WO2023189272A1 - 印刷物の製造方法および活性エネルギー線硬化型インキ - Google Patents

印刷物の製造方法および活性エネルギー線硬化型インキ Download PDF

Info

Publication number
WO2023189272A1
WO2023189272A1 PCT/JP2023/008505 JP2023008505W WO2023189272A1 WO 2023189272 A1 WO2023189272 A1 WO 2023189272A1 JP 2023008505 W JP2023008505 W JP 2023008505W WO 2023189272 A1 WO2023189272 A1 WO 2023189272A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
polyfunctional
printed matter
ink
Prior art date
Application number
PCT/JP2023/008505
Other languages
English (en)
French (fr)
Inventor
祐一 辻
武治郎 井上
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023189272A1 publication Critical patent/WO2023189272A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/02Letterpress printing, e.g. book printing
    • B41M1/04Flexographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to a method for producing printed matter and an active energy ray-curable ink.
  • active energy ray-curable inks are instantaneously cured by irradiation with active energy rays, so they contain (meth)acrylates as a main component instead of a solvent.
  • ink is applied to the top of the relief (convex part), and the ink is transferred and printed by pressing against the printing material, but (meth)acrylates in the ink are applied to the relief part of the flexographic printing plate. When it penetrates, it swells with continuous printing, making the halftone dots thicker than they were at the start of printing, and the print quality deteriorates.
  • ink tends to accumulate on the edges of the apexes of the convex portions, and printing defects called plate entanglement, in which ink adheres to areas other than the printing lines, are more likely to occur as printing is continued.
  • Patent Document 2 a method has been proposed for suppressing ink entanglement using a water-developable photosensitive flexographic printing plate precursor containing a fluorine-containing compound having an ionic functional group.
  • an object of the present invention is to provide a manufacturing method that can obtain printed matter of stable quality even during continuous printing by combining a specific flexographic printing plate and active energy ray-curable ink.
  • the present invention provides a method for producing printed matter using a flexographic printing plate including a base material and a resin layer on which a printing relief is formed, and an active energy ray-curable ink containing at least one type of polyfunctional (meth)acrylate and a pigment.
  • This is a method for producing printed matter that satisfies (A) to (C) below.
  • the resin layer on which the printed relief is formed contains 30% by mass or more of Compound A having an SP value of 10.0 or more calculated by the Fedors method.
  • the SP value of the polyfunctional (meth)acrylate calculated by the Fedors method is 8.0 or more and 9.5 or less.
  • the content of the polyfunctional (meth)acrylate in the ink that satisfies the SP value is 40% by mass or more and 85% by mass or less.
  • the present invention also provides an active energy ray-curable ink containing at least one type of polyfunctional (meth)acrylate and a pigment, wherein the polyfunctional (meth)acrylate has an SP value of 8. 0 or more and 9.5 or less, the polyfunctional (meth)acrylate contains tricyclodecane dimethanol diacrylate, and the content of the polyfunctional (meth)acrylate in the ink that satisfies the SP value is 40 mass % or more and 85% by mass or less, it is an active energy ray-curable ink.
  • the method for producing printed matter according to the present invention by combining a specific flexographic printing plate and active energy ray-curable ink, deformation of the plate due to ink components is suppressed, thickening of halftone dots and ink entanglement are suppressed, Prints of stable quality can be obtained even during continuous printing. Moreover, the obtained printed matter shows excellent film adhesion.
  • the present invention relates to a method for producing printed matter using a flexographic printing plate including a base material and a resin layer on which a printing relief is formed, and an active energy ray-curable ink containing at least one type of polyfunctional (meth)acrylate and a pigment. It is characterized by satisfying the following (A) to (C).
  • the resin layer on which the printed relief is formed contains 30% by mass or more of Compound A whose SP value calculated by the Fedors method is 10.0 or more.
  • the SP value of the polyfunctional (meth)acrylate calculated by the Fedors method is 8.0 or more and 9.5 or less.
  • the content of the polyfunctional (meth)acrylate in the ink that satisfies the SP value is 40% by mass or more and 85% by mass or less.
  • Satisfying the above (A) to (C) means that the SP values of the main components of the resin layer on which the printed relief is formed and the active energy ray-curable ink are far apart, and the affinity is low. means. Since these main components have low compatibility with each other, the polyfunctional (meth)acrylate becomes difficult to swell the resin layer on which the printing relief is formed, suppresses deformation of the printing plate during continuous printing, and improves printing quality. Stabilize.
  • the SP value (solubility parameter) in the present invention is a value calculated by the Fedors method (Robert F. Fedors, Polymer Engineering and Science, 14, 147-154 (1974)), and is calculated using the following formula (1). can do.
  • (E/V)1/2...Formula (1)
  • represents the SP value
  • E represents the cohesive energy (cal/mol)
  • V represents the molar volume (cm 3 /mol).
  • the flexographic printing plate includes a base material and a resin layer on which a printing relief is formed.
  • the base material preferably has excellent dimensional stability against heat and physical stress, and may be a plastic sheet such as polyester, or a metal plate such as steel, stainless steel, or aluminum.
  • the thickness of the base material is preferably 100 ⁇ m or more and 350 ⁇ m or less from the viewpoint of handleability and flexibility. If it is 100 ⁇ m or more, the handleability as a support is improved, and if it is 350 ⁇ m or less, the flexibility as a flexographic printing plate is improved.
  • the resin layer on which the printed relief is formed contains compound A whose SP value calculated by the Fedors method is 10.0 or more.
  • the SP value of the compound A is preferably 12.0 or more because the compatibility with the ink becomes lower and the continuous printing quality becomes stable.
  • Conventional general flexo plates are made of rubber components, have high hydrophobicity, and have an SP value lower than 10, so they have a polarity close to that of active energy ray-curable inks and are easily swollen. If a (meth)acrylate with higher polarity, that is, an SP value higher than 10, is combined, similar swelling suppression can be expected, but since (meth)acrylates with polar groups have a higher viscosity, they are less susceptible to active energy rays. It is practically difficult to adjust the viscosity of curable ink to be suitable for flexographic printing.
  • the SP value of the flexographic printing plate is increased using the compound A, and a polyfunctional (meth)acrylate having a lower SP value than the compound A is contained in the active energy ray-curable ink described below. , it becomes possible to control the deformation of the plate due to the ink components while adjusting the viscosity of the active energy ray-curable ink to be suitable for flexographic printing.
  • the compound A is preferably one or more selected from nitrile butadiene rubber, urethane rubber, chlorinated polyethylene, vinyl acetate rubber, polyvinyl alcohol, polyamide, polyurethane, polyvinylpyrrolidone, polyether, and polyester. These rubbers and resins have a highly hydrophilic functional group in the main chain or can be easily introduced into the side chain, and can suppress swelling due to ink.
