WO2023202150A1 - 薄膜、光电器件及显示装置 - Google Patents

薄膜、光电器件及显示装置 Download PDF

Info

Publication number
WO2023202150A1
WO2023202150A1 PCT/CN2022/142975 CN2022142975W WO2023202150A1 WO 2023202150 A1 WO2023202150 A1 WO 2023202150A1 CN 2022142975 W CN2022142975 W CN 2022142975W WO 2023202150 A1 WO2023202150 A1 WO 2023202150A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
hole transport
groups
group
film
Prior art date
Application number
PCT/CN2022/142975
Other languages
English (en)
French (fr)
Inventor
侯文军
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210419136.0A external-priority patent/CN116997232A/zh
Priority claimed from CN202210420932.6A external-priority patent/CN116981280A/zh
Priority claimed from CN202210420936.4A external-priority patent/CN116997233A/zh
Priority claimed from CN202210420939.8A external-priority patent/CN116981327A/zh
Priority claimed from CN202210419148.3A external-priority patent/CN116987298A/zh
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023202150A1 publication Critical patent/WO2023202150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present application relates to the field of display technology, and in particular to a thin film, an optoelectronic device and a display device.
  • Optoelectronic devices have a wide range of applications in new energy, sensing, communications, display, lighting and other fields, such as solar cells, photodetectors, organic electro-optical devices (OLED) or quantum dot electro-optical devices (QLED).
  • solar cells photodetectors
  • OLED organic electro-optical devices
  • QLED quantum dot electro-optical devices
  • the structure of a traditional optoelectronic device mainly includes an anode, a hole injection layer, a hole transport layer (i.e., a hole transport film), a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • a hole transport layer i.e., a hole transport film
  • the holes generated by the anode and the electrons generated by the cathode of the optoelectronic device move and are injected into the hole transport layer and electron transport layer respectively, and finally migrate to the light-emitting layer.
  • a Energy excitons which excite light-emitting molecules and ultimately produce visible light.
  • the current efficiency of existing optoelectronic devices needs to be improved.
  • the present application provides a thin film, an optoelectronic device and a display device.
  • Embodiments of the present application provide a film.
  • the film includes a first polymer, and the first polymer includes a fluorene-containing group and an aniline-containing group.
  • the present application also provides an optoelectronic device, including a cathode, a light-emitting layer, a hole transport film and an anode stacked in sequence, and the hole transport film is the above-mentioned film.
  • the application also provides a display device, wherein the display device includes the above-mentioned optoelectronic device.
  • Figure 1 is a schematic structural diagram of an optoelectronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a method for preparing an optoelectronic device provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 1 of the present application;
  • Figure 4 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 2 of the present application;
  • Figure 5 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 3 of the present application;
  • Figure 6 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Comparative Example 1;
  • Figure 7 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 4 of the present application.
  • Figure 8 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 5 of the present application;
  • Figure 9 is a schematic diagram of energy levels of each functional layer of an optoelectronic device provided in Embodiment 6 of the present application.
  • Figure 10 is a current efficiency test curve of the optoelectronic device in Embodiment 7 of the present application.
  • Figure 11 is a current efficiency test curve of the optoelectronic device in Embodiment 8 of the present application.
  • Figure 12 is a current efficiency test curve of the optoelectronic device in Embodiment 9 of the present application.
  • Figure 13 is a current efficiency test curve of the optoelectronic device of Comparative Example 2.
  • Figure 14 is a current efficiency test curve of the optoelectronic device of Comparative Example 3.
  • Figure 15 is a schematic diagram of HOMO energy level matching of each functional layer provided by an embodiment of the present application.
  • Figure 16 is a current efficiency test curve of the optoelectronic device in Embodiment 10 of the present application.
  • Figure 17 is a current efficiency test curve of the optoelectronic device in Embodiment 11 of the present application.
  • Figure 18 is a current efficiency test curve of the optoelectronic device in Embodiment 12 of the present application.
  • Figure 19 is a current efficiency test curve of the optoelectronic device of Comparative Example 4.
  • Figure 20 is a current efficiency test curve of the optoelectronic device of Comparative Example 5.
  • Figure 21 is a fluorescence emission spectrum diagram of the first polymer A that has not been treated with chlorobenzene solvent and the first polymer A that has been treated with chlorobenzene solvent in Experimental Example 1 of the present application;
  • Figure 22 is a fluorescence emission spectrum diagram of the first polymer B that has not been treated with chlorobenzene solvent and the first polymer B that has been treated with chlorobenzene solvent in Experimental Example 1 of the present application;
  • Figure 23 is a current density-current efficiency characteristic curve of the optoelectronic device in Example 21, Example 25 and Comparative Example 6 in Experimental Example 2 of the present application.
  • weight average molecular weight refers to the weight-wise average molecular weight value in a polymer.
  • hole transport is based on organic materials and electron transport is inorganic materials
  • electron migration efficiency of inorganic nanoparticles is much greater than that of holes, so hole transport materials with high hole migration efficiency are needed to match them.
  • quantum dot luminescent materials generally have deep valence band energy levels. It is difficult for a single organic hole transport material to meet the energy level difference between the HOMO energy level of the anode or hole injection layer and the quantum dot valence band. Double or multi-layer holes are used.
  • the transmission layer can theoretically solve the above problems, but the actual current efficiency of the device is not high.
  • hole transport materials with high hole transfer efficiency can theoretically improve the above problems, but the actual current efficiency of the device is not high.
  • the electron migration efficiency of inorganic nanoparticles is much greater than that of holes. This will cause a large amount of charges to accumulate at the interface between the hole transport layer and the quantum dot light-emitting layer. Accumulation, resulting in a small number of electrons jumping to the hole transport layer to form excitons under the action of the electric field, which accelerates the aging of the hole transport material.
  • the present application provides the following hole transport film to improve the problem of accelerated aging of the hole transport material due to the transition of electrons to the hole transport material in the related art.
  • the present application provides the following hole transport film to improve the problem of low current efficiency of optoelectronic devices made of double-layer or multi-layer hole transport materials in the related art.
  • the current efficiency of devices corresponding to hole transport materials with high hole transfer efficiency is not high, mainly because the quantum dot materials modified by ligands have good dissolution characteristics and stability in solvents.
  • the quantum dot luminescent layer is generally made on a hole transport film. Due to the good solubility of quantum dot materials, it is easy for the quantum dot material to penetrate into the hole transport film with the solvent during the production process, resulting in the final interface between the luminescent layer and the hole transport film.
  • the problem of mutual dissolution affects the current efficiency of optoelectronic devices. Based on this, the present application provides the following hole transport film to improve the problem of low current efficiency of devices corresponding to hole transport materials in related technologies.
  • the embodiment of the present application provides a hole transport film 10, which is mainly used in the optoelectronic device 100.
  • FIG. 1 is a schematic structural diagram of an optoelectronic device provided by an embodiment of the present application.
  • the hole transport film 10 includes a first polymer, and the first polymer includes a fluorene-containing group and an aniline-containing group.
  • the fluorene-containing group and the aniline-containing group in the first polymer can impart hole transport properties to the hole transport film 10, and by controlling the contents of the fluorene-containing group and the aniline-containing group , the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) energy level of the hole transport film 10 can be adjusted to adapt to the HOMO energy levels of materials in different light-emitting layers to achieve better hole mobility.
  • the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) energy level of the hole transport film 10 can be adjusted to adapt to the HOMO energy levels of materials in different light-emitting layers to achieve better hole mobility.
  • aniline-containing group may be a diphenylamine-containing group or a triphenylamine-containing group, which is not specifically limited in this application.
  • fluorene-containing group includes both unsubstituted fluorenyl groups and fluorenyl groups in which one or more hydrogen atoms are optionally substituted by other groups, such as alkyl groups, Multiple degrees of substitution are allowed.
  • aniline-containing group refers to an amine group having one or more aryl groups, namely -NH 2 , -NH or a nitrogen atom attached to the aryl group; "aryl” includes both unsubstituted Aryl groups also include aryl groups in which one or more hydrogen atoms are optionally substituted by other groups.
  • Unsubstituted aryl groups refer to aromatic groups containing only carbon atoms on the aromatic ring, including but not limited to is phenyl, 1-naphthyl, 2-naphthyl or biphenyl; "substituted aryl” refers to one or more hydrogen atoms optionally on an aromatic group containing only carbon atoms on the aromatic ring Substituted by other groups, such as halogen atoms or alkyl groups, allowing multiple degrees of substitution.
  • the first polymer is a block copolymer formed from a fluorene-containing group and an aniline-containing group.
  • the hole transport film 10 also includes a second polymer.
  • the second polymer is a block copolymer formed from a fluorene-containing group and an aniline-containing group, and from the bottom surface to the top surface of the hole transport film, The content of the second polymer is increased.
  • the mole fraction of the aniline-containing groups in the second polymer in the second polymer is less than the mole fraction of the aniline-containing groups in the first polymer in the first polymer, and the hydrogen in the second polymer
  • the atoms are completely or partially replaced by fluorine atoms.
  • the second polymer is more likely to be located on the upper layer of the hole transport film 10 due to the presence of fluorine atoms (take the structure of Figure 1 as a reference) .
  • fluorine atoms take the structure of Figure 1 as a reference
  • the mutual repulsion of adjacent fluorine atoms makes the fluorine atoms not in the same plane, but spirally distributed along the carbon chain.
  • the sum of the van der Waals radii of two fluorine atoms is about 0.27nm, basically surrounding and filling the C-C-C bond.
  • This almost void-free space barrier prevents any atoms or groups from entering and destroying the C-C bond. Therefore, during the film formation process of the hole transport film, fluorine-containing groups tend to be enriched at the interface between the hole transport film 10 and the air (the side close to the light-emitting layer), and extend into the air, so the hole transport film 10 forms A graded molecular structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer).
  • the Highest Occupied Molecular Orbital (HOMO) of the first polymer can The level is higher and the HOMO energy level of the second polymer is lower.
  • the hole transport film 10 forms a gradient energy level from high to bottom from the bottom layer to the top layer.
  • the high HOMO energy level of the bottom layer matches the hole injection layer, which facilitates the hole injection layer to inject holes into the hole transport film 10.
  • the low HOMO energy level of the top layer reduces the energy level difference between the hole transport film 10 and the light-emitting layer, making holes It is easier for holes to jump from the hole transport film 10 to the light-emitting layer across the potential barrier between the hole transport film 10 and the light-emitting layer. Therefore, the hole transport film 10 of the embodiment of the present application can improve the hole mobility, and thus can Improve the current efficiency of corresponding optoelectronic devices.
  • the material of the hole transport film 10 is a composition of a first polymer and a second polymer
  • the first polymer is a block copolymer formed from a fluorene-containing group and an aniline-containing group
  • the second polymer is a block copolymer formed from fluorene-containing groups and aniline-containing groups; wherein, the mole fraction of aniline-containing groups in the second polymer in the second polymer is smaller than that in the first polymer
  • the mole fraction of the aniline-containing groups in the first polymer, and all or part of the hydrogen atoms in the second polymer are replaced by fluorine atoms. That is, the materials of the hole transport film 10 are only the first polymer and the second polymer.
  • the material of the hole transport film 10 may also include other materials, such as highly thermally conductive materials to enhance the heat dissipation of the hole transport film 10; or magnetic materials. , to enhance the magnetism of the hole transport film 10 .
  • the general structural formula of the first polymer and the second polymer in the hole transport film 10 is as follows:
  • n>0, m ⁇ 0, p ⁇ 0, R 1 to R 6 are the same or different groups, and R 1 to R 6 are C1 to C20 alkyl groups, aromatic groups or heteroaryl groups.
  • R 1 to R 6 can be the same substituent, for example, they can be an alkyl group, an aromatic group or a heteroaryl group at the same time. R 1 to R 6 may be mutually different substituents.
  • a unit the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the aniline-containing group is named A unit
  • B unit the homopolymerized repeating unit formed by the above-mentioned fluorene-containing group
  • aniline-containing group is named The homopolymeric repeating unit formed by the group.
  • the block copolymer in this embodiment may include only A units, or may be a block copolymer including A units and B units, or may be a block copolymer including A units and C units, It can also be a block copolymer including A units, B units and C units at the same time.
  • the embodiments of this application are not particularly limited.
  • the mole fraction of aniline-containing groups can be determined according to the HOMO energy level requirements, and then the corresponding polymer structure can be determined. s Choice.
  • the general structural formulas of the block copolymers of the first polymer and the second polymer can refer to the above structural formulas, but the values of n, m and p in the structures of the first polymer and the second polymer are are independent of each other so that the mole fractions of aniline-containing groups in the first polymer and the second polymer may be different. And the selection of the substituents (R 1 to R 6 ) in the first polymer and the second polymer structure are also independent of each other, that is, the substituents in the first polymer and the second polymer structure can be the same, or Can be different, but no fluorine atoms are present in the first polymer.
  • the weight average molecular weight of the first polymer is greater than or equal to 50,000 and less than or equal to 250,000
  • the weight average molecular weight of the second polymer is greater than or equal to 50,000 and less than or equal to 250,000. Equal to 250000.
  • the degree of polymerization of block copolymers has a great influence on the interfacial solubility of materials.
  • the hole transport film 10 may be interfacially dissolved with the adjacent functional film.
  • the first hole transport film 10 may The solubility of the polymer and secondary polymer will be reduced, thus affecting film-forming properties.
  • the hole transport film 10 may be interfacially miscible with the hole injection layer, or the hole transport film 10 may be interfacially miscible with the light-emitting layer. Therefore, the weight average molecular weight of the block copolymer is preferably greater than or equal to 50,000, which can avoid interfacial dissolution between the hole transport film 10 and the adjacent functional film.
  • the first polymer has a HOMO energy level greater than or equal to -5.3 eV and less than -4.8 eV
  • the second polymer has a HOMO energy level greater than -5.8 eV and less than -5.3 eV.
  • the first polymer is mainly located on the side of the hole transport film 10 close to the hole injection layer.
  • the HOMO energy level of the first polymer is -5.3eV ⁇ -4.8eV
  • the bottom layer of the hole transport film 10 It can better match the HOMO energy level of the hole injection layer, which can improve the injection efficiency of holes from the hole injection layer to the hole transport film 10 .
  • the second polymer is mainly located on the side close to the light-emitting layer on the hole transport film 10.
  • the first polymer alone can be used as the hole.
  • the energy level difference between the hole transport film 10 and the light-emitting layer in the hole transport film 10 makes it easier for holes to cross the potential barrier from the hole transport film 10 to the light-emitting layer, thereby improving the hole migration efficiency.
  • the mole fraction of the aniline-containing groups in the first polymer in the first polymer is greater than or equal to 50% and less than 100%, and the aniline-containing groups in the second polymer are present in the second polymer.
  • the mole fraction in the substance is less than 50% and greater than 0. It should be noted that the higher the content of aniline-containing units in the polymer, the higher the HOMO energy level of the polymer. For example, when the mole fraction of aniline-containing units approaches 100%, that is, p is much larger than n and m in the general structural formula of the block copolymer, the HOMO energy level of the block copolymer is close to the HOMO energy level of polyaniline ( -4.8eV).
  • the HOMO energy level of the block copolymer is close to the HOMO energy level of polyfluorene (-5.8eV) .
  • the mole fraction of the aniline-containing groups in the first polymer in the first polymer is greater than or equal to 50% and less than 100%, which can make the hole transport film 10 close to the holes.
  • the HOMO energy level on one side of the injection layer is between -5.3eV and -4.8eV, which reduces the energy level difference between the hole transport film 10 and the hole injection layer to an appropriate range, which is beneficial to improving the hole injection efficiency.
  • the mole fraction of the aniline-containing groups in the second polymer is less than 50% and greater than 0, which can make the HOMO energy level of the side of the hole transport film 10 close to the light-emitting layer be between -5.8eV and -5.3 eV, the energy level difference between the hole transport film 10 and the light-emitting layer is reduced to a suitable range, which is beneficial to improving the hole migration efficiency.
  • the weight percent of the first polymer is 1-20% and the weight percent of the second polymer is 80-99%. Since the first polymer is mainly concentrated on the lower side of the hole transport film 10, that is, close to the hole injection layer, and the mole fraction of aniline-containing units in the first polymer is relatively high, if the first polymer is added in too much , has a greater impact on the HOMO energy level of the upper layer, thereby affecting the efficiency of the hole transition in the upper layer to the light-emitting layer. Therefore, in this embodiment, the weight percentages of the first polymer and the second polymer are respectively set to 1-20% and 80-99%.
  • the first polymer is a block polymer including a first block and a second block, and the first block is composed of a fluorene-containing group and an aniline-containing group.
  • the formed copolymer block, the second block is a copolymer block formed by a fluorene-containing group and an aniline-containing group, and the aniline-containing group in the second block is connected to an electron-donating group; the first polymerization All or part of the hydrogen atoms in the material are replaced by fluorine atoms.
  • the hole transport film 10 further includes a third polymer, and the third polymer may be a conductive polymer material.
  • the first polymer tends to be located on the upper layer of the hole transport film 10 due to the presence of fluorine atoms ( Take the structure of Figure 1 as a reference). This is due to the large electronegativity of fluorine atoms, small atomic radius, short C-F bond, and bond energy as high as 500kJ/mol. The mutual repulsion of adjacent fluorine atoms causes the fluorine atoms not to be in the same plane, but to be spirally distributed along the carbon chain.
  • the sum of the van der Waals radii of two fluorine atoms is about 0.27nm, basically surrounding and filling the C-C-C bond.
  • This almost void-free space barrier prevents any atoms or groups from entering and destroying the C-C bond. Therefore, during the film formation process, fluorine-containing groups tend to be enriched at the interface between the hole transport film 10 and the air (the side close to the light-emitting layer), and extend into the air, so that the closer they are to the top layer (the side closer to the light-emitting layer) ), the greater the content of the first polymer.
  • the hole transport film 10 When the hole transport film 10 is used as the hole transport layer of an optoelectronic device, since the first polymer mainly located on the top layer contains electron-donating groups, the LUMO (Lowest Unoccupied Molecular Orbital) of the top layer of the hole transport film 10 can be improved. , the lowest unoccupied molecular orbital) energy level, the increase in the LUMO energy level of the top layer of the hole transport film 10 increases the difficulty for electrons to jump from the luminescent material layer to the hole transport layer, thereby reducing the aging rate of the hole transport layer. This further improves the life of the optoelectronic device.
  • the LUMO Low Unoccupied Molecular Orbital
  • the hole transport film 10 can be formed by a wet process. During the wet film formation process, fluorine-containing groups tend to be enriched on the surface of the hole transport film 10 (that is, close to the surface of the hole transport film 10).
  • the hole transport film 10 can form a gradient molecular structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer). The closer to the bottom layer, the greater the content of the third polymer, and the closer to the top layer, the greater the content of the first polymer.
  • the first polymer mainly located on the top layer contains electron-donating groups, it can increase the LUMO energy level of the top layer of the film.
  • the hole transport film 10 can form a gradient LUMO energy level that gradually increases from the bottom layer to the top layer.
  • the increase in the LUMO energy level on the top layer of the film increases the difficulty for electrons to transition from the luminescent material layer to the hole transport layer, thereby reducing the aging rate of the hole transport layer and thereby increasing the life of the optoelectronic device.
  • the material of the hole transport film 10 is a composition of a first polymer and a third polymer.
  • the third polymer is a conductive polymer material; the first polymer includes a first block and a second block.
  • Block polymer, the first block is a copolymer block formed by a fluorene-containing group and an aniline-containing group, and the second block is a copolymer block formed by a fluorene-containing group and an aniline-containing group Copolymerizes the block, and the aniline-containing group in the second block is connected to an electron-donating group; all or part of the hydrogen atoms in the first polymer are replaced by fluorine atoms. That is, the materials of the hole transport film 10 are only the third polymer and the first polymer.
  • the material of the hole transport film 10 may also include other materials, such as highly thermally conductive materials to enhance the heat dissipation of the hole transport film 10; or magnetic materials. , to enhance the magnetism of the hole transport film 10 .
  • the conductive polymer material may be polyaniline, polythiophene, polyfluorene, or a copolymer formed of at least two of polyaniline, polythiophene, and polyfluorene.
  • polyaniline can be poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD)
  • polythiophene can be poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS)
  • the polyfluorene can be poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1 , 4-phenylenediamine) (PFB), poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB), etc.
  • the conductive polymer material may be one or
  • the mole fraction of the second block in the first polymer in the first polymer is greater than or equal to 0.1% and less than or equal to 15%. Since the aniline-containing group of the second block is connected to an electron-donating group, if the mole fraction of the second block is too high, the content of the electron-donating group will also increase. When there are too many electron groups, hole transport will be reduced. Hole transport efficiency of film 10. Therefore, the mole fraction of the second block in the second polymer is preferably no more than 15%.
  • the LUMO energy level of the first polymer is greater than or equal to -2.5eV and less than or equal to -1.8eV.
  • the LUMO energy level of the first polymer may be -2.5eV, -2.3eV, - 2.2eV, -2.1eV, -2.0eV, -1.9eV, -1.8eV, etc.
  • the first polymer is mainly located on the side of the hole transport film 10 close to the light-emitting layer.
  • the LUMO energy level of the first polymer meets the above conditions, the LUMO energy level difference between the hole transport film 10 and the light-emitting layer can be made If it exceeds 1.5 eV, the probability of electrons transitioning from the light-emitting layer to the hole transport film 10 can be reduced.
  • the HOMO energy level of the first polymer is preferably less than or equal to -5.2eV, for example, it can be -5.2eV, -5.3eV, -5.4eV, etc., because the higher the mole fraction of the aniline-containing group, the higher the mole fraction of the first polymer.
  • the HOMO energy level of the first polymer can be adjusted by adjusting the mole fraction of the aniline-containing group, so that the top HOMO energy level of the hole transport film 10 is closer to the light-emitting layer, thereby improving hole mobility.
  • the general structural formula of the first polymer is as follows:
  • the mole fraction of the first block is n 1
  • the mole fraction of the second block is m 1
  • R 1 ′ to R 3 ′ are the same or different groups, and R 1 ′ to R 3 ′ are C1 to C20 alkyl groups, aromatic groups or heteroaryl groups, and R 4 ′ is the electron donor of the heterocyclic structure. group.
  • R 1 ′ to R 3 ′ can be the same substituent, for example, they can be an alkyl group, an aromatic group or a heteroaryl group at the same time.
  • R 1 ′ to R 3 ′ may be mutually different substituents.
  • the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the triphenylamine-containing group is the first block
  • the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the diphenylamine-containing group is the second block
  • the R 4 ′ group in the block is an electron-donating group.
  • the electron-donating group can be dialkylamino (-NR 2 ), alkylamino (-NHR), amino (-NH 2 ), hydroxyl (-OH), alkoxy (-OR), amide ( -NHCOR), acyloxy (-OCOR), etc.
  • the electron-donating group in the present application is an electron-donating group with a heterocyclic structure.
  • the electron-donating group with a heterocyclic structure can be selected from carbazole groups, triazole groups, and triazine groups.
  • the electron-donating group of the heterocyclic structure is selected from the above two or three groups, it can be understood that the second block includes two or three sub-blocks, and each sub-block includes one Electron donating group.
  • Heteroatoms can increase the electron cloud density of the carbon atoms in the ring and increase the LUMO energy level of the top layer of the hole transport film 10, thereby preventing the probability of electrons jumping from the light-emitting layer to the hole transport film 10.
  • the content is not particularly high. In this case, the hole transport efficiency will not be affected.
  • the first polymer further includes a third block, and the third block includes a first self-crosslinking group.
  • the hole transport film 10 forms a gradient molecular structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer). The closer to the bottom layer, the greater the content of the third polymer, and the closer to the top layer, the greater the content of the first polymer.
  • the first polymer also includes a first self-crosslinking group, a self-crosslinking reaction will occur when the hole transport film 10 is formed, so that the side of the hole transport film close to the light-emitting layer is mainly a cross-linked polymer, which has better Good solvent resistance can prevent the material components of the light-emitting layer from penetrating into the hole transport film and reducing the hole transport efficiency. Therefore, the hole transport film 10 of this embodiment can not only increase the transition of electrons from the light-emitting material layer to holes It is difficult to transport the film 10, thereby reducing the aging rate of the hole transport layer, and also reducing the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving the current efficiency.
  • the general structural formula of the first polymer is as follows:
  • the mole fraction of the third block is q, and 0.001 ⁇ m 1 ⁇ 0.15, 0 ⁇ q ⁇ 0.05, and R 5 ′ is the first self-crosslinking group containing cross-linking bonds.
  • R 5 ′ is the third block.
  • the cross-linking bond in R 5 ′ can form a cross-linked structure inside the first polymer.
  • R 5 ′ can be a group containing a thermal cross-linking bond, and the cross-linking reaction can be performed by heating, or it can be a group containing ultraviolet light response.
  • the cross-linking bond group undergoes a cross-linking reaction through UV irradiation. It should be noted that since the first self-crosslinking group does not have conductivity, the mole fraction of the third block should not be higher than 5%. Excessive content of the first self-crosslinking group will significantly reduce the electron transmission efficiency.
  • R 5 ′ in the first polymer is one of the following structural formulas:
  • R 6 ′ is a C1 to C20 alkyl group, or R 6 ′ is a C1 to C20 alkyl group, and one or more carbon atoms are substituted by hetero atoms. When multiple carbon atoms are substituted by hetero atoms, Heteroatoms are located in non-adjacent positions.
  • R 5 ′ group the double bond in Chemical Formula 1 can undergo an addition reaction, thereby forming a cross-linked structure between the second polymers.
  • the molecular structure of Chemical Formula 2 will isomerize when heated, and the reaction equation is as follows:
  • the cross-linked structure has better solvent resistance and can prevent small molecules in the light-emitting layer from penetrating into the hole transport film 10 (ie, interfacial dissolution), thereby improving the hole migration efficiency and the stability of the optoelectronic device.
  • the material of the hole transport film 10 has a weight average molecular weight greater than or equal to 50,000 and less than or equal to 250,000.
  • the weight average molecular weight of the first polymer or the third polymer may be 50,000, 70,000, 90,000, 120,000, 150,000, 180,000, 200,000, 230,000, 250,000, etc.
  • the hole transport film 10 and the adjacent functional layer may be interfacially dissolved, affecting the luminous efficiency, for example, the first polymer or the third polymer
  • the hole transport film 10 may be interfacially miscible with the hole injection layer, or the hole transport film 10 may be interfacially miscible with the light-emitting layer. If the weight average molecular weight of the first polymer or the third polymer is too large, its solubility in the solvent and the subsequent wet film forming process will be affected.
  • the first polymer also includes a group containing a first cross-linking group.
  • the first polymer includes a fluorene-containing group and an aniline-containing group. group and the group containing the first cross-linking group.
  • the hole transport film 10 also includes a cross-linked compound, the cross-linked compound includes a main chain, and at least two second cross-linking groups connected to the main chain, and all or part of the hydrogen atoms in the cross-linked compound Substituted by fluorine atoms, the second cross-linking group undergoes a cross-linking reaction with the first cross-linking group, so that the first polymer forms a cross-linked structure.
  • the fluorene-containing groups and the aniline-containing groups in the first polymer are responsible for imparting the hole transport properties of the hole transport film 10.
  • the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) energy level of the hole transport film 10 can be adjusted to adapt to the HOMO energy levels of materials in different light-emitting layers. , achieving better hole mobility.
  • the second cross-linking group in the cross-linking compound and the first cross-linking group in the first polymer can undergo a cross-linking reaction.
  • the cross-linked compound contains at least two second cross-linking groups and the first polymer contains one first cross-linking group, the cross-linking compound can connect at least two first polymer molecules to enable hole transport.
  • a cross-linked structure is formed in the film 10.
  • the above-mentioned cross-linking reaction may not necessarily proceed 100% according to the ideal cross-linking reaction model, and some cross-linked compound molecules may only connect to one first A polymer molecule, but it can form at least a certain proportion of cross-linked structures.
