WO2023190485A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2023190485A1
WO2023190485A1 PCT/JP2023/012450 JP2023012450W WO2023190485A1 WO 2023190485 A1 WO2023190485 A1 WO 2023190485A1 JP 2023012450 W JP2023012450 W JP 2023012450W WO 2023190485 A1 WO2023190485 A1 WO 2023190485A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
refrigerant
heat
indoor
air conditioner
Prior art date
Application number
PCT/JP2023/012450
Other languages
English (en)
French (fr)
Inventor
昇平 仲田
旺伸 織田
佑 廣崎
利行 藤
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2023244654A priority Critical patent/AU2023244654A1/en
Publication of WO2023190485A1 publication Critical patent/WO2023190485A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/875Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling heat-storage apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the technology of the present disclosure relates to an air conditioner.
  • air conditioning capacity is adjusted by operating the compressor at a rotation speed (frequency) according to the temperature difference between the detected indoor temperature and the target indoor temperature (set temperature), and the indoor temperature is adjusted to the set temperature. It is controlled so that it approaches. Specifically, when the indoor temperature approaches the set temperature, the air conditioning capacity is reduced by lowering the rotation speed of the compressor, and the indoor temperature is controlled so as not to deviate from around the set temperature.
  • the air conditioning load is limited to the air conditioning capacity when the compressor is operating at the minimum rotation speed. If it is less than that, there is a problem that thermo-off, in which the compressor stops, occurs frequently and comfort is impaired.
  • the compressor will be stopped because the air conditioning capacity cannot be reduced any further. Then, when the indoor temperature changes due to the stoppage of the air conditioning operation and deviates from the set temperature, the air conditioning operation is restarted. When such intermittent operation is repeated, the indoor temperature varies greatly with respect to the set temperature, and comfort is impaired.
  • the disclosed technology has been made in view of this point, and aims to provide an air conditioner that suppresses a decrease in comfort.
  • An air conditioner includes a compressor that compresses a refrigerant, an indoor unit that exchanges heat between indoor air and the refrigerant, an outdoor unit that exchanges heat between the outdoor air and the refrigerant, and an outdoor unit that exchanges heat with the refrigerant.
  • a heat storage unit a room temperature sensor that detects the indoor temperature, which drives the compressor based on the difference between the indoor temperature and the set temperature, and a heat storage unit that drives the compressor based on the difference between the indoor temperature and the set temperature. and a control unit that causes heat exchange to take place.
  • FIG. 1A is a circuit diagram showing an example of an air conditioner according to an embodiment.
  • FIG. 1B is a circuit diagram showing an example of an air conditioner according to an embodiment.
  • FIG. 2 is a block diagram showing an example of an air conditioner according to the embodiment.
  • FIG. 3 is a flowchart showing an example of the operation of the air conditioner according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating the relationship between the temperature of the heat storage material and the amount of heat storage.
  • FIG. 5 is an explanatory diagram illustrating an example of operation of the air conditioner according to the embodiment.
  • FIG. 6 is an explanatory diagram illustrating a reduction in capacity using heat storage.
  • FIG. 7 is an explanatory diagram illustrating an example of operation of a conventional air conditioner.
  • FIG. 8 is a circuit diagram showing an example of an air conditioner according to a modification.
  • FIG. 1A is a circuit diagram showing an example of an air conditioner according to an embodiment.
  • the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3.
  • the outdoor unit 2 is installed outdoors.
  • the indoor unit 3 is installed in a room that is heated and cooled by the air conditioner 1.
  • the air conditioner 1 further includes a refrigerant circuit 5 and a water circuit 6.
  • the refrigerant circuit 5 is formed with a flow path through which refrigerant circulates.
  • the refrigerant in the refrigerant circuit 5 is, for example, R290 (propane). Note that the refrigerant in the refrigerant circuit 5 is not limited to R290, and may be, for example, R32 or R1234yf.
  • the water circuit 6 is formed with a flow path through which a heat medium (water in the following description) circulates as another refrigerant. Note that the heat medium circulating in the water circuit 6 may be antifreeze or the like.
  • the refrigerant circuit 5 is arranged inside the outdoor unit 2.
  • the refrigerant circuit 5 includes a compressor 11 , a four-way valve 12 , an outdoor heat exchanger 14 , an expansion valve 15 , and an intermediate heat exchanger 16 .
  • the compressor 11 includes a suction pipe 17 and a discharge pipe 18.
  • the compressor 11 compresses the low-pressure gas-phase refrigerant supplied through the suction pipe 17 and discharges the high-pressure gas-phase refrigerant generated by compressing the low-pressure gas-phase refrigerant through the discharge pipe 18.
  • the four-way valve 12 is connected to four liquid pipes: a liquid pipe connected to the suction pipe 17, discharge pipe 18, and intermediate heat exchanger 16 of the compressor 11, and a liquid pipe connected to the outdoor heat exchanger 14. This valve is used to switch the flow direction of the refrigerant in the refrigerant circuit 5 between heating operation and cooling operation. As shown in the illustrated example, during heating operation, the four-way valve 12 allows refrigerant from the discharge pipe 18 to flow into the liquid pipe connected to the intermediate heat exchanger 16, and sucks refrigerant from the liquid pipe connected to the outdoor heat exchanger 14. Switch to flow into pipe 17.
  • the four-way valve 12 allows the refrigerant from the discharge pipe 18 to flow into the liquid pipe connected to the outdoor heat exchanger 14, and allows the refrigerant from the liquid pipe connected to the intermediate heat exchanger 16 to flow into the suction pipe 17. Switch like this.
  • the states in which the four-way valve 12 is switched to the heating mode/cooling mode will be referred to as heating mode/cooling mode, respectively.
  • the outdoor heat exchanger 14 is connected to the expansion valve 15.
  • Intermediate heat exchanger 16 is connected to expansion valve 15 .
  • the water circuit 6 includes pumps 21a and 21b and an indoor heat exchanger 22. Pumps 21a and 21b are arranged inside the outdoor unit 2.
  • the pump 21a is connected to the intermediate heat exchanger 16 in a heat storage circuit 31, which will be described later.
  • Pump 21b is connected between heat storage circuit 31 and indoor heat exchanger 22.
  • the pump 21a is a pump that circulates water supplied from the intermediate heat exchanger 16 in the heat storage circuit 31 and the water circuit 6.
  • the pump 21b is a pump that circulates water supplied from the heat storage circuit 31 to the indoor heat exchanger 22.
  • the indoor heat exchanger 22 is arranged inside the indoor unit 3. Indoor heat exchanger 22 is connected to heat storage section 35 and intermediate heat exchanger 16 .
  • the water circuit 6 of the air conditioner 1 further includes a heat storage circuit 31.
  • the heat storage circuit 31 is arranged inside the outdoor unit 2.
  • a heat storage channel 32 is formed in the heat storage circuit 31 .
  • the first flow path 33 between the intermediate heat exchanger 16 and the indoor heat exchanger 22 in the water circuit 6 connects the indoor heat exchanger 22 and the intermediate heat exchanger 16 via the heat storage flow path 32. It is connected to the second flow path 34.
  • a first flow path 33 between the pump 21a and the indoor heat exchanger 22 is connected to a second flow path 34 between the indoor heat exchanger 22 and the intermediate heat exchanger 16 via a heat storage flow path 32.
  • the heat storage circuit 31 includes a heat storage section 35 and a solenoid valve 36a.
  • the second flow path 34 includes a solenoid valve 36b.
  • the inside of the heat storage section 35 is filled with a heat storage material.
  • the heat storage section 35 stores heat from the water when the temperature of the water flowing through the heat storage channel 32 is higher than the temperature of the heat storage section 35 . Moreover, when the temperature of the water flowing through the heat storage channel 32 is lower than the temperature of the heat storage section 35, the heat storage section 35 releases the stored heat to the water.
  • the solenoid valve 36a opens so that the first flow path 33 and the second flow path 34 are connected via the heat storage flow path 32, or opens so that the first flow path 33 and the second flow path 34 are not connected.
  • the heat storage channel 32 is then closed.
  • the solenoid valve 36b opens so that the indoor heat exchanger 22 and the heat storage section 35 are connected to the intermediate heat exchanger 16 via the second flow path 34, or opens so that the indoor heat exchanger 22 and the heat storage section 35 are connected to each other. It may be closed so that it is not connected to the intermediate heat exchanger 16.
  • the indoor heat exchanger 22 and the heat storage section 35 are connected in parallel.
  • the water flow path within the circuit can be controlled by the operation of the pumps 21a, 21b and the opening/closing of the electromagnetic valves 36a, 36b.
  • water can be circulated between the intermediate heat exchanger 16 and the indoor heat exchanger 22 by operating the pumps 21a and 21b, closing the solenoid valve 36a, and opening the solenoid valve 36b. can.
  • the water from the intermediate heat exchanger 16 can be circulated to the indoor heat exchanger 22 and the heat storage section 35 by operating the pumps 21a and 21b and opening the solenoid valves 36a and 36b.
  • water can be circulated between the intermediate heat exchanger 16 and the heat storage section 35 by operating the pump 21a, stopping the pump 21b, and opening the electromagnetic valves 36a and 36b.
  • water is circulated between the heat storage section 35 and the indoor heat exchanger 22 by stopping the pump 21a, operating the pump 21b, opening the solenoid valve 36a, and closing the solenoid valve 36b. be able to.
  • FIG. 1B is a circuit diagram showing an example of the air conditioner according to the embodiment, and more specifically, is an example of a water circuit 6a that connects the indoor heat exchanger 22 and the heat storage section 35 in series.
  • the water circuit 6a includes a pump 21c and an indoor heat exchanger 22.
  • the pump 21c is arranged inside the outdoor unit 2a.
  • Pump 21c is connected between intermediate heat exchanger 16 and indoor heat exchanger 22.
  • the pump 21c is a pump that circulates water supplied from the intermediate heat exchanger 16 to the indoor heat exchanger 22.
  • Indoor heat exchanger 22 is connected to intermediate heat exchanger 16 via second flow path 34a and heat storage circuit 31a.
  • the second flow path 34a includes a solenoid valve 36c.
  • the heat storage circuit 31a is arranged inside the outdoor unit 2a.
  • a heat storage flow path 32a is formed in the heat storage circuit 31a.
  • the heat storage channel 32a includes a solenoid valve 36d and a heat storage section 35.
  • the flow path of water in the circuit can be controlled by opening/closing the solenoid valves 36c and 36d.