  • the compound A has at least either a hydroxyl group or an ethylene oxide group. These highly hydrophilic functional groups have low compatibility with hydrophobic functional groups.
  • the compound A does not contain a (meth)acrylate group. Since Compound A does not contain a (meth)acrylate group, its affinity with polyfunctional (meth)acrylate, which is the main component of the ink in the present invention, can be suppressed.
  • the resin layer contains the compound A in an amount of 30% by mass or more.
  • the compound A in an amount of 30% by mass or more, preferably 50% by mass or more, the compatibility with ink becomes low and continuous printing quality becomes stable.
  • the content of the compound A is preferably 99.5% by mass or less.
  • the resin layer may contain a plasticizer in order to adjust the hardness of the printed relief.
  • the resin layer preferably has a swelling ratio of 5% by mass or less after being brought into contact with 1,6-hexanediol diacrylate at 25° C. for 24 hours.
  • the SP value of 1,6-hexanediol diacrylate is 9.5. Since the swelling ratio after contact with 1,6-hexanediol diacrylate under the above conditions is 5% by mass or less, the swelling property for the compound is low, and the swelling for the ink used in the method for producing printed matter of the present invention is low. The printing quality is also low and the continuous printing quality is stable.
  • active energy ray curable ink used in the method for producing printed matter of the present invention, and the active energy ray curable ink of the present invention (hereinafter, when describing common features of both, they will be collectively referred to as “active energy ray curable in the present invention”). (also referred to as “curable ink”) contains at least one type of polyfunctional (meth)acrylate and pigment.
  • the polyfunctional (meth)acrylate contained in the active energy ray-curable ink used in the method for producing printed matter of the present invention reduces the swelling of the flexographic printing plate used in the present invention.
  • it contains 18 aliphatic skeletons.
  • it is preferable to include tricyclodecane dimethanol diacrylate, which has low swelling properties and high adhesion to the substrate.
  • the polyfunctional (meth)acrylate included in the active energy ray-curable ink of the present invention includes tricyclodecane dimethanol diacrylate.
  • polyfunctional (meth)acrylate examples include 1,6-hexanediol di(meth)acrylate (SP value 9.5) and 1,9-nonanediol di(meth)acrylate (SP value) for difunctionality. 9.4), 1,10-decanediol di(meth)acrylate (SP value 9.3), tripropylene glycol di(meth)acrylate (SP value 9.3), polypropylene glycol di(meth)acrylate (SP value 9.1), neopentyl glycol di(meth)acrylate (SP value 9.2), and dicyclopentadiene-tricyclodecane dimethanol di(meth)acrylate (SP value 9.2).
  • SP value 9.4 propylene oxide adducts of methylolpropane tri(meth)acrylate
  • tricyclodecane dimethanol diacrylate is preferred.
  • the polyfunctional (meth)acrylates include those whose SP value calculated by the Fedors method is 8.0 or more and 9.5 or less.
  • the polyfunctional (meth)acrylate having an SP value of 9.5 or less, preferably 9.3 or less the compatibility with the flexographic printing plate becomes lower, and continuous printing quality becomes stable.
  • the polyfunctional (meth)acrylate should not be one with a higher SP value than the resin layer, but one with a lower SP value.
  • the polyfunctional (meth)acrylate contains one with an SP value of 8.0 or more, patterning properties due to photosensitivity are excellent.
  • the content of the polyfunctional (meth)acrylate in the ink that satisfies the SP value is 40% by mass or more and 85% by mass or less.
  • the content is 40% by mass or more, preferably 50% by mass or more, the compatibility with the flexographic printing plate becomes lower, and continuous printing quality becomes stable.
  • the content is 85% by mass or less, preferably 80% by mass or less.
  • the polyfunctional (meth)acrylate does not contain an alkylene oxide group. With this aspect, swelling of the flexographic printing plate can be suppressed.
  • the number average molecular weight of the polyfunctional (meth)acrylate is preferably 200 or more and 700 or less, so that the swelling property of the flexographic printing plate and the curability against active energy rays are maintained well.
  • Oligomers can also be used to impart appropriate viscoelasticity to the ink. Specific examples include oligomers such as acrylic resin, polyurethane, polyester, and phthalate resin, and those having a weight average molecular weight of 10,000 or less are preferable.
  • pigments examples include phthalocyanine pigments, soluble azo pigments, insoluble azo pigments, lake pigments, quinacridone pigments, isoindoline pigments, threne pigments, metal complex pigments, titanium oxide, zinc oxide, alumina white, Calcium carbonate, barium sulfate, red iron, cadmium red, yellow lead, zinc yellow, navy blue, ultramarine, oxide-coated glass powder, oxide-coated mica, oxide-coated metal particles, aluminum powder, gold powder, silver powder, copper powder, zinc powder , stainless steel powder, nickel powder, organic bentonite, iron oxide, carbon black, graphite, etc.
  • colorless extender pigments such as mica (hydrated potassium aluminum silicate) and talc (magnesium silicate) can be used. It is also possible to use an anchor ink that does not contain it.
  • the active energy ray-curable ink of the present invention is preferable because it contains a photopolymerization initiator, so that the polyfunctional (meth)acrylate is used to dissolve the photopolymerization initiator, and the swelling of the flexographic printing plate is reduced.
  • a radiation-curable ink that does not contain these may be more preferable depending on the application.
  • additives such as wax, pigment dispersant, antifoaming agent, leveling agent, etc. can be used in the active energy ray-curable ink of the present invention.
  • the active energy ray-curable ink of the present invention preferably does not substantially contain components that can swell the flexographic printing plate, such as water and solvents.
  • substantially free means that the total content of water and solvent in the ink is 0.5% by mass or less.
  • the active energy ray-curable ink of the present invention is produced by adding pigments and arbitrary additives to a varnish in which polyfunctional (meth)acrylate and arbitrary oligomers and monofunctional (meth)acrylates are dissolved, and then using an attritor or ball mill. It can be synthesized by dispersing and mixing using a sand mill or the like.
  • the substrate to be printed includes coated paper such as art paper, coated paper, and cast paper, non-coated paper such as high-quality paper, newsprint, and Japanese paper, synthetic paper, and aluminum-deposited paper.
  • Non-absorbent raw materials such as , metals, films, etc. can be used.
  • the film examples include polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester such as polylactic acid, polyamide, polyimide, polyalkyl (meth)acrylate, polystyrene, poly ⁇ -methylstyrene, polycarbonate, polyvinyl alcohol, polyvinyl acetal, and polyester.
  • polyester such as polylactic acid, polyamide, polyimide, polyalkyl (meth)acrylate, polystyrene, poly ⁇ -methylstyrene, polycarbonate, polyvinyl alcohol, polyvinyl acetal, and polyester.
  • examples include vinyl chloride and polyvinylidene fluoride.
  • the film may be subjected to surface treatment such as burning treatment, adhesive coating, chemical vapor deposition, etc.
  • the thickness of the film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more in view of the mechanical strength of the film required for printing. Further, the thickness is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less, since the cost of the film is low.
  • the thickness of the film is preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the form of the printing material either sheet form or roll form can be used.