  • some cross-linked compound molecules may only connect to one first A polymer molecule, but it can form at least a certain proportion of cross-linked structures.
  • fluorine atoms in the cross-linked compound due to the presence of fluorine atoms in the cross-linked compound, it is more likely to be located in the upper layer of the hole transport film 10 (take the structure of FIG. 1 as a reference), that is, the side close to the light-emitting layer is dominated by the cross-linked structure.
  • the cross-linked structure Since the cross-linked structure has good solvent resistance, it can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving the performance of the optoelectronic device. Current efficiency.
  • the hole transport film 10 can be formed by a wet process. During the wet film formation process, fluorine-containing groups tend to be enriched on the surface of the hole transport film 10 (that is, close to the surface of the hole transport film 10). side of the light-emitting layer), so the hole transport film 10 can form a gradient cross-linked structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer).
  • the material of the hole transport film 10 is a composition of a first polymer and a cross-linking compound.
  • the first polymer includes a fluorene-containing group, an aniline-containing group and a first cross-linking group. group.
  • the cross-linked compound includes a main chain and at least two second cross-linking groups connected to the main chain. The second cross-linking group performs a cross-linking reaction with the first cross-linking group, and all hydrogen atoms in the cross-linking compound Or partially substituted by fluorine atoms.
  • the cross-linking compound when the cross-linking compound includes two second cross-linking groups, the cross-linking compound can be connected to the first cross-linking groups of the two first polymers respectively through the two second cross-linking groups.
  • the compound is connected between two first polymers, so that the first polymers form a cross-linked structure.
  • the cross-linking compound includes three second cross-linking groups, one cross-linking compound molecule can connect three first polymers. Due to the complexity of polymer chemical reactions, the above-mentioned cross-linking reaction may not necessarily be carried out 100% according to the ideal cross-linking reaction model.
  • Some cross-linked compound molecules may only connect one or two first polymer molecules, but at least A certain proportion of cross-linked structures can be formed.
  • the material of the hole transport film 10 may only be the first polymer and the cross-linked compound. It can be understood that, in addition to the first polymer and the cross-linked compound, the material of the hole transport film 10 may also include other materials, such as highly thermally conductive materials to enhance the heat dissipation of the hole transport film 10; or magnetic materials, to enhance the magnetism of the hole transport film 10 .
  • the general structural formula of the first polymer in the hole transport film 10 is as follows:
  • R 1 ′′ to R 5 ′′ can be the same substituent, for example, they can be an alkyl group, an aromatic group or a heteroaryl group at the same time.
  • R 1 ′′ to R 5 ′′ may be mutually different substituents.
  • the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the triphenylamine-containing group is named A unit
  • the homopolymerized repeating unit formed by the above-mentioned fluorene-containing group is named B unit
  • the above-mentioned three-containing group is named B unit.
  • the homopolymeric repeating unit formed by the aniline group is named C unit.
  • the first polymer in this embodiment can be a block copolymer including only A units and C units, or it can also be a block copolymer including A units, B units and C units at the same time.
  • This application implements The example is not particularly limited.
  • the mole fraction of the C unit can be determined according to the number of cross-linked structures, and then the corresponding first polymer structure can be selected. It should be noted that the mole fraction of the C unit should be less than 5% to avoid cross-linking. If the proportion of groups is too large, the current efficiency of the device will be reduced.
  • the general formula of the cross-linked compound in the material of the hole transport film 10 is:
  • R 9 ′′ is a C1-C20 alkyl group, or R 9 ′′ is a C1-C20 alkyl group, and one or more carbon atoms are substituted by hetero atoms.
  • the heteroatoms are located at non-adjacent positions, and R 8 ′′ and R 10 ′′ are the same or different second cross-linking groups.
  • the cross-linked compound in this embodiment has R 9 ′′ as the main chain.
  • the main chain is mainly a flexible alkyl group and may contain heteroatoms.
  • a second cross-linking group is connected to both ends of the main chain.
  • R 8 ′′ and R 10 ′′ a total of two second cross-linking groups.
  • R 8 ′′ and R 10 ′′ can be the second cross-linking group with the same structure, or they can be the second cross-linking group with different structures.
  • Cross-linking group By arranging a second cross-linking group at each end of the main chain of the hole transport film 10, a network cross-linked structure can be formed inside the hole transport film 10, thereby improving the performance of the hole transport film 10. Solvent resistance to better prevent the material components of the light-emitting layer from penetrating into the hole transport film 10 .
  • the general formula of the first cross-linking group R 6 ′′ in the block copolymer is the following Chemical 2, Chemical Formula 3 or Chemical Formula 4:
  • R 7 ′′ is a C1-C20 alkyl group, aromatic group or heteroaryl group.
  • the phenylcyclohexane structure of Chemical Formula 2 undergoes isomerization when heated. After isomerization, two double bonds are generated to form the first cross-linking bond, which undergoes a cross-linking reaction with the cross-linking compound.
  • the reaction equation for the isomerization of phenylcyclohexane is as follows:
  • the double bond of butadiene in Chemical Formula 3 and the epoxy functional group in Chemical Formula 4 can both be used as the first cross-linking bond to perform the cross-linking reaction.
  • the general formula of the first cross-linking group R 6 ′′ is Chemical Formula 4.
  • the steric group of its molecule is small, the cross-linking reaction is easy to proceed, the cross-linking efficiency is high, and the conditions are easy to control.
  • Chemical Formula 3 is used as the first When using a cross-linking group, the temperature required for the cross-linking reaction is higher.
  • Chemical Formula 2 is used as the first cross-linking group, there is a trace amount of reversible reaction and the efficiency is reduced. Therefore, Chemical Formula 4 is a better first cross-linking group. .
  • the first cross-linking group R 6 ′′ of the first polymer has low self-cross-linking reactivity, and the first cross-linking group R 6 ′′ serves as the first cross-linking group of the first polymer.
  • the side chain is limited by the main chain and has weak mobility. Therefore, the first cross-linking group R 6 ′′ rarely undergoes a self-cross-linking reaction and mainly undergoes a cross-linking reaction with the second cross-linking group.
  • the second cross-linking groups R 8 ′′ and R 10 ′′ are each independently selected from any one of the following groups:
  • the second cross-linking groups R 8 ′′ and R 10 ′′ may be the same group or different groups.
  • R 8 ′′ and R 10 ′′ can both be of chemical formula 21, or both of chemical formula 22, or both of chemical formula 23, or both of chemical formula 24.
  • the R 8 ′′ group can be of chemical formula 21, R 10 ′′ group
  • the group can be Chemical Formula 22/Chemical Formula 23/Chemical Formula 24, that is, R 8 ′′ and R 10 ′′ are different second cross-linking groups.
  • R 8 ′′ and R 10 ′′ are both Chemical Formula 23
  • the The first cross-linking group R 6 ′′ and the second cross-linking groups R 8 ′′ and R 10 ′′ are all phenylcyclohexane, that is, the phenylcyclohexane in the first polymer and cross-linking compound in this embodiment Self-crosslinking reactions can occur with each other.
  • the second cross-linking groups R 8 ′′ and R 10 ′′ are each independently selected from Chemical Formula 21/Chemical Formula 22/Chemical Formula 24, the first cross-linking group R 6 ′′ may be combined with the epoxy in the second cross-linking group.
  • the second cross-linking groups R 8 ′′ and R 10 ′′ are each independently selected from any one of the following groups:
  • the second cross-linking groups R 8 ′′ and R 10 ′′ may be the same group or different groups.
  • R 8 ′′ and R 10 ′′ can both be of chemical formula 31, or both of chemical formula 32, or both of chemical formula 33, or both of chemical formula 34.
  • R 8 ′′ can be of chemical formula 31, and R 10 ′′ can be of chemical formula 32/Chemical Formula 33/Chemical Formula 34, that is, R 8 ′′ and R 10 ′′ are different second cross-linking groups.
  • the double bond of butadiene in Chemical Formula 3 serves as the first cross-linking bond and the second cross-linking group (Chemical Formula 31-34) Perform a cross-linking (addition) reaction to form a network cross-linked structure, improve the solvent resistance of the hole transport film 10, and better prevent the material components of the light-emitting layer from penetrating into the hole transport film 10 .
  • the second cross-linking groups R 8 ′′ and R 10 ′′ are each independently selected from primary amino groups (Chemical Formula 41) and secondary One of the amine groups (Chemical Formula 42):
  • the second cross-linking groups R 8 ′′ and R 10 ′′ may be the same group or different groups.
  • R 8 ′′ and R 10 ′′ can both be primary amine groups, or both can be secondary amine groups.
  • R 8 ′′ is a primary amine group
  • R 10 ′′ is a secondary amine group
  • R 8 ′′ is a secondary amine group
  • R 10 ′′ is a primary amino group, that is, R 8 ′′ and R 10 ′′ are different second cross-linking groups.
  • the epoxy functional groups in Chemical Formula 4 can all be used as the first cross-linking bond and the second cross-linking group ( amino group) undergoes a cross-linking reaction to form a network cross-linked structure, thereby improving the solvent resistance of the hole transport film 10 and better preventing the material components of the light-emitting layer from penetrating into the hole transport film 10 .
  • the weight percentage of the cross-linking compound in the material of the hole transport film is greater than 0 and less than or equal to 5%. Because the cross-linked compound is a non-conductive structure, it cannot play a role in hole transport. If the proportion is too large, it will affect the hole transmission efficiency. For example, when the proportion of cross-linked compound is 50%, the maximum current efficiency of the device is only 10cd/A. Therefore, when the weight percentage of the cross-linked compound is less than or equal to 5%, it can not only ensure better hole transmission efficiency, but also form a network cross-linked structure to improve the solvent resistance of the hole transport film 10 for better performance. effectively prevent the material components of the light-emitting layer from penetrating into the hole transport film 10 .
  • the concentration of the cross-linking compound when the concentration of the cross-linking compound is low, the concentration of the second cross-linking group is also relatively low, which can greatly reduce the probability of the self-cross-linking reaction of the second cross-linking group, making the cross-linking reaction mainly occur Between the first cross-linking group and the second cross-linking group, the second cross-linking group has a higher effective utilization rate.
  • the weight average molecular weight of the first polymer is greater than or equal to 50,000 and less than or equal to 250,000.
  • the weight average molecular weight of the first polymer may be 50,000, 60,000, 70,000, 90,000, 120,000, 150,000, 180,000, 200,000, 250,000, etc.
  • the degree of polymerization of the first polymer has a great influence on the interfacial solubility of materials.
  • the weight average molecular weight of the first polymer is small, the hole transport film 10 may be interfacially miscible with the light-emitting layer.
  • the weight average molecular weight of the first polymer is too large, its dissolution and dispersibility will be affected. Therefore, when the weight average molecular weight of the first polymer meets the above conditions, it can better prevent the material components of the light-emitting layer from penetrating into the hole transport film 10 and has good solubility.
  • the first polymer is a block copolymer formed from a fluorene-containing group and a triphenylamine-containing group.
  • the hole transport film 10 also includes a fourth polymer, the fourth polymer is a block copolymer formed from a fluorene-containing group, a triphenylamine-containing group and a second self-crosslinking group, And all or part of the hydrogen atoms in the fourth polymer are replaced by fluorine atoms.
  • the fourth polymer is a block copolymer formed from a fluorene-containing group, a triphenylamine-containing group and a second self-crosslinking group, And all or part of the hydrogen atoms in the fourth polymer are replaced by fluorine atoms.
  • the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) energy level of the hole transport film 10 of this embodiment is determined by the fluorene-containing group and the triphenylamine-containing group. When it contains three When the mole fraction of aniline groups approaches 100%, the HOMO energy level of the hole transport film 10 is close to the HOMO energy level of polytriphenylamine (-4.8 eV). When the mole fraction of triphenylamine-containing units is 0%, the HOMO energy level of the hole transport film 10 is close to the HOMO energy level of polyfluorene (-5.8 eV).
  • the HOMO energy level of the hole transport film 10 of this embodiment can be an energy level in the range of -5.8eV to -4.8eV, which is between the HOMO energy level of the general hole injection layer and the HOMO energy level of the light-emitting layer. , which can meet the requirement of the hole injection layer to inject holes into the light-emitting layer.
  • the fourth polymer tends to be located on the upper layer of the hole transport film 10 due to the presence of fluorine atoms (as shown in FIG. 1 structure for reference). This is because the fluorine atom has a large electronegativity, a small atomic radius, a short C-F bond, and a bond energy as high as 500kJ/mol. The mutual repulsion of adjacent fluorine atoms causes the fluorine atoms not to be in the same plane, but to be spirally distributed along the carbon chain.
  • the sum of the van der Waals radii of two fluorine atoms is about 0.27nm, basically surrounding and filling the C-C-C bond.
  • This almost void-free space barrier prevents any atoms or groups from entering and destroying the C-C bond. Therefore, during the film formation process, fluorine-containing groups tend to be enriched at the interface between the hole transport film 10 and the air (the side close to the light-emitting layer), and extend into the air. The closer to the top layer, the higher the content of the fourth polymer. many.
  • the fourth polymer also includes a second self-crosslinking group, a cross-linking reaction will occur between the block copolymer molecules of the fourth polymer when the hole transport film 10 is formed, so that the upper layer of the hole transport film 10 (
  • the side of the light-emitting layer) is mainly a cross-linked polymer, which has better solvent resistance and can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the occurrence of the hole transport film 10 and the light-emitting layer.
  • the interface is mutually soluble to improve the current efficiency of the device.
  • the content of the fourth polymer increases or decreases from one side of the hole transport film 10 to the other side.
  • the hole transport film 10 can be formed by a wet process. During the wet film formation process, the fourth polymer tends to be enriched in the hole transport film due to its fluorine-containing groups.
  • the hole transport film 10 can form a gradient cross-linked structure from the bottom layer (the side near the hole injection layer) to the top layer (the side near the light-emitting layer).
  • the cross-linked structure formed by the two self-crosslinking groups can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving the performance of the optoelectronic device. Current efficiency.
  • the material of the hole transport film 10 is a composition of a first polymer and a fourth polymer.
  • the first polymer is a block copolymer formed of a fluorene-containing group and a triphenylamine-containing group. material;
  • the fourth polymer is a block copolymer formed from a fluorene-containing group, a triphenylamine-containing group and a second self-crosslinking group, and all or part of the hydrogen atoms in the fourth polymer are replaced by fluorine atoms replace. That is, the hole transport film 10 is made of only the first polymer and the fourth polymer.
  • the material of the hole transport film 10 may also include other materials, such as highly thermally conductive materials to enhance the heat dissipation of the hole transport film 10; or magnetic materials. , to enhance the magnetism of the hole transport film 10 .
  • the weight percentage of the fourth polymer in the material of the hole transport film is greater than or equal to 5% and less than or equal to 40%. . That is, the weight percentages of the fourth polymer and the first polymer can be 5% and 95%, 10% and 90%, 15 and 85%, 22% and 78%, 29% and 71%, 35% and 65%, 40% and 60% etc. Since the fourth polymer contains self-crosslinking groups, if the proportion is too large, on the one hand, the proportion of non-hole transporting components will affect the hole transmission efficiency. On the other hand, if the cross-linking group is too large, the hole transport efficiency will also be affected. Resulting in a decrease in hole transport efficiency. Therefore, the weight percentage of the fourth polymer is preferably 5% to 40%.
  • the general structural formula of the first polymer in the hole transport film 10 is as follows:
  • n 3 , m 3 , p 3 are mole fractions
  • n 3 +m 3 +p 3 1, 0 ⁇ n 3 ⁇ 1, 0 ⁇ m 3 ⁇ 1, 0 ⁇ p 3 ⁇ 1
  • R 1 ′′′ ⁇ R 6 ′′′ are the same or different groups
  • R 1 ′′′ ⁇ R 6 ′′′ are C1 to C20 alkyl groups, aromatic groups or heteroaryl groups.
  • R 1 ′′′ to R 6 ′′′ can be the same substituent, for example, they can be an alkyl group, an aromatic group or a heteroaryl group at the same time.
  • R 1 ′′′ to R 6 ′′′ may be mutually different substituents.
  • the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the triphenylamine-containing group is named A' unit
  • the homopolymerized repeating unit formed by the above-mentioned fluorene-containing group is named B' unit
  • the above-mentioned The homopolymeric repeating unit formed by triphenylamine-containing groups is named C' unit.
  • the first polymer in this embodiment can be a block copolymer including only A' units, a block copolymer including A' units and B' units, or a block copolymer including A' units and C' units.
  • the block copolymer can also be a block copolymer including A' unit, B' unit and C' unit at the same time.
  • the embodiments of this application are not particularly limited.
  • the mole of the triphenylamine-containing group can be determined according to the HOMO energy level needs. score, and then select the corresponding polymer structure.
  • the general structural formula of the fourth polymer in the hole transport film 10 is as follows:
  • n 4 , m 4 , p 4 , q 4 are mole fractions
  • n 4 +m 4 +p 4 +q 4 1, 0 ⁇ n 4 ⁇ 0.95, 0 ⁇ m 4 ⁇ 0.95, 0 ⁇ p 4 ⁇ 0.95, 0 ⁇ p 4 ⁇ 0.05
  • R 1 ′′′′ ⁇ R 6 ′′′′ are the same or different groups
  • R 1 ′′′′ ⁇ R 6 ′′′′ are C1 ⁇ C20 alkyl groups, aromatic groups or heteroaromatic groups Group
  • R 7 "" contains cross-linking bonds.
  • R 1 ′′′′ ⁇ R 6 ′′′′ can be the same groups corresponding to R 1 ′′′ ⁇ R 6 ′′′, and they can make the same selection as the above R 1 ′′′ ⁇ R 6 ′′′.
  • R 1 ′′′′ ⁇ R 6 ′′′′ may also be different groups independently of R 1 ′′′ ⁇ R 6 ′′′.
  • the copolymerized repeating unit formed by the above-mentioned fluorene-containing group and the triphenylamine-containing group is named A” unit
  • the homopolymerized repeating unit formed by the above-mentioned fluorene-containing group is named B” unit
  • the above-mentioned The homopolymeric repeating unit formed by the triphenylamine-containing group is named C” unit
  • the homopolymerized repeating unit formed by the above self-crosslinking group is named D” unit.
  • the fourth polymer in this embodiment may be a block copolymer including only A′′ units and D′′ units, or a block copolymer including A′′ units, D′′ units and B′′ units, or it may be a block copolymer including A′′ units, D′′ units and B′′ units.
  • the block copolymer of A” unit, D” unit and C” unit can also be a block copolymer including A” unit, D” unit, B” unit and C” unit at the same time.
  • the mole fraction of the A” unit and D” unit can be determined according to the HOMO energy level requirements and the cross-linking degree requirements, and then the corresponding polymer structure can be selected.
  • the mole fraction of the D” unit is too high, which may lead to excessive cross-linking in the polymer, affect the conductivity of the material, and thereby reduce the mobility of holes. Therefore, it is preferred , the mole fraction of the second self-crosslinking group D” unit is greater than 0 and less than or equal to 5%, that is, 0 ⁇ q 4 /(n 4 +m 4 +p 4 +q 4 ) ⁇ 0.05, which can be formed
  • the cross-linked polymer prevents the light-emitting layer material from penetrating into the hole transport film 10 without reducing the hole mobility of the hole transport film 10 .
  • the substituent R 7 "" in the unit D" of the second self-crosslinking group can be a group containing a thermal cross-linking bond, and the cross-linking reaction can be performed by heating, or it can be a group containing ultraviolet light.
  • the responsive cross-linking bond groups undergo a cross-linking reaction through UV irradiation.
  • the second self-crosslinking group can be a double bond or a group that can form a double bond when reactive, and can form a cross-linked structure between molecules of the fourth polymer through an addition reaction of the double bond.
  • R 7 "" of the fourth polymer may be one of the following structural formulas:
  • R 8 ′′′′ is a C1 to C20 alkyl group
  • R 8 ′′′′ is a C1 to C20 alkyl group
  • one or more carbon atoms are substituted by hetero atoms.
  • the heteroatoms are located in non-adjacent positions so that the above substituents have better flexibility.
  • R 7 "" group the double bond in the chemical structural formula 1 can undergo an addition reaction, thereby forming a cross-linked structure between the fourth polymers.
  • the molecular structure of chemical formula 2 will isomerize when heated, and the reaction equation is as follows:
  • the cross-linked structure has better solvent resistance and can prevent small molecules in the light-emitting layer from penetrating into the hole transport film 10 (ie, interfacial dissolution), thereby improving the hole migration efficiency and the stability of the optoelectronic device.
  • cross-linking reactions in the above embodiments may not necessarily be carried out 100% according to the ideal cross-linking reaction model, but at least a certain proportion of cross-linked structures can be formed.
  • the mole fraction of the triphenylamine-containing groups in the fourth polymer in the fourth polymer is less than the mole fraction of the triphenylamine-containing groups in the first polymer in the first polymer. It can be understood that the higher the content of triphenylamine-containing groups in the polymer, the higher the HOMO energy level of the polymer.
  • the hole transport film 10 in the embodiment of the present application forms a gradient molecular structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer). The closer to the top layer, the greater the content of the fourth polymer, and the closer to the bottom layer, the greater the content of the first polymer.
  • the hole transport film 10 can form a gradient energy level structure from a high HOMO energy level in the bottom layer to a low HOMO energy level in the top layer.
  • Figure 15 is a schematic diagram of HOMO energy level matching of each functional layer provided by an embodiment of the present application.
  • the hole transport film 10 forms a gradient HOMO energy level from -5.2eV (bottom layer) to -5.8eV (top layer).
  • the HOMO energy level of the bottom layer of the transport film 10 is close to the HOMO energy level of the hole transport layer (HJL), which can improve the injection efficiency of holes from the hole injection layer to the hole transport film 10 .
  • the top HOMO energy level of the hole transport film 10 is close to the HOMO energy level of the light-emitting layer, which reduces the energy level difference between the hole transport film 10 and the light-emitting layer, making it easier for holes to cross from the hole transport film 10 to emit light. layer potential barrier, thereby improving the hole migration efficiency.
  • the side of the hole transport film 10 facing the light-emitting layer is mainly a cross-linked polymer, which has better solvent resistance and can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the number of hole transport films. 10 Interface dissolution occurs with the light-emitting layer to improve current efficiency.
  • the hole transport film 10 of this embodiment can not only improve the hole mobility, but also reduce the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving current efficiency.
  • the first polymer further includes heteroaryl-containing groups.
  • the first polymer includes fluorene-containing groups, aniline-containing groups and Heteroaryl group.
  • the first polymer has a weight average molecular weight of 60,000 to 150,000.
  • heteroaryl refers to an aryl group in which one or more carbon atoms are independently replaced by one or more heteroatoms (e.g., N, O, P, and/or S).
  • a heteroaryl group has 3 to 20 carbon atoms.
  • the heteroaryl group has 5 to 15 carbon atoms.
  • the heteroaryl group has 5 to 9 carbon atoms.
  • the heteroaryl group can be unsubstituted or have a hydrogen atom on it. Or multiple hydrogen atoms are optionally substituted by other groups, such as alkyl, halogen, etc., allowing multiple degrees of substitution.
  • the heteroaryl group may be, for example, thienyl or carbazolyl.
  • the weight average molecular weight of the first polymer is too high or too low, the degree of improvement in the photoelectric performance of the optoelectronic device will be limited. If the weight average molecular weight of the first polymer is less than 60,000, the degree of cross-linking of the film will be limited, thereby reducing the solvent resistance of the film.
  • the degree of improvement in characteristics is limited; if the weight average molecular weight of the first polymer is higher than 150,000, the viscosity of the first polymer solution prepared by dispersing the first polymer in the solvent is too high, which is not conducive to construction and reduces the quality of the film, for example : If the film is prepared by inkjet printing, the inkjet printing equipment may not be compatible with the first polymer solution that has too high viscosity.
  • the hole transport film 10 can be used to prepare a hole functional layer of an optoelectronic device, such as a hole transport layer.
  • an optoelectronic device such as a QLED
  • the quantum dots used as the material of the light-emitting layer are inorganic nanoparticles
  • the quantum dots have good solubility characteristics and stability in solvents (such as ethanol) after being modified with ligands, and the solution method is used to prepare the light-emitting layer. It has the advantages of no need for vacuum process, easy to achieve large area, low cost, etc., so the luminescent layer is usually prepared by solution method; for QLED with upright structure, the hole functional layer needs to be prepared first, and then the luminescent layer is prepared.
  • the hole functional layer and the light-emitting layer will dissolve into each other, resulting in a decrease in the hole injection level.
  • QLED itself has the problem that the hole injection level is lower than the electron injection level, and "mutual dissolution" This phenomenon will aggravate the carrier injection imbalance problem of QLED, resulting in a decline in the overall performance of QLED.
  • the films of the embodiments of the present application have ideal anti-solvent properties, effectively improve the "mutual dissolution" phenomenon, and are conducive to improving the optoelectronic performance of optoelectronic devices.
  • the glass transition temperature of the first polymer is 80°C to 250°C.
  • the glass transition temperature of the first polymer can be, for example, It is 80°C to 100°C, 100°C to 120°C, 120°C to 200°C, 200°C to 220°C, or 220°C to 250°C.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is not greater than 2.
  • number average molecular weight refers to the molecular weight value statistically averaged by the number of molecules in a polymer.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer refers to the dispersion index of the first polymer, which is used to evaluate the molecular weight distribution of the first polymer. Accurate control is achieved by defining the dispersion index of the first polymer, thereby Improve the repeatability and stability of optoelectronic devices using thin films.
  • the heteroaryl-containing group is selected from at least one of a carbazolyl-containing group or a thienyl-containing group.
  • the first polymer in the first polymer Among them, more than 10% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer; and no more than 5% by weight of the polymer has a molecular weight less than 0.3 times the weight average molecular weight of the first polymer. times, or no more than 5% by weight of the polymer has a molecular weight greater than 1.7 times the weight average molecular weight of the first polymer.
  • the repeating units of the first polymer are selected from:
  • R 1' to R 20' are independently selected from hydrogen atoms, alkyl groups with 1 to 20 carbon atoms, aryl groups or heteroaryl groups, n 5 , m 5 , p 5 , y and z are respectively represents mole fraction;
  • alkyl refers to a class of chain organic groups containing only carbon atoms and hydrogen atoms, including unsubstituted alkyl groups and one or more hydrogen atoms optionally substituted by other groups.
  • Group-substituted alkyl group, other groups can be, for example, halogen atoms, allowing multiple degrees of substitution, and the alkyl group can be, for example, one or more of methyl, ethyl, n-propyl or isopropyl.
  • the embodiment of the present application also provides a method for preparing an optoelectronic device. Please refer to Figure 2.
  • Figure 2 is a schematic flow chart of a method of preparing an optoelectronic device provided by the embodiment of the present application. The preparation method includes the following steps:
  • Step S21 Provide a material solution including a first polymer, wherein the first polymer includes fluorene-containing groups and aniline-containing groups.
  • the first polymer can be first made into a polymer solution.
  • the first polymer can be dissolved using conventional organic solvents, such as toluene, chlorobenzene, cyclohexylbenzene, methyl benzoate, and benzoic acid. Ethyl ester, anisole, etc.
  • the solvent may be a single solvent or a mixed solvent of two or more different solvents.
  • the order in which the first polymer and the solvent are added is not limited, as long as sufficient mixing is achieved to obtain a polymer solution.
  • Step S22 Provide a substrate with an anode formed on the substrate, place the above material solution on the anode, and perform heat treatment to obtain a hole transport film.
  • the type of the substrate is not limited.
  • the substrate can be a commonly used substrate.
  • it can be a rigid substrate made of glass; it can also be a flexible substrate made of polyimide.
  • the material of the anode 40 may be, for example, one or more of metals, carbon materials, and metal oxides.