  • water can be circulated between the intermediate heat exchanger 16 and the indoor heat exchanger 22 by opening the solenoid valve 36c and closing the solenoid valve 36d.
  • water from the intermediate heat exchanger 16 can be circulated in the order of the indoor heat exchanger 22 and the heat storage section 35.
  • solenoid valves 36 if the pumps 21a, 21b, and 21c are not distinguished, they will be referred to as the pump 21. Similarly, if the solenoid valves 36a, 36b, 36c, and 36d are not distinguished from each other, they will be referred to as solenoid valves 36.
  • FIG. 2 is a block diagram showing an example of the air conditioner 1 according to the embodiment.
  • the air conditioner 1 is electrically connected to a compressor 11, a four-way valve 12, a solenoid valve 36, an outdoor fan 41, an indoor fan 42, a room temperature sensor 37, a pump 21, and a heat storage sensor 38. , a control device 43 that controls each part.
  • the outdoor fan 41 is arranged inside the outdoor unit 2.
  • the outdoor fan 41 is controlled by the control device 43 and blows outside air so that the outside air comes into thermal contact with the outdoor heat exchanger 14 .
  • the indoor fan 42 is arranged inside the indoor unit 3.
  • the indoor fan 42 is controlled by the control device 43 so that the indoor air comes into thermal contact with the indoor heat exchanger 22, and the indoor air that has come into thermal contact with the indoor heat exchanger 22 flows into the indoor unit 3.
  • the air inside the room is blown out so that it blows out into the room.
  • the room temperature sensor 37 is a temperature sensor that detects the indoor temperature, which is the temperature inside the room.
  • the heat storage unit sensor 38 is a variety of sensors that detect the amount of heat stored in the heat storage unit 35.
  • the heat storage section sensor 38 is a temperature sensor that detects the temperature of the heat storage section 35, a temperature sensor that detects the temperature and flow rate of water flowing through the heat storage circuit 31, a flow rate detection sensor, and the like.
  • the control device 43 is a computer as an example of a control unit, and includes a storage device 44 and a CPU 45.
  • the storage device 44 stores computer programs installed in the control device 43 and stores information used by the CPU 45.
  • the CPU 45 executes a computer program installed in the control device 43 to process information and control the operation of the air conditioner 1.
  • the control device 43 receives the settings (heating operation or cooling operation and its set temperature) from the operation unit (not shown) and the detection results of the room temperature sensor 37 and the heat storage sensor 38, and controls the compressor 11, the four-way valve 12, and the electromagnetic valve.
  • the valve 36, the outdoor fan 41, the indoor fan 42, and the pump 21 are controlled.
  • the storage device 44 stores the minimum compressor rotation speed when driving the compressor 11. This minimum compressor rotation speed is a value specific to the compressor 11, and is the lowest rotation speed predetermined as a specification of the air conditioner 1, for example, the lowest rotation speed allowed as a specification of the compressor 11. .
  • the compressor 11 cannot properly compress the low-pressure gas-phase refrigerant at a compressor rotation speed lower than the minimum compressor rotation speed, and cannot properly compress the low-pressure gas-phase refrigerant at a compressor rotation speed higher than the minimum compressor rotation speed. Can be compressed.
  • the operations that the air conditioner 1 executes under the control of the control device 43 include cooling operation and heating operation.
  • the cooling operation is performed, for example, when the air conditioner 1 is operated by a user.
  • the control device 43 controls the four-way valve 12 and switches the four-way valve 12 to cooling mode when the air conditioner 1 performs cooling operation.
  • the control device 43 calculates the rotation speed of the compressor 11 based on the temperature difference between the set temperature set by the user and the room temperature in the room, and controls the compressor 11 to supply air through the suction pipe 17.
  • the low-pressure gas phase refrigerant thus obtained is compressed at the calculated rotation speed.
  • the low-pressure gas-phase refrigerant is compressed by the compressor 11, thereby changing its state to high-pressure gas-phase refrigerant.
  • Compressor 11 discharges high-pressure gas phase refrigerant into discharge pipe 18 .
  • the four-way valve 12 supplies the high-pressure gas phase refrigerant discharged into the discharge pipe 18 to the outdoor heat exchanger 14 by being switched to the cooling mode.
  • the control device 43 controls the outdoor fan 41 and blows outside air so that it comes into thermal contact with the outdoor heat exchanger 14 .
  • the outdoor heat exchanger 14 exchanges heat between the high-pressure gas-phase refrigerant supplied from the four-way valve 12 and outside air, cools the high-pressure gas-phase refrigerant, and heats the outside air.
  • the high-pressure gas phase refrigerant is cooled, its state changes to a supercooled high-pressure liquid phase refrigerant. That is, the outdoor heat exchanger 14 functions as a condenser when the air conditioner 1 performs cooling operation.
  • Outdoor heat exchanger 14 further supplies high-pressure liquid phase refrigerant to expansion valve 15 .
  • the expansion valve 15 adjusts the flow rate of the refrigerant flowing from the outdoor heat exchanger 14 to the intermediate heat exchanger 16, and expands the high-pressure liquid phase refrigerant supplied from the outdoor heat exchanger 14. When the high-pressure liquid phase refrigerant expands, its state changes to a low-pressure gas-liquid two-phase refrigerant with high humidity. The expansion valve 15 further supplies the low pressure gas-liquid two-phase refrigerant to the intermediate heat exchanger 16 .
  • the intermediate heat exchanger 16 exchanges heat between the low-pressure gas-liquid two-phase refrigerant supplied from the expansion valve 15 and the water circulating in the water circuit 6, cools the water, and heats the low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant changes state into a low-pressure gas-phase refrigerant by being heated by the intermediate heat exchanger 16 . That is, the intermediate heat exchanger 16 functions as an evaporator when the air conditioner 1 performs cooling operation.
  • Intermediate heat exchanger 16 further supplies low-pressure gas phase refrigerant to four-way valve 12 . By being switched to the cooling mode, the four-way valve 12 supplies the low-pressure gas phase refrigerant supplied from the intermediate heat exchanger 16 to the compressor 11 via the suction pipe 17.
  • the control device 43 controls the solenoid valve 36 to prevent water from flowing through the heat storage channel 32 when the air conditioner 1 performs cooling operation.
  • the pump 21 supplies the water cooled by the intermediate heat exchanger 16 to the indoor heat exchanger 22 and circulates the water to the water circuit 6.
  • the indoor heat exchanger 22 heats the water and cools the indoor air by exchanging heat between the water supplied from the pump 21 and the indoor air in which the indoor unit 3 is installed.
  • the heated water is supplied to the intermediate heat exchanger 16 by circulating through the water circuit 6 .
  • the control device 43 controls the indoor fan 42 so that the indoor air comes into thermal contact with the indoor heat exchanger 22 and the air cooled by the indoor heat exchanger 22 is blown indoors. blows air. That is, the indoor unit 3 cools the room by the indoor heat exchanger 22 cooling the indoor air.
  • the heating operation is performed, for example, when the air conditioner 1 is operated by a user.
  • the control device 43 controls the four-way valve 12 and switches the four-way valve 12 to heating mode when the air conditioner 1 performs heating operation.
  • the control device 43 calculates the rotation speed based on the temperature difference between the set temperature set by the user and the room temperature in the room, and controls the compressor 11 to reduce the low pressure air supplied through the suction pipe 17. Compress the phase refrigerant at the calculated rotation speed.
  • the low-pressure gas-phase refrigerant is compressed by the compressor 11, thereby changing its state to high-pressure gas-phase refrigerant.
  • Compressor 11 discharges high-pressure gas phase refrigerant into discharge pipe 18 .
  • the four-way valve 12 supplies the high-pressure gas phase refrigerant discharged into the discharge pipe 18 to the intermediate heat exchanger 16 by being switched to the heating mode.
  • the intermediate heat exchanger 16 exchanges heat between the high-pressure gas-phase refrigerant supplied from the four-way valve 12 and the water circulating in the water circuit 6, heats the water, and cools the high-pressure gas-phase refrigerant.
  • the high-pressure gas-phase refrigerant is cooled by the intermediate heat exchanger 16, thereby changing its state into a supercooled high-pressure liquid-phase refrigerant. That is, the intermediate heat exchanger 16 functions as a condenser when the air conditioner 1 performs heating operation.
  • Intermediate heat exchanger 16 further supplies high pressure liquid phase refrigerant to expansion valve 15 .
  • the expansion valve 15 adjusts the flow rate of the refrigerant flowing from the intermediate heat exchanger 16 to the outdoor heat exchanger 14, and expands the high-pressure liquid phase refrigerant supplied from the outdoor heat exchanger 14. When the high-pressure liquid phase refrigerant expands, its state changes to a low-pressure gas-liquid two-phase refrigerant with high humidity. The expansion valve 15 further supplies the low-pressure gas-liquid two-phase refrigerant to the outdoor heat exchanger 14 .
  • the control device 43 controls the outdoor fan 41 to blow outside air so that it comes into thermal contact with the outdoor heat exchanger 14 .
  • the outdoor heat exchanger 14 exchanges heat between the low-pressure gas-liquid two-phase refrigerant supplied from the expansion valve 15 and outside air, heats the low-pressure gas-liquid two-phase refrigerant, and cools the outside air.
  • the outdoor heat exchanger 14 functions as a condenser when the air conditioner 1 performs heating operation.
  • the outdoor heat exchanger 14 further supplies low-pressure gas phase refrigerant to the four-way valve 12.
  • the four-way valve 12 supplies the low-pressure gas-phase refrigerant supplied from the outdoor heat exchanger 14 to the suction pipe 17, and supplies the low-pressure gas-phase refrigerant to the compressor 11 via the suction pipe 17. supply to.
  • the pump 21 supplies water heated by the intermediate heat exchanger 16 to the indoor heat exchanger 22 and circulates the water to the water circuit 6.
  • the indoor heat exchanger 22 cools the water and heats the indoor air by exchanging heat between the water supplied from the pump 21 and the indoor air in which the indoor unit 3 is installed.
  • the heated water is supplied to the intermediate heat exchanger 16 by circulating through the water circuit 6 .
  • the control device 43 controls the indoor fan 42 and controls the indoor air so that the indoor air comes into thermal contact with the indoor heat exchanger 22 and so that the air heated by the outdoor unit 2 is blown indoors. to blow air. That is, the indoor unit 3 heats the room by the indoor heat exchanger 22 heating the indoor air.
