WO2023189026A1 - 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置 - Google Patents

狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置 Download PDF

Info

Publication number
WO2023189026A1
WO2023189026A1 PCT/JP2023/006344 JP2023006344W WO2023189026A1 WO 2023189026 A1 WO2023189026 A1 WO 2023189026A1 JP 2023006344 W JP2023006344 W JP 2023006344W WO 2023189026 A1 WO2023189026 A1 WO 2023189026A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
electrode
electrodes
groove
tips
Prior art date
Application number
PCT/JP2023/006344
Other languages
English (en)
French (fr)
Inventor
渉平 上月
涼太 長尾
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023530646A priority Critical patent/JP7351436B1/ja
Publication of WO2023189026A1 publication Critical patent/WO2023189026A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to a gas-shielded arc welding method, and more particularly to a narrow-gap gas-shielded arc welding method for thick steel plates and a welding device for narrow-gap gas-shielded arc welding.
  • “Narrow gap” here means that the groove angle is 25 degrees or less, and the minimum groove width between the thick steel plates that are the materials to be welded is 50% or less of the thickness of the steel plates. do.
  • x to y representing a numerical range indicates that the range is greater than or equal to x and less than or equal to y, that is, the range includes the boundary value.
  • Gas-shielded arc welding which is used for welding steel materials, is widely used in manufacturing fields such as automobiles, architecture, bridges, and electrical equipment.
  • the amount of welding has increased during welding during the manufacturing process, particularly during butt welding of steel materials.
  • the welding process required a large amount of time. This results in an increase in construction costs. Therefore, it is possible to apply narrow gap gas shielded arc welding, in which multiple layers of grooves with small gaps relative to the plate thickness are welded by gas shielded arc welding.
  • narrow gap gas shielded arc welding reduces the amount of welding, making it possible to achieve higher welding efficiency and energy savings, and is expected to reduce construction costs.
  • Multi-electrode welding can increase welding efficiency compared to single-electrode welding because the amount of deposited metal used to fill the groove, that is, the amount of metal that melts the welding wire and adheres to the groove, can be increased by the number of electrodes. It is possible to obtain. Therefore, it is an effective means that contributes to increasing the efficiency of welding.
  • Patent Document 1 describes a narrow gap gas shielded arc welding method for joining thick steel plates by narrow gap multilayer welding.
  • the first layer welding is multi-electrode welding with two or more electrodes, the first electrode and the second electrode are positioned along a predetermined parallel welding line, and the first electrode and the second electrode
  • the distance between the welding wire tips of the first electrode and the second electrode is in the range of 5 mm or more and 16 mm or less, and the angle between the straight line connecting the welding wire tips of the first electrode and the second electrode and the direction orthogonal to the welding line is in the range of 45 degrees or less.
  • the fusion depth in the direction orthogonal to the weld line at the bottom of the thick steel plate is controlled to be 1.5 mm or more.
  • Patent Document 1 has a problem in that hot cracking occurs at the center of the weld metal when multi-electrode welding with three or more electrodes is performed.
  • the purpose of the present invention is to achieve good welding quality and high welding efficiency without having to take care of the groove surface even when performing low-cost groove processing in multi-electrode welding of thick steel plates with three or more electrodes.
  • An object of the present invention is to provide narrow gap gas shielded arc welding technology that can achieve the following. Examples of low-cost bevel processing include gas cutting and plasma cutting. Good welding quality means that the occurrence of defects such as poor fusion and defects such as hot cracks appearing in the center of the weld metal is suppressed.
  • the inventors have conducted extensive studies on the causes of hot cracking in weld metal in multi-electrode welding with three or more electrodes. As a result, it was found that if the distance between the second and subsequent electrodes was outside the appropriate range, welding defects that could lead to hot cracking would occur at the center of the weld metal. The inventors have also discovered that by adjusting the distance between the second and subsequent electrodes within an appropriate range, a welded joint having a sound bead, that is, weld metal, can be obtained.
  • multi-layer welding is defined as multi-electrode welding with three or more electrodes, in which the first electrode and the second electrode are arranged along a predetermined parallel welding line, and one of the first electrode and the second electrode is The polarity of the welding wire is set to be positive, and the other is set to be reversed, and the relative positions of the first electrode and the second electrode are appropriately adjusted during welding, and the diameter of the welding wire used for all electrodes of the multi-electrode is adjusted.
  • the total amount of welded metal per unit time of all electrodes is 200 g / min or more, and the bottom melting depth p of the thick steel plate is 1.5 mm.
  • the present invention was completed based on such knowledge and further studies. That is, the gist of the present invention is as follows. [1] Narrow groove in which thick steel plates with a groove angle ⁇ of 25° or less, a bottom groove gap G in the range of 7 to 18 mm, and a plate thickness t of 22 mm or more are joined by narrow-gap multilayer welding.
  • a gas shielded arc welding method comprising:
  • the multi-layer welding is multi-electrode welding with three or more electrodes, Among the multiple electrodes, a first electrode and a second electrode are arranged at positions along predetermined parallel welding lines, and one of the first electrode and the second electrode has a positive polarity and the other has a reverse polarity; Furthermore, the distance a between the tips of the welding wires supplied from the power supply tips disposed at the tips of the welding torches of the first electrode and the second electrode is in the range of 5 to 16 mm, and the first electrode and the second electrode The angle ⁇ between the straight line connecting the tips of each welding wire and the direction orthogonal to the welding line is within 60°, Furthermore, the diameter of the welding wire used in all electrodes of the multi-electrode is in the range of 1.0 to 1.6 mm, The distance between the second and subsequent electrodes among the multiple electrodes is in the range of 10 to 100 mm, Further, optionally, the supply angle ⁇ of each welding wire supplied from the
  • Gas shielded arc welding method [2] The narrow gap gas shielded arc welding method according to [1], wherein the third electrode and subsequent electrodes are arranged at the center of the groove behind the first electrode and the second electrode. [3] The narrow gap gas shield according to [1] or [2], wherein a welding wire curved with a radius of curvature in the range of 150 to 300 mm is fed to the power feeding tips of the first electrode and the second electrode. Arc welding method.
  • a welding device for narrow gap gas shielded arc welding A plurality of electrodes having three or more electrodes, a plurality of welding power sources that supply welding power to the plurality of electrodes, a power supply tip disposed at the tip of a welding torch of the plurality of electrodes, and a welding wire for each of the plurality of electrodes.
  • a plurality of welding wire supply means for feeding a shielding gas
  • a shielding gas supply means for supplying a shielding gas, a welding table or a welding cart
  • the feeding tip is configured to feed welding wire in the range of 1.0 to 1.6 mm
  • the first electrode and the second electrode are arranged at positions along predetermined parallel welding lines, and the distance between the first electrode and the second electrode is arranged at the tip of the welding torch of each electrode.
  • the distance a between the tips of the welding wires supplied from the power supply tips is within the range of 5 to 16 mm, and the distance a between the tips of the welding wires supplied from the power supply tips is within the range of 5 to 16 mm.
  • the welding wires are arranged so that the angle ⁇ formed between the straight line connecting the tips of the respective welding wires and the orthogonal direction of the welding line is 60° or less, and furthermore, the distance between the electrodes after the second electrode is The third electrode and subsequent electrodes are arranged so that the distance from the electrode is in the range of 10 to 100 mm,
  • a narrow gap gas-shielded arc wherein the feeding tip disposed at the welding torch tips of the first electrode and the second electrode has an inclination at its tip in the range of 0 to 15° with respect to the vertical.
  • the groove surface can be processed without any care, etc. It is possible to achieve high welding quality and high welding efficiency. In particular, defects such as poor fusion and defects such as hot cracks appearing at the center of the weld metal can be prevented from occurring. Therefore, multi-electrode welding with three or more electrodes can be applied to all layers of multi-layer welding, thereby improving welding efficiency. If a welded joint is manufactured using the technology according to the present invention, the welding construction cost can be significantly reduced compared to the manufacturing of conventional welded joints, and there will be a significant industrial effect. In particular, the present invention is extremely useful when applied to welding construction of general structures such as buildings, bridges, and shipbuilding.
  • FIG. 2 is a schematic cross-sectional view showing a groove shape suitable for a narrow-gap gas-shielded arc welding method according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing the procedure for welding with three electrodes according to the above embodiment, in which (a) represents a front view and (b) represents a top view. It is an explanatory view showing an example of the cross section of the weld joint which performed multilayer welding by three electrodes concerning the above-mentioned embodiment.
  • FIG. 6 is an explanatory diagram schematically showing a welding device for narrow gap gas shielded arc welding according to another embodiment of the present invention, in which (a) represents a perspective view, (b) represents a front view, and (c) represents a top view.
  • reference numeral 1 indicates a thick steel plate
  • 2 indicates a groove surface of the thick steel plate
  • symbol ⁇ indicates the groove angle
  • G indicates the bottom groove gap
  • t indicates the plate thickness.
  • the groove angle ⁇ is 25 degrees or less
  • the bottom groove gap G is in the range of 7 to 18 mm
  • the thick steel plates 1, 1 having a plate thickness t of 22 mm or more are welded by multilayer welding with a narrow groove.
  • This is a narrow gap gas shielded arc welding method for joining.
  • the term "thick steel plate” includes not only steel plates but also thick-walled materials, thick steel materials, and the like.
  • the plate thickness t of thick steel plate 1 is 22 mm or more. If the plate thickness of the thick steel plate 1 is less than 22 mm, by increasing the groove angle and decreasing the groove gap in the conventional V-shaped groove, the groove cross-sectional area can be made smaller than that of the groove targeted by the present invention. This is because it becomes smaller. Therefore, the conventional rectangular groove may result in more efficient welding with a smaller amount of weld metal.
  • the maximum plate thickness of steel structures is about 200 mm.
  • the upper limit of the plate thickness t of the thick steel plate 1 is 200 mm.
  • this embodiment can be applied to various thick steel plates from mild steel plates to 980 MPa class high tensile strength steel plates. It can be applied to welding 590 MPa class high tensile strength steel plates without preheating.
