WO2023189824A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2023189824A1
WO2023189824A1 PCT/JP2023/010902 JP2023010902W WO2023189824A1 WO 2023189824 A1 WO2023189824 A1 WO 2023189824A1 JP 2023010902 W JP2023010902 W JP 2023010902W WO 2023189824 A1 WO2023189824 A1 WO 2023189824A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
rotor core
permanent magnets
rotor
reference position
Prior art date
Application number
PCT/JP2023/010902
Other languages
English (en)
French (fr)
Inventor
励 本間
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2024007660A priority Critical patent/MX2024007660A/es
Priority to CA3240072A priority patent/CA3240072A1/en
Priority to JP2024511888A priority patent/JP7530028B2/ja
Priority to KR1020247020804A priority patent/KR20240108521A/ko
Priority to CN202380015397.9A priority patent/CN118435496A/zh
Priority to EP23779840.0A priority patent/EP4443706A1/en
Publication of WO2023189824A1 publication Critical patent/WO2023189824A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotating electric machine.
  • This application claims priority based on Japanese Patent Application No. 2022-053600 filed in Japan on March 29, 2022, the contents of which are incorporated herein.
  • IPMSM embedded permanent magnet synchronous motor
  • the present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to improve torque.
  • a rotating electric machine includes an annular stator and a rotor disposed within the stator, and the rotor includes a rotor core and a rotor core embedded in the rotor core.
  • a rotating electrical machine comprising a plurality of permanent magnets forming magnetic poles and arranged in the rotor core in a circumferential direction of the rotor core, the rotor core having a plurality of sets of permanent magnets disposed in a circumferential direction of the rotor core.
  • a first flux barrier provided on both sides of the rotor core; and a first bridge provided on the outside of the rotor core in the radial direction with respect to the first flux barrier; a front bridge provided at the front in the rotational direction of the rotor, and a rear bridge provided at the rear in the rotational direction of the rotor, and a front reference position that is a reference position of the front bridge is viewed from the axial direction of the rotor.
  • the rear reference point is the intersection of the outer peripheral surface of the rotor core and the front virtual line passing through the central axis of the rotor core and the front end of each set of the permanent magnets, and is the reference position of the rear bridge.
  • the rear end of the front bridge has a central angle of ⁇ a/24 (radian) or more ⁇ a/8 with respect to the front reference position about the central axis.
  • the front end of the rear bridge is located at a position far away from the rear, and the front end of the rear bridge is at a central angle about the central axis with respect to the rear reference position, which is greater than or equal to 0 (radian) and less than or equal to ⁇ a/12 (radian). , located far forward.
  • ⁇ a satisfies the following equation (1).
  • ⁇ a 2 ⁇ /(Nslot)...(1)
  • Nslot in the above formula (1) means the number of slots of the stator.
  • the set of permanent magnets includes one or more permanent magnets.
  • the rear end of the front bridge and the front end of the rear bridge are portions of each bridge where magnetic saturation of the magnetic flux generated by each set of permanent magnets occurs. In other words, the rear end of the front bridge and the front end of the rear bridge are the parts of each bridge where the magnetic flux begins to pass from the rotor to the stator.
  • the rear end of the front bridge has a central angle ⁇ a about the central axis with respect to the front reference position.
  • a configuration may be adopted in which the rear bridge is disposed at a position spaced apart by /12 (radian) to the rear, and the front end of the rear bridge is disposed at the rear reference position.
  • two of the permanent magnets form a set to constitute one magnetic pole, and each set of the permanent magnets and a rear magnet located at the rear, and is arranged in a V-shape convex toward the inside in the radial direction in the plan view, and the front bridge is provided in front of the front magnet.
  • the rear bridge is provided behind the rear magnet, and in the plan view, the front imaginary line passes through the central axis and the front end of the front magnet, and the rear imaginary line is in line with the central axis. You may adopt the structure which passes the rear end of the said rear magnet.
  • the inventor of the present invention has discovered that the circumferential position of the rear end of the front bridge and the circumferential position of the front end of the rear bridge, in other words, the starting position of the first bridge influences torque.
  • the inventor of the present application has found that the torque increases by arranging the circumferential position of the rear end of the front bridge at the rear in the rotational direction with respect to the front reference position.
  • This phenomenon is thought to be based on the following principle. That is, magnetic saturation occurs at the starting position of the first bridge during the process in which the magnetic flux generated at the magnetic poles constituted by a set of permanent magnets is transmitted within the rotor core. The magnetic flux then travels from inside the rotor core to the outside and is transmitted to the teeth of the stator.
  • the starting position of the first bridge is the starting point from which the magnetic flux is transmitted to the stator.
  • the direction (direction) of the magnetic flux lines transmitted from the front bridge to the teeth of the stator is in the radial direction of the rotor, in other words. is inclined with respect to the longitudinal direction of the teeth, and as a result, the lines of magnetic flux become longer.
  • a force is generated to shorten the lines of magnetic flux, and as a result of this force rotating the rotor, it is thought that torque increases.
  • the inventor of the present application determined the circumferential position of the rear end of the front bridge and the circumferential position of the front end of the rear bridge in ⁇ a (radian), which is the central angle corresponding to the pitch of the teeth of the stator. After careful consideration using the unit as a unit, it was found that high torque can be output by setting as described above.
  • the arrangement and shape of the two first flux barriers and the arrangement and shape of the two first bridges constituting one magnetic pole are generally symmetrical, and in this type of rotating electrical machine, the two first bridges It is not generally seen that the arrangement and shape of the asymmetrically changed.
  • torque can be improved.
  • FIG. 1 is a diagram showing a rotating electric machine according to an embodiment of the present invention, and is a plan view including a partial cross section.
  • FIG. 2 is an enlarged plan view of a stator and a rotor included in the rotating electric machine shown in FIG. 1.
  • FIG. FIG. 2 is an enlarged plan view of a rotor included in the rotating electrical machine shown in FIG. 1.
  • FIG. 4 is an enlarged plan view of the IV section shown in FIG. 3.
  • FIG. FIG. 4 is an enlarged plan view of the V section shown in FIG. 3.
  • FIG. FIG. 2 is a diagram for explaining the rotating electric machine shown in FIG. 1, and is an enlarged plan view showing a state in which the rear end of the front bridge and the front end of the rear bridge of the rotor are located at their respective reference positions.
  • FIG. 6 is a diagram for explaining the rotating electric machine shown in FIG. 1, in which the rear end of the front bridge of the rotor has moved rearward compared to the position shown in FIG. 5, and the front end of the rear bridge has moved as shown in FIG. 5.
  • FIG. 3 is an enlarged plan view showing a state in which the device is moved forward compared to the current position.
  • FIG. 2 is a diagram showing an image of magnetic flux flowing in a rotating electric machine according to an embodiment of the present invention.
  • the rotating electric machine is an electric motor, specifically an AC motor, more specifically a synchronous motor, and even more specifically a permanent magnet field type motor.
  • This type of electric motor is suitably employed in, for example, electric vehicles.
  • the rotating electrical machine 10 includes a stator 20, a rotor 30, a case 50, and a rotating shaft 60.
  • Stator 20 and rotor 30 are housed in case 50.
  • Stator 20 is fixed to case 50.
  • the rotating electric machine 10 is an inner rotor type in which the rotor 30 is located inside the stator 20.
  • the rotating electric machine 10 is a three-phase AC motor with 8 poles and 24 slots.
  • the number of poles, the number of slots, the number of phases, etc. can be changed as appropriate.
  • the axes of the stator 20 and the rotor 30 are on a common axis.
  • this common axis will be referred to as the central axis O (the central axis of the rotor 30).
  • the direction of the central axis O (the axial direction of the rotor core 31 described later) is referred to as the axial direction
  • the direction perpendicular to the central axis O (the radial direction of the rotor core 31 described later) is referred to as the radial direction
  • the direction of rotation around the central axis O ( The circumferential direction of the rotor core 31 (described later) is referred to as the circumferential direction.
  • the stator 20 includes a stator core 21 and windings (not shown).
  • the stator core 21 includes a cylindrical core back 22 (yoke) and a plurality of teeth 23 .
  • the core back 22 is formed in an annular shape in a plan view of the rotating electrical machine 10 from the axial direction.
  • the plurality of teeth 23 protrude radially inward from the core back 22 (toward the central axis O of the core back 22 along the radial direction).
  • the plurality of teeth 23 are arranged at equal intervals in the circumferential direction.
  • 24 teeth 23 are provided at central angles of 15 degrees centering on the central axis O.
  • the plurality of teeth 23 are formed to have the same shape and size.
  • a slot 24 is provided between teeth 23 adjacent to each other in the circumferential direction.
  • the winding wire is wound around the teeth 23. The winding may be concentratedly wound or distributedly wound.
  • the rotor 30 is arranged radially inside the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in a cylindrical shape and is arranged coaxially with the stator 20 .
  • the rotary shaft 60 is arranged within the rotor core 31 .
  • the rotating shaft 60 is fixed to the rotor core 31 so as to rotate together with the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31.
  • one set of two permanent magnets 32 forms one magnetic pole 33.
  • the plurality of sets of permanent magnets 32 are arranged at equal intervals in the circumferential direction. In this embodiment, eight sets (16 in total) of permanent magnets 32 are provided at central angles of 45 degrees around the central axis O.
  • the rotating electric machine 10 is an embedded magnet type motor.
  • a plurality of through holes 34 are formed in the rotor core 31 so as to penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 34 are provided corresponding to the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 while being disposed within the corresponding through hole 34 . Fixing of each permanent magnet 32 to the rotor core 31 can be realized, for example, by bonding the outer surface of the permanent magnet 32 and the inner surface of the through hole 34 with an adhesive.
  • the laminated core is formed by laminating a plurality of electromagnetic steel sheets.
  • the stacked electromagnetic steel plates are fixed together by, for example, caulking, adhesion, welding, or the like.
  • Each electromagnetic steel plate forming the stator core 21 and the rotor core 31 is formed, for example, by punching an electromagnetic steel plate serving as a base material.