  • the metal may be, for example, one or more of Al, Ag, Cu, Mo, Au, Ba, Ca, and Mg;
  • the carbon material can be, for example, one or more of graphite, carbon nanotubes, graphene, and carbon fiber;
  • the metal oxide can be a doped or non-doped metal oxide, including ITO, FTO, ATO, AZO, GZO, and IZO , MZO and AMO, and also includes composite electrodes with metal sandwiched between doped or undoped transparent metal oxides.
  • the composite electrodes include but are not limited to AZO/Ag/AZO, AZO/Al/ AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/ One or more of Al/ZnS, TiO 2 /Ag/TiO 2 and TiO 2 /Al/TiO 2 .
  • an anode 40 is formed on the substrate, and the hole transport film 10 including the first polymer and the second polymer material is disposed on the anode 40 .
  • an anode 40 and a hole injection layer 50 are formed on the substrate, and the hole transport film 10 including the first polymer and the second polymer material is disposed on the hole injection layer 50 . If the optoelectronic device also includes other functional layers, correspondingly, other functional layers can also be formed on the substrate.
  • a solution method may be used to dispose the material solution including the first polymer on the substrate.
  • the solution method includes but is not limited to spin coating, drip coating, coating, inkjet printing, blade coating, dipping and pulling, soaking, spray coating, roller coating, evaporation or casting, etc.
  • the wet film is prepared by the solution method. Then, heat treatment is performed, and the hole transport film 10 is obtained.
  • the above heat treatment step includes: first performing a first heat treatment, and then performing a second heat treatment, wherein the temperature of the first heat treatment is less than 100°C and greater than or equal to 40°C, and the temperature of the second heat treatment is greater than or equal to 100°C, and less than or equal to 250°C.
  • the wet film on the substrate may first be subjected to a first heat treatment to volatilize the organic solvent in the wet film to form a hole transport film, and then the hole transport film may be subjected to a second heat treatment.
  • the temperature of the second heat treatment is greater than that of the first heat treatment.
  • the first heat treatment temperature, the second heat treatment is used to eliminate the residual stress inside the hole transport film, thereby reducing the risk of layer deformation and cracks in the hole transport film.
  • the temperature of the first heat treatment can be less than 100°C, such as 95°C, 80°C, 70°C, 60°C, 50°C, 40°C, etc.
  • the temperature of the second heat treatment may be between 100°C and 250°C.
  • the temperature of the second heat treatment may be 100°C, 130°C, 160°C, 180°C, 200°C, 220°C, 240°C, 250°C, etc.
  • the second heat treatment can be an annealing process, which includes sequential heating, holding and cooling processes. For example, the dry hole transport film is heated to 220°C and kept for 30 minutes, and then heated at a speed of 5°C/min. Cool to room temperature.
  • the thickness of the finally formed hole transport film can be controlled and adjusted by controlling and adjusting the solution concentration and other conditions used in the solution method.
  • the thickness of the hole transport film may range from 10 to 50nm, such as 10nm, 15nm, 20nm, 25nm, 30nm, 40nm, 50nm, etc. Taking spin coating as an example, the thickness of the hole transport film can be controlled by adjusting the concentration of the solution, the spin coating speed and the spin coating time.
  • Step S23 Make a cathode on the hole transport film.
  • the material of the cathode 20 is a material known in the art for cathodes, and the material of the anode 40 described above can be selected, and this step will not be described again.
  • the thickness of the cathode 20 is a cathode thickness known in the art, and may be, for example, 10 nm to 200 nm, such as 10 nm, 35 nm, 50 nm, 80 nm, 120 nm, 150 nm, 200 nm, etc.
  • the anode 40, the luminescent layer 30, the cathode 20 and other functional layers can all be prepared using conventional techniques in the art, including but not limited to solution methods and deposition methods.
  • the solution methods include but are not limited to Spin coating, coating, inkjet printing, blade coating, dip pulling, soaking, spray coating, roll coating or casting; deposition methods include chemical methods and physical methods, chemical methods include but are not limited to chemical vapor deposition, continuous ion layer Adsorption and reaction method, anodizing method, electrolytic deposition method or co-precipitation method.
  • Physical methods include but are not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, atomic layer deposition or pulsed laser deposition.
  • the preparation method of the optoelectronic device can also include a packaging step.
  • the packaging material can be acrylic resin or epoxy resin.
  • the packaging can be machine packaging or manual packaging. UV curing glue can be used.
  • the environment in which the packaging step is performed contains oxygen. The concentrations of water and water are both lower than 0.1ppm to ensure the stability of photovoltaic devices.
  • a second polymer is added to the material solution including the first polymer, wherein the second polymer is formed from a fluorene-containing group and a triphenylamine-containing group.
  • a block copolymer the mole fraction of the triphenylamine-containing groups in the second polymer in the second polymer is less than the mole fraction of the triphenylamine-containing groups in the first polymer in the first polymer, and the second The hydrogen atoms in the polymer are completely or partially replaced by fluorine atoms.
  • the second polymer tends to be located in the upper layer of the hole transport film 10 (see the structure in FIG. 1 as a reference), so the hole transport film 10 forms a gradient molecular structure from the bottom layer to the top layer.
  • the first polymer and the second polymer are The order in which the polymer and solvent are added is not limited, as long as the three can be fully mixed to obtain a polymer solution.
  • a material solution containing the first polymer and the second polymer is placed on the anode 40 of the substrate to form a hole transport film.
  • the second polymer containing fluorine groups tends to be rich in Collected at the interface between the hole transport film 10 and the air (the side close to the cathode), and extending into the air, the hole transport film 10 forms a layer from the bottom layer (the side close to the anode) to the top layer (the side close to the cathode) ) gradient molecular structure. The closer to the top layer, the more the second polymer is, and the closer to the bottom layer, the more the first polymer is.
  • the HOMO energy level of the first polymer is higher and the HOMO energy level of the second polymer is higher.
  • the level is lower.
  • the hole transport film 10 forms a gradient energy level from high to low from the bottom layer to the top layer.
  • the high HOMO energy level of the bottom layer matches the anode, which facilitates the anode to inject holes into the hole transport film 10.
  • the low HOMO energy level of the top layer reduces the energy level difference between the hole transport film 10 and the light-emitting layer, allowing holes to escape from the hole transport film 10.
  • the hole transport film 10 produced in the embodiment of the present application can improve the hole mobility.
  • the first polymer and the second polymer contained in the hole transport film 10 of the embodiment of the present application are the same type of polymer material, the inside of the film has a gradient molecular structure and is not a traditional double-layer transport film, so it cannot There are issues with material interfaces and material miscibility between different transmission film layers. Therefore, the hole transport film 10 produced in the embodiment of the present application can improve the hole mobility and has no interfacial miscibility problem.
  • the first polymer is a block polymer including a first block and a second block, and the first block is composed of a fluorene-containing group and an aniline-containing group.
  • the second block is a copolymerized block formed by a fluorene-containing group and an aniline-containing group, and the aniline-containing group in the second block is connected to an electron-donating group.
  • the material solution including the first polymer may also include a third polymer, and the third polymer may be a conductive polymer.
  • the first polymer and the third polymer are The order in which the polymer and solvent are added is not limited, as long as the three can be fully mixed to obtain a polymer solution.
  • the wet film on the substrate can be first subjected to a first heat treatment to volatilize the organic solvent in the wet film to form a hole transport film, and then the hole transport film can be The film undergoes a second heat treatment.
  • the drying treatment may be a step that simultaneously includes crosslinking and curing.
  • the crosslinking treatment can be performed by heating.
  • the wet film on the substrate can be first subjected to a first heat treatment to volatilize the organic solvent in the wet film to form a molten hole transport film, and then the hole transport film can be subjected to a second heat treatment to allow the first polymer to undergo
  • the temperature of the second heat treatment is greater than the temperature of the first heat treatment.
  • the cross-linking reaction can be carried out by UV irradiation.
  • the above-mentioned reaction can be used first.
  • the first heat treatment process volatilizes the organic solvent to form a molten hole transport film, and then irradiates the film with ultraviolet light with a wavelength of 365 nm to cross-link and solidify the hole transport film.
  • the order in which the first polymer, the third polymer and the solvent are added is not limited, and the three can be fully mixed to obtain a block copolymer solution. That’s it.
  • a material solution in which the first polymer and the third polymer are dissolved is placed on the substrate to form a hole transport film.
  • the first polymer containing fluorine groups tends to be enriched in the holes.
  • the interface between the hole transport film 10 and the air extends into the air, so the hole transport film 10 forms an interface from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer). side) of the gradient molecular structure.
  • the LUMO energy level of the top layer of the hole transport film 10 can be increased.
  • the hole transport film 10 can be formed from the bottom layer to the top layer.
  • Gradient LUMO energy levels with gradually increasing top energy levels.
  • the increase in the LUMO energy level of the top layer of the hole transport film 10 increases the difficulty for electrons to transition from the light-emitting material layer to the hole transport layer, thereby reducing the aging rate of the hole transport layer and thereby increasing the life of the optoelectronic device.
  • the first polymer includes a fluorene-containing group, an aniline-containing group and a first cross-linking group-containing group
  • the material solution including the first polymer also contains It includes a cross-linked compound, the cross-linked compound includes a main chain, and at least two second cross-linking groups connected to the main chain, and all or part of the hydrogen atoms in the cross-linked compound are replaced by fluorine atoms.
  • the order in which the first polymer, the cross-linking compound and the solvent are added is not limited, and the three can be fully mixed to obtain a block copolymer solution, that is, Can.
  • a material solution containing the first polymer and the cross-linking compound is placed on the substrate to form a hole transport film.
  • the second cross-linking group in the cross-linking compound interacts with the first polymer
  • the first cross-linking group in the polymer can undergo a cross-linking reaction. Since the cross-linking compound contains at least two second cross-linking groups and the first polymer contains one first cross-linking group, the cross-linking compound can At least two first polymer molecules are connected to form a cross-linked structure in the hole transport film 10 .
  • the hole transport film 10 produced in the embodiment of the present application can reduce the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving the current efficiency of the optoelectronic device.
  • the first polymer is a block copolymer formed from fluorene-containing groups and triphenylamine-containing groups.
  • the material solution including the first polymer also contains a fourth polymer, the fourth polymer is a nested polymer formed of a fluorene-containing group, a triphenylamine-containing group and a second self-crosslinking group. segment copolymer, and all or part of the hydrogen atoms in the fourth polymer are replaced by fluorine atoms.
  • the order in which the first polymer, the fourth polymer and the solvent are added is not limited, as long as the three can be fully mixed to obtain a polymer solution. .
  • a heating method can be used to perform the crosslinking treatment.
  • the wet film on the substrate can be first subjected to a first heat treatment to volatilize the organic solvent in the wet film to form a molten hole transport film, and then the hole transport film can be subjected to a second heat treatment to allow the fourth polymer to undergo
  • the temperature of the second heat treatment is greater than the temperature of the first heat treatment.
  • the temperature of the first heat treatment can be less than 100°C, such as 95°C, 80°C, 70°C, 60°C, 50°C, 40°C, etc., The higher the temperature, the faster the solvent evaporates, and vacuum drying can also be performed at room temperature.
  • the temperature of the second heat treatment may be between 100°C and 200°C.
  • the temperature of the second heat treatment may be 100°C, 120°C, 140°C, 160°C, 180°C, 190°C, 200°C, etc.
  • the cross-linking reaction can be carried out by irradiation with UV light, for example First, the above-mentioned first heat treatment process is used to volatilize the organic solvent to form a molten hole transport film, and then the film is irradiated with ultraviolet light with a wavelength of 365 nm to cross-link and solidify the hole transport film.
  • a material solution in which the first polymer and the fourth polymer are dissolved is placed on the substrate, and then a cross-linking reaction is performed to obtain the hole transport film 10 .
  • the HOMO energy level of the hole transport film 10 can be in the range of -5.8eV to -4.8eV, which is between the HOMO energy level of the general hole injection layer and the HOMO energy level of the light-emitting layer, it can satisfy the requirements of the hole transport film 10.
  • the injection layer has energy level requirements for injecting holes into the light-emitting layer.
  • Film 10 forms a graded molecular structure from the bottom layer to the top layer. The closer to the top layer, the greater the content of the fourth polymer, and the closer to the bottom layer, the greater the content of the first polymer.
  • the fourth polymer also includes a second self-crosslinking group, a cross-linking reaction will occur between the block copolymer molecules of the fourth polymer when the hole transport film 10 is formed, so that the hole transport film 10 is close to the light-emitting layer.
  • One side is mainly a cross-linked polymer, which has better solvent resistance and can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the interfacial dissolution between the hole transport film 10 and the light-emitting layer. , to improve the current efficiency of the device.
  • the first polymer includes fluorene-containing groups, aniline-containing groups, and heteroaryl-containing groups.
  • the solvent may be selected from, but is not limited to, one or more of chlorobenzene, toluene, xylene, cyclohexylbenzene, methyl benzoate, ethyl benzoate, chloronaphthalene, phthalic anhydride or bromobenzene.
  • an embodiment of the present application also provides an optoelectronic device 100.
  • the optoelectronic device 100 includes a cathode 20 and a luminescent layer 30 and an anode 40 stacked in sequence. Between the above-mentioned hole transport film 10, the hole transport film 10 includes a first surface and a second surface, the first surface faces the anode 40, and the second surface faces the light-emitting layer 30.
  • the material of the cathode 20 is a material known in the art for cathodes
  • the material of the anode 40 is a material known in the art for anodes. Reference may be made to the relevant descriptions above and will not be repeated here.
  • the light-emitting layer 30 may be a quantum dot light-emitting layer, and in this case, the optoelectronic device 100 may be a quantum dot optoelectronic device.
  • the thickness of the luminescent layer 30 can be within the thickness range of the luminescent layer in quantum dot optoelectronic devices known in the art, for example, it can be 5 nm to 100 nm, such as 5 nm, 10 nm, 20 nm, 50 nm, 80 nm, 100 nm, etc.; or it can be 60-100 nm. .
  • the material of the quantum dot light-emitting layer is the quantum dots known in the art to be used in the quantum dot light-emitting layer, for example, one of red quantum dots, green quantum dots and blue quantum dots.
  • the quantum dots may be selected from, but are not limited to, one or more of single structure quantum dots and core-shell structure quantum dots.
  • the quantum dots can be selected from, but are not limited to, one or more of II-VI compounds, III-V compounds and I-III-VI compounds; the II-VI compounds are selected from CdSe, CdS, One or more of CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe; the III-V compound is selected from InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP; the Group I-III-VI compound is selected from one or more of CuInS2, CuInSe2 and AgInS2.
  • the hole transport film 10 in the optoelectronic device 100 includes a first polymer and a second polymer.
  • the second polymer containing fluorine groups tends to be enriched in the hole transport film 10 and air (by luminescence).
  • the hole transport film 10 forms a gradient molecular structure from the bottom layer (side close to the anode 40) to the top layer (side close to the light-emitting layer 30). The closer to the top layer, the more the second polymer is, and the closer to the bottom layer, the more the first polymer is.
  • the HOMO energy level of the first polymer is higher and the HOMO energy level of the second polymer is higher.
  • the level is lower.
  • the hole transport film 10 forms a gradient energy level from high to low from the bottom layer to the top layer.
  • the high HOMO energy level of the bottom layer is close to the energy level of the anode 40, which facilitates the anode 40 to provide holes to the hole transport film 10.
  • the low HOMO energy level of the top layer narrows the energy level difference between the hole transport film 10 and the light-emitting layer 40, making the holes It is easier for holes to jump from the hole transport film 10 to the light-emitting layer 40 across the potential barrier between the hole transport film 10 and the light-emitting layer 40.
  • the hole transport film 10 in the embodiment of the present application has a graded molecular structure inside, It is not a traditional double-layer transmission film, so there is no problem of material interface and material miscibility between different transmission film layers. Therefore, the hole transport film 10 in the optoelectronic device 100 in the embodiment of the present application can improve the hole mobility, thereby improving the current efficiency of the optoelectronic device.
  • the hole transport film 10 in the optoelectronic device 100 includes a first polymer and a third polymer, and the first polymer containing fluorine groups tends to be enriched in the hole transport film 10 and the air (depending on the air).
  • the hole transport film 10 forms a gradient molecular structure from the bottom layer (side close to the hole injection layer) to the top layer (side close to the light-emitting layer). The closer to the bottom layer, the greater the content of the third polymer, and the closer to the top layer, the greater the content of the first polymer. And because the first polymer contains electron-donating groups, it can increase the LUMO energy level of the top layer of the hole transport film 10.
  • the increase in the LUMO energy level of the top layer of the hole transport film 10 increases the transition of electrons from the light-emitting material layer to holes.
  • the difficulty of the transport layer can reduce the aging rate of the hole transport layer, thereby improving the life of the optoelectronic device.
  • the content of the third polymer decreases, and the content of the first polymer increases.
  • the hole transport film 10 can be formed from the bottom layer (the side close to the hole injection layer) Gradient molecular structure to the top layer (the side closer to the light-emitting layer). The closer to the bottom layer, the greater the content of the third polymer, and the closer to the top layer, the greater the content of the first polymer. Since the first polymer mainly located on the top layer contains electron-donating groups, it can improve the performance of the top layer of the hole transport film.
  • the LUMO energy level corresponds to the gradient molecular structure from the bottom layer to the top layer.
  • the hole transport film 10 can form a gradient LUMO energy level that gradually increases from the bottom layer to the top layer.
  • the increase in the LUMO energy level on the top layer of the hole transport film increases the difficulty for electrons to transition from the light-emitting material layer to the hole transport layer, thereby reducing the aging rate of the hole transport layer and thereby increasing the life of the optoelectronic device.
  • the hole transport film 10 in the optoelectronic device 100 includes a first polymer and a cross-linking compound, and the second cross-linking group in the cross-linking compound is the same as the first cross-linking group in the first polymer.
  • the cross-linking compound can undergo a cross-linking reaction. Since the cross-linking compound contains at least two second cross-linking groups and the first polymer contains a first cross-linking group, the cross-linking compound can connect at least two first polymers. molecules to form a cross-linked structure in the hole transport film 10 .
  • the hole transport film 10 and the light-emitting layer have less interfacial dissolution, and the current efficiency of the optoelectronic device 100 is higher.
  • the hole transport film 10 can be formed from the bottom layer (the side close to the hole injection layer) to the top layer (close to the light-emitting layer). one side of the layer).
  • the hole transport film 10 in the optoelectronic device 100 includes a first polymer and a fourth polymer, because the HOMO energy level of the hole transport film 10 may be in the range of -5.8 eV to -4.8 eV.
  • the level is located between the HOMO energy level of the general hole injection layer and the HOMO energy level of the light-emitting layer, which can improve the efficiency of the hole injection layer injecting holes into the light-emitting layer.
  • the fourth polymer due to the presence of fluorine atoms in the fourth polymer, it tends to be enriched at the interface between the hole transport film 10 and the air (the side close to the light-emitting layer), and extends into the air, closer to the top layer, The greater the content of the fourth polymer, and since the fourth polymer also includes self-crosslinking groups, when the hole transport film 10 is formed, a cross-linking reaction will occur between the block copolymer molecules of the fourth polymer, resulting in holes.
  • the side of the hole transport film 10 facing the light-emitting layer is mainly a cross-linked polymer, which has better solvent resistance and can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thus reducing the contact between the hole transport film 10 and the hole transport film 10.
  • the interfacial dissolution of the light-emitting layer occurs, so that the current efficiency of the optoelectronic device 100 can be improved.
  • the content of the first polymer decreases, and the content of the fourth polymer increases.
  • the fourth polymer contains fluorine groups, it tends to be enriched on the surface of the hole transport film 10 (that is, the side close to the light-emitting layer), so the hole transport film 10 can be formed from the bottom layer (the side close to the hole injection layer) Gradient cross-linked structure to the top layer (the side close to the light-emitting layer).
  • the cross-linked structure formed by the cross-linking group can prevent the material components of the light-emitting layer from penetrating into the hole transport film 10, thereby reducing the interfacial dissolution between the hole transport film 10 and the light-emitting layer, thereby improving the current efficiency of the optoelectronic device. .
  • the optoelectronic device 100 may further include a hole injection layer (HIL) 50 .
  • the hole injection layer 50 is located between the hole transport film 10 and the anode 40 .
  • the material of the hole injection layer 50 can be selected from materials with hole injection capabilities, including but not limited to one of PEDOT: PSS, MCC, CuPc, F4-TCNQ, HATCN, transition metal oxides, and transition metal chalcogenide compounds. kind or variety.
  • PEDOT:PSS is a high molecular polymer, and its Chinese name is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid).
  • the thickness of the hole injection layer 50 may be, for example, 10 nm to 100 nm, such as 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 100 nm, etc.
  • the optoelectronic device 100 may further include an electron transport layer 60 , and the electron transport layer 60 is located between the cathode 20 and the light-emitting layer 30 .
  • the electron transport layer 60 may be an oxide semiconductor nanomaterial with electron transport capability.
  • the oxide semiconductor nanomaterial may be selected from, but not limited to, ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, TiLiO, ZnAlO, One or more of ZnMgO, ZnSnO, ZnLiO, and InSnO.
  • the optoelectronic device 100 can also add some functional layers that are commonly used in optoelectronic devices and help improve the performance of the optoelectronic device, such as electron blocking layers, hole blocking layers, electron injection layers, and interface modifications. layer etc. It can be understood that the materials and thickness of each layer of the optoelectronic device 100 can be adjusted according to the lighting requirements of the optoelectronic device 100 .
  • the optoelectronic device 100 is a quantum dot light-emitting diode
  • the structure may be a glass substrate-anode-(hole injection layer)-hole transport layer-quantum dot light-emitting layer-electron transport layer-cathode.
  • the hole injection layer is optional, and the hole injection layer may or may not be included in the quantum dot light-emitting diode structure.
  • An embodiment of the present application also provides a display device, including the optoelectronic device provided by the present application.
  • the display device can be any electronic product with a display function. Electronic products include but are not limited to smartphones, tablets, laptops, digital cameras, digital camcorders, smart wearable devices, smart weighing scales, vehicle monitors, and televisions. Or an e-book reader, where the smart wearable device can be, for example, a smart bracelet, a smart watch, a virtual reality (Virtual Reality, VR) helmet, etc.
  • VR Virtual Reality
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the structural composition of the quantum dot light-emitting diode is shown in Figure 1.
  • the quantum dot light-emitting diode of this embodiment includes a cathode 20 and an electron transport layer that are stacked sequentially from top to bottom. 60.
  • each layer structure in quantum dot light-emitting diodes are:
  • the cathode 20 is made of Al and has a thickness of 25 nm.
  • the material of the electron transport layer 60 is Zn 0.9 Mg 0.1 O.
  • the material of the light-emitting layer 30 is nanometer CdZnSe.
  • the material of the hole transport film 10 is: the mass fraction of the first polymer is 15%, and the mole fraction of the aniline-containing groups is 60%; the mass fraction of the second polymer is 85%, and the mole fraction of the aniline-containing groups is 85%.
  • the mole fraction is 1%.
  • the material of the hole injection layer 50 is PEDOT:PSS.
  • the anode 40 is made of ITO with a thickness of 100 nm, and a glass substrate is provided on one side of the anode 40 .
  • Preparation of materials for the hole transport film 10 Dissolve the first polymer and the second polymer in chlorobenzene to obtain a hole transport material solution.
  • Anode 40 is prepared on a glass substrate.
  • PEDOT:PSS was spin-coated on the side of the anode 40 away from the glass substrate at a rotation speed of 5000 for 30 seconds, and then annealed at 200° C. for 15 minutes to obtain the hole injection layer 50 .
  • the hole transport material solution was spin-coated on the side of the hole injection layer 50 away from the anode 40 at a rotation speed of 3000 for 30 seconds, followed by drying at 90°C and annealing at 140°C to obtain the hole transport film 10 .
  • CdZnSe quantum dots are spin-coated on the side of the hole transport film 10 away from the hole injection layer 50 , and then annealed to obtain the light-emitting layer 30 .
  • Zn 0.9 Mg 0.1 O is spin-coated on the side of the light-emitting layer 30 away from the hole transport film 10 , and then annealed to obtain the electron transport layer 60 .
  • the Al cathode 20 is prepared by evaporation on the side of the electron transport layer 60 away from the light-emitting layer 30 .
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 1, the only difference is that the material of the hole transport film 10 is: the first polymer contains aniline The mole fraction of the groups is 75%, and the mole fraction of the aniline-containing groups in the second polymer material is 20%.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 1, the only difference is that the material of the hole transport film 10 is: the first polymer contains aniline The mole fraction of the groups in the second polymer is 90%, and the mole fraction of the aniline-containing groups in the second polymer is 40%.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the structural composition of the quantum dot light-emitting diode is shown in Figure 1.
  • the quantum dot light-emitting diode of this embodiment includes a cathode 20 and an electron transport layer that are stacked sequentially from top to bottom. 60.
  • each layer structure in quantum dot light-emitting diodes are:
  • the material of the cathode 20 is Al.
  • the material of the electron transport layer 60 is Zn 0.7 Mg 0.3 O.
  • the material of the light-emitting layer 30 is nano-ZnS.
  • the material of the hole transport film 10 includes the third polymer (60% wt) and the first polymer (40% wt) of the present application, where the third polymer is TFB; the first polymer has the following general formula: Among them, R 1 ′ to R 3 ′ are alkyl groups containing 5 carbon atoms, R 4 ′ is an imidazole group, and the mole fraction in the second polymer is 3%; R 5 ′ is an alkyl group containing 6 carbon atoms. Alkenes, some H atoms are substituted.
  • the material of the hole injection layer 50 is PEDOT:PSS.
  • the anode 40 is made of ITO with a thickness of 100 nm, and a glass substrate is provided on one side of the anode 40 .
  • Anode 40 is prepared on a glass substrate.
  • PEDOT:PSS was spin-coated on the side of the anode 40 away from the glass substrate at a rotation speed of 5000 for 30 seconds, and then annealed at 200° C. for 15 minutes to obtain the hole injection layer 50 .
  • the hole transport material solution was spin-coated on the side of the hole injection layer 50 away from the anode 40 at a rotation speed of 3000 for 30 seconds, followed by drying at 40°C and annealing at 230°C to obtain the hole transport film 10 .
  • CdZnSe quantum dots are spin-coated on the side of the hole transport film 10 away from the hole injection layer 50 , and then annealed to obtain the light-emitting layer 30 .
  • Zn 0.9 Mg 0.1 O is spin-coated on the side of the light-emitting layer 30 away from the hole transport film 10 , and then annealed to obtain the electron transport layer 60 .
  • the Al cathode 20 is prepared by evaporation on the side of the electron transport layer 60 away from the light-emitting layer 30 .
  • the LUMO energy level becomes a gradient energy level, and on the side close to the light-emitting layer 30, the LUMO energy level of the hole transport film 10 can reach -2.1 eV.
  • Figure 7 for the energy level diagram.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 4, the only difference between the quantum dot light-emitting diode of this embodiment is the material of the hole transport film 10
  • the substituent R 4 ′ in the first polymer is different.
  • R 4 ′ is a carbazole group, and its mole fraction in the first polymer is 15%.
  • the LUMO energy level becomes a gradient energy level, and on the side close to the light-emitting layer 30, the LUMO energy level of the hole transport film 10 can reach -2.0 eV.
  • Figure 8 for the energy level diagram.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the only difference between the quantum dot light-emitting diode of this embodiment is the material of the hole transport film 10 It is: including the third polymer (80%wt) and the first polymer (20%wt) of the present application, wherein the third polymer is polyaniline and its derivatives; in the first polymer, R 1 ′ ⁇ R 3 ′ is a methyl group, R 4 ′ is a triazole, and the mole fraction in the first polymer is 5%; R 5 ′ is a phenylpropylcyclobutane containing 12 carbon atoms.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the structural composition of the quantum dot light-emitting diode is shown in Figure 1.