  • a roll film When printing on a thin film for flexible packaging, it is preferable to use a roll film and perform roll-to-roll printing.
  • active energy ray sources include, for example, ultraviolet rays (particularly LED-UV), electron beams, and gamma rays.
  • Radiation such as electron beams and gamma rays generates high-energy secondary electrons in the irradiated substance, excites surrounding molecules, and generates reactive species such as radicals.
  • the irradiated substance is an active energy ray-curable ink, radicals are generated in the ink, radical polymerization progresses, and a hardened ink film is formed.
  • an electron beam using a low acceleration voltage has sufficient transparency for an ink film thickness of 10 ⁇ m or less, and can provide the energy necessary for curing. It is also preferred because it requires no special qualifications and is easy to use.
  • the accelerating voltage of the electron beam is preferably 50 kV or more, more preferably 90 kV or more, and even more preferably 110 kV or more, so that a sufficient dose can pass through the ink film. Further, as the penetration depth increases, the dose given to the inside of the printing medium also increases, so it is preferably 300 kV or less, more preferably 200 kV or less, and even more preferably 150 kV or less.
  • the higher the electron beam irradiation dose the more radical species will be generated in the target material, and the more damage will be caused to the printing material. .
  • Dot gain values were measured using a reflection densitometer (SpectroEye, manufactured by Gretag Macbeth) for the 25% halftone dot area of the printed matter. Values were measured for printed matter at the start of printing and at the end of printing, and if the change was within a range of ⁇ 4%, it was evaluated that there was no deformation of halftone dots and the quality was stable. If the change was within ⁇ 2%, it was judged to be extremely good.
  • Lamination peel strength A mixed laminating adhesive (Takelac A626/Takenate A-50 manufactured by Mitsui Chemicals, Ltd.) was applied to the printed matter obtained by test printing at the start of printing to a film thickness of 3.0 g/ m2 . The film was coated as shown in FIG. Thereafter, it was aged at 40° C. for 3 days to obtain a laminate sample. Cut the ink solid part in the laminate sample into strips with a width of 15 mm, and measure the peel strength when peeling at 90 degrees at 300 mm/min using a Tensilon universal testing machine (RTG-1210, manufactured by Orientec Co., Ltd.) did.
  • RTG-1210 Tensilon universal testing machine
  • the peel strength is less than 1.0 N/15 mm, the adhesion is insufficient, if it is 1.0 N/15 mm or more and less than 1.5 N/15 mm, the adhesion is somewhat good, and if it is 1.5 N/15 mm or more, 2 If it is less than .0N/15mm, the adhesion is good, if it is 2.0N/15mm or more and less than 3.0N/15mm, the adhesion is quite good, and if it is 3.0N/15mm or more, the adhesion is poor. It was rated as extremely good.
  • Ink 7 PHA (manufactured by T&K TOKA Co., Ltd.), containing 40% by mass or more and 80% by mass or less of a polyfunctional (meth)acrylate with an SP value of 9.3.
  • Ink 8 PHA-L03 (UV flexo ink manufactured by T&K TOKA Co., Ltd.), the content of polyfunctional (meth)acrylate with an SP value of 9.5 or less is less than 40% by mass.
  • Binder resin 1 Partially saponified polyvinyl alcohol (“JR-05” manufactured by Nippon Acety Vinyl Poval Co., Ltd.) is reacted with 1.0 mol% of succinic anhydride, and then all of the carboxylic acid moieties are reacted with glycidyl methacrylate. A resin that has been converted into a (meth)acrylate group.
  • Binder resin 2 Nitrile butadiene rubber (N220S manufactured by JSR Corporation), SP value 10.1 Monomer 1: Polyethylene glycol monomethacrylate (“Blenmar” (registered trademark) AE400 manufactured by NOF Corporation), SP value 10.4 Monomer 2: 1:2 adduct of glycidyl acrylate of tripropylene glycol (bifunctional hydroxyl group, "Epoxy Ester” (trademark registered) 200PA manufactured by NOF Corporation), SP value 11.3
  • Additive Trimethylolpropane tri(polyethylene glycol) ether (weight average molecular weight: 400, TMP-60 manufactured by Nippon Nyukazai Co., Ltd.), SP value 10.5
  • Photopolymerization initiator 1-hydroxycyclohexyldimethylketone
  • UV absorber 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5-chlorobenzotriazole.
  • Flexographic printing plate precursor 3 DF114HR2 (manufactured by Toray Industries, Inc.), containing 30% by mass or more of a compound with an SP value of 10.0 or more.
  • Flexographic printing plate precursor 4 NX114 (manufactured by KODAK Corporation), containing no compound with an SP value of 10.0 or more.
  • the flexographic printing plate precursor was back-exposed from the substrate side using a high-intensity chemical lamp (TL-K 40W/10R manufactured by Philips) at an integrated light amount of 700 mJ/cm 2 . Thereafter, drawing was performed using a laser using an external drum plate setter ("CDI SPARK" 2530, manufactured by Esco Graphics Co., Ltd.) to form an image mask from the heat-sensitive mask layer. Thereafter, in the atmosphere, main exposure was performed from the image mask side using a high-intensity chemical lamp (TL-K 40W/10R) as in the back exposure so that the cumulative light amount was 12,000 mJ/cm 2 .
  • TL-K 40W/10R high-intensity chemical lamp
  • the film was developed using tap water adjusted to 25° C. for 80 seconds using a batch exposure and developing machine (“Inglese” W43 manufactured by Inglese, s.r.l.), and dried in an oven at 60° C. for 10 minutes.
  • post-exposure was performed using a high-intensity chemical lamp (TL-K 40W/10R) so that the cumulative light amount was 12,000 mJ/cm 2 to obtain a flexographic printing plate.
  • Example 1 A flexographic printing plate was prepared using flexographic printing plate precursor 3 as a flexographic printing plate precursor, and printed using ink 1 as an ink.
  • the swelling rate of the flexographic printing plate was as small as 2.1%, making it difficult to deform, and no ink entanglement was observed during printing, and the thickness of the halftone dots was 2%, which was very good.
  • the lamination peel strength was good at 1.8 N/15 mm. The results are shown in Table 3.
  • Examples 2 to 6 Printing was carried out in the same manner as in Example 1 except that Inks 2 to 5 and 7 were used as inks.
  • Example 7 and 8 Printing was carried out in the same manner as in Example 1 except that flexographic printing plate precursors 1 and 2 were used as flexographic printing plate precursors. There was a tendency for the halftone dots to become thicker when the swelling rate of the flexographic printing plate was high. The results are shown in Table 3.
  • Example 1 Printing was carried out in the same manner as in Example 1, except that commercially available flexographic printing plate precursor 4 was used as the flexographic printing plate precursor. Ink entanglement was observed from 500 m after the start of printing, the thickness of the halftone dots was as large as 6%, and the print quality deteriorated as printing progressed. The results are shown in Table 3.
  • a flexographic printing plate was prepared using flexographic printing plate precursor 4 as a flexographic printing plate precursor, and printed using ink 6 as an ink. Although the thickness of the halftone dots was good, ink tangles were likely to occur. The results are shown in Table 3.
  • a flexographic printing plate was prepared using flexographic printing plate precursor 3 as a flexographic printing plate precursor, and printed using ink 8 as an ink. Although ink entanglement was not observed until 2000 m from the start of printing, a tendency for the halftone dots to become thinner was observed, suggesting that the flexographic plate components were extracted from the ink side. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Printing Methods (AREA)