  • the electromagnetic steel plate a known electromagnetic steel plate can be used.
  • the chemical composition of the electrical steel sheet is not particularly limited.
  • a non-oriented electrical steel sheet is used as the electrical steel sheet.
  • the non-oriented electrical steel sheet for example, a non-oriented electrical steel strip according to JIS C 2552:2014 can be used.
  • the electrical steel sheet it is also possible to use a grain-oriented electrical steel sheet instead of the non-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheet for example, grain-oriented electrical steel strip according to JIS C 2553:2012 can be used.
  • an insulating coating is provided on both sides of the electrical steel sheet.
  • the substance constituting the insulating film for example, (1) an inorganic compound, (2) an organic resin, (3) a mixture of an inorganic compound and an organic resin, etc. can be applied.
  • the inorganic compound include (1) a complex of dichromate and boric acid, and (2) a complex of phosphate and silica.
  • organic resins include epoxy resins, acrylic resins, acrylic styrene resins, polyester resins, silicone resins, and fluorine resins.
  • the permanent magnets 32 are embedded in the rotor core 31 and are paired to form one magnetic pole 33.
  • a plurality of pairs (eight pairs in the illustrated example) of permanent magnets 32 are arranged in the rotor core 31 in the circumferential direction.
  • the permanent magnet 32 has a rectangular parallelepiped shape.
  • the permanent magnet 32 has a rectangular shape in plan view.
  • the pair of permanent magnets 32 are arranged in a V-shape that is convex toward the inside in the radial direction in the planar view.
  • the pair of permanent magnets 32 are arranged symmetrically with respect to the d-axis A in the plan view.
  • the d-axis A passes through the central axis O and the circumferential center of each magnetic pole 33 in the plan view.
  • the through holes 34 in which the pair of permanent magnets 32 are arranged are also arranged approximately axisymmetrically with respect to the d-axis A.
  • the through hole 34 is larger on both sides of the q-axis B side and the d-axis A side than the permanent magnet 32 in the plan view.
  • the q-axis B passes between the central axis O and two circumferentially adjacent magnetic poles 33 in the planar view.
  • the q-axis B passes through the center in the circumferential direction between the two magnetic poles 33 in the plan view.
  • the q-axis B and the d-axis A are magnetically and electrically orthogonal. Portions of the through hole 34 located on the q-axis B side and the d-axis A side with respect to the permanent magnet 32 serve as flux barriers 35 and 36, respectively.
  • flux barriers 35 and 36 are provided at both ends of the permanent magnet 32 on the q-axis B side and on the d-axis A side.
  • the flux barriers 35 and 36 are magnetic gaps that penetrate the rotor core 31 in the axial direction.
  • the flux barriers 35 and 36 reduce the magnetic flux from the permanent magnets 32 circulating within the rotor 30 (hereinafter also referred to as return magnetic flux), or change the inflow path of the magnetic flux from the permanent magnets 32 toward the stator 20. do.
  • the magnet magnetic flux hereinafter simply referred to as magnet magnetic flux
  • the flux barriers 35 and 36 guide the magnet magnetic flux to the stator 20.
  • the rotor 30 includes a first flux barrier 35 and a second flux barrier 36 as flux barriers 35 and 36.
  • the first flux barrier 35 and the second flux barrier 36 sandwich the permanent magnet 32 from both ends. This makes it easier for the magnet magnetic flux to be effectively transmitted to the stator 20.
  • the first flux barrier 35 is located on the q-axis B side closest to one permanent magnet 32.
  • the first flux barrier 35 is located on both outer sides of the pair of permanent magnets 32 in the circumferential direction (rotation direction).
  • the second flux barrier 36 is located on the d-axis A side closest to one permanent magnet 32. It is located at the center of the pair of permanent magnets 32 in the circumferential direction (rotation direction).
  • the first flux barrier 35 spreads outward in the radial direction of the rotor core 31 from the end face on the q-axis B side closest to one permanent magnet 32.
  • the first flux barrier 35 includes a first space 37 and a second space 38.
  • the first space 37 In the first space 37, the end face on the q-axis B side closest to one permanent magnet 32 is exposed.
  • the first space 37 extends from one permanent magnet 32 to the nearest q-axis B side in the plan view.
  • the first space 37 has a triangular shape that is convex toward the q-axis B side in the plan view.
  • the radial space width of the first space 37 becomes smaller as it moves away from one permanent magnet 32 toward the q-axis B side closest to it.
  • the second space 38 communicates with the first space 37. At least a portion of the second space 38 is located outside the first space 37 in the radial direction.
  • the second space 38 In the plan view, the second space 38 has a rectangular shape. In the plan
  • a first bridge 39 is provided on the outside of the first flux barrier 35 in the radial direction.
  • the first bridge 39 is part of the rotor core 31.
  • the first bridge 39 is a portion of the rotor core 31 that is located outside the first flux barrier 35 in the radial direction.
  • the presence of the first bridge 39 improves the centrifugal strength of the rotor core 31 compared to the case where the first bridge 39 is not present.
  • the first bridge 39 ensures mechanical strength at the outer periphery of the rotor core 31. If the radial width of the first bridge 39 is sufficiently narrow, magnetic saturation will prevent the magnetic flux from passing through the first bridge 39, and the magnet magnetic flux will be prevented from flowing back.
  • the width (radial size) of the first bridge 39 is locally smaller than the width of both portions of the rotor core 31 that are adjacent to the first bridge 39 in the circumferential direction.
  • the length (circumferential size) and width of the first bridge 39 are appropriately designed depending on the rotation speed and shape of the rotating electric machine 10.
  • the width of the first bridge 39 is smaller than the width of both portions of the rotor core 31 that are circumferentially adjacent to the first bridge 39, it does not have to be locally small.
  • the width of the first bridge 39 may be continuously smaller than the width of both portions of the rotor core 31 that are adjacent to the first bridge 39 in the circumferential direction.
  • the first bridge 39 a portion of the outer peripheral portion of the rotor core 31 whose radial size (width) is 1% or less of the outer diameter of the rotor core 31 may be used as the first bridge 39 .
  • the shape, size, etc. of the first flux barrier 35 are not limited to the aspects shown in this embodiment.
  • the second flux barrier 36 includes a first space 37, and the end face on the d-axis A side closest to one permanent magnet 32 is exposed.
  • the first space 37 extends from one permanent magnet 32 to the nearest d-axis A side in the plan view.
  • a second bridge 40 is provided between the two second flux barriers 36 forming a pair in each magnetic pole 33 .
  • the second bridge 40 is longer in the radial direction than in the circumferential direction.
  • the second bridge 40 causes magnetic flux saturation in the second bridge 40 and inhibits formation of a magnetic circuit.
  • the second bridge 40 is located on the d-axis A.
  • the front of the rotating electric machine 10 in the rotational direction (circumferential direction) is simply referred to as the front F, and the rear in the rotational direction is simply referred to as the rear R.
  • the above rotation direction means the rotation direction in which the rotating electric machine 10 mainly rotates.
  • the counterclockwise direction is the forward direction F
  • the clockwise direction is the backward direction R when looking at the page.
  • the pair of permanent magnets 32 includes a front magnet 32f and a rear magnet 32r.
  • the front magnet 32f is located on the front F side with respect to the rear magnet 32r.
  • the two first bridges 39 included in one magnetic pole 33 include a front bridge 39f and a rear bridge 39r.
  • the front bridge 39f is provided to the front magnet 32f.
  • the front bridge 39f is located on the front F side (q-axis B side) and on the outside in the radial direction with respect to the front magnet 32f.
  • the front bridge 39f is located on the outside in the radial direction with respect to the first flux barrier 35 located on the front F side of the pair of first flux barriers 35.
  • the rear bridge 39r is provided to the rear magnet 32r.
  • the rear bridge 39r is located on the rear R side (q-axis B side) and on the outside in the radial direction with respect to the rear magnet 32r.
  • the rear bridge 39r is located on the outside in the radial direction with respect to the first flux barrier 35 located on the rear R side of the pair of first flux barriers 35.
  • the reference position for the front bridge 39f is defined as a front reference position Pf
  • the reference position for the rear bridge 39r is defined as a rear reference position Pr, each defined as follows.
  • the front reference position Pf is defined as the intersection of the outer peripheral surface of the rotor core 31 and the front imaginary line L1 passing through the central axis O and the front end of the front magnet 32f in the circumferential direction on the front F side, in the plan view.
  • the rear reference position Pr is the intersection point of the outer peripheral surface of the rotor core 31 and the rear virtual line L2 passing through the central axis O and the circumferential rear end on the rear R side of the rear magnet 32r in the plan view.
  • the rear end 39f1 of the front bridge 39f located on the rearmost R side is at a central angle about the central axis O with respect to the front reference position Pf. It is arranged at a position away from ⁇ a/24 (radian) or more and ⁇ a/8 (radian) or less toward the rear R side.
  • the front end 39r1 of the rear bridge 39r which is located furthest to the front F side, moves toward the front F side by a central angle of 0 (radian) or more and ⁇ a/12 (radian) or less with respect to the rear reference position Pr. located at a remote location.
  • ⁇ a satisfies the following equation (1).
  • Nslot in the above formula (1) means the number of slots of the stator 20.
  • the rear end 39f1 of the front bridge 39f located on the rearmost R side preferably has a central angle about the central axis O with respect to the front reference position Pf that is 3 ⁇ a/48 (radians) or more and 5 ⁇ a/48 (radians). Hereinafter, they are arranged at positions distant from each other on the rear R side.
  • the front end 39r1 of the rear bridge 39r located on the most front F side is preferably at a central angle of 0 (radian) or more and ⁇ a/48 (radian) or less with respect to the rear reference position Pf, with respect to the rear reference position Pf. It is located far away on the F side.
  • the rear end 39f1 of the front bridge 39f is moved backward by ⁇ a/12 (radians) at a central angle about the central axis O with respect to the front reference position Pf. placed at a distance to the side.
  • the front end 39r1 of the rear bridge 39r is located at the rear reference position Pr.
  • the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r are portions of each bridge 39 where magnetic saturation of the magnetic flux generated by each set of permanent magnets 32 occurs.
  • the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r are portions of each bridge 39 where the magnetic flux begins to pass from the rotor 30 to the stator 20.
  • the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r are magnetic saturation start positions in each bridge 39.
  • the magnetic saturation start position of the front bridge 39f is the circumferential end position on the rear R side of the magnetic saturation start positions of the rear end 39f1.