  • the quantum dot light-emitting diode of this embodiment includes a cathode 20 and an electron transport layer that are stacked sequentially from top to bottom. 60.
  • each layer structure in quantum dot light-emitting diodes are:
  • the cathode 20 is made of Al and has a thickness of 25 nm.
  • the material of the electron transport layer 60 is Zn 0.7 Mg 0.3 O.
  • the material of the light-emitting layer 30 is nano-ZnS.
  • the material of the hole transport film 10 is: including the first polymer (95% wt) of the present application and the cross-linked compound (5% wt), wherein the general formula of the first polymer is as described above, and the weight average molecular weight is 90,000 , the molecular weight dispersion index is 2.8, where,
  • the general structural formula of the first polymer is as follows:
  • R 1 ′′ ⁇ R 5 ′′ is an alkyl group containing 3 carbon atoms, R6′′ contains benzocyclobutane;
  • the general formula of the cross-linked compound is R 8 ′′—R 9 ′′—R 10 ′′. Some of the hydrogen atoms in the cross-linked compound are replaced by fluorine. R9′′ is an alkyl main chain containing 6 carbon atoms. R8′′ and R10′′ are the same.
  • the cross-linking group has the following structural formula:
  • the material of the hole injection layer 50 is PEDOT:PSS.
  • the anode 40 is made of ITO with a thickness of 100 nm, and a glass substrate is provided on one side of the anode 40 .
  • Anode 40 is prepared on a glass substrate.
  • PEDOT:PSS was spin-coated on the side of the anode 40 away from the glass substrate at a rotation speed of 5000 for 30 seconds, and then annealed at 200° C. for 15 minutes to obtain the hole injection layer 50 .
  • the hole transport material solution was spin-coated on the side of the hole injection layer 50 away from the anode 40 at a rotation speed of 3000 for 30 seconds, followed by drying at 90°C and annealing at 140°C to obtain the hole transport film 10 .
  • CdZnSe quantum dots are spin-coated on the side of the hole transport film 10 away from the hole injection layer 50 , and then annealed to obtain the light-emitting layer 30 .
  • Zn 0.9 Mg 0.1 O is spin-coated on the side of the light-emitting layer 30 away from the hole transport film 10 , and then annealed to obtain the electron transport layer 60 .
  • the Al cathode 20 is prepared by evaporation on the side of the electron transport layer 60 away from the light-emitting layer 30 .
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the material of the hole transport film 10 is: material (99% wt) and cross-linked compound (1% wt), wherein the first polymer general formula is as described above, the weight average molecular weight is 100000, and the molecular weight dispersion index is 1.8, where R 1 ′′ to R 5 ′′ It is an alkyl group containing 10 carbon atoms, R 6 ′′ contains cyclohexane; the general formula of the cross-linked compound is as mentioned above, R 9 ′′ is an alkyl main chain containing 3 carbon atoms, R 8 ′′ and R 10 ′′ Is a primary amino group.
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the material of the hole transport film 10 is: (97% wt) and cross-linked compound (3% wt), wherein the first polymer general formula is as described above, the weight average molecular weight is 120000, and the molecular weight dispersion index is 2.4, where R 1 ′′, R 2 ′′ , R 4 ′′, R 5 ′′ are alkyl groups containing 10 carbon atoms, R 3 ′′ is an alkyl group containing 15 carbon atoms, R 6 ′′ contains cyclohexane; the general formula of the cross-linked compound is as mentioned above, R 9 ′′ is an alkyl main chain containing 6 carbon atoms, R 8 ′′ and R 10 ′′ are the same cross-linking group, and the structural formula is as follows:
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the structural composition of the quantum dot light-emitting diode is shown in Figure 1.
  • the quantum dot light-emitting diode of this embodiment includes a cathode 20 and an electron transport layer that are stacked sequentially from top to bottom. 60.
  • each layer structure in quantum dot light-emitting diodes are:
  • the material of the cathode 20 is Al.
  • the material of the electron transport layer 60 is Zn 0.8 Mg 0.2 O.
  • the material of the light-emitting layer 30 is nano-ZnSe.
  • the material of the hole transport film 10 is: containing the first polymer (70% wt) and the fourth polymer (30% wt) of the present application,
  • the general structural formula of the first polymer is as follows:
  • the weight average molecular weight of the first polymer is 83000, and the molecular weight dispersion index is 1.8.
  • R 1 ′′′, R 2 ′′′, R 4 ′′′, and R 5 ′′′ are ethyl groups, and R 3 and R 6 contain 15 an alkyl group of carbon atoms;
  • the weight average molecular weight of the fourth polymer is 100,000, the molecular weight dispersion index is 2.0, and some H atoms are replaced by fluorine atoms,
  • R 1 ′′′, R 2 ′′′, R 4 ′′′, R 5 ′′′ is an ethyl group,
  • R 3 ′′′ and R 6 ′′′ are alkyl groups containing 10 carbon atoms,
  • R 7 ′′’ is an olefin containing 15 carbon atoms, and the mole fraction in the fourth polymer is 3%.
  • the material of the hole injection layer 50 is PEDOT:PSS.
  • the material of the anode 40 is ITO, and a glass substrate is provided on one side of the anode 40 .
  • the first polymer and the fourth polymer were dissolved in ethyl benzoate (14 mg/mL) to obtain a hole transport material solution.
  • Anode 40 is prepared on a glass substrate.
  • PEDOT:PSS is spin-coated on the side of the anode 40 away from the glass substrate, and annealed to obtain the hole injection layer 50 .
  • the material solution of the hole transport film 10 is spin-coated on the side of the hole injection layer 50 away from the anode 40, and is dried and annealed. First, heat treatment is performed at 100°C and then at 170°C to obtain the hole transport film 10.
  • ZnSe quantum dots are spin-coated on the side of the hole transport film 10 away from the hole injection layer 50 , and then annealed to obtain the light-emitting layer 30 .
  • Zn 0.9 Mg 0.1 O is spin-coated on the side of the light-emitting layer 30 away from the hole transport film 10 , and then annealed to obtain the electron transport layer 60 .
  • the Al cathode 20 is prepared by evaporation on the side of the electron transport layer 60 away from the light-emitting layer 30 .
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the only difference between the quantum dot light-emitting diode of this embodiment is the material of the hole transport film 10 It is: including the first polymer (60%wt) and the fourth polymer (40%wt) of the present application, wherein the weight average molecular weight of the first polymer is 78000, the molecular weight dispersion index is 1.9, R 1 ′′′, R 2 ′′′, R 4 ′′′, R 5 ′′′ are methyl groups, R 3 ′′′, R 6 ′′′ are alkyl groups containing 6 carbon atoms; the weight average molecular weight of the fourth polymer is 120000, and the molecular weight dispersion index is 2.5, R 1 ′′′, R 2 ′′′, R 4 ′′′, R 5 ′′′ are methyl groups, R 3 ′′′, R 6 ′′′ are alkyl
  • This embodiment provides a quantum dot light-emitting diode and a preparation method thereof.
  • the material of the hole transport film 10 is: including the first polymer (95% wt) and the fourth polymer (5% wt) of the present application, wherein the weight average molecular weight of the first polymer is 50000, the molecular weight dispersion index is 1.5, R 1 ′′′, R 2 ′′′, R 4 ′′′ and R 5 ′′′ are octyl groups, R 3 ′′′ and R 6 ′′′ are methyl groups; the weight average molecular weight of the fourth polymer is 90000, the molecular weight dispersion index is 2.2, and R 1 ′′ ′, R 2 ′′′, R 4 ′′′, and R 5 ′′′ are octyl groups, R 3 ′′′, R 6 ′′′ are
  • This embodiment provides a film and a preparation method thereof.
  • the material of the film is a first polymer, and the repeating unit of the first polymer has a structure shown in the following formula (1.1):
  • the repeating unit represented by formula (1.1) is composed of a fluorene structural unit and a triphenylamine structural unit, and the -C 4 H 9 group is an n-butyl group.
  • the weight average molecular weight of the first polymer is 86,000, the ratio of weight average molecular weight/number average molecular weight is 1.5, and the glass transition temperature is 100°C; in the first polymer, the molecular weight of 30% by weight of the polymer is 0.9 to 1.1 times the weight average molecular weight of a polymer, 2.5% by weight of the polymer having a molecular weight less than 0.3 times the weight average molecular weight of the first polymer, and 2.5% by weight of the polymer having a molecular weight greater than the weight of the first polymer 1.7 times the average molecular weight.
  • step S1.2 Provide a substrate. Under an atmospheric environment of normal temperature and pressure, spin-coat the first polymer-chlorobenzene solution prepared in step S1.1 on one side of the substrate, and then place it for constant temperature heat treatment at 150°C for 20 minutes to obtain the thickness. It is a 25nm film.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the degree of polymerization of the first polymer is different.
  • the repeating unit of the polymer has a structure shown in formula (1.1).
  • the weight average molecular weight of the first polymer is 60,000.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is 1.4.
  • the vitrification of the first polymer is The transition temperature is 80°C; in the first polymer, 50% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer, and 2% by weight of the polymer has a molecular weight smaller than the first polymer 0.3 times the weight average molecular weight of the polymer, 2% by weight of the polymer has a molecular weight greater than 1.7 times the weight average molecular weight of the first polymer.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the degree of polymerization of the first polymer is different.
  • the repeating unit of the polymer has a structure shown in formula (1.1).
  • the weight average molecular weight of the first polymer is 150,000.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is 2.
  • the vitrification of the first polymer is The transition temperature is 200°C; in the first polymer, 20% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer, and 2% by weight of the polymer has a molecular weight smaller than the first polymer 0.3 times the weight average molecular weight of the polymer, 2% by weight of the polymer has a molecular weight greater than 1.7 times the weight average molecular weight of the first polymer.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the degree of polymerization of the first polymer is different.
  • the repeating unit of the polymer has a structure shown in formula (1.1).
  • the weight average molecular weight of the first polymer is 120,000.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is 1.6.
  • the vitrification of the first polymer is The transition temperature is 180°C; in the first polymer, 25% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer, and 1.5% by weight of the polymer has a molecular weight smaller than the first polymer The molecular weight of the 1.5% by weight polymer is 0.3 times greater than the weight average molecular weight of the first polymer and is 1.7 times greater than the weight average molecular weight of the first polymer.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the degree of polymerization of the first polymer is different.
  • the repeating unit of the polymer has the structure shown in formula (1.1).
  • the weight average molecular weight of the first polymer is 43,000.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is 3.6.
  • the vitrification of the first polymer is The transition temperature is 60°C; in the first polymer, 5% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer, and 10% by weight of the polymer has a molecular weight smaller than the first polymer 0.3 times the weight average molecular weight, 10% by weight of the polymer has a molecular weight greater than 1.7 times the weight average molecular weight of the first polymer.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the degree of polymerization of the first polymer is different.
  • the repeating unit of the polymer has the structure shown in formula (1.1).
  • the weight average molecular weight of the first polymer is 80,000.
  • the ratio of the weight average molecular weight/number average molecular weight of the first polymer is 1.5.
  • the vitrification of the first polymer is The transition temperature is 95°C; in the first polymer, 5% by weight of the polymer has a molecular weight of 0.9 to 1.1 times the weight average molecular weight of the first polymer, and 10% by weight of the polymer has a molecular weight smaller than the first polymer 0.3 times the weight average molecular weight, 10% by weight of the polymer has a molecular weight greater than 1.7 times the weight average molecular weight of the first polymer.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the first polymer is different.
  • the repeating unit has the structure shown in formula (7.1):
  • the weight average molecular weight of the first polymer is 100,000, the ratio of weight average molecular weight/number average molecular weight is 2.0, and the glass transition temperature is 190°C; in the first polymer, the molecular weight of 15% by weight of the polymer 0.9 to 1.1 times the weight average molecular weight of the first polymer, 2% by weight of the polymer having a molecular weight less than 0.3 times the weight average molecular weight of the first polymer, 2% by weight of the polymer having a molecular weight greater than the first polymer 1.7 times the weight average molecular weight.
  • This embodiment provides a film and a preparation method thereof. Compared with the film of Embodiment 13, the only difference between the film of this embodiment is that the first polymer is different.
  • the repeating unit has the structure shown in formula (8.1):
  • the weight average molecular weight of the first polymer is 95,000, the ratio of weight average molecular weight/number average molecular weight is 1.4, and the glass transition temperature is 125°C; in the first polymer, the molecular weight of 40% by weight of the polymer 0.9 to 1.1 times the weight average molecular weight of the first polymer, 2.5% by weight of the polymer having a molecular weight less than 0.3 times the weight average molecular weight of the first polymer, and 2% by weight of the polymer having a molecular weight greater than the first polymer 1.7 times the weight average molecular weight of
  • the optoelectronic device is a quantum dot light-emitting diode with an upright structure. As shown in Figure 3, in the direction from bottom to top, the optoelectronic device includes linings arranged in a stack in sequence. Bottom, anode, hole functional layer, light-emitting layer, electronic functional layer and cathode.
  • the hole functional layer is composed of a hole injection layer and a hole transport layer arranged in a stack. The hole injection layer is close to the anode and the hole transport layer Close to the light-emitting layer, the electronic functional layer is the electron transport layer.
  • each layer in the optoelectronic device is as follows:
  • the material of the substrate is glass, and the thickness of the substrate is 0.5mm;
  • the material of the anode is Ag/ITO, and the thickness of the anode is Ag, where the thickness of the Ag layer is 100nm and the thickness of the ITO layer is 10nm;
  • the material of the cathode is Ag, and the thickness of the cathode is 25nm;
  • the material of the luminescent layer is core-shell structure quantum dots CdZnSe/ZnSe/ZnS (the particle size is 10nm, the surface is connected with oleic acid ligand, the luminescent color is green), and the thickness of the luminescent layer is 20nm;
  • the material of the electronic functional layer is nanometer Zn 0.9 Mg 0.1 O (average particle size is 7nm), and the thickness of the electronic functional layer is 30nm;
  • the material of the hole injection layer is PEDOT:PSS, and the thickness of the hole injection layer is 25nm;
  • the material of the hole transport layer is the film prepared in Example 13, and the thickness of the hole transport layer is 25 nm.
  • S9.1 Provide a substrate, sputter ITO on one side of the substrate to obtain the ITO layer, use a cotton swab dipped in a small amount of soapy water to wipe the surface of the ITO layer to remove visible impurities on the surface, and then use the substrate including ITO in turn.
  • step S9.2 In an atmospheric environment of normal temperature and pressure, spin-coat the PEDOT:PSS aqueous solution on the side of the anode away from the substrate in step S9.1, and then place it for constant temperature heat treatment at 150°C for 20 minutes to obtain a hole injection layer;
  • step S9.4 Under a nitrogen environment at normal temperature and pressure, spin-coat the hole transport layer with a concentration of 20 mg/mL on the side of the hole transport layer away from the hole injection layer in step S9.3.
  • the CdZnSe/ZnSe/ZnS quantum dot-n-octane solution is then placed in a constant temperature heat treatment at 100°C for 10 minutes to obtain a luminescent layer;
  • step S9.6 In a vacuum environment with an air pressure of 4 ⁇ 10 -6 mbar, evaporate Ag on the side of the electron transport layer away from the light-emitting layer in step S9.4 to obtain a cathode, which is then encapsulated with UV curing glue to obtain an optoelectronic device. .
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 14".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 15".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 16".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 17".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 18".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 19".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this embodiment is that the material of the hole transport layer is prepared from Embodiment 13 Replace the film with "the film prepared in Example 20".
  • the preparation method of the optoelectronic device in this embodiment is performed with reference to Example 21.
  • This Comparative Example 1 provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 1, the only difference between the quantum dot light-emitting diode of this Comparative Example is that the hole transport film 10 Materials are different. The material of the hole transport film 10 in Comparative Example 1 is TFB.
  • This comparative example provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 7, the only difference between the quantum dot light-emitting diode of this comparative example is the material of the hole transport film 10 different. The material of the hole transport film 10 in this comparative example is cross-linked TFB.
  • This comparative example provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 7, the only difference between the quantum dot light-emitting diode of this comparative example is the material of the hole transport film 10 It is non-cross-linked TFB.
  • This comparative example provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 1, the only difference between the quantum dot light-emitting diode of this comparative example is the material of the hole transport film 10 different. The material of the hole transport film 10 in this comparative example is cross-linked TFB.
  • This comparative example provides a quantum dot light-emitting diode and a preparation method thereof. Compared with the quantum dot light-emitting diode of Embodiment 1, the only difference between the quantum dot light-emitting diode of this comparative example is the material of the hole transport film 10 It is non-cross-linked TFB.
  • This embodiment provides an optoelectronic device and a preparation method thereof. Compared with the optoelectronic device of Embodiment 21, the only difference between the optoelectronic device of this comparative example is that the material of the hole transport layer is TFB.
  • step S9.3 is replaced with "Spin coating on the side of the hole injection layer away from the anode under a nitrogen environment at normal temperature and pressure.
  • TFB-chlorobenzene solution with a concentration of 10 mg/mL, and then placed in a constant temperature heat treatment of 150°C for 20 minutes to obtain a hole transport layer.”
  • Examples 1-3 and Comparative Examples the energy level diagrams of each functional layer are shown in Figures 3 to 6 respectively. From the figures, the energy level of the hole transport film 10 can be seen, and the hole injection layer 50 in each example can be calculated. The energy level difference between the hole transport film 10 and the hole transport film 10 , and the energy level difference between the hole transport film 10 and the light emitting layer 30 . Refer to Table 1 for the calculation results. Refer to Table 1 for the current efficiency test results of the optoelectronic devices in Examples 1-3 and Comparative Examples.
  • the hole transport film 10 in Examples 1-3 of the present application can all achieve a gradient HOMO energy level, and the energy level difference between the hole injection layer 50 and the hole transport film 10 is lower than that in the comparative example. 1. It is beneficial to inject holes from the hole injection layer 50 to the hole transport film 10 .
  • the energy level difference between the hole transport film 10 and the light-emitting layer 30 is also lower than the corresponding energy level difference in Comparative Example 1, making it easier for holes to pass from the hole transport film 10 to the hole transport film 10 and the light-emitting layer 30
  • the potential barrier jumps to the light-emitting layer.
  • the device current efficiency of Example 1 to Example 3 is higher, and the hole transport film 10 of the present application can provide hole mobility. , which in turn can improve the current efficiency of the corresponding optoelectronic device.
  • the hole transport film 10 in Examples 1-3 of the present application can be produced through one wet process.
  • the inside of the film has a gradient molecular structure, and is not a traditional double-layer transport film produced through two wet processes. Therefore, There are no material interfaces or material miscibility problems between different transmission film layers.
  • the hole transport film 10 of the embodiment of the present application can improve the current efficiency of the optoelectronic device.
  • Figures 7-9 are schematic diagrams of energy levels of each functional layer of the optoelectronic device in Embodiments 4-6 respectively.
  • the LUMO energy level is a gradient energy level, and on the side close to the light-emitting layer 30, the LUMO energy level of the hole transport film 10 can reach -2.2 eV.
  • the LUMO energy level of the hole transport film 10 is a gradient energy level.
  • the LUMO energy level of the hole transport film 10 is increased from -3.4eV. to -2.1eV, so that the LUMO energy level difference between the hole transport film 10 and the light-emitting layer increases to 2.0eV; in Example 8, the LUMO energy level of the hole transport film 10 is raised from -3.4eV to -2.0eV, so that the hole transport film 10
  • the LUMO energy level difference between the hole transport film 10 and the light-emitting layer increases to 2.1eV; in Example 9, the LUMO energy level of the hole transport film 10 is increased from -3.4eV to -2.2eV, so that the hole transport film 10 and the light-emitting layer
  • the LUMO energy level difference increases to 1.9eV.
  • the LUMO energy level difference between the hole transport film 10 and the light-emitting layer is enlarged, which increases the difficulty for electrons to transition from the light-emitting material layer to the hole transport layer, thereby reducing the aging rate of the hole transport layer and thereby increasing the life of the optoelectronic device.
  • Examples 10-12 and Comparative Examples 4 and 5 Conduct current efficiency tests on Examples 10-12 and Comparative Examples 4 and 5. The test curves are shown in Figures 16-20. The maximum current efficiency (cd/A) of Examples 10-12 and Comparative Examples 4 and 5 can be obtained. They are: 85, 77, 93, 61, 32.
  • This experimental example compares the solvent resistance properties of the film in Example 13 and the film in Example 18.
  • the material of the film in Example 13 is the first polymer A
  • the material of the film in Example 18 is the first polymer B.
  • the solvent resistance characteristic experiment includes the following steps:
  • the performance of the optoelectronic devices from Examples 21 to 28 and Comparative Examples was tested using FPD optical characteristic measurement equipment (an efficiency test system built by LabView controlling QE-PRO spectrometer, Keithley 2400 and Keithley 6485) to detect and obtain various The voltage, current, brightness, luminescence spectrum and other parameters of the optoelectronic device are then calculated to obtain key parameters such as External Quantum Efficiency (EQE) and power efficiency, and life testing equipment is used to test the service life of each of the above optoelectronic devices.
  • FPD optical characteristic measurement equipment an efficiency test system built by LabView controlling QE-PRO spectrometer, Keithley 2400 and Keithley 6485
  • the testing method for external quantum efficiency is the integrating sphere testing method.
  • the life test adopts the constant current method. Driven by a constant current (2mA current), a silicon photonic system is used to test the brightness changes of each optoelectronic device, and the time required for the brightness to decay from 100% to 95% is recorded (T95, h), and Calculate the time required for each optoelectronic device to decay from 100% to 95% brightness at a brightness of 1000 nits (LT95@1000nit, h).
  • the initial brightness value is 3V, and every 0.2V is collected. Once, the brightness value collected each time is divided by the corresponding current density to obtain the current efficiency of the optoelectronic device under the current collection condition, thereby obtaining the maximum current efficiency under the power-on condition with a voltage of 0V to 8V.
  • the optoelectronic properties of the optoelectronic devices in Examples 21 to 28 are significantly better than those of the comparative example.
  • the CE@max of the optoelectronic device in Example 21 is the CE of the comparative example 6. 2.4 times of @max, which fully demonstrates that using the film of the embodiment of the present application as the hole transport layer material of the optoelectronic device can improve the anti-solvent properties of the hole transport layer.
  • the hole transport layer of the optoelectronic device is prepared using a solution method
  • the "mutual dissolution" problem between the hole transport layer and the light-emitting layer can be improved, thereby improving the photoelectric performance of the optoelectronic device.
  • the maximum current efficiency of the optoelectronic devices in Examples 21 to 24 is significantly higher than the maximum current efficiency of the optoelectronic devices in Example 25, and it can be seen from Figure 23 that under the same conditions Under energized conditions, the current efficiency of the optoelectronic device in Example 21 is significantly better than that of the optoelectronic device in Example 25. Therefore, it is preferred that the weight average molecular weight of the first polymer in the hole transport layer is 60,000 to 150,000. Note: If the weight average molecular weight of a polymer is too low, it will only have a limited improvement in the photoelectric performance of the optoelectronic device. If the weight average molecular weight of the first polymer is less than 60,000, the degree of cross-linking of the hole transport layer will be limited, thus the resistance of the hole transport layer will be limited. Improvements in solvent properties are limited.
