WO2014088111A1 - 狭開先ガスシールドアーク溶接継手 - Google Patents

狭開先ガスシールドアーク溶接継手 Download PDF

Info

Publication number
WO2014088111A1
WO2014088111A1 PCT/JP2013/082899 JP2013082899W WO2014088111A1 WO 2014088111 A1 WO2014088111 A1 WO 2014088111A1 JP 2013082899 W JP2013082899 W JP 2013082899W WO 2014088111 A1 WO2014088111 A1 WO 2014088111A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
groove
steel material
gas
tip
Prior art date
Application number
PCT/JP2013/082899
Other languages
English (en)
French (fr)
Other versions
WO2014088111A8 (ja
Inventor
片岡 時彦
博幸 角
木谷 靖
大井 健次
安田 功一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2014551165A priority Critical patent/JP5954433B2/ja
Priority to EP13860637.1A priority patent/EP2929974B1/en
Priority to CN201380063884.9A priority patent/CN104853876B/zh
Publication of WO2014088111A1 publication Critical patent/WO2014088111A1/ja
Publication of WO2014088111A8 publication Critical patent/WO2014088111A8/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0213Narrow gap welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles

Definitions

  • the present invention relates to a gas shielded arc welded joint, and more particularly to a narrow gap gas shielded arc welded joint of a thick steel material.
  • “narrow groove” means that the groove angle is 20 ° or less and the minimum groove width between steel materials to be welded is 50% or less of the thickness of the steel material. .
  • gas shielded arc welding used for welding of steel
  • a consumable electrode type in which a gas of CO 2 alone or a mixed gas of Ar and CO 2 is used for shielding a molten part is generally used. And widely used in the field of manufacturing electrical equipment and the like.
  • narrow gap gas shield arc welding in which a gap having a small gap with respect to the plate thickness is subjected to multilayer welding by arc welding. Since this narrow gap gas shielded arc welding has a smaller amount of welding than ordinary gas shielded arc welding, it is expected that higher efficiency and energy saving of welding can be achieved, and as a result, the construction cost can be reduced.
  • Patent Document 1 discloses that the hole of the shield gas ejection port for welding is formed into an oblong (elliptical) shape to improve the diffusibility of the shield gas, and torch.
  • a narrow groove MIG welding torch in which the hole of the contact tip is made into an oval shape and the weaving direction of the welding wire is always fixed, and a welding method using the same.
  • this welding method one-pass lamination welding is performed per layer using an inert gas.
  • heat concentrates in the central portion of the groove so that the groove surface of the steel material is insufficiently melted and the melting depth becomes small.
  • the welding wire has a constant weaving direction to ensure a fusion depth at the groove surface and reduce welding defects due to poor penetration.
  • Patent Document 2 discloses a tip for submerged welding in which one side surface of a tip end portion of a tip of a welding torch is protruded and the protruding portion is curved so as to be concave along a through hole.
  • This submerged welding tip uses a winding of the welding wire and feeds the welding wire in a bent state from the tip, thereby generating an arc at a position close to the groove surface and melting depth at the groove surface. To reduce welding defects due to poor penetration.
  • JP-A-7-116852 Japanese Patent Laid-Open No. 50-67758
  • the present invention has been developed to solve the above-described problems, and does not care for the groove surface even when a low-cost groove processing such as gas cutting or plasma cutting is performed.
  • high-efficiency narrow groove gas shielded arc welding can be used to effectively prevent defects due to high temperature cracks, poor fusion, etc. The purpose is to provide.
  • the inventors have made a narrow gap gas shielded arc welding joint of a thick steel material, particularly a narrow gap gas shielded arc with a narrow groove width for a thick steel material having a plate thickness of 22 mm or more.
  • Research was conducted on the relationship between the bead shape including the penetration shape and the prevention of weld defects in the welded joint obtained by using the welding method.
  • the melting depth from the groove surface at the bottom of the thick steel material is 1.5 mm or more
  • the total amount of oxygen (O) and sulfur (S) contained in the weld metal is 400 ppm by mass.
  • the gist configuration of the present invention is as follows. 1.
  • a welded joint obtained by producing a thick steel material having a plate thickness of 22 mm or more by multi-layer welding of narrow groove gas shielded arc welding, The depth of fusion at the bottom of the thick steel material is 1.5 mm or more, and the total amount of oxygen (O) and sulfur (S) contained in the weld metal is in the range of 400 ppm to 1000 ppm. Narrow groove gas shielded arc welding joint.
  • a welded joint can be obtained by high efficiency narrow groove gas shielded arc welding.
  • the narrow gap gas shielded arc welded joint obtained in this way is significantly less expensive to manufacture than conventional welded joints, so it is particularly applicable to general structures such as buildings, bridges and shipbuilding. And extremely useful.