  • the groove used in this embodiment is an I-shaped groove or a V-shaped groove.
  • the groove angle ⁇ is 0°, that is, an I-shaped groove.
  • the I-shaped groove closes during welding due to welding heat strain. Therefore, it is preferable to use a V-shaped groove in which the groove angle ⁇ is set according to the plate thickness t in consideration of welding thermal distortion.
  • the groove angle ⁇ (°) can be set in the range of (0.5 ⁇ t/20) to (2.0 ⁇ t/20), with the plate thickness t in the range of 22 to 200 mm. preferable. More preferably, it is in the range of (0.8 ⁇ t/20) to (1.8 ⁇ t/20). More preferably, the upper limit of the groove angle ⁇ is 10°.
  • the upper limit of the groove angle ⁇ is set to 25°.
  • Bottom groove gap G 7 to 18 mm If the bottom groove gap G is less than 7 mm, it will be difficult to perform multi-electrode welding with three or more electrodes from the viewpoint of preventing welding defects. On the other hand, when the bottom groove gap G exceeds 18 mm, conventional welding methods can be applied. Therefore, in this embodiment, the bottom groove gap G is set in a range of 7 to 18 mm. Within this range, it is difficult to perform welding using conventional welding methods, and application of this embodiment is expected to further improve the efficiency of welding.
  • FIG. 2 is an explanatory diagram showing the procedure for welding using three electrodes according to this embodiment.
  • FIG. 2(a) is a front view
  • FIG. 2(b) is a top view.
  • FIG. 3 is an explanatory diagram showing an example of a cross section of a welded joint subjected to multilayer welding using three electrodes.
  • welding of each layer after the first layer welding 21 and the second layer welding 22 is performed by multi-layer welding by multi-electrode welding using three or more electrodes. Then, under high welding efficiency, welding is performed to obtain a welded joint that suppresses defects such as poor fusion and occurrence of hot cracking, especially hot cracking at the center of the weld metal.
  • the bevel processing of the thick steel plate in this embodiment is performed by gas cutting, plasma cutting, laser cutting, etc. However, this does not exclude machining.
  • the fusion depth (p shown in FIG. 3, which will be described later) required for the groove surface in narrow gap gas-shielded arc welding is mainly determined by the surface properties of the groove surface 2, particularly the recess depth and cleanliness.
  • the finish of the cut surface varies greatly depending on the gas flow rate and selection of the tip. For example, when the gas flow rate and the crater are well adjusted, the depth of the recess on the groove surface is about 0.2 mm or less.
  • the fusion depth p at the bottom of the groove is set to 1.5 mm or more. Note that it is preferably 2.0 mm or more. However, if the fusion depth p exceeds 4 mm, an undercut will occur in the upper part of the weld bead on the groove surface 2, causing welding defects, so the fusion depth is preferably 4 mm or less.
  • the fusion depth p at the bottom of the groove is 1.5 mm or more. In order to achieve this with high welding efficiency, it is extremely important to appropriately control the welding conditions of gas shielded arc welding. The welding conditions will be explained in detail below.
  • Multi-layer welding is multi-electrode welding with three or more electrodes, and the first electrode and the second electrode are placed in positions along predetermined parallel welding lines.
  • multi-layer welding should be multi-electrode welding with three or more electrodes. Note that, from the viewpoint of improving welding efficiency, the number of electrodes is preferably 4 or less.
  • the first electrode and the second electrode are arranged along a predetermined parallel welding line 8 for welding. .
  • Fig. 2 shows the procedure for multi-layer welding using three electrodes. It is preferable that the first electrode 3 and the second electrode 4 respectively extend along mutually parallel welding lines 8 close to different groove surfaces 2 .
  • One of the first electrode and the second electrode has positive polarity and the other has opposite polarity.
  • the first electrode 3 and the second electrode 4 have the same polarity (for example, both the first electrode 3 and the second electrode 4 are wire positive). Then, due to the electromagnetic force of attraction, the arcs of each other turn inward, and heat is concentrated at the center of the groove. For this reason, sufficient melting cannot be obtained on the groove surface 2.
  • one of the first electrode 3 and the second electrode 4 is made a wire negative (positive polarity) and the other is made a wire positive (reverse polarity)
  • the arrangement of the first electrode 3 and the second electrode 4 is controlled appropriately. , the magnetic fields caused by the mutual welding currents produce a strong outward electromagnetic force, causing the arcs to repel each other. As a result, it becomes possible to obtain a sufficient melting depth p on the groove surface.
  • ⁇ Distance a between the tips of the welding wires supplied from the power supply tips placed at the tips of the welding torches of the first and second electrodes 5 to 16 mm
  • Distance a between the tips of the welding wires 3b and 4b supplied from the power supply tips 3a and 4a at the tips of the welding torches of the first electrode 3 and the second electrode 4 should be adjusted within the range of 5 to 16 mm. Note that the "distance between the tips of the welding wires" herein refers to the distance between the centers of the tips of the welding wires in each electrode.
  • the distance a between the first and second electrodes is less than 5 mm, current (electrons) flows between the electrodes, which reduces the heat of the arc itself, making it impossible to obtain sufficient melting of the groove surface 2.
  • the distance a between the first and second electrodes exceeds 16 mm, the outward electromagnetic force between the electrodes decreases in inverse proportion to the distance. Therefore, the arc repulsion force to overcome the inward electromagnetic force generated by the current flowing through the groove surface 2 cannot be obtained, and the mutual arcs turn inward, resulting in heat being concentrated at the center of the groove. As a result, sufficient melting on the groove surface 2 cannot be obtained.
  • the first electrode 3 and the second electrode 4 are arranged along predetermined parallel welding lines 8, 8, one of them is of positive polarity and the other is of opposite polarity, and between the first and second electrodes.
  • the distance a By adjusting the distance a to a range of 5 to 16 mm, spatter is absorbed by each molten metal. This suppresses the adhesion of spatter to the groove surface 2, making it possible to obtain a sound weld.
  • the distance a between the tips of the welding wires supplied from the power supply tips disposed at the tips of the welding torches of the first electrode 3 and the second electrode 4 is adjusted to a range of 5 to 16 mm. Note that in order to obtain deeper and more stable melting of the groove surface 2 due to stronger arc repulsion, it is preferable to adjust the distance a between the first and second electrodes to a range of 5 to 8 mm.
  • ⁇ Angle ⁇ between the straight line connecting the tips of the welding wires of the first electrode and the second electrode and the direction perpendicular to the welding line 60° or less
  • the angle ⁇ formed between the straight line connecting the tips of the welding wires of the first electrode and the second electrode and the direction perpendicular to the welding line exceeds 60°, sufficient arc repulsive force cannot be obtained. Therefore, sufficient melting cannot be obtained on the groove surface 2. Therefore, the 1st-2nd electrode arrangement angle ⁇ is limited to 60° or less. More preferably, the angle is 45° or less. Note that the 1st-2nd electrode arrangement angle ⁇ may be 0°.
  • ⁇ Welding wire diameter D 1.0-1.6mm
  • Welding wire for gas-shielded arc welding is generally manufactured with a diameter in the range of 0.6 to 2.0 mm.
  • the wire diameter D the larger the welding speed can be obtained due to Joule heat. Therefore, in order to realize highly efficient welding, it is preferable to select a relatively small wire diameter D.
  • the wire diameter D is too small, the welding wire will be softened by Joule heat, making welding unstable.
  • the diameter D of the welding wire was set in the range of 1.0 to 1.6 mm.
  • the diameter D of the welding wire is in the range of 1.2 to 1.4 mm.
  • the same type of welding wire is used for all electrodes of the multi-electrode.
  • the welding wire used in this embodiment has a diameter D within the range described above, and is compatible with the steel type of the thick steel plate 1 that is the material to be welded, for example, various types of steel wire specified in JIS Z 3312. It is preferable to do so.
  • - Amount of welded metal per unit time for all electrodes 200 g/min or more
  • the above-mentioned welding wire is used so that the amount of welded metal per unit time, which is the sum of all electrodes, is 200 g/min or more. Weld to. Note that if the amount of welded metal per unit time is less than 200 g/min, the welding time will be long.
  • the amount of deposited metal per unit time is approximately 60 to 160 g/min, although there are differences depending on the wire diameter D and welding current.
  • the welding speed according to this embodiment is about twice that of conventional single electrode welding.
  • ⁇ Distance between electrodes after the second electrode 10 to 100 mm It is important to control the arc heat source generated from the third electrode 5 and subsequent electrodes within an appropriate range in order to prevent the occurrence of hot cracking. If the distance between the electrodes after the second electrode 4 is too small, heat input will be concentrated in the center of the weld metal, increasing the possibility that hot cracks will occur during solidification. On the other hand, if the distance between the electrodes after the second electrode 4 is too large, the interaction between the electrodes will be too small, and the shape of the molten pool 20 will become too long or separate, resulting in hot cracking during solidification. is more likely to occur. For this reason, in order to prevent hot cracking, in this embodiment, the distance between the electrodes after the second electrode (distance between electrodes) is limited to a range of 10 to 100 mm. Note that it is preferably in the range of 20 to 80 mm.
  • the welding conditions described above are the basic welding conditions in this embodiment.
  • the fusion depth p in the direction perpendicular to the weld line at the bottom of the thick steel plate is 1.5 mm or more, and even if multi-electrode welding is performed using three or more electrodes in each layer, , it is possible to obtain a welded joint that prevents the occurrence of hot cracking in the welded metal part.
  • the fusion depth p from the groove surface 2 at the bottom of the thick steel plate 1 in the narrow groove is It becomes possible to obtain deeper and more stable results.
  • each welding wire supplied from the power supply tip of the first electrode and the second electrode to the bottom groove 0 to 15 degrees with respect to the perpendicular to the bottom groove
  • the arc is directional and tends to face in the direction that the tip of the electrode (welding wire) points.
  • the supply angle ⁇ of the respective welding wires 3b and 4b supplied from the power supply tips 3a and 4a of the first electrode 3 and the second electrode 4 to the bottom groove is in the direction of opening outward, that is, approaching the groove surface 2.
  • the direction is defined as positive, and the direction of narrowing inward is defined as negative.
  • the supply angle ⁇ of the welding wires 3b, 4b supplied from the power supply tips 3a, 4a at the tip of the welding torch with respect to the bottom groove is less than 0° with respect to the perpendicular, that is, the welding wires 3b of the first electrode 3 and the second electrode 4, When the tip of 4b approaches, the current flows to a path with lower resistance.