Abstract

本発明は、特定のフレキソ印刷版と活性エネルギー線硬化型インキを組み合わせることで、連続印刷でも安定した品質の印刷物が得られる製造方法を提供することを課題とする。 本発明は、基材および印刷レリーフが形成された樹脂層を含むフレキソ印刷版、ならびに少なくとも1種類以上の多官能(メタ)アクリレートおよび顔料を含む活性エネルギー線硬化型インキを用いる印刷物の製造方法であって、下記(A)~(C)を満たす、印刷物の製造方法である。 (A)前記印刷レリーフが形成された樹脂層は、Fedors法によって計算されるSP値が10.0以上である化合物Aを30質量%以上含む。 (B)前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下である。 (C)前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である。

Description

印刷物の製造方法および活性エネルギー線硬化型インキ
 本発明は印刷物の製造方法および活性エネルギー線硬化型インキに関する。
 世界的な人口増加に伴い、食品、生活用品主体の包装に用いられる軟包装は、今後も需要の拡大が見込まれる。軟包装とはプラスチックフィルムへ印刷をおこない、印刷後ラミネート処理をして袋状に加工することと言われている。現在、アジアの軟包装印刷で主流となっているグラビア印刷では、見た目が鮮やかな印刷物が得られ、欧州の軟包装印刷で主流であるフレキソ印刷では、簡便な操作と、高速印刷による高い生産性が特徴となっている。しかしながら、いずれの方式においても溶剤を大量に含むインキを使用していることから、インキ溶剤の乾燥や排気処理に多量のエネルギーが必要となり、環境負荷も大きい。また近年では、環境問題、カーボンニュートラルへの対応からインキに含まれる揮発成分の低減要求がある。
 このため、揮発成分を含まず、活性エネルギー線の照射により瞬間硬化する、活性エネルギー線硬化型インキの利用が、フレキソ印刷において進められている(特許文献1)。軟包装印刷ではロールトゥロールで印刷するため、インキの速乾性が重要であり、活性エネルギー線硬化型インキを用いる活性エネルギー線硬化型フレキソ印刷は、環境面での利点に加えて、熱エネルギーを使用せずに乾燥工程を短縮するため、省エネかつ高い生産性を有するものである。
 一般に活性エネルギー線硬化型インキは、活性エネルギー線の照射により瞬間硬化するため、主成分として溶剤ではなく、(メタ)アクリレート類を含む。フレキソ印刷においては、レリーフ(凸部)の頂点にインキが塗布され、被印刷物と圧着することでインキを転移させ印刷を行うが、インキ中の(メタ)アクリレート類がフレキソ印刷版のレリーフ部に浸透すると、連続印刷するにつれて膨潤し、網点が印刷開始時点よりも太り、印刷品質が悪化する。また凸部頂点のエッジにインキが蓄積しやすくなり、版絡みと呼ばれる、画線以外の部分にインキが付着する印刷不良が、連続印刷するにつれて発生しやすくなる。
 このため、イオン性官能基を有するフッ素含有化合物を含有する水現像可能な感光性フレキソ印刷版原版を用いて、インキの網絡みを抑制する方法が提案されている(特許文献2)。
国際公開第2019/69736号 国際公開第2018/88336号
 特許文献2では、フレキソ印刷版側の改良により、一定のインキ絡み抑制の効果が得られるが、版絡みは、本質的に版の特性とインキの特性の双方が影響する現象であるため、インキによっては抑制効果が限定的になる可能性がある。
 そこで、本発明では、特定のフレキソ印刷版と活性エネルギー線硬化型インキを組み合わせることで、連続印刷でも安定した品質の印刷物が得られる製造方法を提供することを課題とする。
 すなわち本発明は、基材および印刷レリーフが形成された樹脂層を含むフレキソ印刷版、ならびに少なくとも1種類以上の多官能(メタ)アクリレートおよび顔料を含む活性エネルギー線硬化型インキを用いる印刷物の製造方法であって、下記(A)~(C)を満たす、印刷物の製造方法である。
(A)前記印刷レリーフが形成された樹脂層は、Fedors法によって計算されるSP値が10.0以上である化合物Aを30質量%以上含む。
(B)前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下である。
(C)前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である。
 また本発明は、少なくとも1種類以上の多官能(メタ)アクリレート、および顔料を含む活性エネルギー線硬化型インキであって、前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下でありかつ、前記多官能(メタ)アクリレートがトリシクロデカンジメタノールジアクリレートを含み、前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である、活性エネルギー線硬化型インキである。
 本発明に係る印刷物の製造方法によれば、特定のフレキソ印刷版と活性エネルギー線硬化型インキを組み合わせることで、インキ成分による版の変形を抑制し、網点の太りやインキ絡みを抑制し、連続印刷でも安定した品質の印刷物が得られる。また得られた印刷物は優れたフィルム密着性を示す。
 以下、本発明について具体的に説明する。なお、本発明において「以上」とは、そこに示す数値と同じかまたはそれよりも大きいことを意味する。また、「以下」とは、そこに示す数値と同じかまたはそれよりも小さいことを意味する。また、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートを含む総称である。
 本発明は、基材および印刷レリーフが形成された樹脂層を含むフレキソ印刷版、ならびに少なくとも1種類以上の多官能(メタ)アクリレートおよび顔料を含む活性エネルギー線硬化型インキを用いる印刷物の製造方法であって、下記(A)~(C)を満たすことを特徴とする。
(A)前記印刷レリーフが形成された樹脂層は、Fedors法によって計算されるSP値が10.0以上である化合物Aを30質量%以上含む。
(B)前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下である。
(C)前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である。
 上記の(A)~(C)を満たすことは、印刷レリーフが形成された樹脂層と活性エネルギー線硬化型インキの、それぞれの主成分同士のSP値が離れており、親和性が低いことを意味する。これら主成分が互いに相溶性が低いために、前記多官能(メタ)アクリレートが、印刷レリーフが形成された樹脂層を膨潤しにくくなり、連続印刷時の印刷版の変形を抑制し、印刷品質が安定化する。
 本発明におけるSP値(溶解性パラメーター)は、Fedors法(Robert F. Fedors、Polymer Engineering and Science,14,147-154(1974))により算出される値で、下記式(1)を用いて算出することができる。
δ=(E/V)1/2  …式(1)
式(1)中、δはSP値、Eは凝集エネルギー(cal/mol)、Vはモル体積(cm/mol)を表す。
 [フレキソ印刷版]
 前記フレキソ印刷版は、基材および印刷レリーフが形成された樹脂層を含む。
 (基材)
 前記基材としては、熱や物理的応力に対する寸法安定性に優れたものが好ましく、ポリエステルなどのプラスチックシートや、スチール、ステンレス、アルミニウムなどの金属板を使用することができる。
 前記基材の厚さは、取扱性、柔軟性の観点から100μm以上350μm以下が好ましい。100μm以上であれば支持体としての取扱性が向上し、350μm以下であればフレキソ印刷版としての柔軟性が向上する。
 (樹脂層)
 前記印刷レリーフが形成された樹脂層は、Fedors法によって計算されるSP値が10.0以上である化合物Aを含む。前記化合物AのSP値は、インキとの相溶性がより低くなり、連続印刷品質が安定することから、12.0以上が好ましい。