  • FIG. 7 Various groove shapes suitable for obtaining the welded joint of the present invention are shown.
  • the suitable construction point in the case of welding using a V-shaped groove shape is shown.
  • channel after the first layer welding in the case of welding using a V-shaped groove shape is shown. It is a figure explaining the maximum recessed part depth of a groove surface.
  • the groove cross-sectional photograph after first layer welding is shown.
  • the thickness of the steel material, the melting depth at the bottom of the thick steel material, and the total amount of oxygen (O) and sulfur (S) contained in the weld metal are limited to the above ranges. The reason will be explained.
  • Plate thickness t 22 mm or more
  • the plate thickness of the steel material is 22 mm or more. This is because if the steel plate thickness is less than 22 mm, the groove angle is increased while the groove angle is reduced in the conventional lathe groove, and in some cases the narrow groove gas shield of the present invention is used. This is because the groove cross-sectional area is smaller than that of the welded joint. For example, when the plate thickness t is 20 mm, the groove sectional area is 140 mm 2 in a narrow groove gas shield welded joint obtained from an I-shaped groove having a groove angle of 0 ° and a groove gap of 7 mm.
  • Te included angle: 25 °
  • groove gap: a 133 mm 2 is groove cross-sectional area than 2mm welded joints obtained from Le shape groove of Trip welded joint obtained from Le shape groove is amount welding Small and highly efficient welding will be performed.
  • the upper limit of the plate thickness is generally 100 mm. Therefore, it is preferable that the upper limit of the thickness of the steel material targeted in the present invention is 100 mm or less.
  • high-tensile steel is particularly suitable as the steel type to be used in the welded joint of the present invention. This is because high-strength steel has severe welding heat input restrictions and is liable to crack the weld metal.
  • welding from the first layer to the final layer can be efficiently performed at a heat input of 20 kJ / cm or less, and the welded shape of each pass is nearly 90 ° of fillet welding, and is difficult to crack. Because it becomes.
  • welding of 780 MPa class steel is possible without preheating, and welding of 590 MPa class corrosion resistant steel that is a high alloy system is also possible.
  • mild steel can be handled without problems.
  • Melting depth P at the bottom of the thick steel material 1.5 mm or more
  • processing by gas cutting, plasma cutting, laser cutting or the like is performed. However, it does not refuse machining.
  • the melting depth required for the groove surface in narrow groove gas shielded arc welding is mainly determined by the surface properties of the groove surface (particularly, the recess depth and cleanliness).
  • the depth of the recess on the groove surface is about 0.2 mm or less, but in special cases, for example, when the flame flow velocity drops below normal due to crater wear, etc. For example, a recess depth exceeding 1 mm may occur.
  • the general structure or the like is directly used for welding without care. For this reason, in order to effectively prevent defects due to hot cracks, poor fusion, etc., the groove surface during welding construction, especially the bottom of thick steel materials where the temperature during welding tends to be low and the melting depth tends to be small Need to melt deeper.
  • the melting depth P at the bottom of the thick steel material is 1.5 mm or more. Preferably it is 2.0 mm or more. However, if the melting depth exceeds 4 mm, an undercut occurs at the upper portion of the weld bead on the groove surface, which causes a welding defect. Therefore, the melting depth is preferably 4 mm or less.
  • Total amount of oxygen (O) and sulfur (S) contained in the weld metal 400 mass ppm or more and 1000 mass ppm or less
  • the penetration of the weld is governed by the gouging effect of the arc itself and the convection of the weld metal in a high temperature state. Has been. When the convection of the weld metal is inward, the hot weld metal convects from the top to the bottom, so the penetration directly under the arc increases. On the other hand, when the convection of the weld metal is directed outward, the high-temperature weld metal is convected from the center in the left-right direction, the weld bead expands and the penetration of the groove surface increases.
  • the convection of the weld metal is directed outward. From such a viewpoint, it is necessary that the total amount of oxygen (O) and sulfur (S) governing the molten metal flow of the weld metal be 400 mass ppm (hereinafter simply referred to as ppm) or more. On the other hand, if the total amount of oxygen (O) and sulfur (S) exceeds 1000 ppm, it becomes difficult to ensure the toughness of the weld metal. From the above, the total amount of oxygen (O) and sulfur (S) contained in the weld metal needs to be in the range of 400 ppm to 1000 ppm.
  • the S amount in the weld metal can be controlled by the S amount of the welding wire and the S amount of the steel material.
  • the amount of O in the weld metal can be controlled by the amount of O of the welding wire and the amount of O of the steel material, and the ratio of the active gas such as CO 2 or O 2 contained in the shield gas.