  • Example 26 the maximum current efficiency of the optoelectronic device in Example 26 is lower than that of the optoelectronic device in Examples 21 to 24, 27 and 28.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种薄膜、光电器件及显示装置,薄膜包括第一聚合物,第一聚合物是由含芴的基团和含苯胺的基团形成的嵌段共聚物,第一聚合物中的含芴的基团和所述含苯胺的基团可以赋予薄膜的空穴传输性能,且通过控制含芴的基团和含苯胺的基团的含量,可以调节薄膜的最高占据分子轨道能级,实现较佳的空穴迁移率。

Description

薄膜、光电器件及显示装置
本申请要求:
于2022年04月20日在中国专利局提交的、申请号为202210420932.6、申请名称为“一种空穴传输薄膜、光电器件及制备方法、显示装置”的中国专利申请;
于2022年04月20日在中国专利局提交的、申请号为202210419136.0、申请名称为“一种空穴传输薄膜、光电器件、制备方法及显示装置”的中国专利申请;
于2022年04月20日在中国专利局提交的、申请号为202210420936.4、申请名称为“一种空穴传输薄膜、光电器件、制备方法及显示装置”的中国专利申请;
于2022年04月20日在中国专利局提交的、申请号为202210419148.3、申请名称为“薄膜、发光器件与显示装置”的中国专利申请;
于2022年04月20日在中国专利局提交的、申请号为202210420939.8、申请名称为“一种空穴传输薄膜、光电器件、制备方法及显示装置”的中国专利申请;
共5件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种薄膜、光电器件及显示装置。
背景技术
光电器件在新能源、传感、通信、显示、照明等领域具有广泛的应用,如太阳能电池、光电探测器、有机电致光电器件(OLED)或量子点电致光电器件(QLED)。
传统的光电器件的结构主要包括阳极、空穴注入层、空穴传输层(即空穴传输薄膜)、发光层、电子传输层、电子注入层及阴极。在电场的作用下,光电器件的阳极产生的空穴和阴极产生的电子发生移动,分别向空穴传输层和电子传输层注入,最终迁移到发光层,当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。现有的光电器件的电流效率有待提高。
技术解决方案
因此,本申请提供一种薄膜、光电器件及显示装置。
本申请实施例提供一种薄膜,所述薄膜包括第一聚合物,所述第一聚合物中包括含芴的基团和含苯胺的基团。
相应的,本申请还提供一种光电器件,包括依次层叠设置的阴极、发光层、空穴传输薄膜及阳极,所述空穴传输薄膜为上述薄膜。
相应的,申请还提供一种显示装置,其中,所述显示装置包括上述光电器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种光电器件的结构示意图;
图2是本申请实施例提供的一种光电器件的制备方法的流程示意图;
图3是本申请实施例1提供的一种光电器件的各功能层的能级示意图;
图4是本申请实施例2提供的一种光电器件的各功能层的能级示意图;
图5是本申请实施例3提供的一种光电器件的各功能层的能级示意图;
图6是对比例1提供的一种光电器件的各功能层的能级示意图;
图7是本申请实施例4提供的一种光电器件的各功能层的能级示意图;
图8是本申请实施例5提供的一种光电器件的各功能层的能级示意图;
图9是本申请实施例6提供的一种光电器件的各功能层的能级示意图;
图10是本申请实施例7的光电器件的电流效率测试曲线图;
图11是本申请实施例8的光电器件的电流效率测试曲线图;
图12是本申请实施例9的光电器件的电流效率测试曲线图;
图13是对比例2的光电器件的电流效率测试曲线图;
图14是对比例3的光电器件的电流效率测试曲线图;
图15是本申请实施例提供的一种各功能层的HOMO能级匹配示意图;
图16是本申请实施例10的光电器件的电流效率测试曲线图;
图17是本申请实施例11的光电器件的电流效率测试曲线图;
图18是本申请实施例12的光电器件的电流效率测试曲线图;
图19是对比例4的光电器件的电流效率测试曲线图;
图20是对比例5的光电器件的电流效率测试曲线图;
图21为本申请实验例1中未经氯苯溶剂处理的第一聚合物A和经氯苯溶剂处理的第一聚合物A的荧光发射光谱图;
图22为本申请实验例1中未经氯苯溶剂处理的第一聚合物B和经氯苯溶剂处理的第一聚合物B的荧光发射光谱图;
图23为本申请实验例2中实施例21、实施例25以及对比例6中光电器件的电流密度-电流效率特性曲线图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
在本申请中,“重均分子量”是指聚合物中以重量统计平均的分子量值。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
QLED器件等光电器件中,由于空穴传输是有机材料,电子传输为无机材料,无机纳米颗粒的电子迁移效率远大于空穴,因此需要高空穴迁移效率的空穴传输材料与之匹配。但是,量子点发光材料一般具有深的价带能级,单一的有机空穴传输材料难以满足阳极或者空穴注入层HOMO能级与量子点价带的能级差,采用双层或者多层空穴传输层理论上可以解决上述问题,但是器件实际的电流效率并不高。此外,高空穴迁移效率的空穴传输材料理论上能改善上述问题,但是器件实际的电流效率并不高。
QLED器件等光电器件中,由于空穴传输是有机材料,电子传输为无机材料,无机纳米颗粒的电子迁移效率远大于空穴,这会造成电荷在空穴传输层与量子点发光层界面处大量积累,从而导致少量电子在电场的作用下跃迁到空穴传输层形成激子,使空穴传输材料的加速老化。基于此,本申请提供如下文的空穴传输薄膜,以改善相关技术的空穴传输材料由于电子跃迁至空穴传输材料造成空穴传输材料加速老化的问题。
申请人进一步研究发现,双层或者多层空穴传输层的器件之所以电流效率不高,主要是因为双层空穴传输层在湿法制作过程存在界面互溶问题。基于此,本申请提供如下文的空穴传输薄膜,以改善相关技术的双层或多层空穴传输材料制作的光电器件电流效率不高的问题。
申请人进一步研究还发现,高空穴迁移效率的空穴传输材料对应的器件之所以电流效率不高,主要是因为经过配体修饰后的量子点材料在溶剂中具有良好的溶解特性与稳定性,量子点发光层一般是在空穴传输薄膜上制作,由于量子点材料的良好溶解性,制作过程容易发生量子点材料随溶剂渗入空穴传输薄膜而导致最终形成的发光层与空穴传输薄膜界面互溶的问题,从而影响光电器件的电流效率。基于此,本申请提供如下文的空穴传输薄膜,以改善相关技术中空穴传输材料对应的器件电流效率不高的问题。
本申请的技术方案如下:
本申请实施例提供一种空穴传输薄膜10,主要用于光电器件100。请参阅图1,图1是本申请实施例提供的一种光电器件的结构示意图。所述空穴传输薄膜10中包括第一聚合物,第一聚合物中包括含芴的基团和含苯胺的基团。
所述第一聚合物中的含芴的基团和所述含苯胺的基团可以赋予空穴传输薄膜10的空穴传输性能,且通过控制含芴的基团和含苯胺的基团的含量,可以调节空穴传输薄膜10的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)能级,以适应不同发光层的材料的HOMO能级,实现较佳的空穴迁移率。
可以理解,所述含苯胺的基团可以为含二苯胺的基团,也可以是含三苯胺的基团,本申请不作特别限定。
如本申请所用,“含芴的基团”既包括未发生取代的芴基,又包括一个或多个氢原子任选地被其他基团取代的芴基,其他基团例如可以是烷基,允许存在多重取代度。
如本申请所用,“含苯胺的基团”是指具有一个或多个芳基的胺基,即-NH 2、-NH或氮原子连接至芳基上;“芳基”既包括未发生取代的芳基,又包括一个或多个氢原子任选地被其他基团取代的芳基,“未发生取代的芳基”是指芳香环上仅包含碳原子的芳香基团,包括但不限于是苯基、1-萘基、2-萘基或联苯基;“取代的芳基”是指芳香环上仅包含碳原子的芳香基团上的一个氢原子或多个氢原子任选地被其他基团取代,其他基团例如可以是卤素原子或烷基,允许存在多重取代度。
在本申请的第一实施例中,所述第一聚合物是由含芴的基团和含苯胺的基团形成的嵌段共聚物。
所述空穴传输薄膜10中还包括第二聚合物,第二聚合物是由含芴的基团和含苯胺的基团形成的嵌段共聚物,并且从空穴传输薄膜的底面到顶面,第二聚合物的含量递增。
其中,第二聚合物中含苯胺的基团在第二聚合物中的摩尔分数小于第一聚合物中含苯胺的基团在第一聚合物中的摩尔分数,并且第二聚合物中的氢原子全部或者部分被氟原子取代。
可以理解的是,本申请实施例的空穴传输薄膜10在成膜过程中,第二聚合物由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考)。这是由于氟原子电负性大,原子半径小,C-F键短,键能高达500kJ/mol,相 邻氟原子的相互排斥,使氟原子不在同一平面内,而是沿碳链作螺旋分布。特别是在全氟碳链中,两个氟原子的范德华半径之和大约为0.27nm,基本上将C-C-C键包围填充。这种几乎无空隙的空间屏障使任何原子或基团都不能进入而破坏C-C键。因而空穴传输薄膜在成膜过程中,含氟基团倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近顶层,第二聚合物的含量越多,越靠近底层,第一聚合物的含量越多。由于空穴传输薄膜内部为渐变分子结构,并非传统由两种传输薄膜形成的双层传输薄膜,因而不存在材料界面以及不同传输薄膜层之间的材料互溶问题。同时由于第一聚合物中含苯胺的基团相对较多,第二聚合物中含苯胺的基团相对较少,因而,第一聚合物的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)能级较高,第二聚合物的HOMO能级较低,相应于薄膜从底层到顶层的渐变分子结构,空穴传输薄膜10从底层到顶层形成了能级由高到底的渐变能级。底层的高HOMO能级与空穴注入层匹配,便于空穴注入层向空穴传输薄膜10注入空穴,顶层的低HOMO能级缩小了空穴传输薄膜10与发光层的能级差,使空穴从空穴传输薄膜10更容易越过空穴传输薄膜10与发光层之间的势垒而跃迁至发光层,因而,本申请实施例的空穴传输薄膜10能够提高空穴迁移率,进而可以提高相应的光电器件的电流效率。
在一个实施例中,空穴传输薄膜10的材料为第一聚合物和第二聚合物的组合物,第一聚合物是由含芴的基团和含苯胺的基团形成的嵌段共聚物,第二聚合物是由含芴的基团和含苯胺的基团形成的嵌段共聚物;其中,第二聚合物中含苯胺的基团在第二聚合物中的摩尔分数小于第一聚合物中含苯胺的基团在第一聚合物中的摩尔分数,并且第二聚合物中的氢原子全部或者部分被氟原子取代。即空穴传输薄膜10的材料仅为第一聚合物和第二聚合物。可以理解的,空穴传输薄膜10的材料除了包括第一聚合物和第二聚合物之外,还可以包括其他材料,比如高导热材料,以增强空穴传输薄膜10的散热性;或者磁性材料,以增强空穴传输薄膜10的磁性。
在一个实施例中,空穴传输薄膜10中的第一聚合物和第二聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000001
其中,n>0,m≥0,p≥0,R 1~R 6是相同或不同的基团,且R 1~R 6为C1~C20的烷基、芳香基团或者杂芳基团。
可以理解的是,R 1~R 6可以是相同的取代基,例如可以同时为烷基、芳香基团或者杂芳基团。R 1~R 6也可以是互不相同的取代基。为了便于描述,将上述含芴的基团和含苯胺的基团形成的共聚重复单元命名为A单元,将上述含芴的基团形成的均聚重复单元命名为B单元,将上述含苯胺的基团形成的均聚重复单元命名为C单元。可以理解的是,本实施例的嵌段共聚物可以是只包括A单元,也可以是包括A单元和B单元的嵌段共聚物,还可以是包括A单元和C单元的嵌 段共聚物,还可以是同时包括A单元、B单元和C单元的嵌段共聚物,本申请实施例不作特别限定,可以根据HOMO能级需要确定含苯胺的基团的摩尔分数,然后进行相应的聚合物结构的选择。
需要说明的是,第一聚合物和第二聚合物的嵌段共聚物结构通式均可参照上述结构式,但是第一聚合物和第二聚合物对于结构中的n、m和p的取值是相互独立的,从而可以使第一聚合物和第二聚合物中的含苯胺的基团的摩尔分数不同。并且第一聚合物和第二聚合物结构中的取代基(R 1~R 6)的选择也是相互独立的,即第一聚合物和第二聚合物结构中的取代基可以是相同的,也可以是不同的,但是第一聚合物中不存在氟原子。
在一个实施例中,空穴传输薄膜10的材料中,第一聚合物的重均分子量大于或等于50000,且小于或等于250000,第二聚合物的重均分子量大于或等于50000,且小于或等于250000。嵌段共聚物的聚合度对于材料界面互溶具有较大影响。当嵌段共聚物的重均分子量较小时,空穴传输薄膜10可能会与相邻的功能薄膜发生界面互溶,当嵌段共聚物的重均分子量过大时,空穴传输薄膜10的第一聚合物和第二聚合物的溶解性会降低,从而影响成膜性能。例如当嵌段共聚物的重均分子量较小时,空穴传输薄膜10可能会与空穴注入层发生界面互溶,又或者空穴传输薄膜10可能会与发光层发生界面互溶。因此,嵌段共聚物的重均分子量优选大于或等于50000,可以避免空穴传输薄膜10与相邻的功能薄膜发生界面互溶。
在一个实施例中,第一聚合物的HOMO能级为大于或等于-5.3eV,并且小于-4.8eV,第二聚合物的HOMO能级大于-5.8eV,并且小于-5.3eV。第一聚合物在空穴传输薄膜10上主要位于是靠近空穴注入层的一侧,当第一聚合物的HOMO能级为-5.3eV~-4.8eV时,使空穴传输薄膜10的底层能够较好地与空穴注入层的HOMO能级进行匹配,可以提高空穴从空穴注入层至空穴传输薄膜10的注入效率。第二聚合物在空穴传输薄膜10上主要位于是靠近发光层的一侧,当第二聚合物的HOMO能级为-5.8eV~-5.3eV时,可以缩小单独采用第一聚合物作为空穴传输薄膜10时空穴传输薄膜10与发光层之间的能级差,使空穴更容易越过从空穴传输薄膜10至发光层的势垒,从而可以提高空穴的迁移效率。
在一个实施例中,第一聚合物中含苯胺的基团在第一聚合物中的摩尔分数大于或等于50%,且小于100%,第二聚合物中含苯胺的基团在第二聚合物中的摩尔分数小于50%,且大于0。需要说明的是,聚合物中含苯胺的单元含量越高,聚合物的HOMO能级越高。比如,当含苯胺的单元的摩尔分数趋近于100%时,即嵌段共聚物的结构通式中p远大于n和m,嵌段共聚物的HOMO能级接近聚苯胺的HOMO能级(-4.8eV)。当含苯胺的单元的摩尔分数为0%时,即嵌段共聚物的结构通式中m远大于n和p,嵌段共聚物的HOMO能级接近聚芴的HOMO能级(-5.8eV)。本申请的空穴传输薄膜10中,第一聚合物中含苯胺的基团在第一聚合物中的摩尔分数大于或等于50%,且小于100%,可以使空穴传输薄膜10靠近空穴注入层的一侧HOMO能级在-5.3eV~-4.8eV之间,使空穴传输薄膜10与空穴注入层的能级差减小到合适的范围,有利于提高空穴注入效率。第二聚合物中含苯胺的基团在第二聚合物中的摩尔分数小于50%,且大于0,可以使空穴传输薄膜10靠近发光层的一侧HOMO能级在-5.8eV~-5.3eV之间,使空穴传输薄膜10与发光层之间的能级差减小到合适的范围,有利于提高空穴的迁移效率。
在一个实施例中,第一聚合物的重量百分比为1-20%,所述第二聚合物的重量百分比为80-99%。由于第一聚合物主要是富集于空穴传输薄膜10的下侧,即靠近空穴注入层,并且第一聚合物中含苯胺的单元摩尔分数较高,若第一聚合物加入量过多,对上层的HOMO能级影响较大,从而会影响上层的空穴跃迁至发光层的效率。因此,本实施例中,第一聚合物和第二聚合物的重量百分比分别设置为1-20%和80-99%。
在本申请的第二实施例中,所述第一聚合物是包括第一嵌段和第二嵌段的嵌段聚合物,第一嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,第二嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,并且第二嵌段中含苯胺的基团连接有给电子基团;第一聚合物中的氢原子全部或者部分被氟原子取代。
所述空穴传输薄膜10还包括第三聚合物,所述第三聚合物可以为导电高分子材料。
可以理解的是,本申请实施例的空穴传输薄膜10的材料在制作成空穴传输薄膜10的过程中,第一聚合物由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考)。这是由于氟原子电负性大,原子半径小,C-F键短,键能高达500kJ/mol,相邻氟原子的相互排斥,使氟原子不在同一平面内,而是沿碳链作螺旋分布。特别是在全氟碳链中,两个氟原子的范德华半径之和大约为0.27nm,基本上将C-C-C键包围填充。这种几乎无空隙的空间屏障使任何原子或基团都不能进入而破坏C-C键。因而在成膜过程中,含氟基团倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,因而越靠近顶层(靠近发光层的一侧),第一聚合物的含量越多。
在所述空穴传输薄膜10用作光电器件的空穴传输层时,由于主要位于顶层的第一聚合物中含有给电子基团,可以提高空穴传输薄膜10顶层的LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)能级,空穴传输薄膜10顶层LUMO能级的升高,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而提高光电器件的寿命。
作为一个示例,沿空穴传输薄膜10的厚度方向,从一面到另一面,第一聚合物的含量递增或递减。比如,以图1所示的光电器件为例,可以通过湿法形成空穴传输薄膜10,在湿法成膜过程中,含氟基团倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近底层,第三聚合物的含量越多,越靠近顶层,第一聚合物的含量越多,由于主要位于顶层的第一聚合物中含有给电子基团,可以提高薄膜顶层的LUMO能级,相应于从底层到顶层的渐变分子结构,空穴传输薄膜10可以形成从底层到顶层能级逐渐升高的渐变LUMO能级。薄膜顶层LUMO能级的升高,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而可以提高光电器件的寿命。
在一个实施例中,空穴传输薄膜10的材料为第一聚合物和第三聚合物的组合物,第三聚合物是导电高分子材料;第一聚合物是包括第一嵌段和第二嵌段的嵌段聚合物,第一嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,第二嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,并且第二嵌段中含苯胺的基团连接有给电子基团;第一聚合物中的氢原子全部或者部分被氟原子取代。即空穴传输薄膜10的材料仅为第三聚合物和第一聚合物。
可以理解的,空穴传输薄膜10的材料除了包括第一聚合物和第三聚合物之外,还可以包括其他材料,比如高导热材料,以增强空穴传输薄膜10的散热性;或者磁性材料,以增强空穴传输薄膜10的磁性。
在一个实施例中,导电高分子材料可以是聚苯胺、聚噻吩、聚芴或者由聚苯胺、聚噻吩、聚芴中至少两种形成的共聚物。比如,聚苯胺可以是聚(N,N’-双(4-丁基苯基)-N,N’-双(苯基)联苯胺)(poly-TPD),聚噻吩可以是聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS),聚芴可以是聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)等等。导电高分子材料可以是上述材料的一种或多种,也可以是包括相应官能团的嵌段共聚物,本申请实施例不作特别限定。
在一个实施例中,第一聚合物中的第二嵌段在第一聚合物中的摩尔分数大于或等于0.1%,且小于或等于15%。由于第二嵌段含苯胺的基团连接有给电子基团,若第二嵌段的摩尔分数太高,给电子基团的含量也会增多,当电子基团过多时,会降低空穴传输薄膜10的空穴传输效率。因此,第二嵌段在第二聚合物中的摩尔分数优选为不超过15%。
在一个实施例中,第一聚合物的LUMO能级大于或等于-2.5eV,并且小于或等于-1.8eV,比如,第一聚合物的LUMO能级可以是-2.5eV、-2.3eV、-2.2eV、-2.1eV、-2.0eV、-1.9eV、-1.8eV等等。第一聚合物在空穴传输薄膜10上主要位于靠近发光层的一侧,当第一聚合物的LUMO能级符合上述条件时,可以使空穴传输薄膜10与发光层之间的LUMO能级差超过1.5eV以上,可以降低电子从发光层跃迁至空穴传输薄膜10的概率。此外,第一聚合物的HOMO能级优选为小于或等于-5.2eV,例如可以是-5.2eV、-5.3eV、-5.4eV等,由于含苯胺的基团的摩尔分数越高,第一聚合物的HOMO能级越高,因此可以通过调整含苯胺的基团的摩尔分数来调整第一聚合物的HOMO能级,以使空穴传输薄膜10的顶层HOMO能级与发光层更接近,提高空穴迁移率。
在一个实施例中,空穴传输薄膜10的材料中,第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000002
其中,第一嵌段的摩尔分数为n 1,第二嵌段的摩尔分数为m 1,并且0.001≤m 1≤0.15;
R 1′~R 3′是相同或不同的基团,且R 1′~R 3′为C1~C20的烷基、芳香基团或者杂芳基团,R 4′是杂环结构的给电子基团。
可以理解的是,R 1′~R 3′可以是相同的取代基,例如可以同时为烷基、芳香基团或者杂芳基团。R 1′~R 3′也可以是互不相同的取代基。上述含芴的基团和含三苯胺的基团形成的共聚重复单元为第一嵌段,上述含芴的基团和含二苯胺的基团形成的共聚重复单元为第二嵌段,第二嵌段中的R 4′基团为给电子基团。比如,给电子基团可以是二烷基氨基(-NR 2)、烷基氨基(-NHR)、氨基(-NH 2)、羟基(-OH)、烷氧基(-OR)、酰胺基(-NHCOR)、酰氧基(-OCOR)等等。优选的, 本申请的给电子基团为杂环结构的给电子基团,例如杂环结构的给电子基团可以选自咔唑类基团、三唑类基团、三嗪类基团中的一种或多种,当杂环结构的给电子基团选自上述两种或三种基团时,可以理解为第二嵌段包括两种或三种子嵌段,每种子嵌段包含一种给电子基团。杂原子可以使环上碳原子的电子云密度升高,提高空穴传输薄膜10顶层的LUMO能级,从而可以阻止电子从发光层跃迁至空穴传输薄膜10的概率,同时在含量不特别高的情况下,不会影响空穴传输效率。
在一个实施例中,空穴传输薄膜10的材料中,第一聚合物还包括第三嵌段,第三嵌段包括第一自交联基团。如上文所述,空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近底层,第三聚合物的含量越多,越靠近顶层,第一聚合物的含量越多。同时由于第一聚合物还包括第一自交联基团,空穴传输薄膜10成型时会发生自交联反应,使得空穴传输薄膜靠发光层的一侧主要为交联聚合物,具有更好的抗溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜中而降低空穴传输效率,因此,本实施例的空穴传输薄膜10除了可以增加电子从发光材料层跃迁到空穴传输薄膜10的难度,从而降低空穴传输层的老化速率,还可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高电流效率。
在一个实施例中,第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000003
其中,第三嵌段的摩尔分数为q,并且0.001≤m 1≤0.15,0<q≤0.05,R 5′是含交联键的第一自交联基团。
可以理解的是,上述包括R 5′的基团为第三嵌段。R 5′中的交联键可以使第一聚合物内部形成交联结构,R 5′可以是含有热交联键的基团,通过加热的方式进行交联反应,也可以是含有紫外光响应的交联键的基团,通过紫外光辐照的方式进行交联反应。需要说明的是,第一自交联基团由于不具有导电性,因此,第三嵌段的摩尔分数不宜高于5%,第一自交联基团含量过高会明显降低电子传输效率。
在一个实施例中,第一聚合物中的R 5′为以下结构式中的其中一个:
Figure PCTCN2022142975-appb-000004
其中,R 6′为C1~C20的烷基,或者R 6′为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,杂原子位于非相邻位。上述R 5′基团中,化学式1中的双键可以进行加成反应,从而使第二聚合物之间形成交联结构。化学式2的分子结构在加热时会发生异构化,反应方程如下:
Figure PCTCN2022142975-appb-000005
异构后形成两个双键,可以使第一聚合物之间进行交联反应,得到交联聚合物。交联结构具有更好的抗溶剂性,可以阻止发光层中的小分子渗入空穴传输薄膜10中(即界面互溶),从而可以提高空穴的迁移效率以及光电器件的稳定性。
在一个实施例中,空穴传输薄膜10的材料的重均分子量大于或等于50000,且小于或等于250000。比如,第一聚合物或第三聚合物的重均分子量可以是50000、70000,90000、120000、150000、180000、200000、230000、250000等。若第一聚合物或第三聚合物的重均分子量太小,则有可能会使空穴传输薄膜10与相邻功能层发生界面互溶,影响发光效率,例如第一聚合物或第三聚合物的重均分子量较小时,空穴传输薄膜10可能会与空穴注入层发生界面互溶,又或者空穴传输薄膜10可能会与发光层发生界面互溶。若第一聚合物或第三聚合物的重均分子量太大,则会影响其在溶剂中的溶解性以及后续的湿法成膜工艺。
在本申请的第三实施例中,所述第一聚合物中还包括含第一交联基团的基团,换言之,所述第一聚合物中包括含芴的基团、含苯胺的基团和含第一交联基团的基团。
所述空穴传输薄膜10中还包括交联化合物,所述交联化合物包括主链,以及至少两个与主链连接的第二交联基团,并且交联化合物中的氢原子全部或者部分被氟原子取代,第二交联基团与第一交联基团进行交联反应,以使第一聚合物形成交联结构。
可以理解的是,本申请实施例的空穴传输薄膜10的材料中,第一聚合物中的含芴的基团和含苯胺的基团是赋予空穴传输薄膜10的空穴传输性能的,通过控制含芴的基团和含苯胺的基团的含量,可以调节空穴传输薄膜10的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)能级,以适应不同发光层的材料的HOMO能级,实现较佳的空穴迁移率。在将第一聚合物和交联化合物制作成空穴传输薄膜10的过程中,交联化合物中的第二交联基团与第一聚合物中的第一交联基团可以进行交联反应,由于交联化合物中包含至少两个第二交联基团,第一聚合物中包含一个第一交联基团,因而交联化合物可以连接至少两个第一聚合物分子,使空穴传输薄膜10中形成交联结构,需要说明的是,由于高分子化学反应的复杂性,上述交联反应不一定能够百分之百按照理想的交联反应模型进行,部分交联化合物分子也可能只连接一个第一聚合物分子,但是至少可以形成一定比例的交联结构。同时交联化合物中由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考),即靠近发光层一侧是交联结构为主。由于交联结构具有良好的耐溶剂 性,可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
作为一个示例,沿空穴传输薄膜10的厚度方向,从一面到另一面,交联化合物的含量递增或递减。比如,以图1所示的光电器件为例,可以通过湿法形成空穴传输薄膜10,在湿法成膜过程中,含氟基团倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变交联结构。越靠近底层,第一聚合物的含量越多,即靠近空穴注入层一侧是以非交联结构为主;越靠近顶层,交联化合物越多,交联化合物形成的交联结构可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
在一个实施例中,空穴传输薄膜10的材料为第一聚合物和交联化合物的组合物,第一聚合物包括含芴的基团、含苯胺的基团和含第一交联基团的基团。交联化合物包括主链,以及至少两个与主链连接的第二交联基团,第二交联基团与第一交联基团进行交联反应,并且交联化合物中的氢原子全部或者部分被氟原子取代。比如,当交联化合物包括两个第二交联基团时,交联化合物可以通过两个第二交联基团分别与两个第一聚合物的第一交联基团进行连接,交联化合物连接在两个第一聚合物之间,从而使第一聚合物形成交联结构,当交联化合物包括三个第二交联基团时,一个交联化合物分子可以连接三个第一聚合物分子,由于高分子化学反应的复杂性,上述交联反应不一定能够百分之百按照理想的交联反应模型进行,部分交联化合物分子也可能只连接一个或两个第一聚合物分子,但是至少可以形成一定比例的交联结构。本实施例中,空穴传输薄膜10的材料可以仅为第一聚合物和交联化合物。可以理解的,空穴传输薄膜10的材料除了包括第一聚合物和交联化合物之外,还可以包括其他材料,比如高导热材料,以增强空穴传输薄膜10的散热性;或者磁性材料,以增强空穴传输薄膜10的磁性。
在一个实施例中,空穴传输薄膜10中的第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000006
其中,n 2、m 2、p 2为摩尔分数,n 2+m 2+p 2=1,0<n 2<0.95,0≤m 2<0.95,0<p 2<0.05;R 1″~R 5″是相同或不同的基团,且R 1″~R 5″为C1~C20的烷基、芳香基团或者杂芳基团;R 6″为第一交联基团。
可以理解的是,R 1″~R 5″可以是相同的取代基,例如可以同时为烷基、芳香基团或者杂芳基团。R 1″~R 5″也可以是互不相同的取代基。为了便于描述,将上述含芴的基团和含三苯胺的基团形成的共聚重复单元命名为A单元,将上述含芴的基团形成的均聚重复单元命名为B单元,将上述含三苯胺的基团形成的均聚重复单元命名为C单元。可以理解的是,本实施例的第一聚合物可以是只包括A单元和C单元的嵌段共聚物,还可以是同时包括A单元、B单元和C单 元的嵌段共聚物,本申请实施例不作特别限定,可以根据交联结构的数量需要确定C单元的摩尔分数,然后进行相应的第一聚合物结构的选择,需要说明的是,C单元的摩尔分数应小于5%,以免交联基团占比过大,导致器件电流效率降低。
在一个实施例中,空穴传输薄膜10的材料中的交联化合物的通式为:
R 8″—R 9″—R 10″,
其中,R 9″为C1~C20的烷基,或者R 9″为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,杂原子位于非相邻位,R 8″和R 10″为相同或不同的第二交联基团。
可以理解的是,本实施例的交联化合物是以R 9″为主链,主链主要是柔性烷基基团,可以含有杂原子,主链的两端分别连接一个第二交联基团R 8″和R 10″,总计两个第二交联基团。需要说明的是,R 8″和R 10″可以是结构相同的第二交联基团,也可以是结构不同的第二交联基团。通过在空穴传输薄膜10的主链两端各设置一个第二交联基团,可以使空穴传输薄膜10内部形成网状的交联结构,提高空穴传输薄膜10的耐溶剂性能,以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中。
在一个实施例中,嵌段共聚物中的第一交联基团R 6″的通式为如下化学2、化学式3或化学式4:
Figure PCTCN2022142975-appb-000007
其中,R 7″是C1~C20的烷基、芳香基团或者杂芳基团。
本实施例中,化学式2的苯基环己烷结构在加热的情况下发生异构化,异构后生成两个双键,构成第一交联键,与交联化合物进行交联反应。苯基环己烷异构化反应方程如下:
Figure PCTCN2022142975-appb-000008