  • the control device 43 switches between heating only operation, heating and heat storage operation, and thermal storage heating operation based on the temperature difference between the set temperature and the indoor room temperature. .
  • the heating-only operation means, for example, to operate the pumps 21a and 21b, shut off the solenoid valve 36a, and open the solenoid valve 36b, thereby transferring water heated by the intermediate heat exchanger 16 to the indoor heat exchanger 22.
  • This is an operation mode that circulates only the In this operation mode, the output (heat amount) transmitted from the refrigerant circuit 5 on the outdoor unit 2 side via the intermediate heat exchanger 16 is directly output indoors from the indoor heat exchanger 22.
  • the heating and heat storage operation refers to, for example, operating the pumps 21a and 21b and opening the solenoid valves 36a and 36b to circulate water from the intermediate heat exchanger 16 to the indoor heat exchanger 22 and the heat storage section 35. It is in driving mode. In this operation mode, the output (heat amount) transmitted from the refrigerant circuit 5 on the outdoor unit 2 side via the intermediate heat exchanger 16 is output to the indoor heat exchanger 22 and the heat storage section 35.
  • the thermal storage heating operation means, for example, that the pump 21a is stopped, the pump 21b is operated, the solenoid valve 36a is opened, and the solenoid valve 36b is closed.
  • FIG. 3 is a flowchart showing an example of the operation of the air conditioner 1 according to the embodiment.
  • the control device 43 controls the heating capacity of the air conditioner 1 based on the temperature difference. It is determined whether the air conditioning load exceeds the air conditioning load (S1). The heating capacity can be translated into the amount of heat exchanged between the refrigerant and air in the indoor heat exchanger 22. Note that the operation mode at the start of heating operation is heating-only operation.
  • the control device 43 controls the heating operation by driving the compressor 11. It is determined that the capacity exceeds the air conditioning load. In addition, the control device 43 determines that the heating capacity exceeds the air conditioning load when the amount of change in the temperature difference that decreases per unit time exceeds a predetermined value based on the time change in the temperature difference between the indoor temperature and the set temperature. It may be determined that it is.
  • a predetermined value for example, a temperature difference of 1 degree
  • the control device 43 If the heating capacity of the air conditioner 1 does not exceed the air conditioning load (S1: No), the control device 43 returns the process of S1 and continues the heating-only operation.
  • the control device 43 sets the rotation speed of the compressor 11 to a predetermined value in order to reduce the heating capacity of the air conditioner 1. (S2).
  • the control device 43 determines whether the rotation speed of the compressor 11 matches the minimum compressor rotation speed stored in the storage device 44 (S3). If the rotation speed of the compressor 11 does not match the minimum compressor rotation speed (S3: No), that is, if the rotation speed of the compressor 11 is greater than the minimum compressor rotation speed, the control device 43 returns the process to S1. Therefore, when the rotation speed of the compressor 11 is higher than the minimum compressor rotation speed, the control device 43 continues the heating-only operation.
  • the control device 43 switches the operation mode to heating and heat storage operation (S4). In this way, even though the compressor 11 is driven at the lowest compressor rotation speed to make the heating capacity the lowest, if the heating capacity of the air conditioner 1 exceeds the air conditioning load, the control device 43 , switch to heating and heat storage operation. As a result, the output (heat amount) transmitted from the refrigerant circuit 5 on the outdoor unit 2 side via the intermediate heat exchanger 16 is output to the indoor heat exchanger 22 and the heat storage section 35. Therefore, in the air conditioner 1, part of the output from the outdoor unit 2 can be used to store heat in the heat storage section 35, and the heating capacity of the indoor heat exchanger 22 can be further suppressed. Thereby, it is possible to prevent the operation from being stopped due to an increase in heating capacity and indoor temperature. Therefore, in the air conditioner 1, it is possible to prevent a situation where intermittent operation is repeated and the indoor temperature fluctuates greatly, which deteriorates comfort.
  • control device 43 determines whether the amount of heat stored in the heat storage section 35 (heat storage amount) is equal to or greater than the heat storage limit amount of the heat storage section 35, based on the detection result by the heat storage section sensor 38 (S5). .
  • the amount of heat storage is equal to or higher than the heat storage limit amount.
  • the temperature difference threshold in this determination method may be, for example, 1°C.
  • the heat storage section 35 stops exchanging heat, it can be determined that the heat storage in the heat storage section 35 has ended, so if the temperature difference of the water between the inlet of the heat storage section 35 and the outlet of the heat storage section 35 is below the threshold value There is a method of determining that the amount of heat storage is equal to or greater than the limit amount of heat storage.
  • the temperature difference threshold in this determination method may be, for example, 1°C.
  • FIG. 4 is an explanatory diagram illustrating the relationship between the temperature of the heat storage material and the amount of heat storage.
  • G1 is a heat storage material that stores heat by sensible heat that does not involve a phase change
  • G2 is a heat storage material that stores heat by latent heat that involves a phase change.
  • the slope of the graph is determined by the physical property (specific heat), but in graph G2, the temperature and the amount of heat storage may not be proportional to each other during phase change.
  • the amount of heat storage can be determined to some extent by the temperature.
  • the temperature of the heat storage material in the heat storage section 35 rises to a threshold value (for example, 55° C.) that is the design allowable temperature of the heat storage material, it may be determined that the amount of heat storage is equal to or higher than the limit amount of heat storage.
  • a threshold value for example, 55° C.
  • the control device 43 may calculate the amount of heat storage, and determine that the amount of heat storage is equal to or greater than the limit amount of heat storage when the calculated amount of heat storage is equal to or greater than a threshold value. For example, the control device 43 calculates the heat storage heat exchange amount [W] from the temperature difference of water between the inlet of the heat storage section 35 and the outlet of the heat storage section 35, and the flow rate of the water (pump rotation speed, etc.). Next, the control device 43 calculates the heat storage amount [kJ] from the heat storage heat exchange amount [W] and the heat storage time [s]. Next, when the calculated heat storage amount [kJ] is equal to or greater than a threshold value (for example, 1000 [kJ]), the control device 43 determines that the heat storage amount is equal to or greater than the heat storage limit amount.
  • a threshold value for example, 1000 [kJ]
  • the control device 43 If the heat storage amount is not greater than or equal to the heat storage limit amount (S5: No), the control device 43 returns the process to S5 and continues the heating and heat storage operation.
  • the control device 43 switches the operation mode to the heat storage heating operation (S6).
  • the heat accumulated in the heat storage section 35 is outputted from the indoor heat exchanger 22 while the refrigeration cycle in the refrigerant circuit 5 remains stopped.
  • control device 43 determines whether the amount of heat (heat storage amount) stored in the heat storage portion 35 is equal to or less than a predetermined amount of heat storage based on the detection result by the heat storage portion sensor 38 (S7).
  • the heat storage amount of the heat storage unit 35 decreases and the temperature of the heat storage material becomes a threshold value or less, the heat storage amount is determined to be a predetermined heat storage amount or less.
  • the threshold value in this determination method may be, for example, 35° C. depending on the heat storage material of the heat storage section 35.
  • the temperature of the water from the outlet of the heat storage section 35 becomes equal to or lower than a threshold value due to a decrease in heat obtained from the heat storage material of the heat storage section 35
  • a method for determining that the amount of heat storage is equal to or less than a predetermined amount of heat storage may be, for example, 35° C. depending on the heat storage material of the heat storage section 35.
  • the amount of heat storage is less than a predetermined amount of heat storage when the temperature of the water at the inlet of the indoor heat exchanger 22 is below a threshold value.
  • the threshold value in this determination method may be set to, for example, 35° C. depending on the room temperature and the like.
  • the temperature difference of water between the inlet of the indoor heat exchanger 22 and the outlet of the indoor heat exchanger 22 is below the threshold value.
  • the threshold value in this determination method may be, for example, 5°C.
  • control device 43 may calculate the current amount of heat storage in the heat storage section 35 and determine whether the calculated amount of heat storage is less than or equal to a threshold value. Specifically, the control device 43 calculates the current amount of heat stored in the heat storage section 35 by subtracting the amount of heat taken out from the heat storage material during the heat storage heating from the amount of heat stored before the heat storage operation. Next, the control device 43 determines whether the calculated amount of heat storage is less than or equal to a threshold value (for example, 0 [kJ]).
  • a threshold value for example, 0 [kJ]
  • the control device 43 If the amount of heat (heat storage amount) accumulated by the heat storage unit 35 is not equal to or less than the predetermined amount of heat storage (S7: No), the control device 43 returns the process to S7 and continues the thermal storage heating operation.
  • the control device 43 ends the heat storage heating operation. Note that if the heating operation is to be continued after the heat storage heating operation ends, the control device 43 returns the process to S1.
  • FIG. 5 is an explanatory diagram illustrating an example of operation of the air conditioner according to the embodiment.
  • the first graph from the top shows the relationship between the room temperature and the set temperature, with the vertical axis representing the temperature [° C.] and the horizontal axis representing the operating time [h] of the air conditioner 1.
  • the second graph from the top shows the change in the compressor 11 over time, with the vertical axis representing the rotational speed [rpm] of the compressor 11 and the horizontal axis representing the operating time [h] of the air conditioner 1.
  • the third graph from the top shows the change in the heat storage unit 35 over time, with the vertical axis representing the amount of heat stored in the heat storage unit 35 [J] and the horizontal axis representing the operating time [h] of the air conditioner 1.
  • the graph in the fourth row from the top shows the change in heating capacity over time, with the vertical axis representing the heating capacity [W] of the air conditioner 1 and the horizontal axis representing the operating time [h] of the air conditioner 1.
  • the compression As shown in FIG. 5, from the start of heating operation (t0) until the room temperature reaches the set temperature (approaches the predetermined value) and the compressor 11 reaches its minimum rotation speed (t1), the compression The heating-only operation is performed while adjusting the rotation speed of the machine 11.
  • heating and heat storage operation is performed. be exposed.
  • the heating capacity of the air conditioner 1 is reduced by using the surplus capacity to store heat in the heat storage section 35. That is, during the heating and heat storage operation (t1 to t2), the heating capacity can be lowered using heat storage. Thereby, it is possible to prevent the operation from being stopped due to an increase in heating capacity and indoor temperature. Therefore, in the air conditioner 1, it is possible to prevent a situation where intermittent operation is repeated and the indoor temperature fluctuates greatly, which deteriorates comfort.