 従来の一般的なフレキソ版はゴム成分からなり、疎水性が高く、SP値が10よりも低いため、活性エネルギー線硬化型インキと近い極性となり膨潤しやすい。仮に、より極性が高い、つまりSP値が10よりも高い(メタ)アクリレートを組み合わせれば同様の膨潤抑制は期待できるが、極性基を有する(メタ)アクリレートは粘度が高くなるため、活性エネルギー線硬化型インキをフレキソ印刷に適した粘度に調整することが実用上は困難である。
 そこで本発明では、前記化合物Aにより前記フレキソ印刷版のSP値を高くし、後述する活性エネルギー線硬化型インキに、前記化合物AよりもSP値の低い多官能(メタ)アクリレートを含有させることで、前記活性エネルギー線硬化型インキをフレキソ印刷に適した粘度に調整しつつ、インキ成分による版の変形を抑制することが可能となる。
 前記化合物Aは、ニトリルブタジエンゴム、ウレタンゴム、塩素化ポリエチレン、酢酸ビニルゴム、ポリビニルアルコール、ポリアミド、ポリウレタン、ポリビニルピロリドン、ポリエーテル、ポリエステルから選ばれる1種以上であることが好ましい。これらのゴム類や樹脂類は、親水性の高い官能基を主鎖に有するか、側鎖に導入することが容易であり、インキによる膨潤を抑制することができる。
 前記化合物Aは、少なくとも水酸基、エチレンオキシド基のいずれかを有することが好ましい。これら親水性が高い官能基は、疎水性の官能基と相溶性が低くなる。
 また前記化合物Aは、(メタ)アクリレート基を含有しないことが好ましい。化合物Aが(メタ)アクリレート基を含有しないことで、本発明におけるインキの主成分である多官能(メタ)アクリレートとの親和性を抑えることができる。
 また前記樹脂層は前記化合物Aを30質量%以上含む。前記化合物Aを30質量%以上、好ましくは50質量%以上含むことで、インキとの相溶性が低くなり、連続印刷品質が安定する。また、光重合開始剤、紫外線吸収剤等の添加剤を添加する余地を残す上で、前記化合物Aの含有量は99.5質量%以下であることが好ましい。
 また前記樹脂層には、印刷レリーフの硬度を調節するために、可塑剤を含有してもよい。
 また前記樹脂層は、1,6-ヘキサンジオールジアクリレートに25℃、24時間接触させた後の膨潤率が5質量%以下であることが好ましい。1,6-ヘキサンジオールジアクリレートのSP値は9.5である。1,6-ヘキサンジオールジアクリレートに上記条件に接触後の、膨潤率が5質量%以下であることにより、当該化合物に対する膨潤性が低く、本発明の印刷物の製造方法にて用いられるインキに対する膨潤性も低く、連続印刷品質が安定する。
 [活性エネルギー線硬化型インキ]
 本発明の印刷物の製造方法において用いられる活性エネルギー線硬化型インキ、および本発明の活性エネルギー線硬化型インキ(以下、両者に共通する特徴を説明する際にはまとめて「本発明における活性エネルギー線硬化型インキ」とも呼ぶ。)は、少なくとも1種類以上の多官能(メタ)アクリレート、顔料を含む。
 (多官能(メタ)アクリレート)
 本発明の印刷物の製造方法において用いられる活性エネルギー線硬化型インキが含む前記多官能(メタ)アクリレートは、本発明で用いるフレキソ印刷版の膨潤が小さくなることから、脂環骨格または炭素数6から18の脂肪族骨格を含むことが好ましい。特に、膨潤性が低く、さらに基材への密着性が高いトリシクロデカンジメタノールジアクリレートを含むことが好ましい。
 また、本発明の活性エネルギー線硬化型インキが含む前記多官能(メタ)アクリレートは、トリシクロデカンジメタノールジアクリレートを含む。
 前記多官能(メタ)アクリレートの具体例としては、2官能では、1,6-ヘキサンジオールジ(メタ)アクリレート(SP値9.5)、1,9-ノナンジオールジ(メタ)アクリレート(SP値9.4)、1,10-デカンジオールジ(メタ)アクリレート(SP値9.3)、トリプロピレングリコールジ(メタ)アクリレート(SP値9.3)、ポリプロピレングリコールジ(メタ)アクリレート(SP値9.1)、ネオペンチルグリコールジ(メタ)アクリレート(SP値9.2)、ジシクロペンタジエントリシクロデカンジメタノールジ(メタ)アクリレート(SP値9.2)が挙げられ、3官能では、トリメチロールプロパントリ(メタ)アクリレートのプロピレンオキシド付加体(SP値9.4)が挙げられる。中でも、トリシクロデカンジメタノールジアクリレートが好ましい。
 前記多官能(メタ)アクリレートは、Fedors法によって計算されるSP値が8.0以上9.5以下であるものを含む。前記多官能(メタ)アクリレートが、SP値が9.5以下、好ましくは9.3以下であるものを含むことで、フレキソ印刷版との相溶性がより低くなり、連続印刷品質が安定する。また、フレキソ印刷版との相溶性をより低くする方向性として、前記多官能(メタ)アクリレートを、前記樹脂層のSP値よりもSP値の高いものとするのでなく、よりSP値の低いものとすることで、極性基を有することによる前記多官能(メタ)アクリレートの粘度の上昇を抑え、活性エネルギー線硬化型インキをフレキソ印刷に適した粘度に調整することを容易に行うことができる。また、前記多官能(メタ)アクリレートがSP値8.0以上のものを含むことで、感光性によるパターニング性に優れる。
 前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量は、40質量%以上85質量%以下である。当該含有量が40質量%以上、好ましくは50質量%以上であることで、フレキソ印刷版との相溶性がより低くなり、連続印刷品質が安定する。また当該含有量は85質量%以下、好ましくは80質量%以下である。
 前記多官能(メタ)アクリレートは、アルキレンオキシド基を含有しないことが好ましい。かかる態様により、前記フレキソ印刷版の膨潤を抑えることができる。
 前記多官能(メタ)アクリレートの数平均分子量としては、フレキソ印刷版の膨潤性と活性エネルギー線に対する硬化性が良好に保たれる200以上700以下が好ましい。
 (オリゴマー)
 インキに適切な粘弾性を付与するために、オリゴマーを用いることもできる。具体的には例えば、アクリル樹脂、ポリウレタン、ポリエステル、フタレート樹脂などのオリゴマーが挙げられ、重量平均分子量が10000以下のものが好ましい。
 (顔料)
 前記顔料としては例えば、フタロシアニン系顔料、溶性アゾ系顔料、不溶性アゾ系顔料、レーキ顔料、キナクリドン系顔料、イソインドリン系顔料、スレン系顔料、金属錯体系顔料、酸化チタン、酸化亜鉛、アルミナホワイト、炭酸カルシウム、硫酸バリウム、ベンガラ、カドミウムレッド、黄鉛、亜鉛黄、紺青、群青、酸化物被覆ガラス粉末、酸化物被覆雲母、酸化物被覆金属粒子、アルミニウム粉、金粉、銀粉、銅粉、亜鉛粉、ステンレス粉、ニッケル粉、有機ベントナイト、酸化鉄、カーボンブラック、グラファイト等が挙げられる。
 また前記顔料としては、無色の体質顔料である、マイカ(含水ケイ酸アルミニウムカリウム)やタルク(ケイ酸マグネシウム塩)なども用いることができ、本発明における活性エネルギー線硬化型インキを、色顔料を含まないアンカーインキとすることもできる。
 (光重合開始剤)
 本発明における活性エネルギー線硬化型インキは、光重合開始剤を含むことで、多官能(メタ)アクリレートが、光重合開始剤の溶解に使用され、フレキソ印刷版の膨潤が小さくなるため好ましい。
 一方で、光重合開始剤の分解物や未反応物は、臭気や内容物汚染の原因になるため、用途により、これらを含まない放射線硬化型のインキがより好ましい場合がある。
 (その他の添加剤)
 その他に、ワックス、顔料分散剤、消泡剤、レベリング剤等の添加剤を本発明における活性エネルギー線硬化型インキに使用することが可能である。
 本発明における活性エネルギー線硬化型インキは、水および溶剤のような、フレキソ印刷版を膨潤しうる成分を、実質的に含まないことが好ましい。ここでいう実質的に含まないとは、インキ中の水分および溶剤の合計含有量が0.5質量%以下であることを言う。
 本発明における活性エネルギー線硬化型インキは、多官能(メタ)アクリレート、および任意の、オリゴマーや単官能(メタ)アクリレートを溶解したワニスに、顔料および任意の添加剤を加えて、アトライター、ボールミル、サンドミル等を用いて、分散、混合することで合成することができる。
 [被印刷物]
 本発明の印刷物の製造方法において、被印刷物としては、アート紙、コート紙、キャスト紙などの塗工紙や、上質紙、新聞用紙、和紙などの非塗工紙や、合成紙、アルミ蒸着紙、金属、フィルムなどの非吸収原反を用いることができる。