  • the reason for limiting the plate thickness of the steel material, the melting depth at the bottom of the thick steel material, and the total amount of oxygen (O) and sulfur (S) contained in the weld metal has been described.
  • FIG. 1A to 1C show various groove shapes suitable for obtaining the welded joint of the present invention.
  • reference numeral 1 is a thick steel material
  • 2 is a groove surface of the thick steel material
  • 3 is a bottom groove
  • the symbol ⁇ is the bottom groove angle
  • G is the bottom groove gap
  • h is the bottom groove height.
  • t represents the plate thickness.
  • the groove shape suitable for obtaining the welded joint of the present invention can be either a V-shaped groove (including an I-shaped groove) or a Y-shaped groove
  • a multi-stage Y-shaped groove may be used.
  • the bottom groove is defined as a groove in the lower part of the steel material.
  • the groove in the lower part of the steel material means a region from the bottom surface of the steel material to about 20 to 40% of the plate thickness.
  • the bottom groove angle is represented by ⁇
  • the bottom groove gap is represented by G
  • the bottom groove height is represented by h.
  • the bottom groove height h is defined as 20% of the plate thickness t.
  • reference numerals 4 and 5 are the power supply tip and welding wire of the welding torch, respectively, and 6 is a backing material.
  • 6 is a backing material.
  • tip of a welding wire and the groove surface of a thick steel material is shown.
  • a V-shaped groove shape is used as an example, but ⁇ and d are the same in other groove shapes.
  • FIG. 3 shows the groove after the first layer welding when welding is performed using a V-shaped groove shape.
  • symbol 7 is a weld bead
  • symbol P indicates the melting depth at the bottom of the thick steel material
  • H indicates the weld height (average of the weld bead height).
  • a V-shaped groove shape is used as an example, but P and H are the same in other groove shapes.
  • Bottom groove angle ⁇ 10 ° or less
  • the bottom groove angle is set to 10 ° or less, which is difficult to construct by the conventional construction method and is expected to further improve the efficiency.
  • the bottom groove angle is 0 °, it is called a so-called I-shaped groove. From the viewpoint of the amount of welding, this 0 ° is the most efficient.
  • the bottom groove angle corresponding to the plate thickness t (in the case of Y-shaped groove, the bottom groove height h) should be set. preferable.
  • the bottom groove angle is more preferably in the range of (0.5 ⁇ t / 20) to (2.0 ⁇ t / 20) °, more preferably (0.8 ⁇ t / 20). ) To (1.2 ⁇ t / 20) °.
  • the bottom groove angle is more preferably in the range of 2.5 to 10 °, and further preferably in the range of 4 to 6 °.
  • the upper limit exceeds 10 °. In this case, the upper limit is 10 °.
  • Bottom groove gap G 7 mm or more and 15 mm or less
  • the bottom groove gap is set to 15 mm or less, which is difficult to construct by the conventional construction method and is expected to further improve the efficiency.
  • the bottom groove gap is preferably in the range of 7 mm or more and 15 mm or less. More preferably, it is the range of 8 mm or more and 12 mm or less.
  • First layer welding Each pass is divided into both sides of the bottom groove gap with two or more passes.
  • narrow groove multi-layer welding it is common to use one pass per layer.
  • heat concentrates in the center of the groove so that the groove surface of the steel material is insufficiently melted, resulting in poor fusion (cold wrap), spatter adhering to the groove surface, and slag entrainment Defects are likely to occur.
  • the first layer welding since the temperature of the steel material is low and the melting depth is small, defects due to poor fusion are likely to occur.
  • the first layer welding should be performed with two or more passes, and the groove surfaces on both sides can be easily melted.
  • each pass is distributed to both sides of the bottom groove gap.
  • the first layer welding is 4 passes or more, the heat input per pass is reduced and the amount of melting itself is reduced. Therefore, the first layer welding is more preferably performed with 2 passes or 3 passes. Further, in order to ensure the melting amount and increase the efficiency by increasing the heat input, it is optimal to perform the first layer welding with two passes. In order to stabilize the arc and penetration shape, it is preferable to suppress the movement of the welding torch and electrode (welding wire) such as weaving and rotation.
  • Supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch 5 ° or more and 15 ° or less with respect to the normal line
  • the arc has directivity and tends to be oriented in the direction indicated by the tip of the electrode (welding wire).
  • the direction pointed to by the electrode tip needs to be directed to the groove surface, and the direction pointed to by the electrode tip is supplied from the power feed tip at the tip of the welding torch. It varies greatly depending on the supply angle of the welding wire.
  • the supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch is less than 5 ° with respect to the perpendicular, the current flows through a path with smaller resistance.
  • the arc scoops up the wire which is an electrode (climbing of the arc), and it becomes difficult to maintain melting at the target groove surface, particularly at the bottom.