  • FIG. 6 is an explanatory diagram illustrating a reduction in capacity using heat storage. As shown in FIG. 6, during the heating and heat storage operation (t1 to t2), a part of the output (heat amount) of the outdoor unit 2 is used for heat storage in the heat storage section 35. Therefore, the output (heating capacity) from the indoor heat exchanger 22 is reduced.
  • FIG. 7 is an explanatory diagram illustrating an example of operation of a conventional air conditioner.
  • the first graph from the top shows the relationship between the room temperature and the set temperature, with the vertical axis representing the temperature [° C.] and the horizontal axis representing the operating time [h] of the conventional air conditioner.
  • the vertical axis is the rotation speed [rpm] of the compressor in a conventional air conditioner
  • the horizontal axis is the operating time [h] of the conventional air conditioner.
  • the graph in the third row from the top shows the change in heating capacity over time, with the vertical axis representing the heating capacity [W] of the conventional air conditioner and the horizontal axis representing the operating time [h] of the conventional air conditioner.
  • the room temperature reaches the set temperature (approaches the predetermined value) from the start of heating operation (t10), and the time when the compressor reaches the minimum rotation speed (t11). Until then, heating operation is performed with the compressor rotation speed adjusted.
  • the heating operation is continued with the compressor at the lowest rotational speed, and at the time (t12) when the room temperature reaches the upper limit of the set temperature range, the drive of the compressor is stopped.
  • the heating capacity of the conventional air conditioner becomes zero, and the room temperature drops.
  • the conventional air conditioner restarts the compressor. As a result, the room temperature starts to rise again.
  • FIG. 8 is a circuit diagram showing an example of an air conditioner according to a modification.
  • the water circuit 6 of the air conditioner 1 described above is omitted, and the refrigerant circuit 5 is replaced with another refrigerant circuit 61.
  • the intermediate heat exchanger 16 of the refrigerant circuit 5 of the air conditioner 1 of the previously described embodiment is replaced with an indoor heat exchanger 62, and other parts are the same as the refrigerant circuit 5 described above.
  • the indoor heat exchanger 62 is arranged inside the indoor unit 3.
  • the indoor fan 42 operates so that the indoor air comes into thermal contact with the indoor heat exchanger 62 and so that the indoor air that has come into thermal contact with the indoor heat exchanger 62 blows out from the indoor unit 3 into the room. Blows indoor air.
  • the air conditioner of the modified example further includes a heat storage circuit 63.
  • the indoor unit 3 is arranged inside the outdoor unit 2.
  • a heat storage channel 64 is formed in the heat storage circuit 63 .
  • the first passage 65 between the expansion valve 15 and the indoor heat exchanger 62 in the refrigerant circuit 61 is connected to the second passage between the indoor heat exchanger 62 and the four-way valve 12 via the heat storage passage 64. It is connected to the flow path 66.
  • the heat storage circuit 63 includes a heat storage section 67 and a solenoid valve 68.
  • the inside of the heat storage section 67 is filled with a heat storage material.
  • the heat storage section 67 is in thermal contact with the refrigerant flowing through the heat storage flow path 64.
  • the solenoid valve 68 opens so that the first flow path 65 and the second flow path 66 are connected, or closes so that the first flow path 65 and the second flow path 66 are not connected.
  • the control device 43 controls the compressor 11, the four-way valve 12, the outdoor fan 41, and the indoor fan 42 similarly to the air conditioner 1 of the embodiment described above, and also controls the air conditioner 1 of the embodiment described above.
  • the solenoid valve 68 is controlled.
  • the control device 43 controls the opening/closing of the solenoid valve 68 so that the refrigerant flow path corresponds to a heating-only operation and a heating and heat storage operation.
  • one refrigerant circuit 61 may include a heat storage circuit 63.
  • the embodiment of the air conditioner has been described above, the embodiment is not limited to the above-mentioned content.
  • the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range.
  • the aforementioned components can be combined as appropriate.
  • at least one of various omissions, substitutions, and changes of components can be made without departing from the gist of the embodiments.
  • the air conditioner 1 includes a compressor 11 that compresses refrigerant, an indoor unit 3 that exchanges heat between indoor air and the refrigerant, an outdoor unit 2 that exchanges heat between outdoor air and the refrigerant, and a refrigerant.
  • the heat storage unit 35 that exchanges heat, the room temperature sensor 37 that detects the indoor temperature, and the compressor 11 is driven based on the difference between the indoor temperature and the set temperature, and when the difference is less than a predetermined value. It has a control device 43 that sometimes causes the heat storage section 35 to perform heat exchange.
  • the air conditioner 1 when the difference between the indoor temperature and the set temperature falls below a predetermined value, heat exchange is performed in the heat storage section 35, and excess heating capacity is used for heat storage in the heat storage section 35. By doing so, it is possible to prevent the operation from being stopped due to a rise in indoor temperature. Therefore, in the air conditioner 1, it is possible to prevent a situation where intermittent operation is repeated and the indoor temperature fluctuates greatly, which deteriorates comfort.