  • the arc creeps up the wire that is the electrode (crawling up of the arc), making it difficult to maintain melting at the targeted groove surface 2, especially at the bottom.
  • the supply angle ⁇ of the welding wire supplied from the power supply tip at the tip of the welding torch to the bottom groove exceeds 15° with respect to the perpendicular line, the arc is directed too much toward the groove surface 2, resulting in a convex weld bead shape.
  • the feeding angle ⁇ of the welding wires 3b, 4b of the first electrode 3 and the second electrode 4 to each bottom groove be in the range of 0 to 15 degrees with respect to the perpendicular line. More preferably, the angle is in the range of 5 to 12 degrees.
  • the feeding angle ⁇ of the first electrode 3 and the second electrode 4 with respect to the respective bottom grooves of the welding wires 3b and 4b is the same as the inclination of the power feeding tips 3a and 4a, especially the tip of the feeding tip.
  • the feeding angle of this welding wire can be controlled by the inclination of the welding wire.
  • ⁇ Distance d between the side edge of the tip of the welding wire supplied from the first and second electrodes and the groove surface of the thick steel plate 0.5 to 3.0 mm If the distance between the side edges of the tips of the welding wires 3b, 4b at the bottom groove and the groove surface 2 of the thick steel plate 1 is less than 0.5 mm, an arc will occur between the upper part of the wire and the groove surface 2, The groove surface 2 at the bottom of the thick steel plate cannot be efficiently melted. On the other hand, if it exceeds 3.0 mm, the arc will move away from the groove surface 2, making it impossible to melt the groove surface 2 efficiently.
  • the distance d between the side ends of the tips of the welding wires 3b, 4b and the groove surface 2 of the thick steel plate 1 is in the range of 0.5 to 3.0 mm. It is more preferably in the range of 0.5 to 2.0 mm, and even more preferably in the range of 0.5 to 1.0 mm.
  • the "side end of the tip of the welding wire” herein refers to the side end near the groove surface 2 of the thick steel plate 1 that is to be melted by the electrodes 3 and 4.
  • the radius of curvature R of the welding wires 3b, 4b is less than 150 mm, the wire feeding resistance becomes large, making it impossible to stably feed the welding wires 3b, 4b, and making it difficult to maintain the arc.
  • the radius of curvature R of the welding wires 3b, 4b exceeds 300 mm, it is not effective in reducing the feeding resistance of the wire when the tips of the power feeding tips 3a, 4a are bent. This makes it difficult to maintain the arc.
  • the radius of curvature R of the welding wires 3b, 4b fed to the power feeding tips 3a, 4a of the first electrode 3 and second electrode 4 is preferably in the range of 150 to 300 mm. More preferably, it is in the range of 175 to 275 mm.
  • ⁇ Electrodes after the third electrode Placed at the center of the groove behind the first and second electrodes. If the weld height H exceeds the bottom groove gap G, that is, if H/G exceeds 1, hot cracking will occur. The risk of In order to avoid this, it is effective to arrange the electrodes after the third electrode 5 at the center of the groove behind the first electrode 3 and the second electrode 4 with respect to the welding direction WD. Moreover, this makes it possible to further reduce the number of laminated layers, and greatly reduce the risk of stacking defects in multilayer welding.
  • the polarity of the third electrode 5 and subsequent electrodes is not particularly limited, and may be either wire minus (positive polarity) or wire plus (reverse polarity). Note that the "center of the groove" allows a range on both sides of 10% of the groove gap G from the center line 81 of the groove when viewed from above.
  • ⁇ Shield gas Mixed gas containing 60% by volume or more of CO2 gas Since the amount of oxygen in the weld metal is greatly affected by the composition of the shield gas, in this embodiment, this gas is used as the shield gas used in gas shielded arc welding. It is preferable to use a mixed gas containing 60% by volume or more of CO 2 gas and the remainder as an inert gas such as Ar. Note that, more preferably, the CO 2 gas is 100% by volume.
  • the oxygen concentration in the weld metal that controls the flow of the weld metal is increased, and the forced convection of the weld metal is directed outward from the center, thereby increasing the fusion depth at the bottom of the thick steel plate within the groove. It is preferable to stably deepen p.
  • the welding current is in the range of 280 to 360A
  • the welding voltage that increases with the current is in the range of 32 to 37V
  • the welding speed is 30 to 90cm/min
  • the wire protrusion length is 15 to 30mm
  • the welding voltage per pass is 32 to 37V.
  • the welding heat input may be 10 to 50 kJ/cm.
  • This device is a welding device for narrow gap gas shield arc welding that joins thick steel plates with a thickness of 22 mm or more by narrow gap multilayer welding using the multi-electrode gas shield welding method using three or more electrodes according to the above embodiment. It is.
  • the bottom groove gap G is in the range of 7 to 18 mm.
  • Figure 4 shows an outline of the configuration of this device in the case of four electrodes.
  • Figure 4(a) is a perspective view
  • Figure 4(b) is a front view
  • Figure 4(c) is a top view.
  • a welding device 100 includes a welding table or a welding cart (not shown), a plurality of electrodes 3 to 6 of three or more electrodes, and a plurality of welding power sources that supply welding power to the plurality of electrodes 3 to 6. 9 to 12, power feeding tips 3a to 6a disposed at the tips of the welding torches of the plurality of electrodes 3 to 6, and a plurality of welding wires that feed welding wires 3b to 6b to the plurality of electrodes 3 to 6, respectively. It has a supply means (not shown) and a shield gas supply means (not shown) that supplies shield gas.
  • one of the first electrode 3 and the second electrode 4 is connected as a wire negative (positive polarity), and the other is connected as a wire positive (reverse polarity).
  • the power supply tips 3a to 6a are configured to supply welding wires 3b to 6b in the range of 1.0 to 1.6 mm.
  • the first electrode 3 and the second electrode 4 are arranged at positions along predetermined parallel welding lines 8, 8, and the distance between the first electrode 3 and the second electrode 4 is
  • the welding wires 3b and 4b supplied from the power supply tips 3a and 4a arranged at the tips of the torches are arranged so that the distance a between the tips is within the range of 5 to 16 mm.
  • the straight line connecting the tips of the welding wires 3b and 4b supplied from the power supply tips 3a and 4a provided at the tips of the welding torches of the first electrode 3 and the second electrode 4 and the orthogonal direction of the welding line 8 They are arranged so that the angle ⁇ formed is 60° or less.
  • the third electrode 5 and subsequent electrodes are arranged such that the distance between the second electrode 4 and subsequent electrodes is in the range of 10 to 100 mm from each adjacent preceding electrode.
  • the distance b between the second electrode 4 and the third electrode 5 is the distance between the tips of the welding wires 4b and 5b supplied from the welding tips 4a and 5a provided at the tips of the welding torches of the electrodes 4 and 5, respectively.
  • the subsequent electrode that is, the third electrode 5
  • the subsequent electrode is arranged in a range of 10 to 100 mm.
  • the fourth electrode 6 is arranged such that the distance c between the third electrode 5 and the fourth electrode 6 is in the range of 10 to 100 mm.
  • FIG. 4 shows the case of four electrodes, and shows four electrodes: a first electrode 3, a second electrode 4, a third electrode 5, and a fourth electrode 6.
  • Welding power sources 9, 10, 11, and 12 are connected to each electrode to supply welding power.
  • the first electrode 3 and the second electrode 4 are connected so that one has a wire minus (positive polarity) and the other has a wire plus (reverse polarity).
  • the polarity of the electrodes after the third electrode 5 is not particularly limited, and may be positive or reverse polarity.
  • a welding wire supply means (not shown) and a shielding gas supply means (not shown) supply welding wires 3b, 4b, 5b, and 6b to each welding torch (electrode), respectively.
  • a conventional moving means (not shown) that allows the electrode or welding table to be moved at a predetermined speed.
  • commonly used welding wire supply means and shield gas supply means can be suitably used.
  • the power feeding tips 3a and 4a disposed at the tips of the welding torches of the first electrode 3 and the second electrode 4 have an inclination of 0 to 15 degrees outward with respect to the perpendicular at their tips.
  • the melting depth p of the groove surface 2 at the bottom of the groove can be stably increased.
  • the welding wire supply means to the first electrode 3 and the second electrode 4 is configured to be able to supply the welding wires 3b, 4b curved with a radius of curvature R in the range of 150 to 300 mm, the above-mentioned It becomes easy to set the supply angle ⁇ of the welding wires 3b, 4b from the power supply tips 3a, 4a within the range of 0 to 15°.
  • the electrodes after the third electrode 5 are preferably arranged at the center position of the groove behind the first electrode 3 and the second electrode 4 with respect to the welding direction WD. Thereby, the occurrence of hot cracking can be suppressed.
  • the "center of the groove” allows a range on both sides of 10% of the groove gap G from the center line 81 of the groove when viewed from above.
  • the thick steel plate 1 with the groove shape shown in Table 2 had a length in the welding direction WD of 500 mm. Then, using welding wires corresponding to the steel types (grades) shown in Table 1, narrow gap gas shield arc welding was performed as initial layer welding 21 under the welding conditions shown in Tables 3 and 4. Next, multi-layer welding after 2-layer welding 22 was performed to obtain a narrow gap gas shielded arc welded joint with a weld length of 500 mm. Note that the welding conditions after the second layer welding 22 were the same as those for the first layer welding 21. When using the third electrode 5 and subsequent electrodes, all of the electrodes were arranged at the center of the groove behind the first electrode 3 and the second electrode 4 with respect to the welding direction WD.
  • the obtained welded joint was cut into five cross sections in the longitudinal direction, and the fusion width W at the bottom of each cross section was measured as shown in FIG.
  • the length of the bottom groove gap G was subtracted from the obtained fusion width W, the obtained value was divided by 2, and the obtained value was taken as the fusion depth in the section.
  • the average value of the five cross sections was determined, and this value was defined as the bottom fusion depth p of the welded joint.
  • Table 4 In addition, during cross-sectional observation, the presence or absence of hot cracking was also investigated, and the results are shown in Table 4.
  • the obtained welded joints were subjected to an ultrasonic flaw detection test to evaluate the presence or absence of welding defects.
  • the case where there were no detected defects was rated ⁇
  • the case where only acceptable defects with detected defects length of 3 mm or less were rated
  • the case where there were detected defects with lengths exceeding 3 mm was rated ⁇ .
  • the obtained results are also listed in Table 4.
  • multilayer welding with a narrow gap is performed using multi-electrode welding with three or more electrodes, and the bottom fusion depth p is 1.5 mm or more, there is no occurrence of hot cracking, and the groove surface is There is no need for maintenance as described in step 2, and there is no problem of welding defects. Therefore, the narrow gap gas shielded arc welded joint is sound and the welding efficiency is improved.
  • the bottom fusion depth p was less than 1.5 mm, the occurrence of hot cracking was observed, or an unacceptable welding defect was detected.
  • sound narrow gap gas shielded arc welded joints have not been obtained.