 前記フィルムとしては例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸などのポリエステル、ポリアミド、ポリイミド、ポリアルキル(メタ)アクリレート、ポリスチレン、ポリαメチルスチレン、ポリカーボネート、ポリビニルアルコール、ポリビニルアセタール、ポリ塩化ビニル、ポリフッ化ビニリデン等が挙げられる。
 前記フィルムには、例えばバーニング処理や、易接着コーティング、化学蒸着などの表面処理が施されていてもよい。
 前記フィルムの厚みは、単一層からなるフィルムであれば、印刷に必要な前記フィルムの機械的強度から5μm以上が好ましく、10μm以上がより好ましい。また、前記フィルムのコストが安価となる50μm以下が好ましく、30μm以下がより好ましい。
 すでにラミネートされた複層フィルムに表刷り印刷をする場合は、前記フィルムの厚みは50μm以上200μm以下が好ましい。
 前記被印刷物の形態としては、枚葉状、ロール状のいずれも用いることが可能である。軟包装用の薄膜フィルムに印刷する場合は、ロールフィルムを用い、ロールトゥロールで印刷することが好ましい。
 [照射工程]
 本発明の印刷物の製造方法における照射工程において、活性エネルギー線源としては例えば、紫外線(特にLED-UV)、電子線、ガンマ線などが挙げられる。電子線やガンマ線などの放射線は、被照射物質中で高エネルギーの二次電子を発生させ、周囲の分子を励起し、ラジカルに代表される反応活性種を生成する。被照射物質が、活性エネルギー線硬化型インキであると、インキ中でラジカルが生成され、ラジカル重合が進み、硬化・インキ皮膜となる。
 特に、低加速電圧による電子線は、10μm以下であるインキ膜の厚さに対して十分な透過性を有し、硬化に必要なエネルギーを与えることができる。また、利用時の特別な資格が不要で取り扱いが容易なことからも、好ましく用いられる。
 電子線は加速電圧により透過深度が決まるため、電子線の加速電圧としては、インキ膜を十分な線量が透過する、50kV以上が好ましく、90kV以上がより好ましく、110kV以上がさらに好ましい。また、透過深度が大きくなると、被印刷物の内部に与える線量も増えるため、300kV以下が好ましく、200kV以下がより好ましく、150kV以下がさらに好ましい。
 また電子線の照射線量が高いほど、対象物質中でラジカル種の発生量が増える一方で、被印刷物のダメージも大きくなるため、照射線量は10kGy以上100kGy以下が好ましく、20kGy以上50kGy以下がより好ましい。
 以下、本発明を実施例により具体的に説明する。ただし、本発明はこれらのみに限定されるものではない。
 [評価方法]
 (1)試験用印刷
 フレキソ印刷機(UTECO社製“ONYX XS”ECO ONE 800)に、アニロックスロール(PRAXAIR SURFACE TECHNOLOGIES社製“NOVA GOLD”460lpi、2.5ml/m)、およびクッションテープ(Lohmann Tape社製“DUPLO FLEX”5.3 Medium)を用いて各種フレキソ印刷版を装着し、印刷速度200m/分で厚み25μmのPETフィルム(東レ(株)製、“ルミラー”T-25)に、各種の活性エネルギー線硬化型インキを転写した。続いて加速電圧110kV、照射線量30kGyの電子線照射によりインキを硬化させ、印刷物を得た。各水準につき、2000m連続印刷を実施し、印刷開始と、500m印刷毎にサンプル採取した。
 (2)版の膨潤率
 評価対象の版のベタ部を2cm×2cm、深さ方向で表面からおよそ0.8mmで切り出した切片に対して、ベタ部前面に1,6-ヘキサンジオールジアクリレートを25℃で24時間接触させた。その後、1,6-ヘキサンジオールジアクリレートをガーゼで拭き取り、接触前の質量に対する接触前後の質量変化の率を算出し、2回測定した平均値を膨潤率とした。
 (3)網点太り
 印刷物の25%網点部分を対象として、反射濃度計(GretagMacbeth製、SpectroEye)を用いてドットゲイン値を測定した。印刷開始時と印刷終了時の印刷物で値をそれぞれ測定し、変化が±4%の範囲内にあれば、網点の変形が無く、品質が安定していると評価した。変化が±2%の範囲内にあれば、極めて良好と判断した。
 (4)版絡み
 印刷物のハイライト部(20%以下網点)において、版絡みの有無を評価した。
A:2000mの連続印刷を通して、版絡みが全く見られなかった。
B:印刷開始から1500mまでは版絡みが見られず、2000mで版絡みが見られた。
C:印刷開始から1000mまでは版絡みが見られず、1500mで版絡みが見られた。
D:印刷開始から500mまでは版絡みが見られず、1000mで版絡みが見られた。
E:印刷開始から500mで版絡みが見られた。
 (5)ラミネート剥離強度
 試験用印刷により得られた印刷開始時点の印刷物に、混合ラミネート接着剤(三井化学株式会社製タケラックA626/タケネートA-50)を、膜厚3.0g/mとなるように塗工し、厚み60μmの無延伸ポリプロピレンフィルム(CPP)(東レフィルム加工株式会社製 ZK-297)によりラミネートした。その後、40℃で3日間エージングし、ラミネートサンプルを得た。ラミネートサンプル中のインキのベタ部を15mm幅で短冊状にカットし、テンシロン万能試験機(株式会社オリエンテック製 RTG-1210)を用いて、300mm/分で90°剥離した際の剥離強度を測定した。
 剥離強度が1.0N/15mm未満であると密着性が不十分であり、1.0N/15mm以上1.5N/15mm未満であると密着性がやや良好であり、1.5N/15mm以上2.0N/15mm未満であると密着性が良好であり、2.0N/15mm以上3.0N/15mm未満であると密着性がかなり良好であり、3.0N/15mm以上であると密着性が極めて良好と評価した。
 [インキ原料]
顔料:LIONOL BLUE FG7330(東洋カラー(株)製)
顔料分散剤:“Disperbyk”(登録商標)2012(ビックケミー社製)
多官能(メタ)アクリレート1:1,9-ノナンジオールジアクリレート(共栄社化学(株)製“ライトアクリレート”(登録商標)1,9ND-A)、SP値9.4、脂環骨格なし
多官能(メタ)アクリレート2:トリプロピレングリコールジアクリレート(Miwon社製“Miramer”(登録商標)M220)、SP値9.3、脂環骨格なし、アルキレンオキシド基あり
多官能(メタ)アクリレート3:ポリエチレングリコールジアクリレート(Miwon社製“Miramer”(登録商標)M280)、SP値9.7、脂環骨格なし、アルキレンオキシド基あり
多官能(メタ)アクリレート4:トリシクロデカンジメタノールジアクリレート(新中村化学(株)製“NKエステル”(登録商標)A-DCP)、SP値9.2、脂環骨格あり
オリゴマー:ウレタンアクリレート(共栄社化学(株)製UF-8001G)
重合禁止剤:p-メトキシフェノール(和光純薬工業(株)製)。
 [インキの作製]
 表1に示す、顔料、多官能(メタ)アクリレート、オリゴマー、その他助剤を含むインキ組成を秤量し、バッチ式サンドミル(株式会社林商店製)を用いて、分散することで活性エネルギー線硬化型インキ1~6を得た。
Figure JPOXMLDOC01-appb-T000001
 また市販のインキを用いる場合には、下記品番を使用した。
インキ7:PHA((株)T&K TOKA製)、SP値9.3の多官能(メタ)アクリレートを40質量%以上80質量%以下含む。
インキ8:PHA-L03((株)T&K TOKA製UVフレキソインキ)、SP値9.5以下の多官能(メタ)アクリレートの含有率が40質量%未満である。
 [フレキソ印刷版原版の原料]
バインダー樹脂1:部分ケン化ポリビニルアルコール(日本酢ビ・ポバール(株)製“JR-05”)に、無水コハク酸1.0モル%を反応させた後、カルボン酸部分を全てグリシジルメタクリレートと反応させ(メタ)アクリレート基に変換した樹脂。SP値12.4
バインダー樹脂2:ニトリルブタジエンゴム(JSR(株)製N220S)、SP値10.1
モノマー1:ポリエチレングリコールモノメタクリレート(日油(株)製“ブレンマー”(登録商標)AE400)、SP値10.4