  • the magnetic saturation start position in the rear bridge 39r is the circumferential end position on the front F side of the magnetic saturation start positions of the front end 39r1.
  • the magnetic saturation start position is a position where the distance between the front bridge 39f and the rear bridge 39r and the outer peripheral surface of the rotor core 31 is the shortest.
  • the magnetic saturation start position of the bridge 39 may be determined, for example, as a position where the absolute value of the magnetic flux density obtained by electromagnetic field analysis or the like exceeds the saturation magnetic flux density of the magnetic material used in the rotor core. Experiments using actual objects may be used instead of electromagnetic field analysis.
  • the magnetic saturation start position can be specified by any one method or two or more methods described above.
  • the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r form a boundary with a portion of the first bridge 39 that is not the first bridge 39.
  • the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r are defined as regions of the rotor core 31 that connect the first flux barrier 35 and the outer peripheral surface of the rotor core 31 in the shortest distance in the radial direction.
  • the front end 39r1 of the rear bridge 39r and the rear end 39f1 of the front bridge 39f are part of a region on an imaginary line passing through the first flux barrier 35 and the central axis O.
  • FIG. 8 shows an image of the flow of magnetic flux in the rotating electrical machine according to this embodiment.
  • Arrows A1 and A2 in FIG. 8 indicate the flow of magnetic flux.
  • Arrow A1 indicates the general flow of magnetic flux.
  • Arrow A2 indicates the magnetic flux density vector at each position.
  • FIG. 8 in the front bridge 39f, magnetic flux passes to the stator 20 at the rear end 39f1 of the front bridge 39f.
  • the amount of magnetic flux penetrating into the magnetic pole 33 side changes depending on the position of the front end 39r1 of the rear bridge 39r.
  • the width (radially (size) is sufficiently narrow
  • the rear end 39f1 of the front bridge 39f can be the end of the rear R.
  • the first portion becomes the front bridge 39f over the entire length (circumferential length) of the first flux barrier 35.
  • the width of the front bridge 39f may be narrower or wider than the rear end 39f1.
  • the portion of the front bridge 39f located forward of the rear end 39f1 may be larger or smaller in the radial direction than the rear end 39f1. .
  • the width of the front F side end of the portion (hereinafter referred to as the second portion) that is radially sandwiched between the first flux barrier 35 on the rear R side and the outer peripheral surface of the rotor core 31 in the rotor core 31 is sufficient. If it is narrow, the front end 39r1 of the rear bridge 39r can be the end on the front F side. In this case, the second portion becomes the rear bridge 39r over the entire length (circumferential length) of the first flux barrier 35. In this case, on the rear R side of the front end 39r1 of the rear bridge 39r, the width of the rear bridge 39r may be narrower or wider than the front end 39r1.
  • the rear end 39f1 of the front bridge 39f is located furthest on the rear R side among the areas where the width is sufficiently narrow in the first portion. It can be a region. In this case, a part of the first portion becomes the front bridge 39f, and the rear end 39f1 of the front bridge 39f is located on the front F side of the circumferential rear R side end of the first portion. Further, if the width of the front F side end of the second portion is not narrow enough, the front end 39r1 of the rear bridge 39r is the area located furthest on the front F side among the areas where the width is sufficiently narrow in the second portion. can do. In this case, a part of the second portion becomes the front bridge 39f, and the front end 39r1 of the rear bridge 39r is located on the rear R side of the second portion in the circumferential direction from the front F side end.
  • the sufficiently narrow width of the first portion and the second portion may mean, for example, that the width is 1% or less of the outer diameter of the rotor core 31. Furthermore, the fact that the width of the first portion or the second portion is sufficiently narrow may mean, for example, that the width is 0.3 mm or less. Furthermore, in order to specify the rear end 39f1 of the front bridge 39f and the front end 39r1 of the rear bridge 39r, the rotating electric machine 10 may be reproduced on software and electromagnetic field analysis may be performed.
  • the central angle between the rear end 39f1 of the front bridge 39f and the front reference position Pf is the central angle about the central axis O between the imaginary line L1a regarding the front bridge 39f and the front imaginary line L1.
  • the central angle between the front end 39r1 of the rear bridge 39r and the rear reference position Pr is the central angle about the central axis O between the imaginary line L2a and the rear imaginary line L2 regarding the rear bridge 39r.
  • the virtual line L2a is a virtual line passing through the front end 39r1 of the rear bridge 39r and the central axis O.
  • the central angle between the front end 39r1 of the rear bridge 39r and the rear reference position Pr is 0 (radian), in other words, the front end 39r1 of the rear bridge 39r is arranged at the rear reference position Pr.
  • the inventor of the present application has determined that the circumferential position of the rear end 39f1 of the front bridge 39f and the circumferential position of the front end 39r1 of the rear bridge 39r (hereinafter, these positions are collectively referred to as the starting position of the first bridge 39). , was found to have an effect on torque.
  • the inventor of the present invention has found that the torque increases by arranging the circumferential position of the rear end 39f1 of the front bridge 39f at the rear R in the rotational direction with respect to the front reference position Pf.
  • the inventor of the present application conducted an analysis of shape optimization of the rotor core 31. This analysis is based on the content described in Japanese Patent Application Publication No. 2021-114099. The inventor of the present application conducted the analysis multiple times assuming a plurality of different advance angles. It can be said that the shape of the rotor core 31 resulting from each analysis is the optimal shape depending on the prerequisite advance angle. The inventor of the present application analyzed the result (shape) that provides the highest torque among the results of analyzing the optimal shape for multiple types of advance angles. Note that the advance angle at this time was 50 degrees.
  • this phenomenon is considered to be based on the following principle. That is, in the process in which the magnetic flux generated at the magnetic poles 33 constituted by the pair of permanent magnets 32 is transmitted within the rotor core 31, magnetic saturation occurs at the starting position of the first bridge 39. Then, the magnetic flux is directed from inside the rotor core 31 to the outside and is transmitted to the teeth of the stator 20. Therefore, the starting position of the first bridge 39 becomes the starting point from which the magnetic flux is transmitted to the stator 20.
  • the further back R the rear end 39f1 of the front bridge 39f is located in the rotational direction with respect to the front reference position Pf, the more the direction (direction) of the magnetic flux lines transmitted from the front bridge 39f to the teeth 23 of the stator 20 becomes.
  • the inventor of the present application determined that the circumferential position of the rear end 39f1 of the front bridge 39f and the circumferential position of the front end 39r1 of the rear bridge 39r are set at a central angle corresponding to the pitch of the teeth of the stator 20. After intensive study using a certain ⁇ a (radian) as a unit, it was found that high torque can be output by setting as described above.
  • the target rotating electrical machine 10 is a rotating electrical machine 10 including rotors 30, 30A, and 30B shown in FIGS. 3, 6, and 7.
  • the position of the rear end 39f1 of the front bridge 39f is moved toward the rear R side by 0.625 degrees (that is, ( ⁇ a/24) degrees), and the position of the front end 39r1 of the rear bridge 39r is moved to the rear R side.
  • An analysis was conducted assuming a shape in which the front side was moved forward F side by 0.625 degrees, and the torque value was evaluated.
  • the rear end 39f1 of the front bridge 39f moves 1.25° toward the rear R side with respect to the front reference position Pf, and the front end 39r1 of the rear bridge 39r is located at the rear reference position Pr. do.
  • the rear end 39f1 of the front bridge 39f is located at the front reference position Pf, and the front end 39r1 of the rear bridge 39r is located at the rear reference position Pr.
  • the rear end 39f1 of the front bridge 39f moves 0.625° backward R with respect to the front reference position Pf
  • the front end 39r1 of the rear bridge 39r moves forward with respect to the rear reference position Pr. It has moved 0.625° to F.
  • virtual lines L1a and L2a are omitted.
  • the rear end 39f1 of the front bridge 39f is moved toward the rear R side by 0.625 degrees or more and 1.875 degrees or less (that is, ( ⁇ a/24) degrees or more ( ⁇ a/8) ) degree or less), the front end 39r1 of the rear bridge 39r is moved within the range of 0 degree or more and 1.25 degree or less (that is, 0 degree or more ( ⁇ a/12) degree or less), and the torque is lower than the standard shape. was confirmed to improve.
  • the arrangement and shape of the two first flux barriers 35 constituting one magnetic pole 33 and the arrangement and shape of the two first bridges 39 are generally symmetrical, and in this type of rotating electric machine 10, two A structure in which the arrangement and shape of the two first bridges 39 are asymmetrically changed is not generally seen.
  • the shape of the stator 20 is not limited to the form shown in the above embodiment. Specifically, the dimensions of the outer diameter and inner diameter of the stator core 21, the stacking thickness, the number of slots, the circumferential and radial dimension ratio of the teeth 23, the radial dimension ratio of the teeth 23 and the core back 22, etc. are set as desired. It can be arbitrarily designed according to the characteristics of the rotating electric machine 10.
  • the shape of the rotor 30 is not limited to the form shown in the above embodiment. Specifically, the outer and inner diameter dimensions, stacking thickness, number of poles, etc. of the rotor core 31 can be arbitrarily designed according to desired characteristics of the rotating electric machine 10.
  • both the stator core 21 and the rotor core 31 are laminated cores, but they may not be laminated cores.
  • the second flux barrier 36 may not be provided.
  • one magnetic pole 33 is composed of two permanent magnets 32.
  • one magnetic pole 33 may be composed of one permanent magnet 32, three permanent magnets 32, or four or more permanent magnets 32.
  • the set of permanent magnets 32 other forms including one or more permanent magnets 32 may be employed as appropriate.
  • this one permanent magnet 32 may have a rectangular shape that is long in the direction orthogonal to the d-axis A in the plan view.
  • one set of permanent magnets 32 is three permanent magnets 32 and the three permanent magnets 32 are arranged in the circumferential direction, the following arrangement may be used.
  • the permanent magnet 32 located at the center in the circumferential direction may have a rectangular shape that is long in the direction orthogonal to the d-axis A in the planar view. Furthermore, in this case, the two permanent magnets 32 located on both sides in the circumferential direction may extend radially outward from the d-axis A side toward the q-axis B side in the plan view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