  • the air conditioner 1 also includes a refrigerant circuit 5 that circulates a first refrigerant, a water circuit 6 that circulates a second refrigerant, and an intermediate heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. It has a container 16.
  • the compressor 11 and the outdoor unit 2 are included in the refrigerant circuit 5.
  • the indoor unit 3 and the heat storage section 35 are included in the water circuit 6.
  • the air conditioner 1 may be configured to circulate the refrigerant used in the indoor unit 3 and the refrigerant used in the outdoor unit 2 independently.
  • a situation in which the refrigerant used in the outdoor unit 2 leaks to the indoor unit 3 side can be suppressed.
  • the air conditioner 1 further includes a detection unit that detects the amount of heat storage accumulated in the heat storage unit 35, and the control device 43 detects the amount of heat storage detected when the heat storage unit 35 performs heat exchange.
  • the control device 43 detects the amount of heat storage detected when the heat storage unit 35 performs heat exchange.
  • the indoor unit 3 and the heat storage section 35 are connected in series in the water circuit 6a.
  • the number of pumps 21 for circulating the refrigerant can be reduced, and the operation cost can be lowered.
  • the first refrigerant is R32 or R290 (propane).
  • R32 or R290 (propane) is used as a refrigerant, by employing a water circuit on the indoor unit 3 side, it is possible to suppress a situation in which R290 leaks to the indoor unit 3 side.
  • the second refrigerant is water or antifreeze.
  • the air conditioner 1 operates the compressor 11 at the lowest rotation speed, and causes the heat storage unit 35 to perform heat exchange when the difference between the indoor temperature and the set temperature falls below a predetermined value.
  • the heating capacity can be further reduced by using the surplus capacity in the state where the compressor 11 is operated at the lowest rotational speed for heat exchange in the heat storage section 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

実施形態の空気調和機(1)は、冷媒を圧縮する圧縮機(11)と、室内の空気と冷媒を熱交換する室内機(3)と、室外の空気と冷媒を熱交換する室外機(2、2a)と、冷媒と熱交換する蓄熱部(35、67)と、室内の温度である室内温度を検出する室温センサ(37)と、室内温度と設定温度の差に基づいて圧縮機(11)を駆動し、且つ、設定温度の差が所定値を下回ったときにときに蓄熱部(35、67)での熱交換を行わせる制御部(43)と、を有する。

Description

空気調和機
 本開示の技術は、空気調和機に関する。
 従来、空気調和機では、検出した室内温度と目標室内温度(設定温度)との温度差に応じた回転数(周波数)で圧縮機を動作させることで空調能力を調整し、室内温度が設定温度に近づくように制御している。具体的には、室内温度が設定温度に近づいた場合、圧縮機の回転数を低下させることで空調能力を低減させ、室内温度が設定温度近傍から外れないように制御している。
特開2002-115923号公報
 しかしながら、上記の従来技術では、室内温度が設定温度に近づいて設定温度近傍から外れないように制御している際に、空調負荷が圧縮機が最低回転数で動作しているときの空調能力を下回る場合、圧縮機が停止するサーモオフが頻発して快適性が損なわれるという問題がある。
 例えば、空調負荷が圧縮機の回転数を最も低くして運転している状態の空調能力を下回る場合は、それ以上空調能力を低減させることができないことから、圧縮機を停止することとなる。そして、空調運転の停止により室内温度が変化して設定温度から外れたところで、空調運転を再起動する。このような断続運転が繰り返される場合、設定温度に対する室内温度の変動が大きくなり、快適性が損なわれる。
 開示の技術は、かかる点に鑑みてなされたものであって、快適性の低下を抑制する空気調和機を提供することを目的とする。
 本開示の一態様による空気調和機は、冷媒を圧縮する圧縮機と、室内の空気と冷媒を熱交換する室内機と、室外の空気と冷媒を熱交換する室外機と、冷媒と熱交換する蓄熱部と、室内の温度である室内温度を検出する室温センサと、室内温度と設定温度の差に基づいて圧縮機を駆動し、且つ、設定温度の差が所定値を下回ったときに蓄熱部での熱交換を行わせる制御部と、を有する。
 快適性の低下を抑制することができる。
図1Aは、実施形態にかかる空気調和機の一例を示す回路図である。 図1Bは、実施形態にかかる空気調和機の一例を示す回路図である。 図2は、実施形態にかかる空気調和機の一例を示すブロック図である。 図3は、実施形態にかかる空気調和機の動作例を示すフローチャートである。 図4は、蓄熱材の温度と蓄熱量との関係を説明する説明図である。 図5は、実施形態にかかる空気調和機の運転例を説明する説明図である。 図6は、蓄熱を利用した能力の引き下げを説明する説明図である。 図7は、従来の空気調和機の運転例を説明する説明図である。 図8は、変形例にかかる空気調和機の一例を示す回路図である。
 以下、図面を参照して、実施形態にかかる空気調和機を説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。なお、以下の実施形態で説明する空気調和機は、一例を示すに過ぎず、実施形態を限定するものではない。また、以下の各実施形態は、矛盾しない範囲内で適宜組みあわせてもよい。
 図1Aは、実施形態にかかる空気調和機の一例を示す回路図である。図1Aに示すように、空気調和機1は、室外機2と室内機3とを備えている。室外機2は、屋外に設置されている。室内機3は、空気調和機1により冷暖房される室内に設置されている。空気調和機1は、冷媒回路5と水回路6とをさらに備えている。
 冷媒回路5は、冷媒が循環する流路が形成されている。冷媒回路5の冷媒は、例えばR290(プロパン)である。なお、冷媒回路5の冷媒については、R290に限定するものではなく、例えばR32やR1234yfなどであってもよい。
 水回路6は、他の冷媒として熱媒体(以下の説明では水)が循環する流路が形成されている。なお、水回路6を循環する熱媒体は不凍液等でも良い。
 冷媒回路5は、室外機2の内部に配置されている。冷媒回路5は、圧縮機11と四方弁12と室外熱交換器14と膨張弁15と中間熱交換器16とを備えている。
 圧縮機11は、吸入管17と吐出管18とを備えている。圧縮機11は、吸入管17を介して供給される低圧気相冷媒を圧縮し、低圧気相冷媒が圧縮されることにより生成された高圧気相冷媒を吐出管18を介して吐出する。
 四方弁12は、圧縮機11の吸入管17、吐出管18、中間熱交換器16とに接続される液管および室外熱交換器14に接続される液管の4つの液管が接続され、冷媒回路5における冷媒の流れる方向を暖房運転時または冷房運転時で切り替えるための弁である。図示例のように、暖房運転時には、四方弁12は、吐出管18からの冷媒を中間熱交換器16と接続する液管に流し、室外熱交換器14と接続する液管からの冷媒を吸入管17に流すように切り替える。冷房運転時には、四方弁12は、吐出管18からの冷媒を室外熱交換器14に接続される液管に流し、中間熱交換器16と接続される液管からの冷媒を吸入管17に流すように切り替える。以後の説明では、四方弁12が暖房運転時の状態/冷房運転時の状態に切り替えられた状態を、それぞれ暖房モード/冷房モードとよぶ。
 室外熱交換器14は、膨張弁15に接続されている。中間熱交換器16は、膨張弁15に接続されている。
 水回路6は、ポンプ21a、21bと、室内熱交換器22とを備えている。ポンプ21a、21bは、室外機2の内部に配置されている。ポンプ21aは、後述する蓄熱回路31において中間熱交換器16に接続されている。ポンプ21bは、蓄熱回路31と室内熱交換器22の間に接続されている。ポンプ21aは、中間熱交換器16から供給される水を蓄熱回路31および水回路6において循環させるポンプである。ポンプ21bは、蓄熱回路31から供給される水を室内熱交換器22に循環させるポンプである。室内熱交換器22は、室内機3の内部に配置されている。室内熱交換器22は、蓄熱部35および中間熱交換器16に接続されている。
 空気調和機1の水回路6は、蓄熱回路31をさらに備えている。蓄熱回路31は、室外機2の内部に配置されている。蓄熱回路31には、蓄熱用流路32が形成されている。水回路6のうちの中間熱交換器16から室内熱交換器22の間の第1流路33は、蓄熱用流路32を介して室内熱交換器22と中間熱交換器16との間の第2流路34に接続されている。
 ポンプ21aと室内熱交換器22との間の第1流路33は、蓄熱用流路32を介して、室内熱交換器22と中間熱交換器16との間の第2流路34に接続されている。蓄熱回路31は、蓄熱部35と電磁弁36aを備えている。第2流路34は、電磁弁36bを備えている。
 蓄熱部35は、内部に蓄熱材が充填されている。蓄熱部35は、蓄熱用流路32を流れる水の温度が蓄熱部35の温度よりも高い場合、水からの熱を蓄える。また、蓄熱部35は、蓄熱用流路32を流れる水の温度が蓄熱部35の温度よりも低い場合、蓄えた熱を水へ放出する。
 電磁弁36aは、蓄熱用流路32を介して第1流路33と第2流路34とが接続されるように開いたり、第1流路33と第2流路34とが接続されないように蓄熱用流路32を閉じたりする。電磁弁36bは、第2流路34を介して室内熱交換器22および蓄熱部35と、中間熱交換器16とが接続されるように開いたり、室内熱交換器22および蓄熱部35と、中間熱交換器16とが接続されないように閉じたりする。
 このように、水回路6において、室内熱交換器22と蓄熱部35とは並列に接続されている。そして、水回路6では、ポンプ21a、21bの動作と、電磁弁36a、36bの開/閉とによって、回路内の水の流路を制御することができる。