モノマー2:トリプロピレングリコールのグリシジルアクリレートの1:2付加物(水酸基2官能、日油(株)製“エポキシエステル”(商標登録)200PA)、SP値11.3
添加剤:トリメチロールプロパントリ(ポリエチレングリコール)エーテル(重量平均分子量:400、日本乳化剤(株)製TMP-60)、SP値10.5
光重合開始剤:1-ヒドロキシシクロヘキシルジメチルケトン
紫外線吸収剤:2-(2‘-ヒドロキシ-3’-t-ブチル-5‘-メチルフェニル)-5-クロロベンゾトリアゾール。
 [フレキソ印刷版原版の作製]
 表2に示す組成で、各種原材料を秤量し、アルコール混合物(日本アルコール(株)製“ソルミックス”(登録商標)H-11)と水の混合溶媒に溶解させた後、易接着層を有する厚さ188μmのポリエステル(PET)フィルム(パナック(株)製“パナクレア”(登録商標)ACM188)に対して、乾燥膜厚が1.14mmになるよう調節して塗工し、60℃で2.5時間乾燥した。得られた感光性樹脂層上に、水/エタノールが質量比で50/50の混合溶剤を塗布し、感熱マスク層を有する積層フィルムを圧着し、フレキソ印刷版原版1,2を得た。
Figure JPOXMLDOC01-appb-T000002
 また市販のフレキソ印刷版原版を用いる場合には、下記品番を使用した。
フレキソ印刷版原版3:DF114HR2(東レ(株)製)、SP値10.0以上の化合物を30質量%以上含む。
フレキソ印刷版原版4:NX114(KODAK(株)製)、SP値10.0以上の化合物を含有しない。
 [フレキソ印刷版の作製]
 フレキソ印刷版原版に対して、基材側から、高輝度ケミカル灯(Philips社製TL-K 40W/10R)で、積算光量が700mJ/cmで裏露光した。その後に、外面ドラム式プレートセッター(エスコ・グラフィックス(株)製“CDI SPARK”2530)にてレーザーで描画し、感熱マスク層から画像マスクを形成した。その後、大気下において、裏露光と同じく高輝度ケミカル灯(TL-K 40W/10R)で、積算光量が12,000mJ/cmとなるように画像マスク側から主露光を行った。その後、バッチ式露光現像機(Inglese, s.r.l. 製“Inglese” W43)で、25℃に温度調整した水道水で80秒現像し、60℃10分間オーブンにて乾燥させた。次いで高輝度ケミカル灯(TL-K 40W/10R)で、積算光量が12,000mJ/cmになるように後露光を行い、フレキソ印刷版を得た。
 [実施例1]
 フレキソ印刷版原版としてフレキソ印刷版原版3を用いてフレキソ印刷版を作製し、インキとしてインキ1を用いて印刷した。フレキソ印刷版の膨潤率は2.1%と小さく変形しにくいものであり、印刷時もインキ絡みが見られず、網点の太りも2%と非常に良好であった。またラミネート剥離強度は1.8N/15mmと良好であった。結果を表3に示す。
 [実施例2~6]
 インキとしてインキ2~5,7を用いた以外は実施例1と同様にして、印刷した。
 実施例2~6のいずれにおいても、連続印刷品質は安定していた。SP値が9.5以下の多官能(メタ)アクリレート類の含有量が低いと、インキ絡みは生じやすくなる傾向が見られ、含有量が多いと網点太りが大きくなる傾向が見られた。中でもトリシクロデカンジメタノールジアクリレートを用いた実施例5では印刷品質の安定性に加えて、印刷物の密着性も非常に良好であった。結果を表3に示す。
 [実施例7および8]
 フレキソ印刷版原版としてフレキソ印刷版原版1,2を用いた以外は実施例1と同様にして、印刷した。フレキソ印刷版の膨潤率が高いと網点も太りやすくなる傾向が見られた。結果を表3に示す。
 [比較例1]
 フレキソ印刷版原版として市販のフレキソ印刷版原版4を用いた以外は実施例1と同様にして、印刷した。印刷開始500mからインキ絡みが見られ、網点の太りも6%と大きく、印刷品質は印刷するにつれて低下が見られた。結果を表3に示す。
 [比較例2]
 インキとしてインキ6を用いた以外は同様にして、印刷した。インキ6がSP値の大きく親水性の高い多官能(メタ)アクリレートを含むため、網点が太る様子が見られた。結果を表3に示す。
 [比較例3]
 フレキソ印刷版原版としてフレキソ印刷版原版4を用いてフレキソ印刷版を作製し、インキとしてインキ6を用いて印刷した。網点の太りは良好なものの、インキ絡みが発生しやすかった。結果を表3に示す。
 [比較例4]
 フレキソ印刷版原版としてフレキソ印刷版原版3を用いてフレキソ印刷版を作製し、インキとしてインキ8を用いて印刷した。印刷開始2000mまでインキ絡みが見られなかったものの、網点が細る側に変化する傾向が見られ、フレキソ版成分のインキ側抽出が推測された。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1. 基材および印刷レリーフが形成された樹脂層を含むフレキソ印刷版、ならびに少なくとも1種類以上の多官能(メタ)アクリレートおよび顔料を含む活性エネルギー線硬化型インキを用いる、印刷物の製造方法であって、下記(A)~(C)を満たす、印刷物の製造方法。
    (A)前記印刷レリーフが形成された樹脂層は、Fedors法によって計算されるSP値が10.0以上である化合物Aを30質量%以上含む。
    (B)前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下である。
    (C)前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である。
  2. 前記樹脂層を1,6-ヘキサンジオールジアクリレートに25℃、24時間接触させた後の膨潤率が5質量%以下である、請求項1に記載の印刷物の製造方法。
  3. 前記化合物Aが、少なくとも水酸基、エチレンオキシド基のいずれかを有する、請求項1または2に記載の印刷物の製造方法。
  4. 前記化合物Aが、(メタ)アクリレート基を含有しない、請求項1~3のいずれかに記載の印刷物の製造方法。
  5. 前記化合物Aが、ニトリルブタジエンゴム、ウレタンゴム、塩素化ポリエチレン、酢酸ビニルゴム、ポリビニルアルコール、ポリアミド、ポリウレタン、ポリビニルピロリドン、ポリエーテル、ポリエステルから選ばれる1種以上である、請求項1~4のいずれかに記載の印刷物の製造方法。
  6. 前記多官能(メタ)アクリレートの数平均分子量が200以上700以下である、請求項1~5のいずれかに記載の印刷物の製造方法。
  7. 前記多官能(メタ)アクリレートが、アルキレンオキシド基を含有しない、請求項1~6のいずれかに記載の印刷物の製造方法。
  8. 前記多官能(メタ)アクリレートが、脂環骨格または炭素数6から18の脂肪族骨格を含む、請求項1~7のいずれかに記載の印刷物の製造方法。
  9. 前記多官能(メタ)アクリレートが、トリシクロデカンジメタノールジアクリレートである、請求項1~8のいずれかに記載の印刷物の製造方法。
  10. 前記活性エネルギー線硬化型インキが、光重合開始剤を含む、請求項1~9のいずれかに記載の印刷物の製造方法。
  11. 前記活性エネルギー線硬化型インキが、水および溶剤を実質的に含まない、請求項1~10のいずれかに記載の印刷物の製造方法。
  12. 少なくとも1種類以上の多官能(メタ)アクリレート、および顔料を含む活性エネルギー線硬化型インキであって、前記多官能(メタ)アクリレートがトリシクロデカンジメタノールジアクリレートを含み、前記多官能(メタ)アクリレートのFedors法によって計算されるSP値が8.0以上9.5以下であり、かつ、前記SP値を満足する前記多官能(メタ)アクリレートのインキ中の含有量が40質量%以上85質量%以下である、活性エネルギー線硬化型インキ。
PCT/JP2023/008505 2022-03-29 2023-03-07 印刷物の製造方法および活性エネルギー線硬化型インキ WO2023189272A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053112 2022-03-29
JP2022-053112 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189272A1 true WO2023189272A1 (ja) 2023-10-05