  • the supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch exceeds 15 ° with respect to the perpendicular, the arc is too directed to the groove surface, so that the weld bead shape becomes convex, and the arc of the next pass Insufficient melting causes weld defects. Therefore, the supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch is preferably 5 ° or more and 15 ° or less with respect to the perpendicular. More preferably, it is 6 ° or more and 12 ° or less.
  • the supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch is the same as the inclination of the power supply tip, particularly the power supply tip, the supply angle of the welding wire is controlled by the inclination of the power supply tip. Can do.
  • the distance between the side end of the welding wire tip at the bottom groove and the groove surface of the thick steel material 0.5 mm or more and 2.0 mm or less
  • the distance between the side end portion of the tip of the welding wire at the groove and the groove surface of the thick steel material is preferably 0.5 mm or more and 2.0 mm or less. This is because if the distance between the side end of the welding wire tip at the bottom groove and the groove surface of the thick steel material is less than 0.5 mm, an arc is generated between the wire upper portion and the groove surface, and the thick steel material The groove surface at the bottom cannot be efficiently melted.
  • the arc is separated from the groove surface, and the groove surface cannot be efficiently melted. More preferably, it is in the range of 0.5 to 1.0 mm.
  • tip of the welding wire said here shall point out the side edge part of the side close
  • the radius of curvature of the welding wire fed to the power supply tip 150 mm or more and 300 mm or less
  • a power supply tip having a bent tip can be used to control the supply angle of the welding wire supplied from the power supply tip at the tip of the welding torch.
  • the welding wire passes through the power feed tip having a bent tip.
  • the radius of curvature of the welding wire is less than 150 mm, the feeding resistance of the wire increases, the welding wire cannot be stably fed, and it becomes difficult to maintain the arc.
  • the radius of curvature of the welding wire fed to the power supply tip is 150 mm or more and 300 mm or less. More preferably, it is 175 mm or more and 275 mm or less.
  • weld height H Not less than 0.4 times and not more than 1.0 times the bottom groove gap G
  • the weld height per layer exceeds 1.0 times the bottom groove gap G, the amount of welding per pass becomes excessive, and the groove surfaces on both sides cannot be evenly melted. Therefore, it is preferable that the weld height, particularly the weld height of the first layer, be 0.4 to 1.0 times the bottom groove gap G. More preferably, it is 0.5 times or more and 0.8 times or less of the bottom groove gap G.
  • Shield gas composition 60% by volume or more of CO 2 gas
  • the shield gas composition greatly affects the amount of oxygen in the weld metal. For this reason, it is preferable to use a mixed gas containing 60% by volume or more of CO 2 gas and the rest as an inert gas such as Ar as the shielding gas composition. Particularly preferred is CO 2 gas: 100% by volume.
  • the penetration of the weld is affected by the directivity of the arc and the gouging effect. Therefore, it is preferable that the polarity of the welding is a wire minus (positive polarity) having a higher arc directivity and a gouging effect.
  • welding current 280 to 360 A
  • welding voltage 32 to 37 V (increase with current)
  • welding speed 30 to 80 cm / min
  • wire protrusion length 15 to 30 mm
  • wire diameter 1.2 to 1.6 mm
  • the welding heat input per pass may be 10 to 25 kJ / cm.
  • first layer welding is particularly important in order to ensure the necessary melting depth at the bottom of the thick steel material.
  • the layers other than the first layer do not necessarily satisfy these conditions, but may basically be the same as the welding conditions described above.
  • the groove-shaped steel materials shown in Table 1 were subjected to narrow groove gas shield arc welding under the welding conditions shown in Table 2. Note that gas cutting was used for the groove processing of the steel material, and the groove surface was not subjected to maintenance such as grinding.
  • the maximum recess depth on the groove surface was measured using a laser displacement meter. That is, as shown in FIG. 4, two parallel lines that pass through the highest convex part and the lowest concave part of the measurement point and include all the measurement points therebetween and the intermediate line thereof are drawn.
  • the concave portion is a portion lower than the intermediate line
  • the concave portion depth of the groove surface is a distance between the concave portion and the intermediate line.
  • the maximum recess depth on the groove surface is the maximum value of the recess depth.
  • the measurement results are also shown in Table 1.
  • the welded joint thus obtained was cut out in 5 sections, and the melt width of the bottom was measured in each section. Then, for each cross section, the melt depth was measured by subtracting the length of the bottom groove gap from the measured melt width and dividing this value by 2, and the average value was obtained. This value was taken as the melting depth at the bottom of the steel material.
  • No. 1 is an invention example.
  • the melting depth at the bottom of the steel material was 1.5 mm or more, and there was no detection defect in the ultrasonic flaw inspection, or even the defect length was 3 mm or less.