 例えば、水回路6では、ポンプ21a、21bを動作させ、電磁弁36aを閉じ、電磁弁36bを開くことで、中間熱交換器16と室内熱交換器22との間で水を循環させることができる。また、水回路6では、ポンプ21a、21bを動作させ、電磁弁36a、36bを開くことで、中間熱交換器16からの水を室内熱交換器22と蓄熱部35に循環させることができる。水回路6では、ポンプ21aを動作させ、ポンプ21bを停止させ、電磁弁36a、36bを開くことで、中間熱交換器16と蓄熱部35との間で水を循環させることができる。また、水回路6では、ポンプ21aを停止させ、ポンプ21bを動作させ、電磁弁36aを開き、電磁弁36bを閉じることで、蓄熱部35と室内熱交換器22との間で水を循環させることができる。
 なお、水回路6については、室内熱交換器22と蓄熱部35とを直列に接続する構成であってもよい。図1Bは、実施形態にかかる空気調和機の一例を示す回路図であり、より具体的には、室内熱交換器22と蓄熱部35とを直列に接続する水回路6aの一例である。
 図1Bに示すように、水回路6aは、ポンプ21cと、室内熱交換器22とを備えている。ポンプ21cは、室外機2aの内部に配置されている。ポンプ21cは、中間熱交換器16と室内熱交換器22との間に接続されている。ポンプ21cは、中間熱交換器16から供給される水を室内熱交換器22に循環させるポンプである。室内熱交換器22は、第2流路34aおよび蓄熱回路31aを介して中間熱交換器16に接続されている。
 第2流路34aは、電磁弁36cを備えている。蓄熱回路31aは、室外機2aの内部に配置されている。蓄熱回路31aには、蓄熱用流路32aが形成されている。蓄熱用流路32aは、電磁弁36dと蓄熱部35を備えている。
 このように室内熱交換器22と蓄熱部35を直列に接続する水回路6aでは、電磁弁36c、36dの開/閉によって、回路内の水の流路を制御することができる。例えば、水回路6aでは、電磁弁36cを開き、電磁弁36dを閉じることで、中間熱交換器16と室内熱交換器22との間で水を循環させることができる。また、水回路6aでは、電磁弁36cを閉じ、電磁弁36dを開くことで、中間熱交換器16からの水を室内熱交換器22、蓄熱部35の順に循環させることができる。
 なお、以後の説明において、ポンプ21a、21b、21cを区別しない場合はポンプ21と称するものとする。同様に、電磁弁36a、36b、36c、36dを区別しない場合は電磁弁36と称するものとする。
 図2は、実施形態にかかる空気調和機1の一例を示すブロック図である。図2に示すように、空気調和機1は、圧縮機11、四方弁12、電磁弁36、室外ファン41、室内ファン42、室温センサ37、ポンプ21および蓄熱部センサ38と電気的に接続され、各部の制御を行う制御装置43を備えている。
 室外ファン41は、室外機2の内部に配置されている。室外ファン41は、制御装置43に制御され、室外熱交換器14に外気が熱的に接触するように、外気を送風する。室内ファン42は、室内機3の内部に配置されている。室内ファン42は、制御装置43に制御され、室内熱交換器22に室内の空気が熱的に接触するように、かつ、室内熱交換器22に熱的に接触した室内の空気が室内機3から室内に吹き出るように、室内の空気を送風する。
 室温センサ37は、室内の温度である室内温度を検出する温度センサである。蓄熱部センサ38は、蓄熱部35が蓄えた蓄熱量の検出にかかる各種センサである。例えば、蓄熱部センサ38は、蓄熱部35の温度を検出する温度センサ、蓄熱回路31を流れる水の温度と流量を検出する温度センサおよび流量検出センサなどである。
 制御装置43は、制御部の一例としてのコンピュータであり、記憶装置44とCPU45とを備えている。記憶装置44は、制御装置43にインストールされるコンピュータプログラムを記憶し、CPU45により利用される情報を記憶する。CPU45は、制御装置43にインストールされるコンピュータプログラムを実行することにより、情報処理を行い、空気調和機1の動作を制御する。
 制御装置43は、操作部(図示しない)による設定内容(暖房運転または冷房運転とその設定温度)と、室温センサ37、蓄熱部センサ38の検出結果を受け付けて圧縮機11、四方弁12、電磁弁36、室外ファン41、室内ファン42およびポンプ21を制御する。記憶装置44には、圧縮機11を駆動する際の最低圧縮機回転数が記憶されている。この最低圧縮機回転数は、圧縮機11に固有の値であり、空気調和機1の仕様として予め決められた最も低い回転数、例えば圧縮機11の仕様として許容される最低回転数などである。圧縮機11は、最低圧縮機回転数より小さい圧縮機回転数では低圧気相冷媒を適切に圧縮することができず、最低圧縮機回転数以上の圧縮機回転数で低圧気相冷媒を適切に圧縮することができる。
 空気調和機1が制御装置43の制御のもとで実行する動作は、冷房運転と暖房運転とを含んでいる。
[冷房運転]
 冷房運転は、たとえば、空気調和機1がユーザにより操作されたときに実行される。制御装置43は、空気調和機1が冷房運転を実行するときに、四方弁12を制御し、四方弁12を冷房モードに切り替える。制御装置43は、ユーザにより設定された設定温度と、室内の室温との温度差に基づいて圧縮機11の回転数を算出し、圧縮機11を制御することにより、吸入管17を介して供給された低圧気相冷媒をその算出された回転数で圧縮する。低圧気相冷媒は、圧縮機11により圧縮されることにより、高圧気相冷媒に状態変化する。圧縮機11は、高圧気相冷媒を吐出管18に吐出する。四方弁12は、冷房モードに切り替えられていることにより、吐出管18に吐出された高圧気相冷媒を室外熱交換器14に供給する。
 制御装置43は、室外ファン41を制御し、外気が室外熱交換器14と熱的に接触するように、外気を送風する。室外熱交換器14は、四方弁12から供給された高圧気相冷媒と外気とを熱交換し、高圧気相冷媒を冷却し、外気を加熱する。高圧気相冷媒は、冷却されることにより、過冷却状態の高圧液相冷媒に状態変化する。すなわち、室外熱交換器14は、空気調和機1が冷房運転を実行するときに、凝縮器として機能する。室外熱交換器14は、さらに、高圧液相冷媒を膨張弁15に供給する。
 膨張弁15は、室外熱交換器14から中間熱交換器16に流れる冷媒の流量を調節し、室外熱交換器14から供給された高圧液相冷媒を膨張させる。高圧液相冷媒は、膨張することにより、湿り度が高い状態の低圧気液二相冷媒に状態変化する。膨張弁15は、さらに、低圧気液二相冷媒を中間熱交換器16に供給する。
 中間熱交換器16は、膨張弁15から供給された低圧気液二相冷媒と、水回路6を循環する水とを熱交換し、水を冷却し、低圧気液二相冷媒を加熱する。低圧気液二相冷媒は、中間熱交換器16により加熱されることにより、低圧気相冷媒に状態変化する。すなわち、中間熱交換器16は、空気調和機1が冷房運転を実行するときに、蒸発器として機能する。中間熱交換器16は、さらに、低圧気相冷媒を四方弁12に供給する。四方弁12は、冷房モードに切り替えられていることにより、中間熱交換器16から供給された低圧気相冷媒を、吸入管17を介して圧縮機11に供給する。
 制御装置43は、空気調和機1が冷房運転を実行するときに、電磁弁36を制御し、水が蓄熱用流路32を流れないようにする。ポンプ21は、中間熱交換器16により冷却された水を室内熱交換器22に供給し、水を水回路6に循環させる。室内熱交換器22は、ポンプ21から供給された水と、室内機3が設置された室内の空気とを熱交換することにより、水を加熱し、室内の空気を冷却する。加熱された水は、水回路6を循環することにより、中間熱交換器16に供給される。制御装置43は、室内ファン42を制御し、室内の空気が室内熱交換器22に熱的に接触するように、かつ、室内熱交換器22により冷却された空気が室内に吹き出すように、室内の空気を送風する。すなわち、室内機3は、室内熱交換器22が室内の空気を冷却することにより、室内を冷房する。
[暖房運転]
 暖房運転は、たとえば、空気調和機1がユーザにより操作されたときに実行される。制御装置43は、空気調和機1が暖房運転を実行するときに、四方弁12を制御し、四方弁12を暖房モードに切り替える。制御装置43は、ユーザにより設定された設定温度と、室内の室温との温度差に基づいて回転数を算出し、圧縮機11を制御することにより、吸入管17を介して供給された低圧気相冷媒をその算出された回転数で圧縮する。低圧気相冷媒は、圧縮機11により圧縮されることにより、高圧気相冷媒に状態変化する。圧縮機11は、高圧気相冷媒を吐出管18に吐出する。四方弁12は、暖房モードに切り替えられていることにより、吐出管18に吐出された高圧気相冷媒を中間熱交換器16に供給する。
 中間熱交換器16は、四方弁12から供給された高圧気相冷媒と、水回路6を循環する水とを熱交換し、水を加熱し、高圧気相冷媒を冷却する。高圧気相冷媒は、中間熱交換器16により冷却されることにより、過冷却状態の高圧液相冷媒に状態変化する。すなわち、中間熱交換器16は、空気調和機1が暖房運転を実行するときに、凝縮器として機能する。中間熱交換器16は、さらに、高圧液相冷媒を膨張弁15に供給する。
 膨張弁15は、中間熱交換器16から室外熱交換器14に流れる冷媒の流量を調節し、室外熱交換器14から供給された高圧液相冷媒を膨張させる。高圧液相冷媒は、膨張することにより、湿り度が高い状態の低圧気液二相冷媒に状態変化する。膨張弁15は、さらに、低圧気液二相冷媒を室外熱交換器14に供給する。
 制御装置43は、室外ファン41を制御し、外気が室外熱交換器14に熱的に接触するように、外気を送風する。室外熱交換器14は、膨張弁15から供給された低圧気液二相冷媒と外気とを熱交換し、低圧気液二相冷媒を加熱し、外気を冷却する。低圧気液二相冷媒は、加熱されることにより、湿り度が低い状態の低圧気相冷媒に状態変化する。すなわち、室外熱交換器14は、空気調和機1が暖房運転を実行するときに、凝縮器として機能する。室外熱交換器14は、さらに、低圧気相冷媒を四方弁12に供給する。四方弁12は、暖房モードに切り替えられていることにより、室外熱交換器14から供給された低圧気相冷媒を吸入管17に供給し、吸入管17を介して低圧気相冷媒を圧縮機11に供給する。
 ポンプ21は、中間熱交換器16により加熱された水を室内熱交換器22に供給し、水を水回路6に循環させる。室内熱交換器22は、ポンプ21から供給された水と、室内機3が設置された室内の空気とを熱交換することにより、水を冷却し、室内の空気を加熱する。加熱された水は、水回路6を循環することにより、中間熱交換器16に供給される。制御装置43は、室内ファン42を制御し、室内の空気が室内熱交換器22に熱的に接触するように、かつ、室外機2により加熱された空気が室内に吹き出すように、室内の空気を送風する。すなわち、室内機3は、室内熱交換器22が室内の空気を加熱することにより、室内を暖房する。
 制御装置43は、空気調和機1が暖房運転を実行するときに、設定温度と、室内の室温との温度差に基づいて、暖房専用運転、暖房兼蓄熱運転、蓄熱暖房運転との切り替えを行う。
 ここで、暖房専用運転とは、例えば、ポンプ21a、21bを動作させ、電磁弁36aを遮断、電磁弁36bを開放することで、中間熱交換器16により加熱された水を室内熱交換器22のみに循環させる運転モードである。この運転モードでは、室外機2側の冷媒回路5より中間熱交換器16を介して伝達された出力(熱量)は、そのまま室内熱交換器22より室内に出力されることとなる。
 また、暖房兼蓄熱運転とは、例えば、ポンプ21a、21bを動作させ、電磁弁36a、36bを開くことで、中間熱交換器16からの水を室内熱交換器22と蓄熱部35に循環させる運転モードである。この運転モードでは、室外機2側の冷媒回路5より中間熱交換器16を介して伝達された出力(熱量)は、室内熱交換器22と、蓄熱部35とに出力されることとなる。
 また、蓄熱暖房運転とは、例えば、ポンプ21aを停止させ、ポンプ21bを動作させ、電磁弁36aを開き、電磁弁36bを閉じることで、蓄熱部35と室内熱交換器22との間で水を循環させる運転モードである。また、この運転モードでは、圧縮機11の駆動を停止させ、冷媒回路5における冷凍サイクルを停止する。よって、この運転モードでは、冷媒回路5における冷凍サイクルが停止されたままで、蓄熱部35が蓄えた熱が室内熱交換器22より出力されることとなる。
 ここで、制御装置43が制御する暖房専用運転、暖房兼蓄熱運転および蓄熱暖房運転の切り替え動作について詳細に説明する。図3は、実施形態にかかる空気調和機1の動作例を示すフローチャートである。
 図3に示すように、室内温度と設定温度の差に基づいて圧縮機11を駆動する暖房運転が開始されると、制御装置43は、その温度差に基づいて空気調和機1の暖房能力が空調負荷を上回っているか否かを判定する(S1)。暖房能力とは、室内熱交換器22での冷媒と空気との熱交換量に言い換えることができる。なお、暖房運転開始時の運転モードは、暖房専用運転とする。
 例えば、制御装置43は、圧縮機11を駆動した暖房運転を予め定めた所定時間だけ継続したとき、室内温度と設定温度との温度差が所定値(例えば温度差1度)を下回る場合、暖房能力が空調負荷を上回っているものと判定する。また、制御装置43は、室内温度と設定温度との温度差の時間変化をもとに、単位時間あたりに縮まる温度差の変化量が所定値を上回る場合、暖房能力が空調負荷を上回っているものと判定してもよい。