Abstract

健全な溶接継手を高能率で提供する。板厚t:22mm以上の厚鋼板を、多層溶接として3電極以上の多電極溶接とし、第1電極と第2電極とを予め定めた平行な溶接線に沿う位置に配置にし、第1電極および第2電極のうちの一方を正極性、他方を逆極性とし、第1電極および第2電極の溶接トーチ先端の給電チップから供給する溶接ワイヤ先端間の距離a:5~16mm、第1電極および第2電極の溶接ワイヤ先端間を結ぶ直線と溶接線に直交する方向とのなす角度α:60°以下、多電極の全ての電極で使用する溶接ワイヤの直径を1.0~1.6mm、第2電極以降の電極間の距離を10~100mmの範囲とし、全ての電極を合計した単位時間あたりの溶着金属量:200g/min以上、厚鋼板の底部における溶接線に直交する方向の溶融深さpを1.5mm以上とする、狭開先ガスシールドアーク溶接方法である。

Description

狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置
 本発明は、ガスシールドアーク溶接方法に係り、厚鋼板の狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置に関する。ここでいう「狭開先」とは、開先角度が25°以下で、かつ被溶接材となる厚鋼板間の最小開先幅が当該厚鋼板の板厚の50%以下であることを意味する。本明細書中で数値の範囲を表す「x~y」はx以上y以下、つまり境界値を範囲内に含むことを表す。
 鋼材の溶接施工に用いられるガスシールドアーク溶接は、自動車や建築、橋梁、電気機器などの製造分野において幅広く利用されている。近年、鋼構造物の大型化や厚肉化が進んだことに伴い、製造過程での溶接、特に鋼材の突合せ溶接時に溶着量が増大してきた。さらには、溶接施工に多大の時間を要することになった。そのため、施工コストの増大を招いている。そこで、板厚に対して小さい間隙の開先をガスシールドアーク溶接法により多層溶接する、狭開先ガスシールドアーク溶接の適用が考えられる。狭開先ガスシールドアーク溶接は、通常のガスシールドアーク溶接と比較して、溶着量が少なくなり、溶接の高能率化や省エネルギー化が達成でき、ひいては施工コストの低減が期待される。
 さらに、最近では、この狭開先ガスシールドアーク溶接を多電極で行う技術が提案されている。多電極溶接は、開先を充填するための溶着金属、つまり、溶接ワイヤが融けて開先内に付着する金属の量を電極の数だけ多くできるため、単電極溶接に比べて高い溶接能率を得ることが可能である。そのため、溶接の効率化に寄与する有効な手段となっている。
 たとえば、特許文献1には、厚鋼板を狭開先の多層溶接により接合する狭開先ガスシールドアーク溶接方法が記載されている。特許文献1に記載された技術では、初層溶接を2電極以上の多電極溶接とし、第1電極と第2電極を予め定めた平行な溶接線に沿う位置とし、第1電極と第2電極との溶接ワイヤ先端間の距離を5mm以上16mm以下の範囲に、第1電極と第2電極との溶接ワイヤ先端間を結ぶ直線と溶接線に直交する方向とのなす角度を45°以下の範囲にそれぞれ制御し、厚鋼板の底部における溶接線に直交する方向の溶融深さを1.5mm以上とする、としている。これにより、開先加工としてガス切断やプラズマ切断等の開先加工を施した場合であっても、欠陥の発生がなく、溶接施工能率が向上する効果が得られるとしている。
特開2015-223605号公報
 しかしながら、特許文献1に記載の技術では、3電極以上の多電極溶接を行った場合に、溶接金属中央に高温割れが発生する問題があった。
 本発明の目的は、厚鋼板を3電極以上の多電極溶接するにあたり、低コストの開先加工を施しても、開先面の手入れ等を行うことなく、良好な溶接品質と高い溶接施工能率とを達成しうる狭開先ガスシールドアーク溶接技術を提供することにある。低コストの開先加工にはガス切断やプラズマ切断等が例示される。良好な溶接品質とは、融合不良等の欠陥および溶接金属中央に現れる高温割れ等の欠陥の発生が抑制されていることをいう。
 発明者らは、上述した目的を達成するために、3電極以上の多電極溶接における溶接金属の高温割れの発生原因について、鋭意検討した。その結果、第2電極以降の電極間距離が適正範囲を外れると、高温割れにつながる溶接欠陥が溶接金属中央に発生することを突き止めた。そして、第2電極以降の電極間距離を適正範囲に調整すれば、健全なビード、つまり、溶接金属を有する溶接継手が得られることを知見した。また、多層溶接を3電極以上の多電極溶接として、第1電極と第2電極とを予め定めた平行な溶接線に沿う位置に配置するとともに、第1電極および第2電極のうちの一方を正極性とし他方を逆極性とし、さらに、溶接施工時の第1電極および前記第2電極の相対位置を適正に調整したうえで、さらに、多電極の全ての電極で使用する溶接ワイヤの直径を1.0~1.6mmの範囲の細径とすることにより、全ての電極を合計した単位時間あたりの溶着金属量が200g/min以上となり、前記厚鋼板の底部溶融深さpが1.5mm以上となることを見出した。もって、高い溶接施工能率で厚鋼板の多層溶接が可能であることを知見した。
 本発明はかかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1]開先角度θを25°以下とし、底部開先ギャップGを7~18mmの範囲とし、板厚tが22mm以上である厚鋼板を、狭開先の多層溶接により接合する狭開先ガスシールドアーク溶接方法であって、
前記多層溶接を3電極以上の多電極溶接とし、
前記多電極のうち、第1電極と第2電極とを予め定めた平行な溶接線に沿う位置に配置するとともに、
前記第1電極および前記第2電極のうちの一方を正極性とし他方を逆極性とし、
さらに、前記第1電極および前記第2電極のそれぞれの溶接トーチ先端に配設する給電チップから供給する溶接ワイヤ先端間の距離aを5~16mmの範囲とし、前記第1電極および前記第2電極のそれぞれの溶接ワイヤ先端間を結ぶ直線と前記溶接線に直交する方向とのなす角度αを60°以下の範囲とし、
さらに、前記多電極の全ての電極で使用する前記溶接ワイヤの直径を1.0~1.6mmの範囲とし、
前記多電極のうち第2電極以降の電極間の距離を10~100mmの範囲とし、
さらに、任意選択的に、前記第1電極および前記第2電極の給電チップから底部開先へ供給するそれぞれの溶接ワイヤの供給角度φを底部開先の垂線に対し0~15°の範囲とし、
さらに、任意選択的に、前記第1電極および前記第2電極から供給する溶接ワイヤ先端の側端部と前記厚鋼板の開先面との距離dをそれぞれ0.5~3.0mmの範囲として、
全ての電極を合計した単位時間あたりの溶着金属量を200g/min以上とし、かつ、前記厚鋼板の底部における溶接線に直交する方向の溶融深さpを1.5mm以上とする、狭開先ガスシールドアーク溶接方法。
[2]第3電極以降の電極を前記第1電極および前記第2電極の後方の開先中央に配置する、[1]に記載の狭開先ガスシールドアーク溶接方法。
[3]曲率半径が150~300mmの範囲で湾曲させた溶接ワイヤを前記第1電極および前記第2電極の給電チップに送給する、[1]または[2]に記載の狭開先ガスシールドアーク溶接方法。
[4]COガスを60体積%以上含有する混合ガスを前記多層溶接に用いるシールドガスとする、[1]または[2]に記載の狭開先ガスシールドアーク溶接方法。
[5]板厚tが22mm以上である厚鋼板を、開先角度θが25°以下でありかつ底部開先ギャップGが7~18mmの範囲である狭開先の多層溶接を行う厚鋼板の狭開先ガスシールドアーク溶接用溶接装置であって、
3電極以上の複数の電極と、該複数の電極に溶接電力を供給する複数の溶接電源と、前記複数の電極の溶接トーチ先端に配設された給電チップと、前記複数の電極にそれぞれ溶接ワイヤを送給する複数の溶接ワイヤ供給手段と、さらに、シールドガスを供給するシールドガス供給手段と、溶接台または溶接台車と、を有し、さらに、
前記複数の電極のうち、前記第1電極および前記第2電極のうちの一方を正極性とし他方を逆極性となるように接続されてなり、
前記給電チップは1.0~1.6mmの範囲の溶接ワイヤを供給するように構成され、
前記第1電極と前記第2電極とは予め定めた平行な溶接線に沿う位置に配置され、かつ、前記第1電極と前記第2電極との距離がそれぞれの電極の溶接トーチ先端に配設された給電チップから供給された溶接ワイヤ先端間の距離aで5~16mmの範囲内となり、さらに、前記第1電極および前記第2電極の溶接トーチ先端に配設された給電チップから供給されるそれぞれの溶接ワイヤ先端間を結ぶ直線と前記溶接線の直交方向とのなす角度αが60°以下となるように配置されてなり、さらに
前記第2電極以降の電極間の距離がそれぞれ隣接する先行電極との距離で10~100mmの範囲となるように第3電極以降の電極を配設してなり、
任意選択的に、前記第1電極および前記第2電極の溶接トーチ先端に配設された前記給電チップがその先端で垂線に対し0~15°の範囲の傾きを有する、狭開先ガスシールドアーク溶接用溶接装置。
[6]前記第3電極以降の電極が、前記第1電極および前記第2電極の後方の開先中央に配置されている、[5]に記載の狭開先ガスシールドアーク溶接用溶接装置。
[7]前記溶接ワイヤ供給手段は、曲率半径が150~300mmの範囲で湾曲した溶接ワイヤを送給できるように構成されている、[5]または[6]に記載の狭開先ガスシールドアーク溶接用溶接装置。
[8]前記シールドガス供給手段は、60体積%以上のCOガスを含有した混合ガスをシールドガスとして供給するように構成されている、[5]または[6]に記載の狭開先ガスシールドアーク溶接用溶接装置。