  • No. which is a comparative example In all of Nos. 13 to 17, the melting depth at the bottom of the steel material was less than 1.5 mm, and in the ultrasonic flaw detection, defects with a defect length exceeding 3 mm were detected.
  • FIG. 7 shows a cross-sectional photograph of a groove after the first layer welding.
  • (1) and (2) indicate the weld beads in the first and second passes, respectively.
  • the melting depth at the bottom of the thick steel material is about 3.2 mm in the first pass welding, and about 2.4 mm in the second pass welding, which is good on both sides of the groove surface at the bottom of the thick steel material. It can be seen that a good melting depth is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

 板厚が22mm以上である厚鋼材を、狭開先ガスシールドアーク溶接の多層盛りにより得た溶接継手において、上記厚鋼材の底部における溶融深さを1.5mm以上とし、さらに溶接金属中に含有される酸素(O)および硫黄(S)の合計量を400質量ppm以上1000質量ppm以下の範囲とした。

Description

狭開先ガスシールドアーク溶接継手
 本発明は、ガスシールドアーク溶接継手に関するものであって、特には厚鋼材の狭開先ガスシールドアーク溶接継手に関するものである。
 本発明において、「狭開先」とは、開先角度が20°以下でかつ被溶接材となる鋼材間の最小開先幅が、当該鋼材の板厚の50%以下であることを意味する。
 鋼の溶接施工に用いられるガスシールドアーク溶接としては、CO単独のガス、あるいはArとCOとの混合ガスを溶融部のシールドに用いる消耗電極式が一般的であり、自動車、建築、橋梁および電気機器等の製造分野において幅広く用いられている。
 ところで近年、鋼構造物の大型化・厚肉化に伴い、製作過程での溶接、特に鋼材の突き合わせ溶接における溶着量が増大し、さらには溶接施工に多くの時間が必要となり、施工コストの増大を招いている。
 これを改善する方法として、板厚に対して小さい間隙の開先をアーク溶接法により多層溶接する、狭開先ガスシールドアーク溶接の適用が考えられる。この狭開先ガスシールドアーク溶接は、通常のガスシールドアーク溶接と比べ溶着量が少なくなるので、溶接の高能率化・省エネルギーが達成でき、ひいては施工コストの低減をもたらすものと期待される。
 このような狭開先ガスシールドアーク溶接に関する技術として、特許文献1には、溶接用シールドガス噴出口の穴を斜め長円形(楕円形)にして、シールドガスの拡散性を良くし、さらにトーチのコンタクトチップの穴を長円形にして、溶接ワイヤのウイービング方向が常に一定の方向となるように設定した狭開先MIG溶接用トーチおよびこれを用いた溶接方法が開示されている。
 この溶接方法では、イナートガスを用いた1層当たり1パスの積層溶接を行っている。しかしながら、このような1層当たり1パスの溶接では、熱が開先の中央部に集中するので、鋼材の開先面は溶融が不足して溶融深さが小さくなる。これを補うため、溶接ワイヤのウイービング方向を常に一定の方向とすることにより、開先面における溶融深さを確保し、溶け込み不良等による溶接欠陥を少なくしている。
 また、特許文献2には、溶接トーチ先端のチップ先端部の一側面を突出させ、その突出部分を貫通孔に沿って凹になるように湾曲させたサブマージ溶接用チップが開示されている。
 このサブマージ溶接用チップは、溶接ワイヤの巻きぐせを利用し、チップから溶接ワイヤを屈曲した状態で送給することにより、開先面に近い位置でアークを発生させ、開先面における溶融深さを確保して、溶け込み不良等による溶接欠陥を少なくしている。
特開平7−116852号公報 特開昭50−67758号公報
 しかしながら、特許文献1および2に記載の技術では、鋼材の開先面の溶融は必ずしも十分とは言えない。そのため、特許文献1および2に記載の技術において、溶け込み不良等による溶接欠陥を有効に抑制するためには、鋼材の開先加工として極めて高精度かつ清浄な機械加工を施すことが必要とされる。
