10mL水中分散时,pH=8.04;
步骤二:使用球磨机将在研磨腔中混合好的锆球、LiHAl(PO4)0.96F0.08粉末和乙醇进行研磨,研磨成固含量50.55wt%,D50=319nm的分散液浆料,研磨时间为12小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例11:
步骤一:将粒径3μm的100重量份LiHAl(PO4)0.96F0.08粉末、500重量份 2mm锆球、100重量份乙二醇加入研磨腔体,搅拌均匀。其中1gLiHAl(PO4)0.96F0.08在10mL水中分散时,pH=8.04;
步骤二:使用滚筒球磨机将在研磨腔中混合好的锆球、LiHAl(PO4)0.96F0.08粉末和乙二醇进行研磨,研磨成固含量50.87wt%,D50=389nm的分散液浆料,研磨时间为24小时,研磨线速度=6m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例12:
步骤一:将粒径3μm的100重量份LiTiOPO4粉末、500重量份0.6mm锆球、100重量份去离子水加入研磨腔体,搅拌均匀。其中1gLiTiOPO4在10mL水中分散时,pH=8.69;
步骤二:使用砂机将在研磨腔中混合好的锆球、LiTiOPO4粉末和去离子水进行研磨,研磨成固含量50.89wt%,D50=335nm的分散液浆料,研磨时间为2小时,研磨线速度=20m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
实施例实例13:
步骤一:将粒径3μm的100重量份LiTiOPO4粉末、500重量2mm份锆球、100重量份乙醇加入研磨腔体,搅拌均匀。其中1gLiTiOPO4在10mL水中分散时,pH=8.69;
步骤二:使用球磨机将在研磨腔中混合好的锆球、LiTiOPO4粉末和乙醇进行研磨,研磨成固含量50.68wt%,D50=458nm的分散液浆料,研磨时间为6小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例1:
步骤一:将粒径3μm的100重量份Li3La0.67TiO3粉末、500重量份0.6mm锆球、150重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi3La0.67TiO3在10mL水中分散时,pH=11.89;
步骤二:使用砂磨机将在研磨腔中混合好的锆球、Li3La0.67TiO3粉末和去离子水进行研磨,研磨成固含量40.35wt%,D50=2214nm的分散液浆料,研磨时间为3小时,研磨线速度=20m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例2:
步骤一:将粒径3μm的100重量份Li7La3Zr2O12粉末、500重量份0.6mm锆球、150重量份去离子水加入研磨腔体,搅拌均匀。其中1gLi7La3Zr2O12在10mL水中分散时,pH=13.15;
步骤二:使用砂磨机将在研磨腔中混合好的锆球、Li7La3Zr2O12粉末和去离子水进行研磨,研磨成固含量40.58wt%,D50=2568nm的分散液浆料,研 磨时间为3小时,研磨线速度=20m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例3:
步骤一:将粒径3μm的100重量份LiTiOPO4粉末、500重量份2mm锆球、100重量份去离子水加入研磨腔体,搅拌均匀。其中1gLiTiOPO4在10mL水中分散时,pH=8.69;
步骤二:使用球磨机将在研磨腔中混合好的锆球、LiTiOPO4粉末和去离子水进行研磨,研磨成固含量50.26wt%,D50=2868nm的分散液浆料,研磨时间为1小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例4:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、400重量份乙醇加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和乙醇进行研磨,研磨成固含量20.22wt%,D50=318nm的分散液浆料,研磨时间为12小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试, 结果见表1和表2。
对比例实例5:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、100重量份正己烷加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末和正己烷进行研磨,研磨成固含量48.52wt%,D50=2653nm的分散液浆料,研磨时间为16小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例6:
步骤一:将粒径3μm的100重量份Li1.4Al0.4Ti1.6(PO4)3粉末、500重量份2mm锆球、230重量份水和1重量份分散剂PVDF加入研磨腔体,搅拌均匀。其中1gLi1.4Al0.4Ti1.6(PO4)3在10mL水中分散时,pH=6.45;
步骤二:使用球磨机将在研磨腔中混合好的锆球、Li1.4Al0.4Ti1.6(PO4)3粉末、水和分散剂PVDF进行研磨,研磨成固含量30.22wt%,D50=411nm的分散液浆料,研磨时间为8小时,研磨线速度=10m/s。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
对比例实例7:
步骤一:将粒径200nm的100重量份LiHAl(PO4)0.96F0.08粉末、100重量份水加入离心腔体,搅拌均匀。其中1gLiHAl(PO4)0.96F0.08在10mL水中分散时,pH=8.04;
步骤二:使用离心机将在研磨腔中混合LiHAl(PO4)0.96F0.08粉末和水进行离心,取上部固含量5.22wt%,D50=102nm的分散液浆料,离心时间为0.5小时,离心线速度=50m/s。
步骤三:将步骤二所述分散液超声分散均匀。
所制备的分散液进行分散液固含量稳定性测试和分散液粒度稳定性测试,结果见表1和表2。
表1.分散液固含量稳定性测试结果