前方基準位置(Pf)を、平面視において、ロータコア(31)の中心軸(O)と、各組の永久磁石(32)の前端と、を通過する前方仮想線(L1)とロータコア(31)の外周面との交点とし、かつ、後方基準位置(Pr)を、平面視において、ロータコア(31)の中心軸(O)と、各組の永久磁石(32)の後端と、を通過する後方仮想線(L2)とロータコア(31)の外周面との交点としたときに、前方ブリッジ(39f)の後端(39)は、前方基準位置(Pf)に対して、中心軸Oを中心とする中心角でθa/24(ラジアン)以上θa/8(ラジアン)以下、後方(R)に離れた位置に配置され後方ブリッジ(39r)の前端(39r1)は、後方基準位置(Pr)に対して、中心軸(O)を中心とする中心角で0(ラジアン)以上θa/12(ラジアン)以下、前方(F)に離れた位置に配置されている。ただし、θaは、以下の(1)式を満たす。 θa=2π/(Nslot)…(1)

Description

回転電機
 本発明は、回転電機に関する。
 本願は、2022年3月29日に、日本に出願された特願2022-053600号に基づき優先権を主張し、その内容をここに援用する。
 従来から、例えば下記特許文献1に記載の回転電機が知られている。
特開2018-198534号公報
 この種の埋め込み型永久磁石同期モータ(IPMSM)において、トルクの向上に改善の余地があることを本願発明者は見出した。
 本発明は、前述した事情に鑑みてなされたものであって、トルクを向上させることを目的とする。
 <1>本発明の一態様に係る回転電機は、環状のステータと、前記ステータ内に配置されたロータと、を備え、前記ロータは、ロータコアと、前記ロータコアに埋め込まれるとともに1組で1つの磁極を構成し、前記ロータコアに、前記ロータコアの周方向に複数組配置された永久磁石と、を備える回転電機であって、前記ロータコアは、各組の前記永久磁石に対して、前記ロータの回転方向の両側に設けられた第1フラックスバリアと、前記第1フラックスバリア対して、前記ロータコアの径方向の外側に設けられた第1ブリッジと、を備え、前記第1ブリッジは、前記ロータの回転方向の前方に設けられた前方ブリッジと、前記ロータの回転方向の後方に設けられた後方ブリッジと、を含み、前記前方ブリッジの基準位置である前方基準位置を、前記ロータを軸方向から見た平面視において、前記ロータコアの中心軸と、各組の前記永久磁石の前端と、を通過する前方仮想線と前記ロータコアの外周面との交点とし、かつ、前記後方ブリッジの基準位置である後方基準位置を、前記平面視において、前記ロータコアの中心軸と、各組の前記永久磁石の後端と、を通過する後方仮想線と前記ロータコアの外周面との交点としたときに、複数組の前記永久磁石のうち、少なくとも1組の前記永久磁石において、前記前方ブリッジの後端は、前記前方基準位置に対して、前記中心軸を中心とする中心角でθa/24(ラジアン)以上θa/8(ラジアン)以下、後方に離れた位置に配置され前記後方ブリッジの前端は、前記後方基準位置に対して、前記中心軸を中心とする中心角で0(ラジアン)以上θa/12(ラジアン)以下、前方に離れた位置に配置されている。
 ただし、θaは、以下の(1)式を満たす。
 θa=2π/(Nslot)…(1)
 ここで、上記(1)式中のNslotは、前記ステータのスロット数を意味する。また、一組の永久磁石は、1つ以上の永久磁石を含む。さらに、前方ブリッジの後端や後方ブリッジの前端は、各ブリッジのうち、各組の永久磁石によって発生する磁束の磁気飽和が生じる部分である。言い換えると、前方ブリッジの後端や後方ブリッジの前端は、各ブリッジのうち、磁束がロータからステータに渡り始める部分である。
 <2>上記<1>に係る回転電機では、前記少なくとも1組の前記永久磁石において、前記前方ブリッジの後端は、前記前方基準位置に対して、前記中心軸を中心とする中心角でθa/12(ラジアン)分、後方に離れた位置に配置され、前記後方ブリッジの前端は、前記後方基準位置に配置されている構成を採用してもよい。
 <3>上記<1>または<2>に係る回転電機では、前記永久磁石は、2つで一組をなして1つの磁極を構成し、各組の前記永久磁石は、前方に位置する前方磁石と、後方に位置する後方磁石と、を含むとともに、前記平面視において前記径方向の内側に向けて凸となるV字状に配置され、前記前方ブリッジは、前記前方磁石の前方に設けられ、前記後方ブリッジは、前記後方磁石の後方に設けられ、前記平面視において、前記前方仮想線は、前記中心軸と前記前方磁石の前端とを通過し、前記後方仮想線は、前記中心軸と前記後方磁石の後端とを通過する構成を採用してもよい。
 本願発明者は、前方ブリッジの後端の周方向の位置や後方ブリッジの前端の周方向の位置、言い換えると、第1ブリッジの開始位置が、トルクに影響を与えることを見出した。特に、前方ブリッジの後端の周方向の位置を、前方基準位置に対して回転方向の後方に配置することで、トルクが大きくなることを、本願発明者は見出した。
 この現象は以下の原理に基づくと考えられる。
 すなわち、1組の永久磁石が構成する磁極において生じる磁束がロータコア内で伝達される過程で、第1ブリッジの開始位置において磁気飽和が生じる。すると磁束が、ロータコア内から外部に向かい、ステータのティースに伝達される。そのため、第1ブリッジの開始位置は、磁束がステータに伝達される起点となる。ここで、前方ブリッジの後端が、前方基準位置に対して回転方向の後方に位置するほど、前方ブリッジからステータのティースに伝達される磁束線の向き(方向)は、ロータの径方向、言い換えるとティースの長手方向に対して傾斜し、その結果、磁束線が長くなる。このとき、磁束線が短くなるように力が発生し、この力によってロータが回転する結果、トルクが高まると考えられる。 以上の知見に基づいて、本願発明者は、前方ブリッジの後端の周方向の位置や後方ブリッジの前端の周方向の位置を、ステータのティースのピッチに対応する中心角であるθa(ラジアン)を単位として鋭意検討したところ、前述のように設定することで、高いトルクを出力できることを見出した。
 なお、1つの磁極を構成する2つの第1フラックスバリアの配置・形状や2つの第1ブリッジの配置・形状は、一般に対称であることが多く、この種の回転電機において、2つの第1ブリッジの配置・形状を非対称に変化させたものは、一般には見られない。
 本発明によれば、トルクを向上させることができる。
本発明の一実施形態に係る回転電機を示す図であって、一部断面を含む平面図である。 図1に示す回転電機に含まれるステータおよびロータの拡大平面図である。 図1に示す回転電機に含まれるロータの拡大平面図である。 図3に示すIV部の拡大平面図である。 図3に示すV部の拡大平面図である。 図1に示す回転電機を説明するための図であって、ロータの前方ブリッジの後端および後方ブリッジの前端がそれぞれの基準位置に位置する状態を示す拡大平面図である。 図1に示す回転電機を説明するための図であって、ロータの前方ブリッジの後端が、図5に示す位置に比べて後方に移動し、かつ、後方ブリッジの前端が、図5に示す位置に比べて前方に移動している状態を示す拡大平面図である。 本発明の一実施形態に係る回転電機において、磁束の流れるイメージを示す図である。
 以下、図1から図8を参照し、本発明の一実施形態に係る回転電機を説明する。回転電機は、電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機である。この種の電動機は、例えば、電気自動車などに好適に採用される。
 図1および図2に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50に収容される。ステータ20は、ケース50に固定される。回転電機10は、ロータ30がステータ20の内側に位置するインナーロータ型である。
 なお本実施形態では、回転電機10が、8極24スロットの三相交流モータである。しかしながら、例えば極数やスロット数、相数などは適宜変更することができる。
 また回転電機10において、ステータ20およびロータ30の軸線は共通軸上にある。以下では、この共通軸を中心軸線O(ロータ30の中心軸)という。中心軸線O方向(後述するロータコア31の軸方向)を軸方向といい、中心軸線Oに直交する方向(後述するロータコア31の径方向)を径方向といい、中心軸線O周りに周回する方向(後述するロータコア31の周方向)を周方向という。
 ステータ20は、ステータコア21と、図示しない巻線と、を備える。
 ステータコア21は、筒状(円筒状)のコアバック22(ヨーク)と、複数のティース23と、を備える。
 コアバック22は、回転電機10を軸方向から見た平面視において円環状に形成されている。
 複数のティース23は、コアバック22から径方向の内側に向けて(径方向に沿ってコアバック22の中心軸線Oに向けて)突出する。複数のティース23は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角15度おきに24個のティース23が設けられている。複数のティース23は、互いに同等の形状で、かつ同等の大きさに形成されている。周方向に隣り合うティース23の間は、スロット24である。