此外,化学式3的丁二烯的双键、化学式4中的环氧官能团均可以作为第一交联键进行交联反应。优选的,第一交联基团R 6″的通式为化学式4,其分子的空间位组较小,交联反应容易进行,交联效率高,并且条件易控制。而化学式3作为第一交联基团时,交联反应所需的温度较高,化学式2作为第一交联基团时,存在微量的可逆反应,效率降低。因此,化学式4为较佳的第一交联基团。
需要说明的是,本实施例中,第一聚合物的第一交联基团R 6″发生自交联的反应活性较低,并且第一交联基团R 6″作为第一聚合物的侧链,受到主链的限定,运动能力较弱,因此,第一交联基团R 6″发生自交联反应情况较少,主要是与第二交联基团进行交联反应。
在一个实施例中,第一交联基团R 6″的通式为化学2时,第二交联基团R 8″和R 10″各自独立地选自以下基团的任一种:
Figure PCTCN2022142975-appb-000009
可以理解的是,第一交联基团R 6″的通式为化学2时,第二交联基团R 8″和R 10″可以是相同的基团,也可以是不同的基团。比如,R 8″和R 10″可以都是化学式21、或者都是化学式22、或者都是化学式23、或者都是化学式24。再比如,R 8″基团可以是化学式21,R 10″基团可以是化学式22/化学式23/化学式24,即R 8″和R 10″是不同的第二交联基团。可以理解的是,当R 8″和R 10″都是化学式23时,第一交联基团R 6″和第二交联基团R 8″和R 10″均为苯基环己烷,即本实施例中第一聚合物和交联化合物中的苯基环己烷相互之间可以进行自交联反应。当第二交联基团R 8″和R 10″各自独立地选自化学式21/化学式22/化学式24时,第一交联基团R 6″可以与第二交联基团中的环氧或双键进行交联反应,使空穴传输薄膜10内部形成网状的交联结构,提高空穴传输薄膜10的耐溶剂性能,以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中。
在一个实施例中,第一交联基团R 6″的通式为化学3时,第二交联基团R 8″和R 10″各自独立地选自以下基团的任一种:
Figure PCTCN2022142975-appb-000010
可以理解的是,第一交联基团R 6″的通式为化学3时,第二交联基团R 8″和R 10″可以是相同的基团,也可以是不同的基团。比如,R 8″和R 10″可以都是化学式31、或者都是化学式32、或者都是化学式33、或者都是化学式34。再比如,R 8″可以是化学式31,R 10″可以是化学式32/化学式33/化学式34,即R 8″和R 10″是不同的第二交联基团。 化学式3的丁二烯的双键作为第一交联键与第二交联基团(化学式31-34)进行交联(加成)反应,形成网状的交联结构,提高空穴传输薄膜10的耐溶剂性能,以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中。
在一个实施例中,第一交联基团R 6″的通式为化学4时,第二交联基团R 8″和R 10″各自独立地选自伯胺基(化学式41)和仲胺基(化学式42)中的一种:
Figure PCTCN2022142975-appb-000011
可以理解的是,第一交联基团R 6″的通式为化学4时,第二交联基团R 8″和R 10″可以是相同的基团,也可以是不同的基团。比如,R 8″和R 10″可以都是伯胺基、或者都是仲胺基。再比如,R 8″是伯胺基,R 10″是仲胺基,或者R 8″是仲胺基,R 10″是伯胺基,即R 8″和R 10″是不同的第二交联基团。化学式4中的环氧官能团均可以作为第一交联键与第二交联基团(氨基)进行交联反应,形成网状的交联结构,提高空穴传输薄膜10的耐溶剂性能,以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中。
在一个实施例中,交联化合物在空穴传输薄膜的材料中重量百分比大于0,且小于或等于5%。交联化合物由于为非导电结构,不能起到空穴传输的作用,如果占比过大,会影响空穴传输效率,比如,交联化合物的占比为50%时,器件的最大电流效率只有10cd/A。因此,当交联化合物的重量百分比小于或等于5%,既可以保证较好的空穴传输效率,同时可以形成网状的交联结构,提高空穴传输薄膜10的耐溶剂性能,以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中。同时,当交联化合物浓度较低时,相应的,第二交联基团的浓度也相对较低,可以大大降低第二交联基团发生自交联反应的概率,使交联反应主要发生在第一交联基团和第二交联基团之间,第二交联基团的有效利用率更高。
在一个实施例中,空穴传输薄膜10的材料中,第一聚合物的重均分子量大于或等于50000并且小于或等于250000。比如,第一聚合物的重均分子量可以是50000、60000、70000,90000、120000、150000、180000、200000、250000等。第一聚合物的聚合度对于材料界面互溶具有较大影响。当第一聚合物的重均分子量较小时,空穴传输薄膜10可能会与发光层发生界面互溶,当第一聚合物的重均分子量过大时,会影响其溶解分散性。因此,第一聚合物的重均分子量满足上述条件时,可以更好地阻止发光层的材料成分渗透至空穴传输薄膜10中,并且具有很好的溶解性。
在本申请的第四实施例中,所述第一聚合物是是由含芴的基团和含三苯胺的基团形成的嵌段共聚物。
所述空穴传输薄膜10中还包括第四聚合物,所述第四聚合物是由含芴的基团、含三苯胺的基团和第二自交联基团形成的嵌段共聚物,并且第四聚合物中的氢原子全部或者部分被氟原子取代。
需要说明的是,本实施例的空穴传输薄膜10的最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)能级是由含芴的基团和含三苯胺的基团所决定的,当含三苯胺的基团的摩尔分数趋近于100%时,空穴传输薄膜10的HOMO能级接近聚三苯胺的HOMO能级(-4.8eV)。当含三苯胺的单元的摩尔分数为0%时,空穴传输薄膜10的HOMO能级接 近聚芴的HOMO能级(-5.8eV)。因此,本实施例的空穴传输薄膜10的HOMO能级可以是-5.8eV~-4.8eV范围内的能级,位于一般的空穴注入层的HOMO能级与发光层的HOMO能级之间,可以满足空穴注入层向发光层注入空穴的要求。
并且,本实施例的空穴传输薄膜10的材料在制作成空穴传输薄膜10的过程中,第四聚合物由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考)。这是由于氟原子电负性大,原子半径小,C-F键短,键能高达500kJ/mol,相邻氟原子的相互排斥,使氟原子不在同一平面内,而是沿碳链作螺旋分布。特别是在全氟碳链中,两个氟原子的范德华半径之和大约为0.27nm,基本上将C-C-C键包围填充。这种几乎无空隙的空间屏障使任何原子或基团都不能进入而破坏C-C键。因而在成膜过程中,含氟基团倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,越靠近顶层,第四聚合物的含量越多。同时由于第四聚合物还包括第二自交联基团,空穴传输薄膜10成型时第四聚合物的嵌段共聚物分子之间会发生交联反应,使得空穴传输薄膜10的上层(靠发光层的一侧)主要为交联聚合物,具有更好的抗溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,以提高器件的电流效率。
作为一个示例,从空穴传输薄膜10的一面到另一面,第四聚合物的含量递增或递减。比如,以图1所示的光电器件为例,可以通过湿法形成空穴传输薄膜10,在湿法成膜过程中,第四聚合物由于含氟基团,倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变交联结构。越靠近底层,第一聚合物的含量越多,即靠近空穴注入层一侧是以非交联结构为主;越靠近顶层,第四聚合物的含量越多,第四聚合物中的第二自交联基团形成的交联结构可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
在一个实施例中,空穴传输薄膜10的材料为第一聚合物和第四聚合物的组合物,第一聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物;第四聚合物是由含芴的基团、含三苯胺的基团和第二自交联基团形成的嵌段共聚物,并且第四聚合物中的氢原子全部或者部分被氟原子取代。即空穴传输薄膜10的材料仅为第一聚合物和第四聚合物。可以理解的,空穴传输薄膜10的材料除了包括第一聚合物和第四聚合物之外,还可以包括其他材料,比如高导热材料,以增强空穴传输薄膜10的散热性;或者磁性材料,以增强空穴传输薄膜10的磁性。
当空穴传输薄膜10的材料仅为第一聚合物和第四聚合物时,优选的,第四聚合物在空穴传输薄膜的材料中的重量百分比大于或等于5%,且小于或等于40%。即第四聚合物、第一聚合物的重量百分数可以是5%和95%、10%和90%、15和85%、22%和78%、29%和71%、35%和65%、40%和60%等。由于第四聚合物中含有自交联基团,如果占比过大,一方面非空穴传输作用的组分占比大影响空穴传输效率,另一方面,交联度过大同样也会导致空穴传输效率下降。因此,第四聚合物的重量百分比优选为5%~40%。
在一个实施例中,空穴传输薄膜10中第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000012
其中,n 3、m 3、p 3为摩尔分数,n 3+m 3+p 3=1,0<n 3<1,0≤m 3<1,0≤p 3<1,R 1″′~R 6″′是相同或不同的基团,且R 1″′~R 6″′为C1~C20的烷基、芳香基团或者杂芳基团。
可以理解的是,R 1″′~R 6″′可以是相同的取代基,例如可以同时为烷基、芳香基团或者杂芳基团。R 1″′~R 6″′也可以是互不相同的取代基。为了便于描述,将上述含芴的基团和含三苯胺的基团形成的共聚重复单元命名为A’单元,将上述含芴的基团形成的均聚重复单元命名为B’单元,将上述含三苯胺的基团形成的均聚重复单元命名为C’单元。可以理解的是,本实施例的第一聚合物可以是只包括A’单元,也可以是包括A’单元和B’单元的嵌段共聚物,还可以是包括A’单元和C’单元的嵌段共聚物,还可以是同时包括A’单元、B’单元和C’单元的嵌段共聚物,本申请实施例不作特别限定,可以根据HOMO能级需要确定含三苯胺的基团的摩尔分数,然后进行相应的聚合物结构的选择。
在一个实施例中,空穴传输薄膜10中第四聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000013
其中,n 4、m 4、p 4、q 4为摩尔分数,n 4+m 4+p 4+q 4=1,0<n 4<0.95,0≤m 4<0.95,0≤p 4<0.95,0<p 4<0.05,R 1″″~R 6″″是相同或不同的基团,且R 1″″~R 6″″为C1~C20的烷基、芳香基团或者杂芳基团,R 7″″含有交联健。
需要说明的是,R 1″″~R 6″″可以是与R 1″′~R 6″′对应相同的基团,可以与上述R 1″′~R 6″′做相同的选择,R 1″″~R 6″″也可以是独立于R 1″′~R 6″′的不同基团。为了便于描述,将上述含芴的基团和含三苯胺的基团形成的共聚重复单元命名为A”单元,将上述含芴的基团形成的均聚重复单元命名为B”单元,将上述含三苯胺的基团形成的均聚重复单元命名为C”单元,将上述自交联基团形成的均聚重复单元命名为D”单元。可以理解的是,本实施例的第四聚合物可以是只包括A”单元和D”单元,也可以是包括A”单元、D”单元和B”单元的嵌段共聚物,还可以是包括A”单元、D”单元和C”单元的嵌段共聚物,还可以是同时包括A”单元、D”单元、B”单元和C”单元的嵌段共聚物,本申请实施例不作特别限定,可以根据HOMO能级需要以及交联度的需要确定A”单元和D”单元的摩尔分数,然后进行相应的聚合物结构的选择。
需要说明的是,本实施例中,D”单元的摩尔分数占比过高,可能会导致聚合物内交联度过高,影响材料的导电性,进而降低空穴的迁移率。因此,优选的,第二自交联基团D”单元的摩尔分数大于0,并且小于或等于5%,即0<q 4/(n 4+m 4+p 4+q 4)≤0.05,既可以形成交联聚合物防止发光层材料渗入空穴传输薄膜10中,又不会降低空穴传输薄膜10的空穴迁移率。
可以理解的是,第二自交联基团D”单元中的取代基R 7″″,可以是含有热交联键的基团,通过加热的方式进行交联反应,也可以是含有紫外光响应的交联键的基团,通过紫外光辐照的方式进行交联反应。
在一些实施例中,第二自交联基团可以是双键或者反应性时可以形成双键的基团,通过双键的加成反应以在第四聚合物的分子之间形成交联结构。例如,第四聚合物的R 7″″可以是以下结构式中的其中一个:
Figure PCTCN2022142975-appb-000014
其中,R 8″″为C1~C20的烷基,或者R 8″″为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,杂原子位于非相邻位,以使上述取代基具有更好的柔性。上述R 7″″基团中,化学结构式1中的双键可以进行加成反应,从而使第四聚合物之间形成交联结构。化学结构式2的分子结构在加热时会发生异构化,反应方程如下:
Figure PCTCN2022142975-appb-000015
异构后形成两个双键,可以使第四聚合物之间进行交联反应,得到交联聚合物。交联结构具有更好的抗溶剂性,可以阻止发光层中的小分子渗入空穴传输薄膜10中(即界面互溶),从而可以提高空穴的迁移效率以及光电器件的稳定性。
需要说明的是,由于高分子化学反应的复杂性,上述实施例中的交联反应不一定能够百分之百按照理想的交联反应模型进行,但是至少可以形成一定比例的交联结构。
在一个实施例中,第四聚合物中含三苯胺的基团在第四聚合物中的摩尔分数小于第一聚合物中含三苯胺的基团在第一聚合物中的摩尔分数。可以理解的是,聚合物中含三苯胺的基团含量越高,聚合物的HOMO能级越高。由于本申请实施例的空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近顶层,第四聚合物的含量越多,越靠近底层,第一聚合物的含量越多,因此,当第四聚合物中含三苯胺的基团在第四聚合物中的摩尔分数小于第一聚合物中含三苯胺的基团在第一聚合物中的摩尔分数时,空穴传输薄膜10可以形成从底层高 HOMO能级到顶层低HOMO能级的渐变能级结构,可以参阅图15,图15是本申请实施例提供的一个各功能层的HOMO能级匹配示意图,空穴传输薄膜10形成从-5.2eV(底层)至-5.8eV(顶层)的渐变HOMO能级,空穴传输薄膜10的底层HOMO能级与空穴传输层(HJL)的HOMO能级接近,可以提高空穴从空穴注入层至空穴传输薄膜10的注入效率。空穴传输薄膜10的顶层HOMO能级与发光层的HOMO能级接近,减小了空穴传输薄膜10与发光层之间的能级差,使空穴更容易越过从空穴传输薄膜10至发光层的势垒,从而可以提高空穴的迁移效率。并且空穴传输薄膜10靠发光层的一侧主要为交联聚合物,具有更好的抗溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,以提高电流效率。
本实施例的空穴传输薄膜10不仅可以提高空穴迁移率,还可以减少空穴传输薄膜10与发光层发生界面互溶的情况,以提高电流效率。
在本申请的第五实施例中,所述第一聚合物中还包括含杂芳基的基团,换言之,所述第一聚合物中包括含芴的基团、含苯胺的基团和含杂芳基的基团。
所述第一聚合物的重均分子量为60000至150000。
如本申请所用,“杂芳基”是指芳基中一个或多个碳原子独立地被一个或多个杂原子(例如N、O、P和/或S)替代,例如杂芳基具有3至20个碳原子,又如杂芳基具有5至15个碳原子,又如杂芳基具有5至9个碳原子,杂芳基可以是未取代的,也可以是其上的一个氢原子或多个氢原子任选地被其他基团取代,其他基团例如可以是烷基、卤素等,允许存在多重取代度。在本申请的一些实施例中,杂芳基例如可以是噻吩基或咔唑基。
第一聚合物的重均分子量过高或过低均对光电器件的光电性能提升程度有限,若第一聚合物的重均分子量低于60000,则薄膜的交联程度有限,从而薄膜的抗溶剂特性提高程度有限;若第一聚合物的重均分子量高于150000,则第一聚合物分散于溶剂中制得的第一聚合物溶液粘度过高,不利于施工,使得成膜质量下降,例如:若采用喷墨打印法制备薄膜,则喷墨打印设备可能无法兼容粘度过高的第一聚合物溶液。
空穴传输薄膜10能够用于制备光电器件的空穴功能层,例如空穴传输层。以光电器件为QLED为例,由于作为发光层材料的量子点是无机纳米颗粒,量子点经过配体修饰后在溶剂(例如乙醇)中具有良好的溶解特性与稳定性,而溶液法制备发光层具有无需真空制程、易实现大面积化、成本低等优点,所以发光层通常采用溶液法制备;对于正置型结构的QLED,需先制备空穴功能层,再制备发光层,若均采用溶液法制备空穴功能层和发光层,则空穴功能层与发光层会发生互溶的现象,导致空穴注入水平下降,而QLED本身就存在空穴注入水平低于电子注入水平的问题,“互溶”现象会加剧QLED的载流子注入不平衡问题,从而导致QLED的综合性能下降。本申请实施例的薄膜具有理想的抗溶剂特性,有效改善了“互溶”现象,有利于提高光电器件的光电性能。
为了进一步地提高空穴传输薄膜10的抗溶剂特性,在本申请的一些实施例中,第一聚合物的玻璃化转变温度为80℃至250℃,第一聚合物的玻璃化转变温度例如可以是80℃至100℃、100℃至120℃、120℃至200℃、200℃至220℃、或220℃至250℃。
为了进一步地提高空穴传输薄膜10的抗溶剂特性,在本申请的一些实施例中,第一聚合物的重均分子量/数均分子量的比值不大于2。如本申请所用,“数均分子量”是指聚合物中以分子数统计平均的分子量值。第一聚合物的重均分子量/数均分子量的比值是指第一聚合物的分散指数,用于评价第一聚合物的分子量分布,通过限定第一聚合物的分散指数以实现准确调控,从而提高应用有薄膜的光电器件的重复性与稳定性。
在本申请的一些实施例中,含杂芳基的基团选自含咔唑基的基团或含噻吩基的基团中的至少一者。
为了更进一步地提高空穴传输薄膜10的抗溶剂特性,并且进一步地实现精细调控以确保应用有薄膜的光电器件的重复性与稳定性,在本申请的一些实施例中,在第一聚合物中,超过10%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍;并且,不超过5%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,或者不超过5%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
在本申请的一些实施例中,第一聚合物的重复单元选自:
Figure PCTCN2022142975-appb-000016
其中,R 1’至R 20’彼此独立地选自氢原子、碳原子数为1个至20个的烷基、芳基或杂芳基,n 5、m 5、p 5、y和z分别代表摩尔分数;
在结构式(Ⅰ)中,m 5、n 5以及p 5三者之和为1,且0.5<n 5<0.9,且0.1<m 5<0.4,且0<p 5<0.1;
在结构式(Ⅲ)中,y和z两者之和为1,且0<y<0.5,且0.5<z<1。
如本申请所用,“烷基”是指一类仅含有碳原子和氢原子的链状有机基团,既包括未发生取代的烷基,又包括一个或多个氢原子任选地被其他基团取代的烷基,其他基团例如可以是卤素原子,允许存在多重取代度,烷基例如可以是甲基、乙基、正丙基或异丙基中的一种或多种。
可以理解的是,对于具有相同通式的一类第一聚合物,本领域人员知晓如何通过控制反应条件来获得不同聚合度的聚合物,例如:通过调控单体的反应时间。
本申请实施例还提供一种光电器件的制备方法,请参阅图2,图2是本申请实施例提供的一种光电器件的制备方法的流程示意图,制备方法包括如下步骤:
步骤S21:提供包括第一聚合物的材料溶液,其中,第一聚合物中包括含芴的基团和含苯胺的基团。
本步骤中,可以先将第一聚合物制作成聚合物溶液,比如可以采用常规的有机溶剂对第一聚合物进行溶解,例如,甲苯、氯苯、环己基苯、苯甲酸甲酯、苯甲酸乙酯、苯甲醚等。且溶剂可以为单一的一种,也可以为两种及以上的不同种溶剂形成的混合溶剂。
本实施例中对第一聚合物以及溶剂的加入顺序不进行限定,能够实现充分混合得到聚合物溶液即可。
步骤S22:提供基板,基板上形成有阳极,将上述材料溶液设置在阳极上,并进行热处理,得到空穴传输薄膜。
本步骤中,基板的种类没有限制,基板可以为常规使用的衬底,例如可以是刚性衬底,材料为玻璃;还可以是柔性衬底,材料为聚酰亚胺。阳极40的材料例如可以是金属、碳材料以及金属氧化物中的一种或多种,金属例如可以是Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;碳材料例如可以是石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;金属氧化物可以是掺杂或非掺杂金属氧化物,包括ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种,也包括掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,复合电极包括但不限于是AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种。在一实施例中,基板上形成有阳极40,包括第一聚合物和第二聚合物材料的空穴传输薄膜10设置在阳极40上。在另一实施例中,基板上形成有阳极40和空穴注入层50,包括第一聚合物和第二聚合物材料的空穴传输薄膜10设置在空穴注入层50上。若光电器件还包括其他功能层,则相应的,基板上也可以形成其他功能层。
本实施例中的第一聚合物可以参考上文实施例中的相关描述,此处不进行赘述。
具体的,可以采用溶液法将包括第一聚合物的材料溶液设置在基板上。溶液法包括但不限于是旋涂、滴涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂、蒸镀或浇铸等,通过溶液法制得湿膜。然后进行热处理,得到空穴传输薄膜10。
在一实施例中,上述热处理的步骤包括:先进行第一热处理,然后进行第二热处理,其中,第一热处理的温度小于100℃,且大于或等于40℃,第二热处理的温度大于或等于100℃,且小于或等于250℃。
热处理步骤中,可以首先对基板上的湿膜进行第一热处理,使湿膜中的有机溶剂挥发形成空穴传输薄膜,然后再对空穴传输薄膜进行第二热处理,第二热处理的温度大于第一热处理的温度,第二热处理用于消除空穴传输薄膜内部的残余应力,从而可以减少空穴传输薄膜产生层变形与裂纹的风险。例如,第一热处理的温度可以是小于100℃,例如95℃、80℃、70℃、60℃、50℃、40℃等等,温度越高,湿膜干燥得越快,也可以采用常温进行真空干燥。第二热处理的温度可以是100℃~250℃之间,例如第二热处理的温度可以是100℃、130℃、160℃、180℃、200℃、220℃、240℃、250℃等。可以理解的是,第二热处理可以是退火工艺,即包括依序进行的加热保温和冷却工艺,比如,将干燥的空穴传输薄膜加热至220℃保温30min后,再以5℃/min的速度冷却至室温。
本实施例中,可以通过控制和调节溶液法中使用的溶液浓度等条件,从而实现对最终形成的空穴传输薄膜的厚度的控制和调整。其中,空穴传输薄膜的厚度范围可以是10至50nm,比如10nm、15nm、20nm、25nm、30nm、40nm、50nm等。以旋涂为例,可以通过调节溶液的浓度、旋涂速度和旋涂时间来控制空穴传输薄膜的厚度。
步骤S23:在空穴传输薄膜上制作阴极。
阴极20的材料为本领域已知用于阴极的材料,可以选用上文所述阳极40的材料,本步骤不再赘述。阴极20的厚度为本领域已知的阴极厚度,例如可以是10nm至200nm,比如10nm、35nm、50nm、80nm、120nm、150nm、200nm等。
需要说明的是,本申请中阳极40、发光层30及阴极20以及其他功能层均可采用本领域常规技术制备,包括但不限于是溶液法和沉积法,其中,溶液法包括但不限于是旋涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂或浇铸;沉积法包括化学法和物理法,化学法包括但不限于是化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法或共沉淀法,物理法包括但不限于是热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法或脉冲激光沉积法。当采用溶液法制备阳极40、发光层30、阴极20以及其他功能层时,需增设干燥处理工序。
可以理解的是,光电器件的制备方法还可以包括封装步骤,封装材料可以是丙烯酸树脂或环氧树脂,封装可以是机器封装或手动封装,可以采用紫外固化胶封,进行封装步骤的环境中氧气和水的浓度均低于0.1ppm,以保证光电器件的稳定性。
在本申请的一些实施例中,所述包括第一聚合物的材料溶液中还添加有第二聚合物,其中,第二聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物,第二聚合物中含三苯胺的基团在第二聚合物中的摩尔分数小于第一聚合物中含三苯胺的基团在第一聚合物中的摩尔分数,并且第二聚合物中的氢原子全部或者部分被氟原子取代。
第二聚合物由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考),因而空穴传输薄膜10形成了从底层到顶层的渐变分子结构。越靠近顶层,第二聚合物的含量越多,越靠近底层,第一聚合物的含量越多。即从朝向阳极的一面到远离阳极的一面,第二聚合物的含量递增。
可以理解,当包括第一聚合物的材料溶液中还添加有第二聚合物时,本实施例中,在包括第一聚合物的材料溶液的制备过程中,对第一聚合物、第二聚合物以及溶剂的加入顺序不进行限定,能够实现三者充分混合得到聚合物溶液即可。
本实施例中的第二聚合物可以参上文实施例中的相关描述,在此不再赘述。
本实施例中,将溶有第一聚合物和第二聚合物的材料溶液设置到基板的阳极40上形成空穴传输薄膜,在成膜过程中,含氟基团的第二聚合物倾向富集到空穴传输薄膜10与空气(靠阴极的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层(靠近阳极的一侧)到顶层(靠近阴极的一侧)的渐变分子结构。越靠近顶层,第二聚合物的含量越多,越靠近底层,第一聚合物的含量越多。同时由于第一聚合物中含苯胺的基团相对较多,第二聚合物中含苯胺的基团相对较少,因而,第一聚合物的HOMO能级较高,第二聚合物的HOMO能级较低,相应于薄膜从底层到顶层的渐变分子结构,空穴传输薄膜10从底层到顶层形成了能级由高到底的渐变能级。底层的高HOMO能级与阳极匹配,便于阳极向空穴传输薄膜10注入空穴,顶层的低HOMO能级缩小了空穴传输薄膜10与发光层的能级差,使空穴从空穴传输薄膜10更容易越过空穴传输薄膜10与发光层之间的势垒而跃迁至发光层,因而,本申请实施例制作的空穴传输薄膜10能够提高空穴迁移率。此外,由于本申请实施例的空穴传输薄膜10所含的第一聚合物和第二聚合物为同一类型的聚合物材料,薄膜内部为渐变分子结构,并非传统的双层传输薄膜,因而不存在材料界面以及不同传输薄膜层之间的材料互溶问题。因此,本申请实施例制作的空穴传输薄膜10可以提高空穴迁移率低,并且无界面互溶的问题。
在本申请的另一些实施例中,所述第一聚合物是包括第一嵌段和第二嵌段的嵌段聚合物,第一嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,第二嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,并且第二嵌段中含苯胺的基团连接有给电子基团。此时,所述包括第一聚合物的材料溶液中还可以包括第三聚合物,所述第三聚合物可以为导电高分子。
可以理解,当包括第一聚合物的材料溶液中还添加有第三聚合物时,本实施例中,在包括第一聚合物的材料溶液的制备过程中,对第一聚合物、第三聚合物以及溶剂的加入顺序不进行限定,能够实现三者充分混合得到聚合物溶液即可。
当第一聚合物中不包括第一自交联基团时,可以首先对基板上的湿膜进行第一热处理,使湿膜中的有机溶剂挥发形成空穴传输薄膜,然后再对空穴传输薄膜进行第二热处理。
当第一聚合物中包括第一自交联基团时,干燥处理可以是同时包括交联固化的步骤。比如,若第一聚合物中的第一自交联基团中含有热交联键,则可以采用加热的方法进行交联处理。例如,可以首先对基板上的湿膜进行第一热处理,使湿膜中的有机溶剂挥发形成熔融态的空穴传输薄膜,然后再对空穴传输薄膜进行第二热处理,使第一聚合物进行交联固化,第二热处理的温度大于第一热处理的温度,具体可参照上文所述内容。又比如,若第一聚合物中的第一自交联基团中含有紫外光响应的交联键的基团,则可以通过紫外光辐照的方式进行交联反应时,比如可以先采用上述的第一热处理工艺使有机溶剂挥发形成熔融态的空穴传输薄膜,然后采用波长为365nm的紫外光辐照薄膜,使空穴传输薄膜交联固化。
本实施例中的第一聚合物和第三聚合物可以参上文实施例中的相关描述,在此不再赘述。
本实施例中,在包括第一聚合物的材料溶液的制备过程中,对第一聚合物、第三聚合物以及溶剂的加入顺序不进行限定,能够实现三者充分混合得到嵌段共聚物溶液即可。
本实施例中,将溶有第一聚合物和第三聚合物的材料溶液设置到基板上形成空穴传输薄膜,在成膜过程中,含氟基团的第一聚合物倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近底层,第三聚合物的含量越多,越靠近顶层,第一聚合物的含量越多。由于主要位于顶层的第一聚合物中含有给电子基团,可以提高空穴传输薄膜10顶层的LUMO能级,相应于从底层到顶层的渐变分子结构,空穴传输薄膜10可以形成从底层到顶层能级逐渐升高的渐变LUMO能级。空穴传输薄膜10顶层LUMO能级的升高,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而提高光电器件的寿命。
在又一些实施例中,所述第一聚合物中包括含芴的基团、含苯胺的基团和含第一交联基团的基团,所述包括第一聚合物的材料溶液中还包括交联化合物,交联化合物包括主链,以及至少两个与主链连接的第二交联基团,并且交联化合物中的氢原子全部或者部分被氟原子取代。
本实施例中,在包括第一聚合物的材料溶液的制备过程中,对第一聚合物、交联化合物以及溶剂的加入顺序不进行限定,能够实现三者充分混合得到嵌段共聚物溶液即可。
本实施例中的第一聚合物和交联化合物可以参考上文实施例中的相关描述,此处不进行赘述。
本实施例中,将溶有第一聚合物和交联化合物的材料溶液设置到基板上形成空穴传输薄膜,在成膜过程中,交联化合物中的第二交联基团与第一聚合物中的第一交联基团可以进行交联反应,由于交联化合物中包含至少两个第二交联基团,第一聚合物中包含一个第一交联基团,因而交联化合物可以连接至少两个第一聚合物分子,使空穴传输薄膜10中形成交联结构。同时交联化合物中由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考),即在成膜过程中,含氟基团倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,因而空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变交联结构。越靠近底层,第一聚合物的含量越多,即靠近空穴注入层一侧是以非交联结构为主;越靠近顶层,交联化合物越多,从而交联结构的含量也越多,即靠近发光层一侧是交联结构为主。由于交联结构具有良好的耐溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中。因此,本申请实施例制作的空穴传输薄膜10可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
在又一些实施例中,所述第一聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物。所述包括第一聚合物的材料溶液中还包含有第四聚合物,所述第四聚合物是由含芴的基团、含三苯胺的基团和第二自交联基团形成的嵌段共聚物,并且第四聚合物中的氢原子全部或者部分被氟原子取代。
本实施例中,在包括第一聚合物的材料溶液的制备过程中,对第一聚合物、第四聚合物以及溶剂的加入顺序不进行限定,能够实现三者充分混合得到聚合物溶液即可。