 一方、高付加価値の鋼構造物を除く、建築、橋梁および造船等の一般構造物では、コスト等の面から、ガス切断やプラズマ切断等による開先加工を行い、それをそのまま溶接に供するのが通常である。ガス切断やプラズマ切断等による開先加工は、低コストで施工も容易である。しかしながら、ガス切断やプラズマ切断等による開先加工は、開先面の表面が粗くなる、つまり表面の凹凸が大きくなる傾向にあり、機械加工のような高精度の加工を行うことは難しい。
 このため、建築、橋梁および造船等の一般構造物については、特許文献1および2に記載の技術を適用することが困難であった。
 本発明は、上記の問題を解決するために開発されたもので、ガス切断やプラズマ切断等による低コストの開先加工を施した場合であっても、開先面の手入れ等を行うことなしに、高能率の狭開先ガスシールドアーク溶接を行って高温割れや融合不良等による欠陥を効果的に防止することができ、また溶着量も少ない厚鋼材の狭開先ガスシールドアーク溶接継手を提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく、厚鋼材の狭開先ガスシールドアーク溶接継手、特に板厚が22mm以上の厚鋼材に対し、開先幅が狭い狭開先ガスシールドアーク溶接方法を用いた場合に得られる溶接継手における、溶け込み形状を含むビード形状と溶接欠陥防止との関連性について研究を重ねた。
 その結果、上記したような厚鋼材の狭開先ガスシールドアーク溶接継手においては、
 (a)厚鋼材の底部における開先面からの溶融深さを1.5mm以上とし、さらに
 (b)溶接金属中に含有される酸素(O)および硫黄(S)の合計量を400質量ppm以上1000質量ppm以下の範囲に制御することにより、ガス切断やプラズマ切断等による開先加工を施した厚鋼材を使用して高能率の狭開先ガスシールドアーク溶接を行う場合であっても、高温割れや融合不良等による欠陥を有効に防止できるとの知見を得た。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.板厚が22mm以上である厚鋼材を、狭開先ガスシールドアーク溶接の多層盛りにより得た溶接継手であって、
 上記厚鋼材の底部における溶融深さが1.5mm以上であり、さらに溶接金属中に含有される酸素(O)および硫黄(S)の合計量が400質量ppm以上1000質量ppm以下の範囲である狭開先ガスシールドアーク溶接継手。
2.前記狭開先ガスシールドアーク溶接の初層溶接における溶接盛り高さが、底部開先ギャップの0.4倍以上1.0倍以下である前記1に記載の狭開先ガスシールドアーク溶接継手。
 本発明によれば、開先加工としてガス切断やプラズマ切断等の低コストの開先加工を施した場合であっても、高温割れや融合不良等による欠陥の発生がなく、しかも溶着量も少ない溶接継手を、高能率の狭開先ガスシールドアーク溶接により得ることができる。
 そして、このようにして得られた狭開先ガスシールドアーク溶接継手は、従来の溶接継手と比較して製造コストが大幅に低減するので、特に建築、橋梁および造船等の一般構造物に適用して極めて有用である。
本発明の溶接継手を得るのに好適な各種開先形状を示すものである。 V形の開先形状を用いて溶接を行う場合における好適な施工要領を示すものである。 V形の開先形状を用いて溶接を行った場合における初層溶接後の開先を示すものである。 開先面の最大凹部深さを説明する図である。 本発明の発明例(No.7)において、初層溶接後の開先断面写真を示すものである。
 以下、本発明を具体的に説明する。
 まず、本発明の溶接継手において、鋼材の板厚、厚鋼材の底部における溶融深さおよび溶接金属中に含有される酸素(O)および硫黄(S)の合計量を、前記の範囲に限定した理由について説明する。
板厚t:22mm以上
 鋼材の板厚は22mm以上とする。というのは、鋼材の板厚が22mm未満であれば、従来のレ形開先において開先角度を大きくする一方、開先ギャップを小さくすることで、場合によっては本発明の狭開先ガスシールド溶接継手よりも開先断面積が小さくなるからである。
 例えば、板厚tが20mmの場合、開先角度:0°、開先ギャップ:7mmのI形開先から得た狭開先ガスシールド溶接継手では開先断面積が140mmであるのに対して、開先角度:25°、開先ギャップ:2mmのレ形開先から得た溶接継手では開先断面積が133mmであり、レ形開先から得た溶接継手の方が溶着量の小さい高能率な溶接を行うことになる。
 なお、一般の圧延鋼材を対象とする場合、板厚は一般に100mmが上限である。よって、本発明で対象とする鋼材の板厚の上限は100mm以下とすることが好ましい。
 なお、本発明の溶接継手で対象とする鋼種としては、高張力鋼が特に好適である。というのは、高張力鋼は、溶接入熱制限が厳しく、溶接金属に割れが生じ易い。これに対し本発明では、入熱:20kJ/cm以下で効率良く初層から最終層までの溶接が可能であり、また各パスの溶接形状がほぼ隅肉溶接の90°に近く、割れ難い形状となるからである。さらに、780MPa級鋼の溶接も予熱なしで可能であり、高合金系となる590MPa級耐食鋼の溶接も可能である。当然、軟鋼にも問題なく対応できるのは言うまでもない。