 本発明にかかる狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置によれば、低コストの開先加工を施しても、開先面の手入れ等を行うことなく、良好な溶接品質と高い溶接施工能率とを達成できる。特に、融合不良等の欠陥および溶接金属中央に現れる高温割れ等の欠陥の発生を防止できる。したがって、多層溶接のすべての層に3電極以上の多電極溶接が適用できるので、溶接施工能率が向上する。本発明にかかる技術を用いて溶接継手を製造すれば、従来の溶接継手の製造と比較し、溶接施工コストが大幅に低減でき、産業上格段の効果を奏する。特に、本発明は、建築、橋梁および造船等の一般構造物の溶接施工に適用して極めて有用である。
本発明の一実施形態にかかる狭開先ガスシールドアーク溶接方法に適した開先形状を示す断面模式図である。 上記実施形態にかかる3電極による溶接施工の要領を示す説明図であって、(a)は正面図を表し、(b)は上面図を表す。 上記実施形態にかかる3電極による多層溶接を施した溶接継手の断面の一例を示す説明図である。 本発明の他の実施形態にかかる狭開先ガスシールドアーク溶接用溶接装置の概略を示す説明図であって、(a)は斜視図を表し、(b)は正面図を表し、(c)は上面図を表す。
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
[開先形状]
 まず、本発明の一実施形態にかかる狭開先ガスシールドアーク溶接方法に適した開先形状について、図1を参照しながら説明する。図中、符号1が厚鋼板、2が厚鋼板の開先面、記号θで開先角度を、Gで底部開先ギャップを、tで板厚を示す。本実施形態で使用する開先は、V形開先(θ>0°)またはI形開先(θ=0°)とする。V形開先では、板厚方向でギャップのより小さい方の面側を底部とする。
 本実施形態は、開先角度θを25°以下とし、底部開先ギャップGを7~18mmの範囲とし、板厚tが22mm以上である厚鋼板1、1を、狭開先の多層溶接により接合する狭開先ガスシールドアーク溶接方法である。ここで、「厚鋼板」には、鋼板に加えて、厚肉材、厚鋼材等をも含むものとする。
・厚鋼板1の板厚t:22mm以上
 厚鋼板1の板厚tは22mm以上とする。厚鋼板1の板厚が22mm未満であれば、従来のレ形開先において、開先角度を大きくし開先ギャップを小さくすることで、本発明で対象とする開先よりも開先断面積が小さくなるからである。そのため、従来のレ形開先の方が溶接金属量の少ない高能率な溶接となる場合がある。
 なお、特殊な構造物を含めても、鋼構造物の板厚は最大200mm程度である。本実施形態では、厚鋼板1の板厚tの上限を200mmとすることが好ましい。また、本実施形態は、軟鋼板から980MPa級の高張力鋼板までの各種厚鋼板に適用することができる。590MPa級高張力厚鋼板の溶接に適用して、予熱することなく溶接できる。
・開先角度θ:25°以下
 本実施形態で使用する開先は、I形開先またはV形開先である。
 開先部(開先角度)が小さいほど、高能率で溶接できる。しかしながら、開先部(開先角度)が小さいと、融合不良などの欠陥が生じやすい。開先角度θが0°、すなわち、I形開先とすることが溶接金属量の低減の観点から最も効果的である。一方、I形開先は溶接熱歪により溶接中に開先が閉じてくる。したがって、溶接熱歪を見込んで、板厚tに応じた開先角度θを設定したV形開先とすることが好ましい。
 具体的には、開先角度θ(°)は、板厚tを22~200mmの範囲として、(0.5×t/20)~(2.0×t/20)の範囲とすることが好ましい。より好ましくは(0.8×t/20)~(1.8×t/20)の範囲とする。さらに好ましくは、開先角度θの上限を10°とする。
 一方、開先角度θが25°を超える開先を用いた溶接は、従来の溶接施工方法が適用できる。そのため、本実施形態では、開先角度θの上限を25°とした。
・底部開先ギャップG:7~18mm
 底部開先ギャップGが7mm未満では、溶接欠陥の発生抑止の観点から3電極以上の多電極溶接での施工が困難となる。一方、底部開先ギャップGが18mm超えでは、従来の溶接施工方法が適用できる。したがって、本実施形態では、底部開先ギャップGを7~18mmの範囲とする。この範囲であれば、従来の溶接施工方法では溶接施工が困難であり、かつ、本実施形態の適用により、溶接施工のより一層の高能率化が見込まれる。
[狭開先ガスシールドアーク溶接方法]
 以下、図2および図3も参照しながら本実施形態にかかる狭開先ガスシールドアーク溶接方法について説明する。図2は本実施形態にかかる3電極を用いた溶接施工の要領を示す説明図である。図2(a)は正面図であり、図2(b)は上面図である。図3は、3電極による多層溶接を施した溶接継手の断面の一例を示す説明図である。本実施形態では、上記した形状の狭開先を用いて、初層溶接21および第2層溶接22以降の各層の溶接をいずれも、3電極以上の多電極溶接により多層溶接を施す。そして、高い溶接施工能率のもとで、融合不良などの欠陥や、高温割れ、特に溶接金属中央の高温割れの発生を抑制した溶接継手が得られるように溶接する。
 本実施形態における厚鋼板の開先加工は、ガス切断やプラズマ切断、レーザ切断等による加工を行う。ただし、機械加工を排除するものではない。狭開先ガスシールドアーク溶接における開先面に必要な溶融深さ(後述の図3に示すp)は、開先面2の表面性状、特に、凹部深さや清浄度によって主に決定される。最も一般的なガス切断による開先加工では、特殊鋼やステンレス鋼等を除き、ガス切断時のガス流量や火口の選択により、切断面の仕上がりに大きな差が生じる。たとえば、ガス流量や火口の調整が良好な場合における開先面表面の凹部深さは0.2mm程度以下となる。ところが、特殊な場合、例えば、火口の摩耗などにより火炎流速が通常より落ちた場合などには、1mmを超える凹部深さが生じるおそれがある。しかしながら、このような凹部が生じても、一般構造物等では手入れなしにそのまま溶接に供されることとなる。
 そのため、高温割れや融合不良等による欠陥を有効に防止するには、溶接施工の際に開先面、特に溶接時の温度が低く、溶融深さが小さくなる傾向にある開先内の底部(厚鋼板)を、より深く溶融する必要がある。また、切断面は加工熱により生じた厚い酸化膜で覆われているため、溶接施工の際にはやはり開先面をより深く溶融する必要がある。
 このようなことから、本実施形態では、開先(厚鋼板)の底部における溶融深さpを1.5mm以上とした。なお、好ましくは2.0mm以上とする。ただし、溶融深さpが4mmを超えると、開先面2の溶接ビード上部にアンダーカットが生じ、溶接欠陥の要因となるので、溶融深さは4mm以下とすることが好ましい。
 本実施形態では、開先(厚鋼板)の底部における溶融深さpを1.5mm以上とすることが肝要である。そして、これを高い溶接施工能率の下で達成するには、ガスシールドアーク溶接の溶接条件を適正に制御することが極めて重要である。
 以下、この溶接条件について詳しく説明する。
・多層溶接を3電極以上の多電極溶接とし、第1電極と第2電極とを予め定めた平行な溶接線に沿う位置に配置
 本実施形態では、耐高温割れ性向上の観点、特に溶接金属中の高温割れを抑制する観点から、多層溶接は3電極以上の多電極溶接とする。なお、好ましくは、溶接施工能率向上の観点から、4電極以下とする。
 狭開先の多層溶接では、1層当たり1パスとする場合、1電極では熱が開先中央に集中し易いため、厚鋼板1の開先面2における溶融が不足し、融合不良( コールドラップ) 、開先面2に付着したスパッタおよびスラグ巻き込みによる欠陥が生じ易い。特に、初層溶接21は厚鋼板1の温度が低く、溶融深さpが小さくなるため、融合不良による欠陥が生じ易い。このようなことから、本実施形態では、3電極以上の多電極のうち、第1電極と第2電極とを予め定めた平行な溶接線8に沿うように配置して、溶接するものとする。溶接方向WDに対し、先行する電極から番号付けし、以降も同様とする。一例として、3電極で多層溶接する際の施工要領を図2に示す。第1電極3および第2電極4は異なる開先面2に近い互いに平行な溶接線8にそれぞれ沿うことが好ましい。
・第1電極および前記第2電極のうちの一方を正極性、他方を逆極性
 第1電極3および第2電極4を同極性(たとえば、第1電極3および第2電極4ともワイヤプラス)とすると、引き合いの電磁力によって、互いのアークが内向きとなり、熱が開先中央に集中することになる。このため、開先面2において十分な溶融が得られなくなる。一方、第1電極3および第2電極4のうち、一方をワイヤマイナス(正極性)とし、他方をワイヤプラス(逆極性)とし、第1電極3と第2電極4の配置を適正に制御すると、互いの溶接電流による磁場が強い外向きの電磁力を生じ、アークが互いに反発することとなる。その結果、開先面において十分な溶融深さpを得ることが可能となる。
 このようなことから、本実施形態では、第1電極および第2電極の溶接トーチ先端の給電チップから供給する溶接ワイヤについては、一方をワイヤマイナス(正極性)、他方をワイヤプラス(逆極性) とする。
・第1電極および第2電極の各溶接トーチ先端に配設する給電チップから供給する溶接ワイヤ先端間の距離a:5~16mm
 第1電極3と第2電極4の各溶接トーチ先端の給電チップ3a、4aから供給する溶接ワイヤ3b、4b先端間の距離a(以下、単に「第1-2電極間距離」ともいう、図2(b)参照)は、5~16mmの範囲に調整する。なお、ここでいう「溶接ワイヤ先端間の距離」とは、各電極における溶接ワイヤ先端の中心間の距離を指すものとする。