 前記巻線は、ティース23に巻き回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 図3に示すように、ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される筒状(円筒状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31と一緒に回転するように、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極33を形成している。複数組の永久磁石32は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角45度おきに8組(全体では16個)の永久磁石32が設けられている。
 回転電機10は、埋込磁石型モータである。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔34が形成されている。複数の貫通孔34は、複数の永久磁石32に対応して設けられている。各永久磁石32は、対応する貫通孔34内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔34の内面とを接着剤により接着すること等により、実現することができる。
 なお、ステータコア21およびロータコア31としては、積層コアを採用することが可能である。積層コアは、複数の電磁鋼板が積層されることで形成されている。積層された電磁鋼板同士は、例えば、かしめや接着、溶接などにより固定されている。
 ステータコア21およびロータコア31を形成する各電磁鋼板は、例えば、母材となる電磁鋼板を打ち抜き加工すること等により形成される。電磁鋼板としては、公知の電磁鋼板を用いることができる。電磁鋼板の化学組成は特に限定されない。本実施形態では、電磁鋼板として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、例えば、JIS C 2552:2014の無方向性電磁鋼帯を採用することができる。しかしながら、電磁鋼板として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用することも可能である。方向性電磁鋼板としては、例えば、JIS C 2553:2012の方向性電磁鋼帯を採用することができる。
 電磁鋼板の加工性や、積層コアの鉄損を改善するため、電磁鋼板の両面には、絶縁被膜が設けられている。絶縁被膜を構成する物質としては、例えば、(1)無機化合物、(2)有機樹脂、(3)無機化合物と有機樹脂との混合物、などが適用できる。無機化合物としては、例えば、(1)重クロム酸塩とホウ酸の複合物、(2)リン酸塩とシリカの複合物、などが挙げられる。有機樹脂としては、エポキシ系樹脂、アクリル系樹脂、アクリルスチレン系樹脂、ポリエステル系樹脂、シリコン系樹脂、フッ素系樹脂などが挙げられる。
 以下、ロータ30の詳細について説明する。
 図3に示すように、永久磁石32は、前述したように、ロータコア31に埋め込まれるとともに2つで対をなして1つの磁極33を構成している。永久磁石32は、ロータコア31に、周方向に複数対(図示の例では8対)配置されている。図示の例では、永久磁石32は、直方体状である。永久磁石32は、平面視において矩形状である。
 一対の永久磁石32は、前記平面視において、径方向の内側に向けて凸となるV字状に配置されている。一対の永久磁石32は、前記平面視において、d軸Aを基準として線対称に配置されている。d軸Aは、前記平面視において、中心軸線Oと、各磁極33の周方向の中央と、を通過する。一対の永久磁石32が配置される貫通孔34も同様に、d軸Aを基準として概ね線対称に配置されている。
 貫通孔34は、前記平面視において、永久磁石32よりもq軸B側、および、d軸A側の両側に大きい。q軸Bは、前記平面視において、中心軸線Oと、周方向に隣り合う2つの磁極33の間と、を通過する。q軸Bは、前記平面視において、前記2つの磁極33の間における周方向の中央を通過する。q軸Bとd軸Aとは、磁気的、電気的に直交する。貫通孔34のうち、永久磁石32に対してq軸B側、および、d軸A側それぞれに位置する部分は、フラックスバリア35、36となっている。言い換えると、永久磁石32のq軸B側、および、d軸A側の両端には、フラックスバリア35、36が設けられている。フラックスバリア35、36は、ロータコア31を軸方向に貫通する磁気的空隙部である。フラックスバリア35、36は、ロータ30内で還流する永久磁石32からの磁石磁束(以下、還流磁束ともいう)を低減したり、永久磁石32からステータ20へ向かう磁石磁束の流入経路を変化させたりする。これにより、永久磁石32の磁石磁束(以下、単に磁石磁束)がステータ20に効果的に伝達されて高いトルクが出力される。フラックスバリア35、36は、磁石磁束をステータ20に誘導するともいえる。
 ロータ30は、フラックスバリア35、36として、第1フラックスバリア35と、第2フラックスバリア36と、を備えている。第1フラックスバリア35および第2フラックスバリア36は、永久磁石32を両端から挟む。これにより、磁石磁束がステータ20に効果的に伝達され易くなる。
 第1フラックスバリア35は、一つの永久磁石32から最も近いq軸B側に位置する。第1フラックスバリア35は、一対の永久磁石32の周方向(回転方向)の両外側に位置する。第2フラックスバリア36は、一つの永久磁石32から最も近いd軸A側に位置する。一対の永久磁石32の周方向(回転方向)の中央に位置する。
 第1フラックスバリア35は、一つの永久磁石32から最も近いq軸B側の端面からロータコア31の径方向の外側に広がる。第1フラックスバリア35は、第1空間37と、第2空間38と、を備えている。第1空間37には、一つの永久磁石32から最も近いq軸B側の端面が露出する。第1空間37は、前記平面視において、一つの永久磁石32から最も近いq軸B側に延びる。第1空間37は、前記平面視において、q軸B側に凸となる三角形状である。第1空間37の径方向の空間幅は、一つの永久磁石32から最も近いq軸B側に離れるに従い小さくなっている。第2空間38は、第1空間37に連通する。第2空間38の少なくとも一部は、第1空間37に対して径方向の外側に位置する。前記平面視において、第2空間38は矩形状である。前記平面視において、第2空間38の面積は第1空間37の面積よりも狭い。
 第1フラックスバリア35に対する径方向の外側には、第1ブリッジ39が設けられている。第1ブリッジ39は、ロータコア31の一部である。第1ブリッジ39は、ロータコア31のうち、第1フラックスバリア35に対して径方向の外側に位置する部分である。第1ブリッジ39があることで、第1ブリッジ39がない場合に比べて、ロータコア31に遠心耐力が向上する。第1ブリッジ39は、ロータコア31における外周に力学的な強度を担保する。第1ブリッジ39の径方向の幅が十分細いと、磁束が第1ブリッジ39を通過することが磁気飽和によって妨げられ、磁石磁束の還流が防がれる。
 第1ブリッジ39の幅(径方向の大きさ)は、ロータコア31のうち第1ブリッジ39に対して周方向に隣り合う両部分の幅よりも、局所的に小さくなっている。
 なお第1ブリッジ39の長さ(周方向の大きさ)や幅は、回転電機10の回転速度や形により適切に設計される。例えば、第1ブリッジ39の幅が、ロータコア31のうち第1ブリッジ39に対して周方向に隣り合う両部分の幅に対して、小さくなっているものの、局所的に小さくなっていなくてもよい。例えば、第1ブリッジ39の幅が、ロータコア31のうち第1ブリッジ39に対して周方向に隣り合う両部分の幅に対して連続的に小さくなっていてもよい。この場合、例えば、ロータコア31の外周部分において、径方向の大きさ(幅)が、ロータコア31の外径の1%以下となっている部分を、第1ブリッジ39としてもよい。また、第1フラックスバリア35の形状や大きさなども、本実施形態に示した態様に限られない。
 第2フラックスバリア36は、第1空間37を備え、一つの永久磁石32から最も近いd軸A側の端面が露出する。第1空間37は、前記平面視において、一つの永久磁石32から最も近いd軸A側に延びる。各磁極33において対をなす2つの第2フラックスバリア36の間には、第2ブリッジ40が設けられている。第2ブリッジ40は、周方向よりも径方向に長い。第2ブリッジ40は、第2ブリッジ40において磁束飽和を起こさせ、磁気回路の形成を阻害させる。第2ブリッジ40は、d軸A上に位置する。
 ここで、以下において回転電機10の回転方向(周方向)の前方を、単に前方Fとし、回転方向の後方を、単に後方Rとする。なお、中心軸線O回りの両方向に回転可能な回転電機10の場合、上記回転方向とは、回転電機10が主に回転する回転方向を意味する。また図示の例では、紙面を見たときにおける反時計回りを前方Fとし、時計回りを後方Rとする。