本实施例中的第一聚合物和第四聚合物可以参上文实施例中的相关描述,在此不再赘述。
在一个实施例中,当第四聚合物中的第二自交联基团中含有热交联键时,可以采用加热的方法进行交联处理。比如,可以首先对基板上的湿膜进行第一热处理,使湿膜中的有机溶剂挥发形成熔融态的空穴传输薄膜,然后再对空穴传输薄膜进行第二热处理,使第四聚合物进行交联固化,第二热处理的温度大于第一热处理的温度,例如,第一热处理的温度可以是小于100℃,例如95℃、80℃、70℃、60℃、50℃、40℃等等,温度越高,溶剂挥发越快,也可以采用常温进行真空干燥。第二热处理的温度可以是100℃~200℃之间,例如第二热处理的温度可以是100℃、120℃、140℃、160℃、180℃、190℃、200℃等。
在一个实施例中,当第四聚合物中的第二自交联基团中含有紫外光响应的交联键的基团时,可以通过紫外光辐照的方式进行交联反应时,比如可以先采用上述的第一热处理工艺使有机溶剂挥发形成熔融态的空穴传输薄膜,然后采用波长为365nm的紫外光辐照薄膜,使空穴传输薄膜交联固化。
本实施例中,将溶有第一聚合物和第四聚合物的材料溶液设置到基板上,然后进行交联反应得到空穴传输薄膜10。由于空穴传输薄膜10的HOMO能级可以是-5.8eV~-4.8eV范围内的能级,位于一般的空穴注入层的HOMO能级与发光层的HOMO能级之间,可以满足空穴注入层向发光层注入空穴的能级要求。此外,由于在成膜过程中,第四聚合物由于存在氟原子,倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层到顶层的渐变分子结构。越靠近顶层,第四聚合物的含量越多,越靠近底层,第一聚合物的含量越多。同时由于第四聚合物还包括第二自交联基团,空穴传输薄膜10成型时第四聚合物的嵌段共聚物分子之间会发生交联反应,使得空穴传输薄膜10靠发光层的一侧主要为交联聚合物,具有更好的抗溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,以提高器件的电流效率。
在又一些实施例中,所述第一聚合物中包括含芴的基团、含苯胺的基团和含杂芳基的基团。
所述溶剂可以选自但不限于氯苯、甲苯、二甲苯、环己基苯、苯甲酸甲酯、苯甲酸乙酯、氯萘、邻苯二甲酸酐或溴苯中的一种或多种。
请参阅图1,本申请实施例还提供一种光电器件100,光电器件100包括依次层叠的阴极20、发光层30阳极40,其中,所述光电器件100还包括位于发光层30和阳极40之间的上文所述的空穴传输薄膜10,空穴传输薄膜10包括第一面和第二面,第一面朝向阳极40,第二面朝向发光层30。
阴极20的材料为本领域已知用于阴极的材料,阳极40的材料为本领域已知用于阳极的材料,可以参考上文中的相关描述,此处不进行赘述。
发光层30可以为量子点发光层,此时光电器件100可以为量子点光电器件。发光层30的厚度可以为本领域已知的量子点光电器件中发光层的厚度范围,例如可以是5nm至100nm,比如5nm、10nm、20nm、50nm、80nm、100nm等;或者可以是60-100nm。
其中,量子点发光层的材料为本领域已知用于量子点发光层的量子点,例如,红色量子点、绿色量子点及蓝色量子点中的一种。量子点可以选自但不限于单一结构量子点以及核壳结构量子点中的一种或多种。例如,量子点可以选自但不限于II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种;所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe以及CdZnSTe中的一种或多种;所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP以及InAlNP;所述I-III-VI族化合物选自CuInS2、CuInSe2和AgInS2中的一种或多种。
空穴传输薄膜10可以参考上文中的相关描述,此处不进行赘述。
本一些实施例中,光电器件100中的空穴传输薄膜10包括第一聚合物和第二聚合物,含氟基团的第二聚合物倾向富集到空穴传输薄膜10与空气(靠发光层30的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层(靠近阳极40的一侧)到顶层(靠近发光层30的一侧)的渐变分子结构。越靠近顶层,第二聚合物的含量越多,越靠近底层,第一聚合物的含量越多。同时由于第一聚合物中含苯胺的基团相对较多,第二聚合物中含苯胺的基团相对较少,因而,第一聚合物的HOMO能级较高,第二聚合物的HOMO能级较低,相应于薄膜从底层到顶层的渐变分子结构,空穴传输薄膜10从底层到顶层形成了能级由高到底的渐变能级。底层的高HOMO能级与阳极40的能级接近,便于阳极40向空穴传输薄膜10提供空穴,顶层的低HOMO能级缩小了空穴传输薄膜10与发光层40的能级差,使空穴从空穴传输薄膜10更容易越过空穴传输薄膜10与发光层40之间的势垒而跃迁至发光层40,此外,由于本申请实施例的空穴传输薄膜10内部为渐变分子结构,并非传统的双层传输薄膜,因而不存在材料界面以及不同传输薄膜层之间的材料互溶问题。因此,本申请实施例光电器件100中的空穴传输薄膜10可以提高空穴迁移率低,进而可以提高光电器件的电流效率。
在又一些实施例中,光电器件100中的空穴传输薄膜10包括第一聚合物和第三聚合物,含氟基团的第一聚合物倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,因而空穴传输薄膜10形成了从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近底层,第三聚合物的含量越多,越靠近顶层,第一聚合物的含量越多。并且由于第一聚合物中含有给电子基团,可以提高空穴传输薄膜10顶层的LUMO能级,空穴传输薄膜10顶层LUMO能级的升高,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而提高光电器件的寿命。作为一个示例,从空穴传输薄膜10的第一面(朝向阳极40)到第二面(朝向发光层30),第三聚合物的含量递减,第一聚合物的含量递增。由于第一聚合物的含氟基团倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变分子结构。越靠近底层,第三聚合物的含量越多,越靠近顶层,第一聚合物的含量越多,由于主要位于 顶层的第一聚合物中含有给电子基团,可以提高空穴传输薄膜顶层的LUMO能级,相应于从底层到顶层的渐变分子结构,空穴传输薄膜10可以形成从底层到顶层能级逐渐升高的渐变LUMO能级。空穴传输薄膜顶层LUMO能级的升高,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而可以提高光电器件的寿命。
在又一些实施例中,光电器件100中的空穴传输薄膜10包括第一聚合物和交联化合物,交联化合物中的第二交联基团与第一聚合物中的第一交联基团可以进行交联反应,由于交联化合物中包含至少两个第二交联基团,第一聚合物中包含一个第一交联基团,因而交联化合物可以连接至少两个第一聚合物分子,使空穴传输薄膜10中形成交联结构。同时交联化合物中由于存在氟原子,更倾向于位于空穴传输薄膜10的上层(以图1的结构为参考),即靠近发光层一侧是交联结构为主。由于交联结构具有良好的耐溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中。因此,本申请实施例的光电器件100中,空穴传输薄膜10与发光层发生界面互溶的情况较少,光电器件100的电流效率更高。
作为一个示例,从空穴传输薄膜10的第一面(朝向阳极40)到第二面(朝向发光层30),第一聚合物的含量递减,交联化合物的含量递增。由于含氟基团倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变交联结构。越靠近底层,第一聚合物的含量越多,即靠近空穴注入层一侧是以非交联结构为主;越靠近顶层,交联化合物越多,交联化合物形成的交联结构可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
在一些实施例中,光电器件100中的空穴传输薄膜10包括第一聚合物和第四聚合物,由于空穴传输薄膜10的HOMO能级可以是-5.8eV~-4.8eV范围内的能级,位于一般的空穴注入层的HOMO能级与发光层的HOMO能级之间,可以提高空穴注入层向发光层注入空穴的效率。此外,由于在成膜过程中,第四聚合物由于存在氟原子,倾向富集到空穴传输薄膜10与空气(靠发光层的一侧)的界面,并向空气中伸展,越靠近顶层,第四聚合物的含量越多,同时由于第四聚合物还包括自交联基团,空穴传输薄膜10成型时第四聚合物的嵌段共聚物分子之间会发生交联反应,使得空穴传输薄膜10靠发光层的一侧主要为交联聚合物,具有更好的抗溶剂性,可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件100的电流效率。作为一个示例,从空穴传输薄膜10的第一面(朝向阳极40)到第二面(朝向发光层30),第一聚合物的含量递减,第四聚合物的含量递增。第四聚合物由于含氟基团,倾向富集到空穴传输薄膜10的表面(即靠近发光层的一面),因而空穴传输薄膜10可以形成从底层(靠近空穴注入层的一侧)到顶层(靠近发光层的一侧)的渐变交联结构。越靠近底层,第一聚合物的含量越多,即靠近空穴注入层一侧是以非交联结构为主;越靠近顶层,第四聚合物的含量越多,第四聚合物中的自交联基团形成的交联结构可以防止发光层的材料成分渗透至空穴传输薄膜10中,从而可以减少空穴传输薄膜10与发光层发生界面互溶的情况,从而可以提高光电器件的电流效率。
进一步参阅图1,在一实施例中,光电器件100还可以包括空穴注入层(HIL)50。空穴注入层50位于空穴传输薄膜10与阳极40之间。空穴注入层50的材料可以选自具有空穴注入能力的材料,包括但不限于是PEDOT:PSS、MCC、CuPc、F4-TCNQ、HATCN、过渡金属氧化物、过渡金属硫系化合物中的一种或多种。PEDOT:PSS为高分子聚合物,中文名为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)。空穴注入层50的厚度例如可以是10nm至100nm,比如10nm、20nm、30nm、40nm、50nm、60nm、100nm等。
进一步参阅图1,在一实施例中,光电器件100还可以包括电子传输层60,电子传输层60位于阴极20、发光层30之间。电子传输层60可以是具有电子传输能力的氧化物半导体纳米材料,氧化物半导体纳米材料可以选自但不限于ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO、InSnO中的一种或多种。
可以理解,光电器件100除上述各功能层外,还可以增设一些常规用于光电器件的有助于提升光电器件性能的功能层,例如电子阻挡层、空穴阻挡层、电子注入层、界面修饰层等。可以理解,光电器件100的各层的材料以及厚度可以依据光电器件100的发光需求进行调整。
在本申请的一些实施例中,光电器件100为量子点发光二极管,结构可以为玻璃基板-阳极-(空穴注入层)-空穴传输层-量子点发光层-电子传输层-阴极。其中,空穴注入层为非必要选项,量子点发光二极管结构中可以包括空穴注入层,也可以不包括空穴注入层。
本申请实施例还提供一种显示装置,包括本申请提供的光电器件。显示装置可以为任何具有显示功能的电子产品,电子产品包括但不限于是智能手机、平板电脑、笔记本电脑、数码相机、数码摄像机、智能可穿戴设备、智能称重电子秤、车载显示器、电视机或电子书阅读器,其中,智能可穿戴设备例如可以是智能手环、智能手表、虚拟现实(Virtual Reality,VR)头盔等。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例提供了一种量子点发光二极管及其制备方法,量子点发光二极管的结构组成参阅图1,本实施例的量子点发光二极管包括从上至下依次层叠设置的阴极20、电子传输层60、发光层30、空穴传输薄膜10、空穴注入层50及阳极40。
量子点发光二极管中各个层结构的材料为:
阴极20的材料为Al,厚度为25nm。
电子传输层60的材料为Zn 0.9Mg 0.1O。
发光层30的材料为纳米CdZnSe。
空穴传输薄膜10的材料为:第一聚合物的质量分数为15%,其中含苯胺的基团的摩尔分数为60%;第二聚合物的质量分数为85%,其中含苯胺的基团的摩尔分数为1%。
空穴注入层50的材料为PEDOT:PSS。
阳极40的材料为ITO,厚度为100nm,阳极40一面设置有玻璃衬底。
本实施例中量子点发光二极管的制备方法包括如下步骤:
制备空穴传输薄膜10的材料:将第一聚合物和第二聚合物溶于氯苯中,得到空穴传输材料溶液。
在玻璃衬底上制备阳极40。
在阳极40远离玻璃衬底的一侧旋涂PEDOT:PSS,转速5000,时间30秒,随后进行200℃加热15分钟的退火处理,得到空穴注入层50。
在空穴注入层50远离阳极40的一侧旋涂空穴传输材料溶液,转速3000,时间30秒,随后进行90℃的干燥处理以及140℃的退火处理,得到空穴传输薄膜10。
在空穴传输薄膜10远离空穴注入层50的一侧旋涂CdZnSe量子点,退火处理得到发光层30。
在发光层30远离空穴传输薄膜10的一侧旋涂Zn 0.9Mg 0.1O,随后进行退火处理,得到电子传输层60。
在电子传输层60远离发光层30的一侧蒸镀法制备Al阴极20。
实施例2
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例1的量子点发光二极管,区别之处仅在于,空穴传输薄膜10的材料为:第一聚合物中含苯胺的基团的摩尔分数为75%,第二聚合物质中含苯胺的基团的摩尔分数为20%。
实施例3
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例1的量子点发光二极管,区别之处仅在于,空穴传输薄膜10的材料为:第一聚合物中含苯胺的基团的摩尔分数为90%,第二聚合物中含苯胺的基团的摩尔分数为40%。
实施例4
本实施例提供了一种量子点发光二极管及其制备方法,量子点发光二极管的结构组成参阅图1,本实施例的量子点发光二极管包括从上至下依次层叠设置的阴极20、电子传输层60、发光层30、空穴传输薄膜10、空穴注入层50及阳极40。
量子点发光二极管中各个层结构的材料为:
阴极20的材料为Al。
电子传输层60的材料为Zn 0.7Mg 0.3O。
发光层30的材料为纳米ZnS。
空穴传输薄膜10的材料为:包含本申请的第三聚合物(60%wt)和第一聚合物(40%wt),其中,第三聚合物为TFB;第一聚合物通式如下,其中,R 1′~R 3′是含5个碳原子的烷基,R 4′是咪唑基团,在第二聚合物中的摩尔分数为3%;R 5′是含有6个碳原子的烯烃,部分H原子被取代。
Figure PCTCN2022142975-appb-000017
空穴注入层50的材料为PEDOT:PSS。
阳极40的材料为ITO,厚度为100nm,阳极40一面设置有玻璃衬底。
本实施例中量子点发光二极管的制备方法包括如下步骤:
制备空穴传输薄膜10的材料:将第三聚合物和第一聚合物溶于环己基苯中,得到空穴传输材料溶液(13mg/mL)。
在玻璃衬底上制备阳极40。
在阳极40远离玻璃衬底的一侧旋涂PEDOT:PSS,转速5000,时间30秒,随后进行200℃加热15分钟的退火处理,得到空穴注入层50。
在空穴注入层50远离阳极40的一侧旋涂空穴传输材料溶液,转速3000,时间30秒,随后进行40℃的干燥处理以及230℃的退火处理,得到空穴传输薄膜10。
在空穴传输薄膜10远离空穴注入层50的一侧旋涂CdZnSe量子点,退火处理得到发光层30。
在发光层30远离空穴传输薄膜10的一侧旋涂Zn 0.9Mg 0.1O,随后进行退火处理,得到电子传输层60。
在电子传输层60远离发光层30的一侧蒸镀法制备Al阴极20。
其中,空穴传输薄膜10热处理完成后LUMO能级为渐变能级,并且靠近发光层30的一侧,空穴传输薄膜10的LUMO能级可达-2.1eV,能级图请参阅图7。
实施例5
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例4的量子点发光二极管,本实施例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料中第一聚合物中取代基R 4′不同,R 4′是咔唑基团,在第一聚合物中的摩尔分数为15%。
其中,空穴传输薄膜10热处理完成后LUMO能级为渐变能级,并且靠近发光层30的一侧,空穴传输薄膜10的LUMO能级可达-2.0eV,能级图请参阅图8。
实施例6
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例4的量子点发光二极管,本实施例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料为:包含本申请的第三聚合物(80%wt)和第一聚合物(20%wt),其中,第三聚合物为聚苯胺及其衍生物;第一聚合物中,R 1′~R 3′是甲基,R 4′是三唑,在第一聚合物中的摩尔分数为5%;R 5′是含有12个碳原子的苯丙环丁烷。
实施例7
本实施例提供了一种量子点发光二极管及其制备方法,量子点发光二极管的结构组成参阅图1,本实施例的量子点发光二极管包括从上至下依次层叠设置的阴极20、电子传输层60、发光层30、空穴传输薄膜10、空穴注入层50及阳极40。
量子点发光二极管中各个层结构的材料为:
阴极20的材料为Al,厚度为25nm。
电子传输层60的材料为Zn 0.7Mg 0.3O。
发光层30的材料为纳米ZnS。
空穴传输薄膜10的材料为:包含本申请的第一聚合物(95%wt)和交联化合物(5%wt),其中,第一聚合物通式如上文所述,重均分子量为90000,分子量分散指数为2.8,其中,
第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000018
R 1″~R 5″是含3个碳原子的烷基,R6″含苯并环丁烷;
交联化合物通式为R 8″—R 9″—R 10″,交联化合物中部分氢原子被氟取代,R9″为含6个碳原子的烷基主链,R8″和R10″是相同的交联基团,结构式如下:
Figure PCTCN2022142975-appb-000019
空穴注入层50的材料为PEDOT:PSS。
阳极40的材料为ITO,厚度为100nm,阳极40一面设置有玻璃衬底。
本实施例中量子点发光二极管的制备方法包括如下步骤:
制备空穴传输薄膜10的材料:将第一聚合物和交联化合物溶于苯甲酸乙酯中,得到空穴传输材料溶液(12mg/mL)。
在玻璃衬底上制备阳极40。
在阳极40远离玻璃衬底的一侧旋涂PEDOT:PSS,转速5000,时间30秒,随后进行200℃加热15分钟的退火处理,得到空穴注入层50。
在空穴注入层50远离阳极40的一侧旋涂空穴传输材料溶液,转速3000,时间30秒,随后进行90℃的干燥处理以及140℃的退火处理,得到空穴传输薄膜10。
在空穴传输薄膜10远离空穴注入层50的一侧旋涂CdZnSe量子点,退火处理得到发光层30。
在发光层30远离空穴传输薄膜10的一侧旋涂Zn 0.9Mg 0.1O,随后进行退火处理,得到电子传输层60。
在电子传输层60远离发光层30的一侧蒸镀法制备Al阴极20。
实施例8
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例7的量子点发光二极管,区别之处仅在于,空穴传输薄膜10的材料为:包含本申请的第一聚合物(99%wt)和交联化合物(1%wt),其中,第一聚合物通式如上文所述,重均分子量为100000,分子量分散指数为1.8,其中,R 1″~R 5″是含10个碳原子的烷基,R 6″含环己烷;交联化合物通式如上文所述,R 9″为含3个碳原子的烷基主链,R 8″和R 10″是伯胺基。
实施例9
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例7的量子点发光二极管,区别之处仅在于,空穴传输薄膜10的材料为:包含本申请的第一聚合物(97%wt)和交联化合物(3%wt),其中,第一聚合物通式如上文所述,重均分子量为120000,分子量分散指数为2.4,其中,R 1″、R 2″、R 4″、R 5″是含10个碳原子的烷基,R 3″是含15个碳原子的烷基,R 6″含环己烷;交联化合物通式如上文所述,R 9″为含6个碳原子的烷基主链,R 8″和R 10″是相同的交联基团,结构式如下:
Figure PCTCN2022142975-appb-000020
实施例10
本实施例提供了一种量子点发光二极管及其制备方法,量子点发光二极管的结构组成参阅图1,本实施例的量子点发光二极管包括从上至下依次层叠设置的阴极20、电子传输层60、发光层30、空穴传输薄膜10、空穴注入层50及阳极40。
量子点发光二极管中各个层结构的材料为:
阴极20的材料为Al。
电子传输层60的材料为Zn 0.8Mg 0.2O。
发光层30的材料为纳米ZnSe。
空穴传输薄膜10的材料为:包含本申请的第一聚合物(70%wt)和第四聚合物(30%wt),
第一聚合物的结构通式如下:
Figure PCTCN2022142975-appb-000021
其中,第一聚合物的重均分子量是83000,分子量分散指数是1.8,R 1″′、R 2″′、R 4″′、R 5″′是乙基,R 3、R 6是含15个碳原子的烷基;第四聚合物重均分子量是100000,分子量分散指数是2.0,部分H原子被氟原子取代,R 1″′、R 2″′、R 4″′、R 5″′是乙基,R 3″′、R 6″′是含10个碳原子的烷基,R 7″′是含有15个碳原子的烯烃,并且在第四聚合物中的摩尔分数为3%。
空穴注入层50的材料为PEDOT:PSS。
阳极40的材料为ITO,阳极40一面设置有玻璃衬底。
本实施例中量子点发光二极管的制备方法包括如下步骤:
制备空穴传输薄膜10的材料:将第一聚合物和第四聚合物溶于苯甲酸乙酯中(14mg/mL),得到空穴传输材料溶液。
在玻璃衬底上制备阳极40。
在阳极40远离玻璃衬底的一侧旋涂PEDOT:PSS,并进行退火处理,得到空穴注入层50。
在空穴注入层50远离阳极40的一侧旋涂空穴传输薄膜10的材料溶液,并进行干燥和退火处理,先进行100℃热处理,然后进行170℃热处理,得到空穴传输薄膜10。
在空穴传输薄膜10远离空穴注入层50的一侧旋涂ZnSe量子点,退火处理得到发光层30。
在发光层30远离空穴传输薄膜10的一侧旋涂Zn 0.9Mg 0.1O,随后进行退火处理,得到电子传输层60。
在电子传输层60远离发光层30的一侧蒸镀法制备Al阴极20。
实施例11
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例10的量子点发光二极管,本实施例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料为:包含本申请的第一聚合物(60%wt)和第四聚合物(40%wt),其中,第一聚合物的重均分子量是78000,分子量分散指数是1.9,R 1″′、R 2″′、R 4″′、R 5″′是甲基,R 3″′、R 6″′是含6个碳原子的烷基;第四聚合物重均分子量是120000,分子量分散指数是2.5,R 1″′、R 2″′、R 4″′、R 5″′是甲基,R 3″′、R 6″′是含18个碳原子的烷基,R 7″′是含有10个碳原子的苯丙环丁烷,并且在第四聚合物中的摩尔分数为4%。
实施例12
本实施例提供了一种量子点发光二极管及其制备方法,相较于实施例10的量子点发光二极管,本实施例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料为:包含本申请的第一聚合物(95%wt)和第四聚合物(5%wt),其中,第一聚合物的重均分子量是50000,分子量分散指数是1.5,R 1″′、R 2″′、R 4″′、R 5″′是辛基,R 3″′、R 6″′是甲基;第四聚合物重均分子量是90000,分子量分散指数是2.2,R 1″′、R 2″′、R 4″′、R 5″′是辛基,R 3″′、R 6″′是甲基,R 7″′是含有10个碳原子的烯烃,在第四聚合物中的摩尔分数为2%。
实施例13
本实施例提供了一种薄膜及其制备方法,所述薄膜的材料为第一聚合物,第一聚合物的重复单元具有如下式(1.1)所示的结构:
Figure PCTCN2022142975-appb-000022
式(1.1)所示的重复单元由芴结构单元和三苯胺基结构单元组成,且-C 4H 9基团为正丁基。所述第一聚合物的重均分子量为86000,重均分子量/数均分子量的比值为1.5,玻璃化转变温度为100℃;在第一聚合物中,30%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,2.5%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,2.5%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法包括如下步骤:
S1.1、将第一聚合物分散于氯苯中,配置成浓度为10mg/mL的第一聚合物-氯苯溶液;
S1.2、提供基板,在常温常压的大气环境下,在基板的一侧旋涂步骤S1.1制得的第一聚合物-氯苯溶液,然后置于150℃恒温热处理20min,获得厚度为25nm的薄膜。
实施例14
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物的聚合度不相同,本实施例中第一聚合物的重复单元具有式(1.1)所示的结构,第一聚合物的重均分子量为60000,第一聚合物的重均分子量/数均分子量的比值为1.4,第一聚合物的玻璃化转变温度为80℃;在第一聚合物中,50%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,2%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,2%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法参照实施例13进行。
实施例15
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物的聚合度不相同,本实施例中第一聚合物的重复单元具有式(1.1)所示的结构,第一聚合物的重均分子量为150000,第一聚合物的重均分子量/数均分子量的比值为2,第一聚合物的玻璃化转变温度为200℃;在第一聚合物中,20%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,2%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,2%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法参照实施例13进行。
实施例16
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物的聚合度不相同,本实施例中第一聚合物的重复单元具有式(1.1)所示的结构,第一聚合物的重均分子量为120000,第一聚合物的重均分子量/数均分子量的比值为1.6,第一聚合物的玻璃化转变温度为180℃;在第一聚合物中,25%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,1.5%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,1.5%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法参照实施例13进行。
实施例17
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物的聚合度不相同,本实施例中第一聚合物的重复单元具有式(1.1)所示的结构,第一聚合物的重均分子量为43000,第一聚合物的重均分子量/数均分子量的比值为3.6,第一聚合物的玻璃化转变温度为60℃;在第一聚合物中,5%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,10%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,10%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法参照实施例13进行。
实施例18
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物的聚合度不相同,本实施例中第一聚合物的重复单元具有式(1.1)所示的结构,第一聚合物的重均分子量为80000,第一聚合物的重均分子量/数均分子量的比值为1.5,第一聚合物的玻璃化转变温度为95℃;在第一聚合物中,5%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,10%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,10%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
本实施例中薄膜的制备方法参照实施例13进行。
实施例19
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物不相同,本实施例中第一聚合物的重复单元具有式(7.1)所示的结构:
Figure PCTCN2022142975-appb-000023
本实施例中第一聚合物的重均分子量为100000,重均分子量/数均分子量的比值为2.0,玻璃化转变温度为190℃;在第一聚合物中,15%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,2%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,2%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍。
实施例20
本实施例提供了一种薄膜及其制备方法,相较于实施例13的薄膜,本实施例的薄膜的区别之处仅在于:第一聚合物不相同,本实施例中第一聚合物的重复单元具有式(8.1)所示的结构:
Figure PCTCN2022142975-appb-000024
本实施例中第一聚合物的重均分子量为95000,重均分子量/数均分子量的比值为1.4,玻璃化转变温度为125℃;在第一聚合物中,40%重量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,2.5%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍,2%重量的聚合物的分子量大于第一聚合物的重均分子量的1.7倍
实施例21
本实施例提供了一种光电器件及其制备方法,所述光电器件为正置型结构的量子点发光二极管,如图3所示,在由下至上的方向上,光电器件包括依次层叠设置的衬底、阳极、空穴功能层、发光层、电子功能层以及阴极,其中,空穴功能层由层叠设置的空穴注入层和空穴传输层组成,空穴注入层靠近阳极,空穴传输层靠近发光层,电子功能层为电子传输层。
光电器件中各个层的材料与厚度如下:
衬底的材料为玻璃,衬底的厚度为0.5mm;
阳极的材料为Ag/ITO,阳极的厚度为Ag,其中,Ag层的厚度为100nm,ITO层的厚度为10nm;
阴极的材料为Ag,阴极的厚度为25nm;
发光层的材料为核壳结构量子点CdZnSe/ZnSe/ZnS(粒径是10nm,表面连接有油酸配体,发光颜色为绿色),发光层的厚度为20nm;
电子功能层的材料为纳米Zn 0.9Mg 0.1O(平均粒径是7nm),电子功能层的厚度为30nm;
空穴注入层的材料为PEDOT:PSS,空穴注入层的厚度为25nm;
空穴传输层的材料为实施例13制得的薄膜,空穴传输层的厚度为25nm。