 第1-2電極間距離aが5mm未満では、電極間に電流(電子)が流れることで、アークそのものの持つ熱が減少してしまい、開先面2の十分な溶融が得られなくなる。一方、第1-2電極間距離aが16mmを超えると、電極間の外向きの電磁力は距離に反比例して小さくなる。そのため、開先面2を流れる電流によって生じる内向きの電磁力に打ち勝つためのアーク反発力が得られず、互いのアークが内向きとなって、熱が開先中央に集中してしまう。結果的に、開先面2における十分な溶融が得られなくなる。
 また、狭開先溶接では、スパッタの開先面2への付着による溶接欠陥の抑制が課題となる。その点、第1電極3と第2電極4を予め定めた平行な溶接線8、8に沿うように配置し、その一方を正極性、他方を逆極性とするとともに、第1-2電極間距離aを5~16mmの範囲に調整することで、スパッタはそれぞれの溶融金属に吸収される。これにより、開先面2へのスパッタの付着が抑制されるので、健全な溶接部を得ることが可能となる。
 このようなことから、第1電極3と第2電極4の各溶接トーチ先端に配設した給電チップから供給する溶接ワイヤ先端間の距離aは、5~16mmの範囲に調整するものとする。なお、より強いアークの反発により、より深く安定した開先面2の溶融を得るには、第1-2電極間距離aを5~8mmの範囲に調整することが好ましい。
・第1電極および第2電極のそれぞれの溶接ワイヤ先端間を結ぶ直線と溶接線に直交する方向とのなす角度α:60°以下
 本実施形態では、アークの反発を利用して開先面2の溶融を確保している。第1電極および第2電極のそれぞれの溶接ワイヤ先端間を結ぶ直線と溶接線に直交する方向とのなす角度α( 以下、単に「第1-2電極配置角度」ともいう、図2(b)参照)が60°を超えると、十分なアークの反発力が得られない。そのため、開先面2において十分な溶融を得ることができなくなる。したがって、第1-2電極配置角度αは60°以下に範囲に限定するものとする。より好ましくは45°以下である。なお、第1-2電極配置角度αは0 °であってもよい。
・溶接ワイヤの直径D:1.0~1.6mm
 ガスシールドアーク溶接用の溶接ワイヤは、一般的に、直径が0.6~2.0mmの範囲で製造されている。同じ溶接電流で溶接する場合にはワイヤ径Dが細いほどジュール熱によって高い溶着速度が得られる。このため、高能率な溶接施工を実現するためには比較的細いワイヤ径Dを選択することが好ましい。一方、ワイヤ径Dが細すぎるとジュール熱によって溶接ワイヤが軟化し、溶接が不安定となる。これらを勘案し、溶接ワイヤの直径Dは1.0~1.6mmの範囲とした。なお、好ましくは、溶接ワイヤの直径Dが1.2~1.4mmの範囲である。本実施形態では、多電極のすべての電極で使用する溶接ワイヤは同一の種類とする。
 なお、本実施形態で使用する溶接ワイヤは、上記した範囲の直径Dを有し、被溶接材である厚鋼板1の鋼種に対応した、たとえば、JIS Z 3312に規定される各種の鋼ワイヤとすることが好ましい。
・全ての電極を合計した単位時間あたりの溶着金属量:200g/min以上
 高能率な溶接施工を行うためには、1層あたりの溶着金属量を増加させることが有効である。本実施形態では、従来法に比較して高能率な溶接施工を行うために、上記した溶接ワイヤを用いて、全ての電極を合計した単位時間あたりの溶着金属量で200g/min以上となるように溶接する。なお、単位時間当たりの溶着金属量が200g/min未満では、溶接施工時間が長時間となる。一般的な単電極のガスシールドアーク溶接ではワイヤ径Dや溶接電流による差異はあるものの、単位時間当たりの溶着金属量がおよそ60~160g/minである。本実施形態にかかる溶着速度は、従来の単電極溶接に比して約2倍の溶着速度が得られる。
・第2電極以降の電極間の距離:10~100mm
 第3電極5以降の電極から発生するアーク熱源を適切な範囲に制御することが、高温割れの発生を防止するために重要となる。第2電極4以降の電極間の距離が小さすぎると、溶接金属の中央部に入熱が集中し、凝固の際に高温割れが発生するおそれが高くなる。一方、第2電極4以降の電極間の距離が大きすぎると、電極間の相互作用が小さくなりすぎ、溶融池20の形状が縦長になりすぎ、または分離してしまい、凝固の際に高温割れが発生しやすくなる。このようなことから、高温割れを防止するために、本実施形態では、第2電極以降の電極間の距離(極間距離)を10~100mmの範囲に限定する。なお、好ましくは、20~80mmの範囲である。
 上記した溶接条件が、本実施形態における基本の溶接条件である。このような条件で溶接施工することにより、上記厚鋼板の底部における溶接線に直交する方向の溶融深さpが1.5mm以上で、かつ、各層で3電極以上の多電極溶接を行っても、溶接金属部の高温割れの発生を防止した溶接継手を得ることができる。
 なお、本実施形態では、上記した基本の溶接条件に加えて、以下に示す溶接条件をさらに満足させることにより、狭開先内の厚鋼板1の底部における開先面2からの溶融深さpをより深く安定して得ることが可能となる。
・第1電極および第2電極の給電チップから底部開先へ供給するそれぞれの溶接ワイヤの供給角度φ:底部開先の垂線に対し0~15°
 アークには指向性があり、電極(溶接ワイヤ)先端が指す方向に向きやすい性質がある。このアークの指向性を開先面の溶融に有効に活かすためには、電極先端が指す方向を開先面2に向けることが有利であり、この電極先端が指す方向は溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度により大きく変化する。ここで、第1電極3および第2電極4の給電チップ3a、4aから底部開先へ供給するそれぞれの溶接ワイヤ3b、4bの供給角度φは、外側に開く方向、つまり開先面2に近づく方向を正とし、内側に狭める方向を負とする。溶接トーチ先端の給電チップ3a、4aから供給する溶接ワイヤ3b、4bの底部開先に対する供給角度φが垂線に対して0°未満、つまり、第1電極3および第2電極4の溶接ワイヤ3b、4bの先端が近づく状態では、電流がより抵抗の小さい経路に流れてしまう。その結果、アークが電極であるワイヤを這い上がり(アークの這い上がり)、狙いとする開先面2、特に底部での溶融を維持することが困難となる。一方、溶接トーチ先端の給電チップから供給する溶接ワイヤの底部開先に対する供給角度φが垂線に対して15°を超えると、アークが開先面2に向き過ぎるために溶接ビード形状が凸となり、初層21以降の溶接におけるアークでの溶融が不十分となって溶接欠陥を生じ易くなる。このため、第1電極3および第2電極4の溶接ワイヤ3b、4bの各底部開先に対する供給角度φは、垂線に対して0~15°の範囲とすることが好ましい。より好ましくは5~12°の範囲である。なお、第1電極3および第2電極4の溶接ワイヤ3b、4bの各底部開先に対する供給角度φは、給電チップ3a、4a、特に給電チップ先端の傾きと同じになるため、この給電チップ先端の傾きによりこの溶接ワイヤの供給角度を制御することができる。
・第1電極および第2電極から供給する溶接ワイヤ先端の側端部と厚鋼板の開先面との距離d:0.5~3.0mm
 底部開先における溶接ワイヤ3b、4bの先端の側端部と厚鋼板1の開先面2との距離が0.5mm未満では、アークがワイヤ上部と開先面2との間で発生し、厚鋼板底部の開先面2を効率良く溶融できない。一方、3.0mmを超えるとアークが開先面2から離れてしまい、開先面2を効率良く溶融できなくなる。このため、溶接ワイヤ3b、4b先端の側端部と厚鋼板1の開先面2との距離dは、0.5~3.0mmの範囲とすることが好ましい。より好ましくは0.5~2.0mmの範囲、さらに好ましくは0.5~1.0mmの範囲である。ここでいう「溶接ワイヤの先端の側端部」とは、各電極3、4で溶融させようとする厚鋼板1の開先面2に近い側の側端部を指すものとする。
・第1電極および第2電極の給電チップに送給する溶接ワイヤの曲率半径R:150~300mm
 本実施形態では、第1電極3および第2電極4の溶接トーチ先端の給電チップ3a、4aから供給する溶接ワイヤ3b、4bの供給角度φを制御するため、先端を曲げた給電チップ3a、4aを使用する。このとき、溶接ワイヤ3b、4bが先端を曲げた給電チップ3a、4aを通ることになるので、よりスムーズに通過させるために、いわゆる3点ローラー等を用いて溶接ワイヤ3b、4bを予め湾曲させておくことが好ましい。
 溶接ワイヤ3b、4bの曲率半径Rが150mm未満ではワイヤの送給抵抗が大きくなって、安定して溶接ワイヤ3b、4bを送給することができず、アークを維持することが困難となる。一方、溶接ワイヤ3b、4bの曲率半径Rが300mmを超えると、給電チップ3a、4a先端が曲がった状態でのワイヤの送給抵抗軽減に効果がないため、やはり安定して溶接ワイヤ3b、4bを送給することができず、アークを維持することが困難となる。このようなことから、第1電極3および第2電極4の給電チップ3a、4aに送給する溶接ワイヤ3b、4bの曲率半径Rは150~300mmの範囲とすることが好ましい。より好ましくは175~275mmの範囲である。
・第3電極以降の電極:第1電極および第2電極の後方の開先中央に配置