 空気調和機1の暖房能力が空調負荷を上回っていない場合(S1:No)、制御装置43は、S1の処理を戻し、そのまま暖房専用運転を継続する。
 空気調和機1の暖房能力が空調負荷を上回っている場合(S1:Yes)、制御装置43は、空気調和機1における暖房能力を落とすため、圧縮機11の回転数を予め定めた所定の値だけ低下させる(S2)。
 ついで、制御装置43は、圧縮機11の回転数が記憶装置44に記憶された最低圧縮機回転数と一致するか否かを判定する(S3)。圧縮機11の回転数が最低圧縮機回転数と一致しない場合(S3:No)、すなわち圧縮機11の回転数が最低圧縮機回転数より大きい場合、制御装置43は、S1へ処理を戻す。したがって、圧縮機11の回転数が最低圧縮機回転数より大きい場合、制御装置43は、暖房専用運転を継続する。
 圧縮機11の回転数が最低圧縮機回転数と一致する場合(S3:Yes)、制御装置43は、運転モードを暖房兼蓄熱運転に切り替える(S4)。このように、圧縮機11を最低圧縮機回転数で駆動して暖房能力を最も低くしているにもかかわらず、空気調和機1の暖房能力が空調負荷を上回っている場合、制御装置43は、暖房兼蓄熱運転に切り替える。これにより、室外機2側の冷媒回路5より中間熱交換器16を介して伝達された出力(熱量)は、室内熱交換器22と、蓄熱部35とに出力されることとなる。このため、空気調和機1では、室外機2側からの出力の一部で蓄熱部35での蓄熱を行うことができるとともに、室内熱交換器22による暖房能力を更に低く抑えることができる。これにより、暖房能力と室内温度の上昇による運転停止が生じないようにすることができる。したがって、空気調和機1では、断続運転が繰り返されて室内温度の変動が大きくなるような、快適性が低下する事態を抑止できる。
 次いで、制御装置43は、蓄熱部センサ38による検出結果に基づいて、蓄熱部35が蓄えた熱量(蓄熱量)が蓄熱部35の蓄熱限界量以上となっているか否かを判定する(S5)。
 蓄熱部センサ38による検出結果に基づいて制御装置43が行う、蓄熱量が蓄熱限界量以上であるか否かの判定方法については、次のようなものがある。
 まず、蓄熱部35の蓄熱材温度は室内凝縮温度を上回ることがないため、蓄熱部35における蓄熱材温度と室内側凝縮温度の温度差が閾値以下である場合に蓄熱量が蓄熱限界量以上であるとする判定方法がある。この判定方法における温度差の閾値は、例えば1℃などとしてもよい。
 また、蓄熱部35で熱交換しなくなれば蓄熱部35における蓄熱が終了していると判断できることから、蓄熱部35の入口と、蓄熱部35の出口とにおける水の温度差が閾値以下である場合に蓄熱量が蓄熱限界量以上であるとする判定方法がある。この判定方法における温度差の閾値は、例えば1℃などとしてもよい。
 また、蓄熱部35の蓄熱材の設計許容温度まで上昇した場合には蓄熱が終了していると判断できることから、蓄熱部35の蓄熱材温度が閾値以上である場合に蓄熱量が蓄熱限界量以上であるとする判定方法がある。
 図4は、蓄熱材の温度と蓄熱量との関係を説明する説明図である。図4に示すように、蓄熱材には、蓄熱する際に相変化を伴うものと、相変化を伴わないものがある。G1は相変化を伴わない顕熱によって蓄熱する蓄熱材であり、G2は相変化を伴う潜熱によって蓄熱する蓄熱材である。グラフG1、G2ともに、グラフの傾きは物性(比熱)により定まるが、グラフG2では相変化において、温度と蓄熱量が比例しない場合がある。しかしながら、相変化を伴う潜熱蓄熱材であっても、ある程度は温度で蓄熱量がわかる。したがって、蓄熱材の設計許容温度とする閾値(例えば55℃)まで蓄熱部35の蓄熱材温度が上昇した場合には蓄熱量が蓄熱限界量以上であると判定してもよい。
 また、制御装置43は、蓄熱量を計算し、その計算した蓄熱量が閾値以上である場合に蓄熱量が蓄熱限界量以上であると判定してもよい。例えば、制御装置43は、蓄熱部35の入口と、蓄熱部35の出口とにおける水の温度差と、その水の流量(ポンプ回転数など)から蓄熱熱交換量[W]を算出する。ついで、制御装置43は、蓄熱熱交換量[W]と蓄熱時間[s]から蓄熱量[kJ]を算出する。ついで、制御装置43は、算出した蓄熱量[kJ]が閾値(例えば1000[kJ])以上である場合に、蓄熱量が蓄熱限界量以上であると判定する。
 蓄熱量が蓄熱限界量以上でない場合(S5:No)、制御装置43は、S5へ処理を戻し、暖房兼蓄熱運転を継続する。
 蓄熱量が蓄熱限界量以上である場合(S5:Yes)、制御装置43は、運転モードを蓄熱暖房運転に切り替える(S6)。これにより、空気調和機1では、冷媒回路5における冷凍サイクルが停止されたままで、蓄熱部35が蓄積した熱が室内熱交換器22より出力されることとなる。
 ついで、制御装置43は、蓄熱部センサ38による検出結果に基づいて、蓄熱部35が蓄えた熱量(蓄熱量)が所定蓄熱量以下となっているか否かを判定する(S7)。
 蓄熱部センサ38による検出結果に基づいて制御装置43が行う、蓄熱量が所定蓄熱量以下であるか否かの判定方法については、次のようなものがある。
 まず、蓄熱部35の蓄熱量が減ることで、その蓄熱材温度が閾値以下となった場合に、蓄熱量が所定蓄熱量以下であるとする判定方法がある。この判定方法における閾値は、蓄熱部35の蓄熱材に応じて、例えば35℃などとしてもよい。
 また、蓄熱部35の蓄熱材から得られる熱が減ることで、蓄熱部35の出口からの水の温度が閾値以下となった場合に、蓄熱量が所定蓄熱量以下であるとする判定方法がある。この判定方法における閾値は、蓄熱部35の蓄熱材に応じて、例えば35℃などとしてもよい。
 また、室内側で熱交換しても不快となるため、室内熱交換器22の入口における水の温度が閾値以下となった場合に、蓄熱量が所定蓄熱量以下であるとする判定方法がある。この判定方法における閾値は、室温等に応じて、例えば35℃などとしてもよい。
 また、室内側で熱交換できていない場合(能力が確保できていない)を想定し、室内熱交換器22の入口と、室内熱交換器22の出口とにおける水の温度差が閾値以下となった場合に、蓄熱量が所定蓄熱量以下であるとする判定方法がある。この判定方法における閾値は、例えば5℃などとしてもよい。
 また、制御装置43は、現在の蓄熱部35の蓄熱量を計算し、その計算した蓄熱量が閾値以下であるか否かを判定してもよい。具体的には、制御装置43は、蓄熱運転前の蓄熱量から蓄熱暖房中に蓄熱材から持ち出された熱量を減じることで、現在の蓄熱部35の蓄熱量を計算する。ついで、制御装置43は、計算した蓄熱量が閾値(例えば0[kJ])以下であるか否かを判定する。
 蓄熱部35が蓄積した熱量(蓄熱量)が所定蓄熱量以下となっていない場合(S7:No)、制御装置43は、S7へ処理を戻し、蓄熱暖房運転を継続する。
 蓄熱部35が蓄積した熱量(蓄熱量)が所定蓄熱量以下となっている場合(S7:Yes)、制御装置43は、蓄熱暖房運転を終了する。なお、この蓄熱暖房運転終了後において、暖房運転を継続する場合には、制御装置43は、S1に処理を戻すこととなる。
 図5は、実施形態にかかる空気調和機の運転例を説明する説明図である。図5において、上から1段目のグラフは、縦軸を温度[℃]、横軸を空気調和機1の運転時間[h]とし、室温と設定温度との関係を示している。また、上から2段目のグラフは、縦軸を圧縮機11の回転数[rpm]、横軸を空気調和機1の運転時間[h]とし、圧縮機11の時間変化を示している。また、上から3段目のグラフは、縦軸を蓄熱部35の蓄熱量[J]、横軸を空気調和機1の運転時間[h]とし、蓄熱部35の時間変化を示している。また、上から4段目のグラフは、縦軸を空気調和機1の暖房能力[W]、横軸を空気調和機1の運転時間[h]とし、暖房能力の時間変化を示している。
 図5に示すように、暖房運転開始時(t0)より室温が設定温度に到達(所定値まで近づく)し、かつ、圧縮機11が最低回転数となる時刻(t1)までの間は、圧縮機11の回転数を調節しながら暖房専用運転が行われる。
 ついで、圧縮機11が最低回転数となった時刻(t1)より、蓄熱部35が蓄熱完了(蓄熱量が蓄熱限界量となる)する時刻(t2)までの間は、暖房兼蓄熱運転が行われる。この暖房兼蓄熱運転時(t1~t2)においては、余剰能力を蓄熱部35への蓄熱に回すことで空気調和機1の暖房能力が引き下げられることとなる。すなわち、暖房兼蓄熱運転時(t1~t2)には、蓄熱を利用した暖房能力の引き下げを行うことができる。これにより、暖房能力と室内温度の上昇による運転停止が生じないようにすることができる。したがって、空気調和機1では、断続運転が繰り返されて室内温度の変動が大きくなるような、快適性が低下する事態を抑止できる。
 図6は、蓄熱を利用した能力の引き下げを説明する説明図である。図6に示すように、暖房兼蓄熱運転時(t1~t2)では、室外機2の出力(熱量)の一部は、蓄熱部35における蓄熱に利用される。このため、室内熱交換器22からの出力(暖房能力)は、引き下げられることとなる。
 ついで、蓄熱部35が蓄熱完了(蓄熱量が蓄熱限界量となる)する時刻(t2)から、その蓄熱量が所定値(例えば0[J])以下となる時刻(t3)までの間は、蓄熱暖房運転が行われる。これにより、空気調和機1では、圧縮機11を駆動することなく、蓄熱部35の蓄熱を利用した暖房運転を継続することができる。そして、制御装置43は、蓄熱部35の蓄熱量が所定値となった時刻(t3)以後は、圧縮機11を再起動させることで、暖房専用運転または暖房兼蓄熱運転を行う。
 図7は、従来の空気調和機の運転例を説明する説明図である。図7において、上から1段目のグラフは、縦軸を温度[℃]、横軸を従来の空気調和機の運転時間[h]とし、室温と設定温度との関係を示している。また、上から2段目のグラフは、縦軸を従来の空気調和機における圧縮機の回転数[rpm]、横軸を従来の空気調和機の運転時間[h]とし、圧縮機の時間変化を示している。また、上から3段目のグラフは、縦軸を従来の空気調和機の暖房能力[W]、横軸を従来の空気調和機の運転時間[h]とし、暖房能力の時間変化を示している。
 図7に示すように、従来の空気調和機では、暖房運転開始時(t10)より室温が設定温度に到達(所定値まで近づく)し、かつ、圧縮機が最低回転数となる時刻(t11)までの間は、圧縮機の回転数を調整した暖房運転が行われる。ついで、従来の空気調和機では、圧縮機を最低回転数とした暖房運転を継続し、室温が設定温度範囲の上限に達した時刻(t12)で、圧縮機の駆動を停止させることとなる。この圧縮機の駆動停止により、従来の空気調和機における暖房能力は0となり、室温が低下する。そして、室温が設定温度範囲の下限に達した時刻(t13)で、従来の空気調和機は、圧縮機を再起動させる。これにより、室温は再度上昇に転ずることとなる。
 図6と、図7における室温と設定温度との関係を示しているグラフ(上から1段目)を比較しても明らかなように、実施形態にかかる空気調和機1では、従来の空気調和機と比べて設定温度に対する室内温度の変動がより小さくなっている。このように、実施形態にかかる空気調和機1では、快適性の低下を抑制することができる。
 図8は、変形例にかかる空気調和機の一例を示す回路図である。変形例にかかる空気調和機1は、既述の空気調和機1の水回路6が省略され、冷媒回路5が他の冷媒回路61に置換されている。冷媒回路61は、既述の実施形態の空気調和機1の冷媒回路5の中間熱交換器16が室内熱交換器62に置換され、他の部分は、既述の冷媒回路5と同じである。室内熱交換器62は、室内機3の内部に配置されている。室内ファン42は、室内熱交換器62に室内の空気が熱的に接触するように、かつ、室内熱交換器62に熱的に接触した室内の空気が室内機3から室内に吹き出るように、室内の空気を送風する。
 変形例の空気調和機は、蓄熱回路63をさらに備えている。室内機3は、室外機2の内部に配置されている。蓄熱回路63には、蓄熱用流路64が形成されている。冷媒回路61のうちの膨張弁15と室内熱交換器62との間の第1流路65は、蓄熱用流路64を介して、室内熱交換器62と四方弁12との間の第2流路66に接続されている。蓄熱回路63は、蓄熱部67と電磁弁68とを備えている。蓄熱部67は、内部に蓄熱材が充填されている。蓄熱部67は、蓄熱用流路64を流れる冷媒に熱的に接触する。電磁弁68は、第1流路65と第2流路66とが接続されるように開いたり、第1流路65と第2流路66とが接続されないように閉じたりする。
 制御装置43は、上述した実施形態の空気調和機1と同様に、圧縮機11と四方弁12と室外ファン41と室内ファン42とを制御し、また、上述した実施形態の空気調和機1の電磁弁36と同様に、電磁弁68を制御する。例えば、制御装置43は、冷媒の流路が暖房専用運転、暖房兼蓄熱運転に対応したものとなるように、電磁弁68の開/閉を制御する。この変形例のように、1つの冷媒回路61に、蓄熱回路63を備える構成であってもよい。
 以上、空気調和機の実施形態を説明したが、前述した内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