表2.分散液粒度稳定性测试结果

通过实施例可以看出,本发明所述分散液具有优异的固含量稳定性和粒度稳定性。在静置30天以后,上下层固含量变化率小于2%,粒度变化率小于5%。由实施例2和4、3和6,可以看出在电解质材料和分散溶剂的种类、用量相同时,浆液固含量稳定性随着颗粒粒径减小而增强,由实施例3和4,可以看出浆液固含量稳定性随着固含量提高而提高。由对比例1、2看出,对于在水中pH高的无机氧化物固态电解质材料在质子溶剂中容易团聚,无法通过提高固含量防止其沉降。由实施例12和对比例3看出粒径大于2μm的大颗粒难以通过提高固含量提高其固含量稳定性,因为大颗粒与溶剂的相互作用太弱,受重力影响更大。由实施例7和对比例4看出在固含量降低后浆液固含量稳定性明显下降。由对比例5可以看出在非质子溶剂与固态电解质颗粒 无相互作用,即使提高固含量也无法做到均匀分散。由对比例6可以看出,通过在低固含量的情况下加入分散剂来提高固含量稳定性的方法并不理想,这也与分散剂的选择相关。由对比例7可以看出离心获得的低固含小粒径分散液依然无法完全避免长时间静置后的沉降问题。
制备好的分散液掺混在负极中使用,或者涂覆在负极极片表面使用,或者包覆在负极材料表面使用,都可以提高电池的电性能和安全性能。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,才不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型改进也视为本发明的保护范围。

Claims (10)

  1. 一种固含量稳定的无机氧化物固态电解质分散液,其特征在于:
    所述无机氧化物固态电解质分散液由无机氧化物固态电解质和溶剂组成,无添加剂;
    所述溶剂是质子溶剂;
    所述分散液的固含量为25%~85%;
    所述固含量稳定是指分散液静置30天后的固含量变化值小于2%。
  2. 根据权利要求1所述的无机氧化物固态电解质分散液,其特征在于:
    所述无机氧化物固态电解质选自NASICON型电解质、LiSICON型电解质、Li1-x1Ti1-x1M1x1OPO4、Li1+x2H1-x2Al(PO4)O1-yM2y、LiAlPO4Fx3(OH)1-x3和Na-β/β”-Al2O3中的至少一种,其中M1选自Nb、Ta和Sb中的至少一种,M选自F、Cl、Br和I中的至少一种,0≤x1≤0.7,0<x2<1,0<x3<1,0<y<0.1。
  3. 根据权利要求1所述的无机氧化物固态电解质分散液,其特征在于:
    所述无机氧化物固态电解质选自Li1+x4+nAlx4Ti2-x4Sin(P1-n/3O4)3、Li1+x4+nAlx4Ge2-x4Sin(P1-n/3O4)3、Na1+x4Alx4Ti2-x4Sin(P1-n/3O4)3、Na1+x5Zr2Six5P3-x5O12、Li1+x5Zr2Six5P3-x5O12、Li14Zn(GeO4)4、Li1-x1Ti1-x1M1x1OPO4、Li1+x2H1-x2Al(PO4)O1-yM2y、LiAlPO4Fx3(OH)1-x3和Na-β/β”-Al2O3中的至少一种,其中M1选自Nb、Ta和Sb中的至少一种,M选自F、Cl、Br和I中的至少一种,0≤x1≤0.7,0<x2<1,0<x3<1,0<x4<0.6,0<x5<3,0<y<0.1,0<n<3。
  4. 根据权利要求1所述的无机氧化物固态电解质分散液,其特征在于:
    所述无机氧化物固态电解质选自Li1.4Al0.4Ti1.6(PO4)3、Li1.3Al0.3Ti1.7(PO4)3、LiTiOPO4和LiHAl(PO4)0.96F0.08中的至少一种。
  5. 根据权利要求1所述的无机氧化物固态电解质分散液,其特征在于:
    所述质子溶剂选自去离子水、乙醇、乙二醇和异丙醇中的至少一种。
  6. 根据权利要求1所述的无机氧化物固态电解质分散液,其特征在于:
    所述无机氧化物固态电解质分散液的固含量与分散液中无机固态电解质的颗粒大小有关;
    当无机氧化物固态电解质的颗粒大小为10nm-300nm时,分散液固含量为25%-70%;
    当无机氧化物固态电解质的颗粒大小为300nm-2μm时,分散液固含量为35%-85%。
  7. 一种权利要求1所述的无机氧化物固态电解质分散液的制备方法,其特征在于:
    将无机氧化物固态电解质和溶剂混合研磨形成分散液,具体包括以下步骤:
    1)混合:将研磨介质、无机氧化物固态电解质粉末和溶剂加入研磨腔体,低速搅拌,使其混合均匀;
    2)研磨:将在研磨腔体中混合好的研磨介质、无机氧化物固态电解质粉末和溶剂研磨。
  8. 根据权利要求7所述的无机氧化物固态电解质分散液的制备方法,其特征在于:
    所述步骤1)中无机氧化物固态电解质粉体粒径为0.1~100μm。
    所述步骤1)中,研磨介质、无机氧化物固态电解质粉末和溶剂的质量比例为(1~20)∶1∶(0.17~4)。
  9. 根据权利要求7所述的无机氧化物固态电解质分散液的制备方法,其特 征在于:
    所述研磨介质为0.1~10mm的研磨珠,步骤2)中研磨线速度为4~20m/s,研磨时间为0.5~72h。
  10. 一种权利要求1-6任一项所述的无机氧化物固态电解质分散液在锂电池中的应用,所述锂电池为液态电池或固态电池。
PCT/CN2023/087525 2022-04-27 2023-04-11 一种固含量稳定的无机氧化物固态电解质分散液 WO2023207578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210454939.XA CN117013059A (zh) 2022-04-27 2022-04-27 一种固含量稳定的无机氧化物固态电解质分散液
CN202210454939.X 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023207578A1 true WO2023207578A1 (zh) 2023-11-02