Family

ID=88201334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008505 WO2023189272A1 (ja) 2022-03-29 2023-03-07 印刷物の製造方法および活性エネルギー線硬化型インキ

Country Status (1)

Country Link
WO (1) WO2023189272A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512760A (ja) * 2008-12-22 2012-06-07 テクノソリューションズ アッセスソリア リミターダ ウェットオンウェット機能を有するフレキソ印刷プロセス
JP2013029738A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 熱現像用フレキソ印刷版原版、及び、フレキソ印刷版の製版方法
US20130149507A1 (en) * 2010-08-18 2013-06-13 Sun Chemical Corporation High speed printing ink
JP2017114024A (ja) * 2015-12-25 2017-06-29 住友理工株式会社 フレキソ印刷版原版
JP2019137735A (ja) * 2018-02-07 2019-08-22 株式会社ミマキエンジニアリング 放射線硬化型インク、積層物、放射線硬化型インクの製造方法
JP2020140182A (ja) * 2019-03-01 2020-09-03 旭化成株式会社 フレキソ印刷版用原版

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512760A (ja) * 2008-12-22 2012-06-07 テクノソリューションズ アッセスソリア リミターダ ウェットオンウェット機能を有するフレキソ印刷プロセス
US20130149507A1 (en) * 2010-08-18 2013-06-13 Sun Chemical Corporation High speed printing ink
JP2013029738A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 熱現像用フレキソ印刷版原版、及び、フレキソ印刷版の製版方法
JP2017114024A (ja) * 2015-12-25 2017-06-29 住友理工株式会社 フレキソ印刷版原版
JP2019137735A (ja) * 2018-02-07 2019-08-22 株式会社ミマキエンジニアリング 放射線硬化型インク、積層物、放射線硬化型インクの製造方法
JP2020140182A (ja) * 2019-03-01 2020-09-03 旭化成株式会社 フレキソ印刷版用原版

Similar Documents

Publication Publication Date Title
US4424314A (en) Curable coating composition
JP5691274B2 (ja) 感光性樹脂印刷版原版
KR102054033B1 (ko) 감광성 수지 조성물 및 감광성 수지 인쇄판 원판
JPS6294379A (ja) 水性インク記録用シ−ト
JP2009288700A (ja) フレキソ印刷版の製造方法
WO2021044838A1 (ja) 印刷物の製造方法
WO2013146586A1 (ja) Ctpフレキソ印刷原版用感光性樹脂組成物およびそれから得られる印刷原版
WO2009153932A1 (ja) レーザー彫刻可能なフレキソ印刷原版
US4205139A (en) Curable coating composition
JP2009063873A (ja) 感光性印刷版原版
JP4442187B2 (ja) 感光性樹脂印刷版原版、その製造方法およびこれを用いた樹脂凸版印刷版の製造方法
WO2004038507A1 (ja) 感光性樹脂印刷版原版、その製造方法およびこれを用いた樹脂凸版印刷版の製造方法
EP3577523B1 (de) Strahlungshärtbares gemisch enthaltend niedrig funktionalisiertes teilverseiftes polyvinylacetat
JP5050821B2 (ja) 感光性樹脂印刷版原版
EP3109702B1 (en) Resin laminate and relief printing original plate
JP2007114255A (ja) 感光性樹脂印刷版原版およびその製造方法
WO2023189272A1 (ja) 印刷物の製造方法および活性エネルギー線硬化型インキ
JP2012068423A (ja) 感光性樹脂印刷版原版およびその製造方法
CN1472597A (zh) Ir烧蚀用层压体
WO2018088336A1 (ja) 感光性樹脂組成物および感光性樹脂版原版
EP3401113B1 (en) Flexographic printing plate, flexographic printing plate precursor, and manufacturing methods therefor
JP4457748B2 (ja) 感光性樹脂印刷版原版、その製造方法およびこれを用いた樹脂凸版印刷版の製造方法
JP2007079203A (ja) 感光性樹脂印刷版原版およびこれを用いた樹脂凸版印刷版の製造方法
JP6051920B2 (ja) フレキソ印刷原版用感光性樹脂組成物及びフレキソ印刷原版
JP4736734B2 (ja) 感光性樹脂印刷版原版の製造方法およびこれを用いた樹脂凸版印刷版の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023515575

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779299

Country of ref document: EP

Kind code of ref document: A1