厚鋼材の底部における溶融深さP:1.5mm以上
 本発明の溶接継手における鋼材の開先加工では、ガス切断やプラズマ切断、レーザ切断等による加工を行う。ただし、機械加工を拒否するものではない。一方、狭開先ガスシールドアーク溶接における開先面に必要な溶融深さは、開先面の表面性状(特に、凹部深さや清浄度)によって主に決定される。
 最も一般的なガス切断による開先加工では、特殊鋼やステンレス鋼等を除き、ガス切断時のガス流量や火口の選択により、切断面の仕上がりに大きな差が生じる。例えば、ガス流量や火口の調整が良好な場合における開先面表面の凹部深さは0.2mm程度以下となるが、特殊な場合、例えば、火口の摩耗などにより火炎流速が通常より落ちた場合などには、1mmを超える凹部深さが生じるおそれがある。しかしながら、このような凹部が生じても、一般構造物等では手入れなしにそのまま溶接に供されることとなる。このため、高温割れや融合不良等による欠陥を有効に防止するには、溶接施工の際に開先面、特に溶接時の温度が低く、溶融深さが小さくなる傾向にある厚鋼材の底部を、より深く溶融する必要がある。また、切断面は加工熱により生じた厚い酸化膜で覆われているため、溶接施工の際にはやはり開先面をより深く溶融する必要がある。
 以上のことから、本発明では、厚鋼材の底部における溶融深さPは1.5mm以上としたのである。好ましくは2.0mm以上である。ただし、溶融深さが4mmを超えると、開先面の溶接ビード上部にアンダーカットが生じ、溶接欠陥の要因となるので、溶融深さは4mm以下とすることが好ましい。
溶接金属中に含有される酸素(O)および硫黄(S)の合計量:400質量ppm以上1000質量ppm以下
 溶接部の溶け込みは、アークそのものによるガウジング効果と高温状態にある溶接金属の対流によって支配されている。溶接金属の対流が内向きとなる場合、高温の溶接金属が上から下方向に対流するのでアーク直下の溶け込みが増す。一方、溶接金属の対流が外向きとなる場合、高温の溶接金属が中央から左右方向に対流し、溶接ビードが広がりを持つとともに開先面の溶け込みが増す。従って、上記した厚鋼材の底部における溶融深さ:1.5mm以上を達成するには、溶接金属の対流を外向きとすることが望ましい。このような観点から、溶接金属の湯流れを支配する酸素(O)と硫黄(S)を合計量で400質量ppm(以下、単にppmという)以上にする必要がある。一方、酸素(O)と硫黄(S)の合計量が1000ppmを超えると、溶接金属の靭性確保が困難となる。
 以上のことから、溶接金属中に含有される酸素(O)および硫黄(S)の合計量は400ppm以上1000ppm以下の範囲とする必要がある。好ましくは500ppm以上1000ppm以下の範囲である。
 なお、溶接金属中のS量は、溶接ワイヤのS量と鋼材のS量で制御できる。また、溶接金属中のO量は、溶接ワイヤのO量と鋼材のO量、さらには、シールドガスに含まれるCOやO等の活性ガスの比率によって制御できる。
 以上、本発明の溶接継手において、鋼材の板厚、厚鋼材の底部における溶融深さおよび溶接金属中に含有される酸素(O)および硫黄(S)の合計量を限定した理由を説明したが、上記のような溶接継手を得るには、以下に示す開先条件および溶接条件を満足する狭開先ガスシールドアーク溶接を施すことが肝要である。
 図1(a)~(c)に、本発明の溶接継手を得るのに好適な各種開先形状を示す。図中、符号1が厚鋼材、2が厚鋼材の開先面、3が底部開先であり、記号θで底部開先角度を、Gで底部開先ギャップを、hで底部開先高さを、tで板厚を示す。
 同図で示したように、本発明の溶接継手を得るのに好適な開先形状はV形開先(I形開先を含む)およびY形開先のいずれとすることも可能であり、また図1(c)に示すように多数段のY形開先とすることも可能である。
 ここで、底部開先とは鋼材下段部の開先と定義する。また、鋼材下段部の開先とは、鋼材の底面から板厚の20~40%程度までの領域を意味する。
 底部開先を上記のように定義したことに関連して、底部開先角度をθで、底部開先ギャップをGで、底部開先高さをhで示すものとしたのである。なお、V形開先の場合には、底部開先高さhを板厚tの20%として定義する。
 また、図2に、V形の開先形状を用いて溶接を行う場合における好適な施工要領を示す。図中、符号4、5がそれぞれ溶接トーチの給電チップおよび溶接ワイヤ、6が裏当て材であり、記号φで溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度を、dで底部開先における溶接ワイヤの先端の側端部と厚鋼材の開先面との距離を示す。
 ここでは、V形の開先形状を例に用いたが、他の開先形状でもφおよびdは同様である。
 さらに、図3に、V形の開先形状を用いて溶接を行った場合における初層溶接後の開先を示す。図中、符号7が溶接ビードであり、記号Pで厚鋼材の底部における溶融深さを、Hで溶接盛り高さ(溶接ビード高さの平均)を示す。