Family

ID=88517384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087525 WO2023207578A1 (zh) 2022-04-27 2023-04-11 一种固含量稳定的无机氧化物固态电解质分散液

Country Status (2)

Country Link
CN (1) CN117013059A (zh)
WO (1) WO2023207578A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004714A1 (ko) * 2017-06-28 2019-01-03 한국전기연구원 황화물계 고체전해질 재료 및 그 제조방법, 황화물계 고체전해질 재료를 포함하는 고체전해질층 및 전극복합체층의 제조방법, 및 이를 포함하는 전고체전지
CN109301314A (zh) * 2017-07-24 2019-02-01 微宏动力系统(湖州)有限公司 一种无机固体电解质复合浆料的制备方法及无机固体电解质复合浆料
CN112151764A (zh) * 2020-09-03 2020-12-29 浙江锋锂新能源科技有限公司 一种电极极片及其制备方法和应用
CN113707933A (zh) * 2021-09-02 2021-11-26 北京卫蓝新能源科技有限公司 一种锂离子电池固态电解质纳米分散液的配制方法及固态电解质纳米分散液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004714A1 (ko) * 2017-06-28 2019-01-03 한국전기연구원 황화물계 고체전해질 재료 및 그 제조방법, 황화물계 고체전해질 재료를 포함하는 고체전해질층 및 전극복합체층의 제조방법, 및 이를 포함하는 전고체전지
CN109301314A (zh) * 2017-07-24 2019-02-01 微宏动力系统(湖州)有限公司 一种无机固体电解质复合浆料的制备方法及无机固体电解质复合浆料
CN112151764A (zh) * 2020-09-03 2020-12-29 浙江锋锂新能源科技有限公司 一种电极极片及其制备方法和应用
CN113707933A (zh) * 2021-09-02 2021-11-26 北京卫蓝新能源科技有限公司 一种锂离子电池固态电解质纳米分散液的配制方法及固态电解质纳米分散液

Also Published As

Publication number Publication date
CN117013059A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN114512711B (zh) 一种固含量稳定的电池用无机氧化物固态电解质纳米分散液及其制备方法
CN114497715B (zh) 电池用无机氧化物固态电解质分散液及其制备方法和应用
WO2011160514A1 (zh) 一种铅酸蓄电池的电解液及其制备方法
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
CN108134091B (zh) 一种纳米锡/碳复合材料及其制备方法
CN105633409A (zh) 一种钛酸锂与石墨材料负极混粉制浆方法
CN113675378B (zh) 一种锂离子电池安全涂层浆料及其分散方法
CN113501553A (zh) 一种高电压钴酸锂包覆材料掺铝氢氧化钴及其制备方法
CN112002950A (zh) 锂离子电池正极浆料及其制备方法、正极片、锂离子电池
WO2023207578A1 (zh) 一种固含量稳定的无机氧化物固态电解质分散液
CN108134092B (zh) 一种纳米铅/碳复合材料及其制备方法
US20240158234A1 (en) A lithium iron phosphate, a preparation method thereof, and an application thereof
WO2023010970A1 (zh) 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法
CN115763951A (zh) 一种锂离子电池用纳米电解质浆料及其制备方法
CN107221642B (zh) 一种氧化铝包覆的钛酸锂的制备方法
CN115642236A (zh) 硅基负极材料、硅基负极材料的制备方法及应用
CN108039476B (zh) 一种纳米氧化铟/碳复合材料及其制备方法
CN114028966A (zh) 一种新型纳米氧化锡透明分散液的制备方法
CN116544493B (zh) 磷酸盐固态电解质分散液及其制备方法和应用
CN112794320A (zh) 一种高容量高压实低反弹多孔球型碳负极材料及其制备方法
CN108841025B (zh) 一种低水分陶瓷涂层、陶瓷浆料及其制备方法、陶瓷隔膜及锂离子电池电芯
CN110721633A (zh) 一种复配分散剂及其制备方法和应用
CN117263161B (zh) 一种均匀碳包覆磷酸铁锂正极材料的制备方法
CN116504985B (zh) 正极片及其制备方法、储能设备及用电设备
CN103409662B (zh) 含有Ce和Nd的鳞片状多元铝锌硅合金粉末及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795011

Country of ref document: EP

Kind code of ref document: A1