 一対の永久磁石32は、前方磁石32fと、後方磁石32rと、を含む。前方磁石32fは、後方磁石32rに対して前方F側に位置する。
 1つの磁極33に含まれる2つの第1ブリッジ39は、前方ブリッジ39fと、後方ブリッジ39rと、を含む。前方ブリッジ39fは、前方磁石32fに対して設けられている。前方ブリッジ39fは、前方磁石32fに対して前方F側(q軸B側)、かつ、径方向の外側に位置する。前方ブリッジ39fは、一対の第1フラックスバリア35のうち、前方F側に位置する第1フラックスバリア35に対する径方向の外側に位置する。後方ブリッジ39rは、後方磁石32rに対して設けられている。後方ブリッジ39rは、後方磁石32rに対して後方R側(q軸B側)、かつ、径方向の外側に位置する。後方ブリッジ39rは、一対の第1フラックスバリア35のうち、後方R側に位置する第1フラックスバリア35に対する径方向の外側に位置する。
 前方ブリッジ39fに対する基準位置を前方基準位置Pfとし、後方ブリッジ39rに対する基準位置を後方基準位置Prとして、それぞれ以下のように定義する。前方基準位置Pfは、前記平面視において、中心軸線Oと、前方磁石32fの前方F側の周方向前端と、を通過する前方仮想線L1と前記ロータコア31の外周面との交点とする。後方基準位置Prは、前記平面視において、中心軸線Oと、後方磁石32rの後方R側の周方向後端と、を通過する後方仮想線L2とロータコア31の外周面との交点とする。
 そして本実施形態では、図3および図4に示すように、最も後方R側に位置する前方ブリッジ39fの後端39f1は、前方基準位置Pfに対して、中心軸線Oを中心とする中心角でθa/24(ラジアン)以上θa/8(ラジアン)以下、後方R側に離れた位置に配置されている。最も前方F側に位置する後方ブリッジ39rの前端39r1は、後方基準位置Prに対して、中心軸線Oを中心とする中心角で0(ラジアン)以上θa/12(ラジアン)以下、前方F側に離れた位置に配置されている。
 ただし、θaは、以下の(1)式を満たす。
 θa=2π/(Nslot)…(1)
 ここで、上記(1)式中のNslotは、ステータ20のスロット数を意味する。
 最も後方R側に位置する前方ブリッジ39fの後端39f1は、好ましくは、前方基準位置Pfに対して、中心軸線Oを中心とする中心角で3θa/48(ラジアン)以上5θa/48(ラジアン)以下、後方R側に離れた位置に配置されている。
 最も前方F側に位置する後方ブリッジ39rの前端39r1は、好ましくは、後方基準位置Pfに対して、中心軸線Oを中心とする中心角で0(ラジアン)以上θa/48(ラジアン)以下、前方F側に離れた位置に配置されている。
 さらに本実施形態では、図4に示すように、前方ブリッジ39fの後端39f1は、前方基準位置Pfに対して、中心軸線Oを中心とする中心角でθa/12(ラジアン)分、後方R側に離れた位置に配置されている。図5に示すように、後方ブリッジ39rの前端39r1は、後方基準位置Prに配置されている。
 ここで、前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1は、各ブリッジ39のうち、各組の永久磁石32によって発生する磁束の磁気飽和が生じる部分である。言い換えると、前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1は、各ブリッジ39のうち、磁束がロータ30からステータ20に渡り始める部分である。前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1は、各ブリッジ39における磁気飽和開始位置である。前方ブリッジ39fにおける磁気飽和開始位置は、後端39f1の磁気飽和開始位置のうちの後方R側の周方向端部位置である。後方ブリッジ39rにおける磁気飽和開始位置は、前端39r1の磁気飽和開始位置のうちの前方F側の周方向端部位置である。磁気飽和開始位置は、前方ブリッジ39f及び後方ブリッジ39rとロータコア31の外周面との距離が最短となる位置である。ブリッジ39の磁気飽和開始位置は、例えば、電磁界解析などにより得られた磁束密度の絶対値について、ロータコアに使用されている磁性材料の飽和磁束密度を超過する位置として求めてもよい。電磁界解析に代えて、実物を使用した実験を採用してもよい。磁気飽和開始位置は、上記したいずれか1つの方法または2つ以上の方法によって特定することができる。
 前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1は、第1ブリッジ39において、第1ブリッジ39ではない部分との境界となる。前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1は、ロータコア31のうち、第1フラックスバリア35と、ロータコア31の外周面と、を径方向に最短距離で結ぶ領域として規定される。後方ブリッジ39rの前端39r1及び前方ブリッジ39fの後端39f1は、第1フラックスバリア35と中心軸線Oとを通過する仮想線上の一部の領域である。
 図8に、本実施形態に係る回転電機において、磁束の流れるイメージを示す。図8中の矢印A1,A2は、磁束の流れを意味する。矢印A1は、磁束の大まかな流れを示す。矢印A2は、各位置における磁束密度ベクトルを示す。図8に示すように、前方ブリッジ39fにおいては、前方ブリッジ39fの後端39f1でステータ20に磁束が渡る。後方ブリッジ39rにおいては、後方ブリッジ39rの前端39r1の位置により磁極33側に侵入する磁束量が変化する
 例えば、ロータコア31のうち、前方F側の第1フラックスバリア35と、ロータコア31の外周面と、によって径方向に挟まれる部分(以下、第1部分という)における後方Rの端における幅(径方向の大きさ)が十分狭い場合、前方ブリッジ39fの後端39f1は、前記後方Rの端とすることができる。この場合、第1部分が第1フラックスバリア35の全長(周方向の長さ)にわたって前方ブリッジ39fとなる。この場合において、前方ブリッジ39fにおける後端39f1よりも前方F側において、前方ブリッジ39fの幅が後端39f1よりも狭くなっていてもよいし、広くなっていてもよい。言い換えると、前方ブリッジ39fの後端39f1が磁気飽和開始位置であれば、前方ブリッジ39fにおいて後端39f1よりも前方に位置する部分は、後端39f1よりも径方向に大きくても小さくてもよい。
 また、ロータコア31のうち、後方R側の第1フラックスバリア35と、ロータコア31の外周面と、によって径方向に挟まれる部分(以下、第2部分という)における前方F側の端の幅が十分狭い場合、後方ブリッジ39rの前端39r1は、前記前方F側の端とすることができる。この場合、第2部分が第1フラックスバリア35の全長(周方向の長さ)にわたって後方ブリッジ39rとなる。この場合において、後方ブリッジ39rにおける前端39r1よりも後方R側において、後方ブリッジ39rの幅が前端39r1よりも狭くなっていてもよいし、広くなっていてもよい。
 さらに例えば、第1部分の後方R側の端の幅が十分狭くない場合、前方ブリッジ39fの後端39f1は、第1部分において前記幅が十分に狭い領域のうち、最も後方R側に位置する領域とすることができる。この場合、第1部分の一部が前方ブリッジ39fとなり、第1部分における周方向の後方R側の端よりも前方F側に、前方ブリッジ39fの後端39f1が位置する。
 また、第2部分の前方F側の端の幅が十分狭くない場合、後方ブリッジ39rの前端39r1は、第2部分において前記幅が十分に狭い領域のうち、最も前方F側に位置する領域とすることができる。この場合、第2部分の一部が前方ブリッジ39fとなり、第2部分における周方向の前方F側の端よりも後方R側に、後方ブリッジ39rの前端39r1が位置する。
 なお、上記いずれの場合においても、第1部分や第2部分の幅が十分に狭いことは、例えば、幅が、ロータコア31の外径の1%以下であることを意味していてもよい。また、第1部分や第2部分の幅が十分に狭いことは、例えば、幅が、0.3mm以下あることを意味していてもよい。また、前方ブリッジ39fの後端39f1や後方ブリッジ39rの前端39r1を特定するため、回転電機10をソフトウェア上で再現し、電磁場解析を実施してもよい。
 ここで、前方ブリッジ39fの後端39f1と前方基準位置Pfとについての中心角は、前方ブリッジ39fに関する仮想線L1aと、前方仮想線L1と、についての、中心軸線Oを中心とする中心角である。前記仮想線L1aとは、前方ブリッジ39fの後端39f1と、中心軸線Oと、を通過する仮想線である。なお、前方仮想線L1と仮想線L1aとのなす角をθtとすると、(θa/24)≦θt≦(θa/8)となり、本実施形態では、θt=(θa/12)である。