 溶接盛り高さHが底部開先ギャップGを超える、つまり、H/Gが1超えになると、高温割れのリスクが高くなる。これを回避するには、第3電極5以降の電極を、溶接方向WDに対し、第1電極3および第2電極4の後方の開先中央に配置することが有効である。また、これにより積層数の低減が更に可能となり、多層溶接における積層欠陥のリスクを大きく低減できる。なお、第3電極5以降の極性は特に限定されず、ワイヤマイナス(正極性)、ワイヤプラス(逆極性)のいずれであってもよい。なお、「開先中央」とは、上面視で開先の中心線81から開先ギャップGの10%両側の範囲を許容する。
・シールドガス:COガスを60体積%以上含有する混合ガス
 溶接金属中の酸素量が、シールドガス組成に大きく影響を受けることから、本実施形態では、ガスシールドアーク溶接で使用するシールドガスとして、COガスを60体積% 以上含有し、残りをAr等の不活性ガスとして含有する混合ガスを使用することが好ましい。なお、より好ましくはCOガスが100体積%である。なお、本実施形態では、溶接金属の湯流れを支配する溶接金属中の酸素濃度を高くして、溶接金属の強制対流を中央から外向きにして、開先内の厚鋼板底部における溶融深さpを安定して深くすることが好ましい。
 なお、上記以外の条件については、とくに限定する必要はなく、定法に従えばよい。たとえば、溶接電流を280~360Aの範囲とし、電流とともに上昇する溶接電圧を32~37Vの範囲とし、溶接速度を30~90cm/minとし、ワイヤ突き出し長さを15~30mmとし、1パス当りの溶接入熱を10~50kJ/cmとすればよい。
[溶接装置]
 つぎに、本実施形態で使用して好適な溶接装置(以下、本装置という。)について、説明する。
 本装置は、上記実施形態にかかる3電極以上の多電極ガスシールド溶接法により、板厚が22mm以上の厚鋼板を狭開先の多層溶接で接合する狭開先ガスシールドアーク溶接用の溶接装置である。ここでいう「狭開先」は、図1で示すような、開先角度θが25°以下であるV開先(θ>0°)またはI開先(θ=0°)であって、底部開先ギャップGが7~18mmの範囲とする。
 図4に4電極の場合の本装置の構成の概略を示す。図4(a)は斜視図であり、図4(b)は正面図であり、図4(c)は上面図です。
 本装置にかかる溶接装置100は、溶接台または溶接台車(図示せず)と、3電極以上の複数の電極3~6と、該複数の電極3~6に溶接電力を供給する複数の溶接電源9~12と、前記複数の電極3~6の溶接トーチ先端に配設された給電チップ3a~6aと、前記複数の電極3~6にそれぞれ溶接ワイヤ3b~6bを送給する複数の溶接ワイヤ供給手段(図示せず)と、さらに、シールドガスを供給するシールドガス供給手段(図示せず)と、を有する。
 そして、溶接装置100では、複数の電極のうち、第1電極3および第2電極4のうちの一方をワイヤマイナス(正極性)とし、他方をワイヤプラス(逆極性)となるように接続されてなる。さらに、給電チップ3a~6aは1.0~1.6mmの範囲の溶接ワイヤ3b~6bを供給するように構成されてなる。また、第1電極3と第2電極4とは予め定めた平行な溶接線8、8に沿う位置に配置され、かつ、第1電極3と第2電極4との距離がそれぞれの電極の溶接トーチ先端に配設された給電チップ3a、4aから供給された溶接ワイヤ3b、4b先端間の距離aで5~16mmの範囲内となるように配置されてなる。さらに、第1電極3および第2電極4の溶接トーチ先端に配設された給電チップ3a、4aから供給されるそれぞれの溶接ワイヤ3b、4b先端間を結ぶ直線と溶接線8の直交方向とのなす角度αが60°以下となるように配置されてなる。また、溶接装置100では、第2電極4以降の電極間の距離がそれぞれ隣接する先行電極との距離で10~100mmの範囲となるように第3電極5以降の電極を配設されてなる。たとえば、第2電極4と第3電極5との距離bが、各電極4、5の溶接トーチ先端に配設された溶接チップ4a、5aから供給された溶接ワイヤ4b、5b先端間の距離で10~100mmの範囲となるように後続する電極、つまり、第3電極5が配置されてなる。第3電極5以降の配設も同様である。第3電極5と第4電極6との距離cが10~100mmの範囲となるように、第4電極6が配設されてなる。
 本装置にかかる溶接装置100では、溶接台または溶接台車上で、被溶接材である厚鋼板1と裏当材7とにより構成された所定の形状の狭開先内に、電極として、3電極以上の多電極が配設される。図4では、4電極の場合を表しており、第1電極3、第2電極4、第3電極5および第4電極6の4電極を示す。各電極には、溶接電源9、10、11、12がそれぞれ接続されてなり、溶接電力が供給される。なお、第1電極3と第2電極4とは、一方がワイヤマイナス(正極性)、他方がワイヤプラス(逆極性)となるように接続するものとする。第3電極5以降の電極の極性はとくに限定するものではなく、正極性としても逆極性としてもよい。
 各電極3、4、5、6の溶接トーチ先端には、給電チップ3a、4a、5a、6aがそれぞれ配設され、各給電チップ3a、4a、5a、6aを介して溶接ワイヤ3b、4b、5b、6bにそれぞれ溶接電流が供給される。また、本装置にかかる溶接装置100では、各溶接トーチ(電極)に溶接ワイヤ3b、4b、5b、6bをそれぞれ供給する溶接ワイヤ供給手段(図示せず)およびシールドガス供給手段(図示せず)を有する。さらには、電極あるいは溶接台を所定の速度で移動可能とする常用の移動手段(図示せず)を有していてもよい。また、溶接ワイヤ供給手段およびシールドガス供給手段はいずれも、常用のものが好適に利用できる。
 なお、第1電極3および第2電極4の溶接トーチ先端に配設された給電チップ3a、4aがその先端で垂線に対し外側に0~15°の範囲の傾きを有することが好ましい。これにより、開先底部で開先面2の溶融深さpを安定して深くできる。また、第1電極3および第2電極4への溶接ワイヤ供給手段は、曲率半径Rが150~300mmの範囲で湾曲した溶接ワイヤ3b、4bを送給できるように構成されていれば、上記した給電チップ3a、4aからの溶接ワイヤ3b、4bの供給角度φを0~15°の範囲の範囲とすることが容易になる。
 なお、図4(c)では、各電極3、4、5、6のそれぞれの溶接ワイヤ3b、4b、5b、6b先端位置のみ示し、その他の構成については省略している。
 また、第3電極5以降の電極は、溶接方向WDに対し、第1電極3および第2電極4の後方の開先中央の位置に配置されることが好ましい。それにより、高温割れの発生を抑制することができる。なお、「開先中央」とは、上面視で開先の中心線81から開先ギャップGの10%両側の範囲を許容する。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す鋼種(グレード)および板厚の各種厚鋼板1について、表2に示す開先形状となるように、ガス切断により開先加工した。なお、開先面2には研削等の手入れは行っていない。加工後の開先面2について、レーザ変位計を用いて、開先面2の表面性状を測定し、最大凹部深さを求め、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す開先形状の厚鋼板1は溶接方向WDの長さを500mmとした。そして、表1に示す鋼種(グレード)に対応した溶接ワイヤを用いて、初層溶接21として表3および表4に示す溶接条件で狭開先ガスシールドアーク溶接をおこなった。次いで、2層溶接22以降の多層溶接を行い、溶接長さが500mmの狭開先ガスシールドアーク溶接継手を得た。なお、2層溶接22以降の溶接条件は初層溶接21と同様とした。第3電極5以降の電極を使用する場合、その電極はいずれも、溶接方向WDに対し、第1電極3および第2電極4の後方の開先中央に配置した。
 得られた溶接継手を長手方向の5断面で切断し、各断面について、図3に示すように、底部の溶融幅Wを測定した。各断面について、得られた溶融幅Wから底部開先ギャップG分の長さを減じ、得られた値を2で除し、得られた値を当該断面における溶融深さとした。そして、5断面の平均値を求め、当該溶接継手の底部溶融深さpとした。得られた結果を表4に示す。また、断面観察時に、高温割れの有無も調査し、表4に示す。
 また、得られた溶接継手について、超音波探傷試験を実施し、溶接欠陥の有無を評価した。なお、検出欠陥なしの場合を◎、検出された欠陥の長さが3mm以下の合格欠陥のみの場合を○、検出された欠陥の長さが3mm超えのものを含む場合を×とした。得られた結果を表4に併記した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 発明例はいずれも、3電極以上の多電極溶接で、狭開先の多層溶接を行って、底部溶融深さpが1.5mm以上を示し、高温割れの発生もなく、また、開先面2の手入れをすることなく、溶接欠陥の問題もない。したがって、健全な狭開先ガスシールドアーク溶接継手をなっており、溶接施工能率も向上している。一方、比較例では、いずれかの条件が本発明の範囲を外れた結果、底部溶融深さpが1.5mm未満であるか、高温割れの発生が認められるか、許容できない溶接欠陥が検出されているか、と健全な狭開先ガスシールドアーク溶接継手が得られていない。
1 厚鋼板
2 開先面
3 第1電極
3a、4a、5a、6a 給電チップ
3b、4b、5b、6b 溶接ワイヤ
4 第2電極
5 第3電極
6 第4電極
7 裏当材
8 溶接線
9、10、11、12 溶接電源
20 溶融池
21 初層(溶接)
22 2層(溶接)
81 開先の中心線
a (第1-2電極間)距離
b (第2-3電極間)距離
c (第3-4電極間)距離
d (ワイヤ-開先面間)距離
G (底部)開先ギャップ
W (底部)溶融幅
WD 溶接方向
θ 開先角度