 以上のように、空気調和機1は、冷媒を圧縮する圧縮機11と、室内の空気と冷媒を熱交換する室内機3と、室外の空気と冷媒を熱交換する室外機2と、冷媒と熱交換する蓄熱部35と、室内の温度である室内温度を検出する室温センサ37と、室内温度と設定温度の差に基づいて圧縮機11を駆動し、且つ、その差が所定値を下回ったときに蓄熱部35での熱交換を行わせる制御装置43とを有する。
 これにより、空気調和機1では、室内温度と設定温度の差が所定値を下回ったときには蓄熱部35での熱交換が行われるようにして、余剰な暖房能力を蓄熱部35での蓄熱に回すことで、室内温度の上昇による運転停止が生じないようにすることができる。したがって、空気調和機1では、断続運転が繰り返されて室内温度の変動が大きくなるような、快適性が低下する事態を抑止できる。
 また、空気調和機1は、第1の冷媒を循環させる冷媒回路5と、第2の冷媒を循環させる水回路6と、第1の冷媒と、第2の冷媒とを熱交換する中間熱交換器16と、を有する。空気調和機1において、圧縮機11と、室外機2とは、冷媒回路5に含まれる。また、室内機3と、蓄熱部35とは、水回路6に含まれる。
 このように、空気調和機1は、室内機3に用いる冷媒と、室外機2に用いる冷媒とを独立して循環させる構成であってもよい。このような構成を用いることで、例えば、室外機2に用いる冷媒が室内機3側に漏れるような事態を抑制することができる。
 また、空気調和機1は、蓄熱部35が蓄積した蓄熱量を検出する検出部を更に有し、制御装置43は、蓄熱部35での熱交換を行わせているときに、検出した蓄熱量が所定値となった場合、圧縮機11の駆動を停止し、且つ、室内機3に流入する冷媒を蓄熱部35で熱交換させる。これにより、空気調和機1では、余剰な暖房能力で蓄熱部35に蓄積した熱を用いた効率のよい暖房運転を実現できる。
 また、空気調和機1において、室内機3と、蓄熱部35とは、水回路6aにおいて直列に接続される。このような直列な構成とすることで、例えば、並列の場合と比較して、冷媒を循環させるためのポンプ21の個数などを削減し、より低コストに運用することができる。
 また、空気調和機1において、第1の冷媒は、R32またはR290(プロパン)である。空気調和機1では、R32またはR290(プロパン)を冷媒とする構成において、室内機3側に水回路を採用することでそのR290が室内機3側に漏れるような事態を抑制することができる。また、空気調和機1において、第2の冷媒は水または不凍液である。
 また、空気調和機1は、圧縮機11を最低回転数で運転し、且つ、室内温度と設定温度の差が所定値を下回ったときに蓄熱部35での熱交換を行わせる。これにより、空気調和機1では、圧縮機11を最低回転数で運転した状態における余剰能力を蓄熱部35での熱交換に利用して、暖房能力のさらなる引き下げを行うことができる。
1…空気調和機
2、2a…室外機
3…室内機
5…冷媒回路
6、6a…水回路
11…圧縮機
12…四方弁
14…室外熱交換器
15…膨張弁
16…中間熱交換器
17…吸入管
18…吐出管
21、21a~21c…ポンプ
22、62…室内熱交換器
31、31a、63…蓄熱回路
32、32a、64…蓄熱用流路
33、33a、65…第1流路
34、34a、66…第2流路
35、67…蓄熱部
36、36a~36d、68…電磁弁
37…室温センサ
38…蓄熱部センサ
41…室外ファン
42…室内ファン
43…制御装置
44…記憶装置
45…CPU
61…冷媒回路
G1、G2…グラフ
t0~t3、t10~t13…時刻

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     室内の空気と前記冷媒を熱交換する室内機と、
     室外の空気と前記冷媒を熱交換する室外機と、
     前記冷媒と熱交換する蓄熱部と、
     前記室内の温度である室内温度を検出する室温センサと、
     前記室内温度と設定温度の差に基づいて前記圧縮機を駆動し、且つ、前記差が所定値を下回ったときに前記蓄熱部での熱交換を行わせる制御部と、
     を有することを特徴とする空気調和機。
  2.  第1の冷媒を循環させる第1の冷媒回路と、
     第2の冷媒を循環させる第2の冷媒回路と、
     前記第1の冷媒と、前記第2の冷媒とを熱交換する熱交換器と、を有し、
     前記圧縮機と、前記室外機とは、前記第1の冷媒回路に含まれ、
     前記室内機と、前記蓄熱部とは、前記第2の冷媒回路に含まれる、
     ことを特徴とする請求項1に記載の空気調和機。
  3.  前記蓄熱部が蓄積した蓄熱量を検出する検出部を更に有し、
     前記制御部は、前記蓄熱部での熱交換を行わせているときに、検出した前記蓄熱量が所定値となった場合、前記圧縮機の駆動を停止し、且つ、前記室内機に流入する冷媒を前記蓄熱部で熱交換させる、
     ことを特徴とする請求項2に記載の空気調和機。
  4.  前記室内機と、前記蓄熱部とは、前記第2の冷媒回路において直列に接続される、
     ことを特徴とする請求項3に記載の空気調和機。
  5.  前記第1の冷媒は、R290(プロパン)である、
     ことを特徴とする請求項3または4に記載の空気調和機。
  6.  前記制御部は、前記圧縮機を最低回転数で運転し、且つ、前記差が所定値を下回ったときに前記蓄熱部での熱交換を行わせる、
     ことを特徴とする請求項1乃至5のいずれか一項に記載の空気調和機。
PCT/JP2023/012450 2022-03-29 2023-03-28 空気調和機 WO2023190485A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023244654A AU2023244654A1 (en) 2022-03-29 2023-03-28 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053563A JP7444189B2 (ja) 2022-03-29 2022-03-29 空気調和機
JP2022-053563 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190485A1 true WO2023190485A1 (ja) 2023-10-05

Family

ID=88202487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012450 WO2023190485A1 (ja) 2022-03-29 2023-03-28 空気調和機

Country Status (3)

Country Link
JP (1) JP7444189B2 (ja)
AU (1) AU2023244654A1 (ja)
WO (1) WO2023190485A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410068A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner
JPH05312362A (ja) * 1992-05-06 1993-11-22 Mitsubishi Electric Corp 蓄熱式空気調和装置
JPH10292949A (ja) * 1997-04-17 1998-11-04 Ebara Corp 空気調和機の圧縮機容量制御装置
JP2000002474A (ja) * 1998-04-15 2000-01-07 Mitsubishi Electric Corp 冷凍空調装置およびその制御方法
JP2002061980A (ja) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd 圧縮式ヒートポンプ空調装置及びその運転方法
JP2002115923A (ja) 2000-10-06 2002-04-19 Mitsubishi Electric Corp 冷凍装置、冷凍装置の制御方法
JP2003130421A (ja) * 2001-10-24 2003-05-08 Mitsubishi Electric Corp 蓄熱式冷凍サイクル装置の運転方法
WO2012111063A1 (ja) * 2011-02-14 2012-08-23 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル制御方法
JP2016125808A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410068A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner
JPH05312362A (ja) * 1992-05-06 1993-11-22 Mitsubishi Electric Corp 蓄熱式空気調和装置
JPH10292949A (ja) * 1997-04-17 1998-11-04 Ebara Corp 空気調和機の圧縮機容量制御装置
JP2000002474A (ja) * 1998-04-15 2000-01-07 Mitsubishi Electric Corp 冷凍空調装置およびその制御方法
JP2002061980A (ja) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd 圧縮式ヒートポンプ空調装置及びその運転方法
JP2002115923A (ja) 2000-10-06 2002-04-19 Mitsubishi Electric Corp 冷凍装置、冷凍装置の制御方法
JP2003130421A (ja) * 2001-10-24 2003-05-08 Mitsubishi Electric Corp 蓄熱式冷凍サイクル装置の運転方法
WO2012111063A1 (ja) * 2011-02-14 2012-08-23 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル制御方法
JP2016125808A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機

Also Published As

Publication number Publication date
AU2023244654A1 (en) 2024-10-03
JP7444189B2 (ja) 2024-03-06
JP2023146403A (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2009119023A1 (ja) 冷凍装置
WO2009157191A1 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP2006162235A (ja) マルチエアコンシステム及びマルチエアコンシステムのバルブ開度制御方法
JP6004670B2 (ja) 空気調和装置の制御装置及び空気調和装置の制御方法並びに空気調和装置のプログラム、それを備えた空気調和装置
CN104024763B (zh) 空气调节机以及空气调节机的膨胀阀的开度控制方法
JP2008064439A (ja) 空気調和装置
KR20180033634A (ko) 공기 조화기 및 그 제어 방법
US20200064040A1 (en) Refrigeration cycle apparatus
CN109716035B (zh) 用于空气调节和热水供给的系统
JP6749471B2 (ja) 空気調和装置
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP5589607B2 (ja) ヒートポンプサイクル装置
JP2004020064A (ja) 多室形空気調和機の制御方法
JP2021055931A (ja) ヒートポンプサイクル装置
WO2022085112A1 (ja) 冷熱源ユニットおよび冷凍サイクル装置
JP2010007996A (ja) 空気調和装置の試運転方法および空気調和装置
JP7444189B2 (ja) 空気調和機
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP6971400B2 (ja) 空調システム、空調方法、及びプログラム
CN109790984B (zh) 用于空气调节和热水供给的系统
JP3558788B2 (ja) 空気調和機およびその制御方法
JP2001241779A (ja) 空気調和機の冷媒流量制御装置
CN118922671A (zh) 空调机
WO2021214816A1 (ja) 冷凍サイクル装置、空気調和機および冷却装置
KR100544707B1 (ko) 수냉식 공기 조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2023244654

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023244654

Country of ref document: AU

Date of ref document: 20230328

Kind code of ref document: A