 また、後方ブリッジ39rの前端39r1と後方基準位置Prとについての中心角は、後方ブリッジ39rに関する仮想線L2aと、後方仮想線L2と、についての、中心軸線Oを中心とする中心角である。前記仮想線L2aとは、後方ブリッジ39rの前端39r1と、中心軸線Oと、を通過する仮想線である。また、後方ブリッジ39rの前端39r1と後方基準位置Prとについての中心角が0(ラジアン)であること、言い換えると、後方ブリッジ39rの前端39r1が、後方基準位置Prに配置されていることは、前述の仮想線L2aと後方仮想線L2とが一致していることを意味する。なお、後方仮想線L2と仮想線L2aとのなす角をθsとすると、0≦θs≦(θa/12)となり、本実施形態では、θs=0である。
 本願発明者は、前方ブリッジ39fの後端39f1の周方向の位置や後方ブリッジ39rの前端39r1の周方向の位置(以下、これらの位置を総称して、第1ブリッジ39の開始位置という)が、トルクに影響を与えることを見出した。特に、前方ブリッジ39fの後端39f1の周方向の位置を、前方基準位置Pfに対して回転方向の後方Rに配置することで、トルクが大きくなることを、本願発明者は見出した。
 この知見は、以下の過程を経て得られた。
 本願発明者は、ロータコア31の形状最適化の解析を実施した。この解析は、特開2021-114099号公報記載の内容に基づく。本願発明者は、解析を、異なる複数の進角を前提として複数回実施した。各解析の結果となるロータコア31の形状は、前提となった進角に応じて最適な形状であると言える。本願発明者は、複数種類の進角についての最適な形状を解析した結果のうち、最もトルクが高くなる結果(形状)について分析した。なおこのときの進角は50度であった。
 この結果に係るロータコア31では、前方ブリッジ39fの後端39f1は前方基準位置Pfに対して後方R側、後方ブリッジ39rの前端39r1は後方基準位置Prに対して前方F側に移動していた。
 よって、この解析結果においてトルクが最大となる最適形状と同様の傾向で、前方ブリッジ39fの位置を周方向に変化させることでトルクを向上できると考えた。
 なお、この現象は以下の原理に基づくと考えられる。
 すなわち、一対の永久磁石32が構成する磁極33において生じる磁束がロータコア31内で伝達される過程で、第1ブリッジ39の開始位置において磁気飽和が生じる。すると磁束が、ロータコア31内から外部に向かい、ステータ20のティースに伝達される。そのため、第1ブリッジ39の開始位置は、磁束がステータ20に伝達される起点となる。ここで、前方ブリッジ39fの後端39f1が、前方基準位置Pfに対して回転方向の後方Rに位置するほど、前方ブリッジ39fからステータ20のティース23に伝達される磁束線の向き(方向)は、ロータ30の径方向、言い換えるとティース23の長手方向に対して傾斜し、その結果、磁束線が長くなる。このとき、磁束線が短くなるように力が発生してこの力によってロータ30が回転する結果、トルクが高まると考えられる。
 以上の知見に基づいて、本願発明者は、前方ブリッジ39fの後端39f1の周方向の位置や後方ブリッジ39rの前端39r1の周方向の位置を、ステータ20のティースのピッチに対応する中心角であるθa(ラジアン)を単位として鋭意検討したところ、前述のように設定することで、高いトルクを出力できることを見出した。
 この知見は、以下の過程を経て得られた。
 本願発明者は、新たな解析を実施した。対象とする回転電機10は、図3、図6および図7に示すロータ30、30A、30Bを含む回転電機10である。この回転電機10では、前述したようにスロット数が24スロットであるため、θa=15度である。この回転電機10において、前方ブリッジ39fの後端39f1の位置を0.625度ずつ(すなわち、(θa/24)度ずつ)、後方R側に移動させ、かつ、後方ブリッジ39rの前端39r1の位置を0.625度ずつ、前方F側に移動させた形状を前提として解析を実施し、トルクの値を評価した。なお図3に示すロータ30では、前方ブリッジ39fの後端39f1は、前方基準位置Pfに対して後方R側に1.25°移動し、後方ブリッジ39rの前端39r1は、後方基準位置Prに位置する。図6に示すロータ30Aでは、前方ブリッジ39fの後端39f1は、前方基準位置Pfに位置し、後方ブリッジ39rの前端39r1は、後方基準位置Prに位置する。図7に示すロータ30Bでは、前方ブリッジ39fの後端39f1は、前方基準位置Pfに対して後方Rに0.625°移動し、後方ブリッジ39rの前端39r1は、後方基準位置Prに対して前方Fに0.625°移動している。なお図7において、仮想線L1a、L2aは省略している。
 解析条件は表1の通りである。解析結果は、表2の通りである。なお表2では、前方ブリッジ39f、後方ブリッジ39rとも、移動角度が0度を基準の100として、結果を正規化している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に太枠(ハッチング内)で示すように、前方ブリッジ39fの後端39f1を後方R側に0.625度以上1.875度以下(すなわち、(θa/24)度以上(θa/8)度以下)、後方ブリッジ39rの前端39r1を0度以上1.25度以下(すなわち、0度以上(θa/12)度以下)、前方F側の範囲で移動させることで、基準形状よりトルクが向上することが確認された。また、前方ブリッジ39fの後端39f1を後方R側に1.25度(すなわち、(θa/12)度以下)移動し、かつ、後方ブリッジ39rの前端39r1の移動角度が0度である場合、トルクが最大となることが確認できた。
 なお、移動角度は、シミュレーションモデルで測定した。具体的には、シミュレーションモデル上のブリッジ部に含まれる節点の座標から測定した。
 なお、1つの磁極33を構成する2つの第1フラックスバリア35の配置・形状や2つの第1ブリッジ39の配置・形状は、一般に対称であることが多く、この種の回転電機10において、2つの第1ブリッジ39の配置・形状を非対称に変化させたものは、一般には見られない。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 ステータ20の形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ステータコア21の外径および内径の寸法、積厚、スロット数、ティース23の周方向と径方向の寸法比率、ティース23とコアバック22との径方向の寸法比率、などは所望の回転電機10の特性に応じて任意に設計可能である。
 ロータ30の形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ロータコア31の外径および内径の寸法、積厚、極数などは所望の回転電機10の特性に応じて任意に設計可能である。
 前記実施形態では、ステータコア21およびロータコア31がいずれも積層コアであるとしたが、積層コアでなくてもよい。
 第2フラックスバリア36がなくてもよい。
 前記実施形態では、1つの磁極33が2つの永久磁石32で構成されている。しかしながら、本発明はこれに限られない。例えば、1つの磁極33が、1つの永久磁石32や3つの永久磁石32、4つ以上の永久磁石32によって構成されていてもよい。1組の永久磁石32として、1つ以上の永久磁石32を含む他の形態が適宜採用される。
 例えば、1組の永久磁石32が1つの永久磁石32である場合、この1つの永久磁石32が、前記平面視において、d軸Aに直交する方向に長い長方形状であってもよい。
 例えば、1組の永久磁石32が3つの永久磁石32である場合であって、3つの永久磁石32が周方向に並んでいる場合には、以下のような配置であってもよい。この場合、周方向の中央に位置する永久磁石32が、前記平面視において、d軸Aに直交する方向に長い長方形状であってもよい。さらにこの場合、周方向の両側に位置する2つの永久磁石32が、前記平面視において、d軸A側からq軸B側に向かうに従い、径方向の外側に延びていてもよい。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 本発明によれば、トルクを向上させることができる。よって、産業上の利用可能性は大である。
10 回転電機
20 ステータ
21 ステータコア
22 コアバック
23 ティース
24 スロット
30 ロータ
30A ロータ
30B ロータ
31 ロータコア
32 永久磁石
32f 前方磁石
32r 後方磁石
33 磁極
34 貫通孔
35 第1フラックスバリア
36 第2フラックスバリア
37 第1空間
38 第2空間
39 第1ブリッジ
39f 前方ブリッジ
39f1 後端
39r 後方ブリッジ
39r1 前端
40 第2ブリッジ
45 中心角
50 ケース
60 回転軸
F 前方
L1 前方仮想線
L1a 仮想線
L2 後方仮想線
L2a 仮想線
O 中心軸線(中心軸)
Pf 前方基準位置
Pr 後方基準位置
R 後方