Claims (8)

  1. 開先角度θを25°以下とし、底部開先ギャップGを7~18mmの範囲とし、板厚tが22mm以上である厚鋼板を、狭開先の多層溶接により接合する狭開先ガスシールドアーク溶接方法であって、
    前記多層溶接を3電極以上の多電極溶接とし、
    前記多電極のうち、第1電極と第2電極とを予め定めた平行な溶接線に沿う位置に配置するとともに、
    前記第1電極および前記第2電極のうちの一方を正極性とし他方を逆極性とし、
    さらに、前記第1電極および前記第2電極のそれぞれの溶接トーチ先端に配設する給電チップから供給する溶接ワイヤ先端間の距離aを5~16mmの範囲とし、前記第1電極および前記第2電極のそれぞれの溶接ワイヤ先端間を結ぶ直線と前記溶接線に直交する方向とのなす角度αを60°以下の範囲とし、
    さらに、前記多電極の全ての電極で使用する前記溶接ワイヤの直径を1.0~1.6mmの範囲とし、
    前記多電極のうち第2電極以降の電極間の距離を10~100mmの範囲とし、
    さらに、任意選択的に、前記第1電極および前記第2電極の給電チップから底部開先へ供給するそれぞれの溶接ワイヤの供給角度φを底部開先の垂線に対し0~15°の範囲とし、
    さらに、任意選択的に、前記第1電極および前記第2電極から供給する溶接ワイヤ先端の側端部と前記厚鋼板の開先面との距離dをそれぞれ0.5~3.0mmの範囲として、
    全ての電極を合計した単位時間あたりの溶着金属量を200g/min以上とし、かつ、前記厚鋼板の底部における溶接線に直交する方向の溶融深さpを1.5mm以上とする、狭開先ガスシールドアーク溶接方法。
  2. 第3電極以降の電極を前記第1電極および前記第2電極の後方の開先中央に配置する、請求項1に記載の狭開先ガスシールドアーク溶接方法。
  3. 曲率半径が150~300mmの範囲で湾曲させた溶接ワイヤを前記第1電極および前記第2電極の給電チップに送給する、請求項1または2に記載の狭開先ガスシールドアーク溶接方法。
  4. COガスを60体積%以上含有する混合ガスを前記多層溶接に用いるシールドガスとする、請求項1または2に記載の狭開先ガスシールドアーク溶接方法。
  5. 板厚tが22mm以上である厚鋼板を、開先角度θが25°以下でありかつ底部開先ギャップGが7~18mmの範囲である狭開先の多層溶接を行う厚鋼板の狭開先ガスシールドアーク溶接用溶接装置であって、
    3電極以上の複数の電極と、該複数の電極に溶接電力を供給する複数の溶接電源と、前記複数の電極の溶接トーチ先端に配設された給電チップと、前記複数の電極にそれぞれ溶接ワイヤを送給する複数の溶接ワイヤ供給手段と、さらに、シールドガスを供給するシールドガス供給手段と、溶接台または溶接台車と、を有し、さらに、
    前記複数の電極のうち、前記第1電極および前記第2電極のうちの一方を正極性とし他方を逆極性となるように接続されてなり、
    前記給電チップは1.0~1.6mmの範囲の溶接ワイヤを供給するように構成され、
    前記第1電極と前記第2電極とは予め定めた平行な溶接線に沿う位置に配置され、かつ、前記第1電極と前記第2電極との距離がそれぞれの電極の溶接トーチ先端に配設された給電チップから供給された溶接ワイヤ先端間の距離aで5~16mmの範囲内となり、さらに、前記第1電極および前記第2電極の溶接トーチ先端に配設された給電チップから供給されるそれぞれの溶接ワイヤ先端間を結ぶ直線と前記溶接線の直交方向とのなす角度αが60°以下となるように配置されてなり、さらに
    前記第2電極以降の電極間の距離がそれぞれ隣接する先行電極との距離で10~100mmの範囲となるように第3電極以降の電極を配設されてなり、
    任意選択的に、前記第1電極および前記第2電極の溶接トーチ先端に配設された前記給電チップがその先端で垂線に対し0~15°の範囲の傾きを有する、狭開先ガスシールドアーク溶接用溶接装置。
  6. 前記第3電極以降の電極が、前記第1電極および前記第2電極の後方の開先中央に配置されている、請求項5に記載の狭開先ガスシールドアーク溶接用溶接装置。
  7. 前記溶接ワイヤ供給手段は、曲率半径が150~300mmの範囲で湾曲した溶接ワイヤを送給できるように構成されている、請求項5または6に記載の狭開先ガスシールドアーク溶接用溶接装置。
  8. 前記シールドガス供給手段は、60体積%以上のCOガスを含有した混合ガスをシールドガスとして供給するように構成されている、請求項5または6に記載の狭開先ガスシールドアーク溶接用溶接装置。
PCT/JP2023/006344 2022-03-31 2023-02-22 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置 WO2023189026A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530646A JP7351436B1 (ja) 2022-03-31 2023-02-22 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058404 2022-03-31
JP2022058404 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189026A1 true WO2023189026A1 (ja) 2023-10-05

Family

ID=88200488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006344 WO2023189026A1 (ja) 2022-03-31 2023-02-22 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置

Country Status (1)

Country Link
WO (1) WO2023189026A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123461B1 (ja) * 1965-10-20 1976-07-16
JPS51106658A (en) * 1975-03-17 1976-09-21 Mitsubishi Heavy Ind Ltd Tadenkyoku mig jidoyosetsuho
DE102012217669A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Verfahren zum Metallschutzgas-Engspaltschweißen und Engspaltschweißsystem
WO2019182081A1 (ja) * 2018-03-22 2019-09-26 Jfeスチール株式会社 鋼板のガスシールドアーク溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123461B1 (ja) * 1965-10-20 1976-07-16
JPS51106658A (en) * 1975-03-17 1976-09-21 Mitsubishi Heavy Ind Ltd Tadenkyoku mig jidoyosetsuho
DE102012217669A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Verfahren zum Metallschutzgas-Engspaltschweißen und Engspaltschweißsystem
WO2019182081A1 (ja) * 2018-03-22 2019-09-26 Jfeスチール株式会社 鋼板のガスシールドアーク溶接方法

Similar Documents

Publication Publication Date Title
EP2511041B1 (en) A hybrid welding apparatus and system and method of welding
JP5861785B2 (ja) 狭開先ガスシールドアーク溶接方法
US8890030B2 (en) Hybrid welding apparatuses, systems and methods
JP6137053B2 (ja) 狭開先ガスシールドアーク溶接方法
JP2007283363A (ja) Uoe鋼管の製造方法
WO2014088111A1 (ja) 狭開先ガスシールドアーク溶接継手
CN109641306B (zh) 立式窄坡口气体保护弧焊方法
JP5354236B1 (ja) 鋼板のサブマージアーク溶接方法
JPH08243754A (ja) クラッド鋼管の内面溶接方法
JP6119948B1 (ja) 立向き狭開先ガスシールドアーク溶接方法
JP7351436B1 (ja) 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置
WO2023189026A1 (ja) 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置
WO2017098692A1 (ja) 立向き狭開先ガスシールドアーク溶接方法
CN115703163A (zh) 多电极单面埋弧焊接方法
KR20230133927A (ko) 가스 실드 아크 용접 방법, 용접 조인트 및 용접 조인트의 제조 방법
JP2023152736A (ja) 厚鋼板の狭開先ガスシールドアーク溶接方法
JP2005319507A (ja) 多電極片面サブマージアーク溶接方法
JP4707949B2 (ja) 多電極片面サブマージアーク溶接方法
JPH08276273A (ja) クラッド鋼の突合せ溶接方法
JP7448086B2 (ja) 片面サブマージアーク溶接方法および溶接継手の製造方法
JP6787800B2 (ja) 片面サブマージアーク溶接方法
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JP5483553B2 (ja) レーザ・アーク複合溶接法
JP2013071147A (ja) 鋼板の多電極サブマージアーク溶接方法
JP7323781B2 (ja) 多電極サブマージアーク溶接方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023530646

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779056

Country of ref document: EP

Kind code of ref document: A1