本实施例中光电器件的制备方法包括如下步骤:
S9.1、提供衬底,在衬底的一侧溅射ITO以获得ITO层,用棉签蘸取少量肥皂水擦拭ITO层表面以去除表面肉眼可见的杂质,然后将包括ITO的衬底依次采用去离子水超声清洗15min、丙酮超声清洗15min、乙醇超声清洗15min以及异丙醇超声清洗15min,烘干后采用紫外-臭氧表面处理15min,获得包括阳极的衬底;
S9.2、在常温常压的大气环境下,在步骤S9.1的阳极远离衬底的一侧旋涂PEDOT:PSS水溶液,然后置于150℃下恒温热处理20min,获得空穴注入层;
S9.3、参照步骤S1.1和S1.2进行,获得空穴传输层;
S9.4、在常温常压的氮气环境下,在步骤S9.3的空穴传输层远离空穴注入层的一侧旋涂浓度为20mg/mL的
CdZnSe/ZnSe/ZnS量子点-正辛烷溶液,然后置于100℃下恒温热处理10min,获得发光层;
S9.5、在常温常压的氮气环境下,在步骤S9.4远离发光层的一侧旋涂浓度为30mg/mL的纳米Zn 0.9Mg 0.1O-乙醇溶液,然后置于150℃下恒温热处理20min,获得电子传输层;
S9.6、在气压为4×10 -6mbar的真空环境下,在步骤S9.4的电子传输层远离发光层的一侧蒸镀Ag,获得阴极,然后采用紫外固化胶封装,获得光电器件。
实施例22
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例14制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例23
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例15制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例24
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例16制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例25
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例17制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例26
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例18制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例27
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例19制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
实施例28
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本实施例的光电器件的区别之处仅在于:将空穴传输层的材料由实施例13制得的薄膜替换为“实施例20制得的薄膜”。
本实施例中光电器件的制备方法参照实施例21进行。
对比例1
本对比例1提供了一种量子点发光二极管及其制备方法,相较于实施例1的量子点发光二极管,本对比例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料不同。本对比例1的空穴传输薄膜10的材料为TFB。
对比例2
本对比例提供了一种量子点发光二极管及其制备方法,相较于实施例7的量子点发光二极管,本对比例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料不同。本对比例的空穴传输薄膜10的材料为交联TFB。
对比例3
本对比例提供了一种量子点发光二极管及其制备方法,相较于实施例7的量子点发光二极管,本对比例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料为非交联TFB。
对比例4
本对比例提供了一种量子点发光二极管及其制备方法,相较于实施例1的量子点发光二极管,本对比例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料不同。本对比例的空穴传输薄膜10的材料为交联TFB。
对比例5
本对比例提供了一种量子点发光二极管及其制备方法,相较于实施例1的量子点发光二极管,本对比例的量子点发光二极管的区别之处仅在于,空穴传输薄膜10的材料为非交联TFB。
对比例6
本实施例提供了一种光电器件及其制备方法,相较于实施例21的光电器件,本对比例的光电器件的区别之处仅在于:空穴传输层的材料为TFB。
较于实施例21的制备方法,本对比例的制备方法区别之处仅在于:将步骤S9.3替换为“在常温常压的氮气环境下,在空穴注入层远离阳极的一侧旋涂浓度为10mg/mL的TFB-氯苯溶液,然后置于150℃恒温热处理20min,获得空穴传输层”。
实施例1-3以及对比例中,各功能层的能级图分别参阅图3-图6,从图中可以看出空穴传输薄膜10的能级,并且可以计算各示例中空穴注入层50与空穴传输薄膜10之间的能级差,以及空穴传输薄膜10与发光层30之间的能级差。计算结果参照表1,实施例1-3以及对比例中的光电器件的电流效率测试结果见也参照表1。
表1:
Figure PCTCN2022142975-appb-000025
由表1可知,本申请实施例1-3中空穴传输薄膜10中均可以实现渐变的HOMO能级,并且空穴注入层50与空穴传输薄膜10之间的能级差都要低于对比例1,有利于空穴从空穴注入层50向空穴传输薄膜10注入空穴。空穴传输薄膜10与发光层30之间的能级差也都低于对比例1中相应的能级差,使空穴从空穴传输薄膜10更容易越过空穴传输薄膜10与发光层30之间的势垒而跃迁至发光层,结合光电器件的电流效率测试结果,可以看出,实施例1-实施例3的器件电流效率更高,本申请的空穴传输薄膜10可以提供空穴迁移率,进而可以提高相应的光电器件的电流效率。这是由于本申请实施例1-3的空穴传输薄膜10通过一次湿法工艺就可以完成制作,薄膜内部为渐变分子结构,并非传统的通过两次湿法工艺制作的双层传输薄膜,因而不存在材料界面以及不同传输薄膜层之间的材料互溶问题。综上所述,本申请实施例的空穴传输薄膜10可以提高光电器件的电流效率。
图7-9分别是实施例4-6的光电器件的各功能层的能级示意图。
由图9可知,空穴传输薄膜10热处理完成后LUMO能级为渐变能级,并且靠近发光层30的一侧,空穴传输薄膜10的LUMO能级可达-2.2eV。
从实施例4-6的能级图7-9可以看出:空穴传输薄膜10的LUMO能级为渐变能级,实施例7中,空穴传输薄膜10的LUMO能级由-3.4eV提升至-2.1eV,使空穴传输薄膜10与发光层的LUMO能级差增大至2.0eV;实施例8中,空穴 传输薄膜10的LUMO能级由-3.4eV提升至-2.0eV,使空穴传输薄膜10与发光层的LUMO能级差增大至2.1eV;实施例9中,空穴传输薄膜10的LUMO能级由-3.4eV提升至-2.2eV,使空穴传输薄膜10与发光层的LUMO能级差增大至1.9eV。
空穴传输薄膜10与发光层的LUMO能级差扩大,增加了电子从发光材料层跃迁到空穴传输层的难度,从而可以降低空穴传输层的老化速率,进而可以提高光电器件的寿命。
对实施例7-9以及对比例2和3进行电流效率测试,测试曲线如图10-14所示,可以得出实施例7-9以及对比例2和3的最大电流效率(cd/A)依次为:100、125、89、61、32。
从测试结果可以看出,对比例2的最大电流效率要高于对比例3,说明交联结构的TFB空穴传输薄膜相比非交联结构的TFB空穴传输薄膜,可以提高光电器件的电流效率。进一步的,实施例7-9的最大电流效率均要高于对比例2,说明本申请实施例7-9的渐变交联结构的空穴传输薄膜对应的光电器件,电流效率更高。
对实施例10-12以及对比例4和5进行电流效率测试,测试曲线如图16-20所示,可以得出实施例10-12以及对比例4和5的最大电流效率(cd/A)分别为:85、77、93、61、32。
从测试结果可以看出,对比例4的最大电流效率要高于对比例5,说明交联结构的TFB空穴传输薄膜相比非交联结构的TFB空穴传输薄膜,可以提高光电器件的电流效率。进一步的,实施例10-12的最大电流效率均要高于对比例4,说明本申请实施例10-12的渐变交联结构的空穴传输薄膜对应的光电器件具有更高的电流效率,光电器件的性能更好。
实验例1
本实验例比较了实施例13中薄膜和实施例18中薄膜的耐溶剂特性,其中,实施例13中薄膜的材料为第一聚合物A,实施例18中薄膜的材料为第一聚合物B,耐溶剂特性实验包括如下步骤:
S10.1、分别检测获得第一聚合物A和第一聚合物B的荧光发射光谱图;
S10.2、将第一聚合物A分散于氯苯以配置成浓度为10mg/mL的第一聚合物A-氯苯溶液,并将第一聚合物B分散于氯苯以配置成浓度为10mg/mL的第一聚合物B-氯苯溶液,分别检测获得第一聚合物A-氯苯溶液和第一聚合物B-氯苯溶液的荧光发射光谱图。
检测结果如图21和图22所示,相较于未经氯苯溶剂处理的第一聚合物A(标记为A1),经氯苯溶剂处理的第一聚合物A(标记为A2)荧光强度略有降低;相较于未经氯苯溶剂处理的第一聚合物B(标记为B1),经氯苯溶剂处理的第一聚合物B(标记为B2)荧光强度同样降低,且降低幅度明显大于经氯苯溶剂处理的第一聚合物A,说明实施例13中薄膜的抗溶剂特性优于实施例18中薄膜。
实验例2
对实施例21至实施例28以及对比例的光电器件进行性能检测,采用弗士达FPD光学特性测量设备(由LabView控制QE-PRO光谱仪、Keithley 2400以及Keithley 6485搭建的效率测试系统)检测获得各个光电器件的电压、电流、亮度、 发光光谱等参数,然后计算获得外量子效率(External Quantum Efficiency,EQE)、功率效率等关键参数,并采用寿命测试设备测试上述的各个光电器件的使用寿命。
其中,外量子效率的测试方法为积分球测试法。寿命测试采用恒流法,在恒定电流(2mA电流)的驱动下,采用硅光系统测试各个光电器件的亮度变化,记录亮度由100%衰减至95%所需的时间(T95,h),并计算获得各个光电器件在1000尼特(nit)的亮度下亮度由100%衰减至95%所需的时间(LT95@1000nit,h)。电流效率的测试方法为:设定发光面积为2mm×2mm=4mm 2,间断地采集驱动电压为0V至8V范围内光电器件的亮度值,初始采集亮度的电压值为3V,每隔0.2V采集一次,每次采集的亮度值除以对应的电流密度即获得该次采集条件下的光电器件的电流效率,从而获得在电压为0V至8V的通电条件下的最大电流效率。
各个光电器件的最大电流效率(CE@max,cd/A)的性能检测数据详见下表2:
表2实施例21至实施例28以及对比例6的光电器件的性能检测数据一览表
Figure PCTCN2022142975-appb-000026
由表1可知,实施例21至实施例28中光电器件的光电性能明显优越于对比例的光电器件,以实施例21为例,实施例21中光电器件的CE@max是对比例6中CE@max的2.4倍,充分说明:采用本申请实施例的薄膜作为光电器件的空穴传输层材料,能够提高空穴传输层的抗溶剂特性,当均采用溶液法制备光电器件的空穴传输层和发光层时,能够改善空穴传输层与发光层之间的“互溶”问题,从而提高光电器件的光电性能。
由实施例21至实施例25的实验数据可知,实施例21至实施例24中光电器件的最大电流效率显著高于实施例25中光电器件的最大电流效率,且由图23可知,在相同的通电条件下,实施例21中光电器件的电流效率明显优于实施例25中光电器件的电流效率,因此,优选空穴传输层中第一聚合物的重均分子量为60000至150000,说明:第一聚合物的重均分子量过低对光电器件的光电性能提升程度有限,若第一聚合物的重均分子量低于60000,则空穴传输层的交联程度有限,从而空穴传输层的抗溶剂特性提高程度有限。
由实施例21至实施例24以及实施例26至实施例28的实验数据可知,实施例26中光电器件的最大电流效率低于实施例21至实施例24、实施例27以及实施例28中光电器件的最大电流效率,说明:在第一聚合物中,优选超过10%重 量的聚合物的分子量为第一聚合物的重均分子量的0.9倍至1.1倍,且不超过5%重量的聚合物的分子量小于第一聚合物的重均分子量的0.3倍或者大于第一聚合物的重均分子量的1.7倍,能够进一步地提高空穴传输层的抗溶剂特性,从而有利于提升光电器件的光电性能。
以上对本申请实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (26)

  1. 一种薄膜,其特征在于,所述薄膜包括第一聚合物,所述第一聚合物中包括含芴的基团和含苯胺的基团。
  2. 根据权利要求1所述的薄膜,其特征在于,所述薄膜中还包括第二聚合物,并且从所述薄膜的一面到另一面,所述第二聚合物的含量递增或递减;所述第一聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物,所述第二聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物;其中,所述第二聚合物中含三苯胺的基团在所述第二聚合物中的摩尔分数小于所述第一聚合物中含三苯胺的基团在所述第一聚合物中的摩尔分数,并且所述第二聚合物中的氢原子全部或者部分被氟原子取代。
  3. 根据权利要求2所述的薄膜,其特征在于,
    所述第一聚合物中含三苯胺的基团在所述第一聚合物中的摩尔分数大于或等于50%,且小于100%;
    所述第二聚合物中含三苯胺的基团在所述第二聚合物中的摩尔分数小于50%,且大于0;和/或
    所述第一聚合物的重均分子量大于或等于50000,且小于或等于250000;和/或
    所述第二聚合物的重均分子量大于或等于50000,且小于或等于250000;和/或
    所述第一聚合物的HOMO能级为大于或等于-5.3eV,并且小于-4.8eV;和/或
    所述第二聚合物的最高占据分子轨道能级大于-5.8eV,并且小于-5.3eV;和/或
    所述第一聚合物的重量百分比为1-20%,所述第二聚合物的重量百分比为80-99%。
  4. 根据权利要求2-3任意一项所述的薄膜,其特征在于,所述第一聚合物和第二聚合物的结构通式如下:
    Figure PCTCN2022142975-appb-100001
    其中,n>0,m≥0,p≥0,R 1~R 6是相同或不同的基团,且R 1~R 6为C1~C20的烷基、芳香基团或者杂芳基团。
  5. 根据权利要求1所述的薄膜,其特征在于,所述薄膜中还包括第三聚合物,所述第三聚合物是导电高分子材料;
    所述第一聚合物是包括第一嵌段和第二嵌段的嵌段聚合物,所述第一嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,所述第二嵌段是由含芴的基团和含苯胺的基团形成的共聚嵌段,并且所述第二嵌段中含苯胺的基团连接有给电子基团;
    所述第一聚合物中的氢原子全部或者部分被氟原子取代。
  6. 根据权利要求5所述的薄膜,其特征在于,
    沿所述薄膜的厚度方向,从一面到另一面,所述第一聚合物的含量递增或递减;和/或
    所述第二嵌段在所述第一聚合物中的摩尔分数大于或等于0.1%,且小于或等于15%;和/或
    所述第一聚合物的LUMO能级大于或等于-2.5eV,并且小于或等于-1.8eV;和/或
    所述给电子基团为杂环结构的给电子基团;和/或
    所述导电高分子材料为聚苯胺、聚噻吩、聚芴或者由聚苯胺、聚噻吩、聚芴中至少两种形成的共聚物;和/或
    所述第一聚合物的重均分子量大于或等于50000,且小于或等于250000。
  7. 根据权利要求5-6任意一项所述的薄膜,其特征在于,所述第一聚合物包括如下结构通式:
    Figure PCTCN2022142975-appb-100002
    其中,所述第一嵌段的摩尔分数为n 1,所述第二嵌段的摩尔分数为m 1,并且0.001≤m 1≤0.15;
    R 1′~R 3′是相同或不同的基团,且R 1′~R 3′为C1~C20的烷基、芳香基团或者杂芳基团;
    R 4′是杂环结构的给电子基团。
  8. 根据权利要求5-7任意一项所述的薄膜,其特征在于,所述第一聚合物还包括第三嵌段,所述第三嵌段包括自交联基团。
  9. 根据权利要求8所述的薄膜,其特征在于,所述第一聚合物的结构通式如下:
    Figure PCTCN2022142975-appb-100003
    其中,所述第三嵌段的摩尔分数为q,并且0<q≤0.05,R 5′是含交联键的基团。
  10. 根据权利要求9所述的薄膜,其特征在于,
    所述R 5′为以下结构式中的其中一个:
    Figure PCTCN2022142975-appb-100004
    其中,R 6′为C1~C20的烷基,或者R 6′为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,所述杂原子位于非相邻位;和/或
    所述R 4′选自咔唑类基团、三唑类基团、三嗪类基团中的一种或多种。
  11. 根据权利要求1所述的薄膜,其特征在于,所述薄膜中还包括交联化合物;
    所述第一聚物包括含芴的基团、含苯胺的基团和含第一交联基团的基团;
    所述交联化合物包括主链,以及至少两个与所述主链连接的第二交联基团,并且所述交联化合物中的氢原子全部或者部分被氟原子取代,所述第二交联基团与所述第一交联基团进行交联反应,以使所述第一聚物形成交联结构。
  12. 根据权利要求11所述的薄膜,其特征在于,
    沿所述薄膜的厚度方向,从一面到另一面,所述交联化合物的含量递增或递减;和/或
    所述交联化合物在所述薄膜的材料中重量百分比大于0,且小于或等于5%。
  13. 根据权利要求11-12任意一项所述的薄膜,其特征在于,所述第一聚物的通式为:
    Figure PCTCN2022142975-appb-100005
    其中,n 2、m 2、p 2为摩尔分数,n 2+m 2+p 2=1,0<n 2<0.95,0≤m 2<0.95,0<p 2<0.05;
    R 1″~R 5″是相同或不同的基团,且R 1″~R 5″为C1~C20的烷基、芳香基团或者杂芳基团;
    R 6″为所述第一交联基团。
  14. 根据权利要求11-13任意一项所述的薄膜,其特征在于,所述交联化合物的通式为:
    R 8″—R 9″—R 10″,
    其中,R 9″为C1~C20的烷基,或者R 9″为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,所述杂原子位于非相邻位;
    R 8″和R 10″为相同或不同的第二交联基团。
  15. 根据权利要求13所述的薄膜,其特征在于,所述R 6″选自以下基团的任一种:
    Figure PCTCN2022142975-appb-100006
    其中,R 7″是C1~C20的烷基、芳香基团或者杂芳基团。
  16. 根据权利要求13-14任意一项所述的薄膜,其特征在于,
    当所述R 6″的通式为所述化学式2时,所述R 8″和所述R 10″各自独立地选自以下基团的任一种:
    Figure PCTCN2022142975-appb-100007
    和/或
    当所述R 6″的通式为所述化学式3时,所述R 8″和所述R 10″各自独立地选自以下基团的任一种:
    Figure PCTCN2022142975-appb-100008
    和/或
    当所述R 6″的通式为所述化学式4时,所述R 8″和所述R 10″各自独立地选自伯胺基和仲胺基中的一种。
  17. 根据权利要求1所述的薄膜,其特征在于,所述薄膜中还包括第四聚合物;
    所述第一聚合物是由含芴的基团和含三苯胺的基团形成的嵌段共聚物;
    所述第四聚合物是由含芴的基团、含三苯胺的基团和第二自交联基团形成的嵌段共聚物,并且所述第四聚合物中的氢原子全部或者部分被氟原子取代。
  18. 根据权利要求17所述的薄膜,其特征在于,所述第一聚合物的结构通式如下:
    Figure PCTCN2022142975-appb-100009
    其中,n 3、m 3、p 3为摩尔分数,n 3+m 3+p 3=1,0<n 3<1,0≤m 3<1,0≤p 3<1,R 1″′~R 6″′是相同或不同的基团,
    且R 1″′~R 6″′为C1~C20的烷基、芳香基团或者杂芳基团。
  19. 根据权利要求17-18任意一项所述的薄膜,其特征在于,所述第四聚合物的结构通式如下:
    Figure PCTCN2022142975-appb-100010
    其中,n 4、m 4、p 4、q 4为摩尔分数,n 4+m 4+p 4+q 4=1,0<n 4<0.95,0≤m 4<0.95,0≤p 4<0.95,0<p 4<0.05,R 1″″~R 6″″是相同或不同的基团,且R 1″″~R 6″″为C1~C20的烷基、芳香基团或者杂芳基团,R 7″″含有交联健。
  20. 根据权利要求19所述的薄膜,其特征在于,所述R 7″″为以下结构式中的其中一个:
    Figure PCTCN2022142975-appb-100011
    其中,R 8″″为C1~C20的烷基,或者R 8″″为C1~C20的烷基,并且一种或多种碳原子被杂原子取代,当有多个碳原子被杂原子取代时,杂原子位于非相邻位。
  21. 根据权利要求17-20任意一项所述的薄膜,其特征在于,
    从所述薄膜的一面到另一面,所述第二聚合物的含量递增或递减;和/或
    所述自交联基团在所述第四聚合物中的摩尔分数大于0,并且小于或等于5%;和/或
    所述第四聚合物中含三苯胺的基团在所述第四聚合物中的摩尔分数小于所述第一聚合物中含三苯胺的基团在所述第一聚合物中的摩尔分数;和/或
    所述第四聚合物在所述薄膜的材料中的重量百分比大于或等于5%,且小于或等于40%。
  22. 根据权利要求1所述的薄膜,其特征在于,所述第一聚合物中还包括含杂芳基的基团,其中,所述第一聚合物的重均分子量为60000至150000。
  23. 根据权利要求22所述的薄膜,其特征在于,
    所述第一聚合物的玻璃化转变温度为80℃至250℃;和/或
    所述第一聚合物的重均分子量/数均分子量的比值不大于2;和/或
    所述含苯胺的基团选自含三苯胺的基团;和/或
    所述含杂芳基的基团选自咔唑基结构单元或包含噻吩基结构单元中的至少一者;和/或
    所述第一聚合物的玻璃化转变温度为120℃至200℃;和/或
    超过10%重量的聚合物的分子量为所述第一聚合物的重均分子量的0.9倍至1.1倍;并且,不超过5%重量的聚合物的分子量小于所述第一聚合物的重均分子量的0.3倍,或者不超过5%重量的聚合物的分子量大于所述第一聚合物的重均分子量的1.7倍。
  24. 根据权利要求22-23任意一项所述的薄膜,其特征在于,所述第一聚合物的重复单元选自:
    Figure PCTCN2022142975-appb-100012
    其中,R 1’至R 20’彼此独立地选自氢原子、碳原子数为1个至20个的烷基、芳基或杂芳基,n 5、m 5、p 5、y和z分别代表摩尔分数;
    在结构式(Ⅰ)中,m 5、n 5以及p 5三者之和为1,且0.5<n 5<0.9,且0.1<m 5<0.4,且0<p 5<0.1;
    在结构式(Ⅲ)中,y和z两者之和为1,且0<y<0.5,且0.5<z<1。
  25. 一种光电器件,包括依次层叠设置的阴极、发光层、空穴传输薄膜及阳极,其特征在于,所述空穴传输薄膜为权利要求1~24任意一项所述的薄膜。
  26. 一种显示装置,其中,所述显示装置包括权利要求25所述的光电器件。
PCT/CN2022/142975 2022-04-20 2022-12-28 薄膜、光电器件及显示装置 WO2023202150A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202210419136.0A CN116997232A (zh) 2022-04-20 2022-04-20 一种空穴传输薄膜、光电器件、制备方法及显示装置
CN202210420932.6 2022-04-20
CN202210420939.8 2022-04-20
CN202210419148.3 2022-04-20
CN202210420932.6A CN116981280A (zh) 2022-04-20 2022-04-20 一种空穴传输薄膜、光电器件及制备方法、显示装置
CN202210420936.4A CN116997233A (zh) 2022-04-20 2022-04-20 一种空穴传输薄膜、光电器件、制备方法及显示装置
CN202210420936.4 2022-04-20
CN202210420939.8A CN116981327A (zh) 2022-04-20 2022-04-20 一种空穴传输薄膜、光电器件、制备方法及显示装置
CN202210419148.3A CN116987298A (zh) 2022-04-20 2022-04-20 薄膜、发光器件与显示装置
CN202210419136.0 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023202150A1 true WO2023202150A1 (zh) 2023-10-26

Family

ID=88419052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142975 WO2023202150A1 (zh) 2022-04-20 2022-12-28 薄膜、光电器件及显示装置

Country Status (1)

Country Link
WO (1) WO2023202150A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254962A (ja) * 2013-07-09 2013-12-19 Dainippon Printing Co Ltd 正孔注入輸送層用塗布溶液
CN103965448A (zh) * 2013-01-31 2014-08-06 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
CN108559066A (zh) * 2018-05-09 2018-09-21 黑龙江大学 一种含三芳胺和芴单元的共轭聚合物及其制备方法和应用
CN111116946A (zh) * 2019-12-31 2020-05-08 深圳市华星光电半导体显示技术有限公司 一种空穴传输材料、显示面板及其制作方法
CN113675354A (zh) * 2021-06-21 2021-11-19 苏州欧谱科显示科技有限公司 一种空穴传输层及其制备方法和在量子点发光二极管中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965448A (zh) * 2013-01-31 2014-08-06 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
JP2013254962A (ja) * 2013-07-09 2013-12-19 Dainippon Printing Co Ltd 正孔注入輸送層用塗布溶液
CN108559066A (zh) * 2018-05-09 2018-09-21 黑龙江大学 一种含三芳胺和芴单元的共轭聚合物及其制备方法和应用
CN111116946A (zh) * 2019-12-31 2020-05-08 深圳市华星光电半导体显示技术有限公司 一种空穴传输材料、显示面板及其制作方法
CN113675354A (zh) * 2021-06-21 2021-11-19 苏州欧谱科显示科技有限公司 一种空穴传输层及其制备方法和在量子点发光二极管中的应用

Similar Documents

Publication Publication Date Title
Lim et al. Droop-free colloidal quantum dot light-emitting diodes
Nam et al. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes
US11245076B2 (en) Perovskite optoelectronic device, preparation method therefor and perovskite material
Zhang et al. Inverted quantum-dot light-emitting diodes fabricated by all-solution processing
Chen et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles
CN109256476B (zh) 量子点发光层、量子点发光器件及制备方法
Li et al. Enhanced efficiency of InP-based red quantum dot light-emitting diodes
Huang et al. Efficient polymer light-emitting diodes with ZnO nanoparticles and interpretation of observed sub-bandgap turn-on phenomenon
WO2018103747A1 (zh) 高聚物及电致发光器件
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
Demir et al. Efficiency enhancement in a single emission layer yellow organic light emitting device: contribution of CIS/ZnS quantum dot
Alsharafi et al. Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer
Qiu et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer
WO2021253923A1 (zh) 量子点发光二极管器件及其制备方法和显示面板
CN101919082B (zh) 有机电致发光元件
US20150364708A1 (en) Plasmonic organic photovoltaic cell using induced dipole polymer-metal nanoparticle hybrid and fabrication process thereof
CN105226184B (zh) 一种包含稳定有机自由基化合物的电致发光器件
WO2023202150A1 (zh) 薄膜、光电器件及显示装置
CN110649168B (zh) 量子点发光二极管及其制备方法
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
US20240040816A1 (en) Photoelectric devices
Vasanthi et al. Metal oxide charge transport materials for light emitting diodes-An overview
US20240107790A1 (en) Optoelectronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938368

Country of ref document: EP

Kind code of ref document: A1