Claims (3)

  1.  環状のステータと、
     前記ステータ内に配置されたロータと、を備え、
     前記ロータは、
      ロータコアと、
      前記ロータコアに埋め込まれるとともに1組で1つの磁極を構成し、前記ロータコアに、前記ロータコアの周方向に複数組配置された永久磁石と、を備える回転電機であって、
     前記ロータコアは、
      各組の前記永久磁石に対して、前記ロータの回転方向の両側に設けられた第1フラックスバリアと、
      前記第1フラックスバリアに対して、前記ロータコアの径方向の外側に設けられた第1ブリッジと、を備え、
     前記第1ブリッジは、前記ロータの回転方向の前方に設けられた前方ブリッジと、前記ロータの回転方向の後方に設けられた後方ブリッジと、を含み、
     前記前方ブリッジの基準位置である前方基準位置を、前記ロータを軸方向から見た平面視において、前記ロータコアの中心軸と、各組の前記永久磁石の前端と、を通過する前方仮想線と前記ロータコアの外周面との交点とし、かつ、前記後方ブリッジの基準位置である後方基準位置を、前記平面視において、前記ロータコアの中心軸と、各組の前記永久磁石の後端と、を通過する後方仮想線と前記ロータコアの外周面との交点としたときに、
     複数組の前記永久磁石のうち、少なくとも1組の前記永久磁石において、
      前記前方ブリッジの後端は、前記前方基準位置に対して、前記中心軸を中心とする中心角でθa/24(ラジアン)以上θa/8(ラジアン)以下、後方に離れた位置に配置され
      前記後方ブリッジの前端は、前記後方基準位置に対して、前記中心軸を中心とする中心角で0(ラジアン)以上θa/12(ラジアン)以下、前方に離れた位置に配置されている、回転電機。
     ただし、θaは、以下の(1)式を満たす。
     θa=2π/(Nslot)…(1)
     ここで、上記(1)式中のNslotは、前記ステータのスロット数を意味する。
  2.  前記少なくとも1組の前記永久磁石において、
      前記前方ブリッジの後端は、前記前方基準位置に対して、前記中心軸を中心とする中心角でθa/12(ラジアン)分、後方に離れた位置に配置され、
      前記後方ブリッジの前端は、前記後方基準位置に配置されている、請求項1に記載の回転電機。
  3.  前記永久磁石は、2つで一組をなして1つの磁極を構成し、
     各組の前記永久磁石は、前方に位置する前方磁石と、後方に位置する後方磁石と、を含むとともに、前記平面視において前記径方向の内側に向けて凸となるV字状に配置され、 前記前方ブリッジは、前記前方磁石の前方に設けられ、
     前記後方ブリッジは、前記後方磁石の後方に設けられ、
     前記平面視において、前記前方仮想線は、前記中心軸と前記前方磁石の前端とを通過し、前記後方仮想線は、前記中心軸と前記後方磁石の後端とを通過する、請求項1または2に記載の回転電機。
PCT/JP2023/010902 2022-03-29 2023-03-20 回転電機 WO2023189824A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2024007660A MX2024007660A (es) 2022-03-29 2023-03-20 Maquina electrica rotativa.
CA3240072A CA3240072A1 (en) 2022-03-29 2023-03-20 Rotary electric machine
JP2024511888A JP7530028B2 (ja) 2022-03-29 2023-03-20 回転電機
KR1020247020804A KR20240108521A (ko) 2022-03-29 2023-03-20 회전 전기 기기
CN202380015397.9A CN118435496A (zh) 2022-03-29 2023-03-20 旋转电机
EP23779840.0A EP4443706A1 (en) 2022-03-29 2023-03-20 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053600 2022-03-29
JP2022053600 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189824A1 true WO2023189824A1 (ja) 2023-10-05

Family

ID=88201172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010902 WO2023189824A1 (ja) 2022-03-29 2023-03-20 回転電機

Country Status (8)

Country Link
EP (1) EP4443706A1 (ja)
JP (1) JP7530028B2 (ja)
KR (1) KR20240108521A (ja)
CN (1) CN118435496A (ja)
CA (1) CA3240072A1 (ja)
MX (1) MX2024007660A (ja)
TW (1) TW202347927A (ja)
WO (1) WO2023189824A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093859A (ja) * 2012-11-02 2014-05-19 Denso Corp 回転電機のロータ
JP2017050965A (ja) * 2015-09-01 2017-03-09 日産自動車株式会社 回転電機の回転子構造
JP2017093099A (ja) * 2015-11-06 2017-05-25 株式会社デンソー 回転電機駆動システム
JP2018198534A (ja) 2018-09-19 2018-12-13 株式会社デンソー 回転電機
JP2019161795A (ja) * 2018-03-09 2019-09-19 本田技研工業株式会社 回転電機
JP2021114099A (ja) 2020-01-17 2021-08-05 日本製鉄株式会社 コア設計装置、コア設計方法、およびプログラム
JP2022053600A (ja) 2020-09-25 2022-04-06 株式会社三洋物産 遊技機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093859A (ja) * 2012-11-02 2014-05-19 Denso Corp 回転電機のロータ
JP2017050965A (ja) * 2015-09-01 2017-03-09 日産自動車株式会社 回転電機の回転子構造
JP2017093099A (ja) * 2015-11-06 2017-05-25 株式会社デンソー 回転電機駆動システム
JP2019161795A (ja) * 2018-03-09 2019-09-19 本田技研工業株式会社 回転電機
JP2018198534A (ja) 2018-09-19 2018-12-13 株式会社デンソー 回転電機
JP2021114099A (ja) 2020-01-17 2021-08-05 日本製鉄株式会社 コア設計装置、コア設計方法、およびプログラム
JP2022053600A (ja) 2020-09-25 2022-04-06 株式会社三洋物産 遊技機

Also Published As

Publication number Publication date
MX2024007660A (es) 2024-07-04
CN118435496A (zh) 2024-08-02
JPWO2023189824A1 (ja) 2023-10-05
CA3240072A1 (en) 2023-10-05
TW202347927A (zh) 2023-12-01
EP4443706A1 (en) 2024-10-09
JP7530028B2 (ja) 2024-08-07
KR20240108521A (ko) 2024-07-09

Similar Documents

Publication Publication Date Title
JP5757281B2 (ja) 回転電機のロータ
JP6989458B2 (ja) 回転電機の回転子
JP5372296B2 (ja) 永久磁石型回転電機
JP6572914B2 (ja) 回転電機ロータ
US11837919B2 (en) Rotary electric machine
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
JP2013046466A (ja) 回転子
JP2022106548A (ja) 回転電機用ロータ
JP2017112705A (ja) 永久磁石式回転電機及びその製造方法
WO2023189824A1 (ja) 回転電機
JP2000253608A (ja) ブラシレスモータ
WO2023189825A1 (ja) 回転電機
JP2005124309A (ja) リラクタンスモータ、モータのロータコア及びモータのロータコアの製造方法
JP2006081338A (ja) 回転電機のロータ
JP2011199944A (ja) 回転電機の永久磁石埋設型回転子及び回転電機
JP6877944B2 (ja) 同期リラクタンス型回転電機
JP2011193627A (ja) 回転子鉄心および回転電機
JP3446506B2 (ja) リラクタンスモータ用のロータ、及びリラクタンスモータ
WO2024209804A1 (ja) ロータコア、ロータ、回転電機及びロータコアの設計方法
JP5608377B2 (ja) 回転電機
WO2024210032A1 (ja) ロータコア、ロータ、回転電機及びロータコアの設計方法
WO2023132011A1 (ja) 回転子
JP2021048685A (ja) 回転電機の回転子
JP2013198263A (ja) 回転電機
JP2019050689A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511888

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3240072

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/007660

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20247020804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247020804

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401004224

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012932

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2023779840

Country of ref document: EP

Effective date: 20240704

WWE Wipo information: entry into national phase

Ref document number: 11202404043V

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024012932

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240624