 ここでは、V形の開先形状を例に用いたが、他の開先形状でもPおよびHは同様である。
底部開先角度θ:10°以下
 鋼材の開先部は小さいほどより早く高能率な溶接を可能とする反面、融合不良等の欠陥が生じやすい。また、底部開先角度が10°を超える場合の溶接は、従来の施工方法でも実施可能である。このため、底部開先角度は、従来の施工方法では施工が困難であり、かつ一層の高能率化が見込まれる10°以下とすることが好ましい。
 なお、V形開先において、底部開先角度が0°の場合はいわゆるI形開先と呼ばれ、溶着量の面からはこの0°の場合が最も効率的であるが、溶接熱ひずみにより溶接中に開先が閉じてくるため、これを見込んで、板厚t(ただし、Y形開先の場合には底部開先高さh)に応じた底部開先角度を設定することがより好ましい。
 具体的には、底部開先角度は(0.5×t/20)~(2.0×t/20)°の範囲とすることがより好ましく、さらに好ましくは(0.8×t/20)~(1.2×t/20)°の範囲である。例えば、板厚tが100mの場合、底部開先角度は2.5~10°の範囲がより好ましく、さらに好ましくは4~6°の範囲である。
 ただし、板厚tが100mmを超えると、上限が10°を超えるようになるが、この場合の上限は10°とする。
底部開先ギャップG:7mm以上15mm以下
 鋼材の開先部は小さいほどより早く高能率な溶接を可能とする反面、融合不良等の欠陥が生じやすい。また、底部開先ギャップが15mmを超える溶接は、従来の施工方法でも実施可能である。このため、底部開先ギャップは、従来の施工方法では施工が困難であり、かつ一層の高能率化が見込まれる15mm以下とすることが好ましい。一方、底部開先ギャップが7mm未満では、後述する1層あたり2パス以上の溶接施工が困難となる。このため、底部開先ギャップは7mm以上15mm以下の範囲とすることが好ましい。より好ましくは8mm以上12mm以下の範囲である。
初層溶接:2パス以上として各パスを底部開先ギャップの両側に振り分け
 狭開先の多層溶接では、1層当たり1パスとすることが一般的である。しかしながら、1層当たり1パスとする場合、熱が開先中央に集中するため、鋼材の開先面の溶融が不足し、融合不良(コールドラップ)、開先面に付着したスパッタおよびスラグ巻き込みによる欠陥が生じ易い。特に、初層溶接は鋼材の温度が低く、溶融深さが小さくなるため、融合不良による欠陥が生じ易い。
 従って、初層溶接で必要な溶融深さおよび溶着量を確保し、融合不良等による欠陥を抑制するため、初層溶接を2パス以上とし、さらに両側の開先面を溶融し易くなるように、各パスを底部開先ギャップの両側に振り分けることが好ましい。
 一方、初層溶接が4パス以上になると、1パス当たりの入熱が低下し、溶融量そのものが減少することから、初層溶接は2パスまたは3パスとすることがより好ましい。また、高入熱化による溶融量の確保と高能率化のためには、初層溶接は2パスとすることが最適である。
 なお、アークおよび溶け込み形状の安定化には、ウイービングや回転などの溶接トーチおよび電極(溶接ワイヤ)の動きを抑制することが好ましい。
溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度:垂線に対して5°以上15°以下
 アークには指向性があり、電極(溶接ワイヤ)先端が指す方向に向きやすい性質がある。このアークの指向性を開先面の溶融に有効に活かすためには、電極先端が指す方向を開先面に向ける必要があり、この電極先端が指す方向は溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度により大きく変化する。
 ここに、溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度が垂線に対して5°未満では、電流がより抵抗の小さい経路に流れてしまう。その結果、アークが電極であるワイヤを這い上がり(アークの這い上がり)、狙いとする開先面、特に底部での溶融を維持することが困難となる。一方、溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度が垂線に対して15°を超えると、アークが開先面に向き過ぎるために溶接ビード形状が凸となり、次パスのアークでの溶融が不十分となって溶接欠陥を生じさせる。従って、溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度は、垂線に対して5°以上15°以下とすることが好ましい。より好ましくは6°以上12°以下である。
 なお、溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度は、給電チップ、特に給電チップ先端の傾きと同じになるため、この給電チップ先端の傾きによりこの溶接ワイヤの供給角度を制御することができる。
底部開先における溶接ワイヤの先端の側端部と厚鋼材の開先面との距離:0.5mm以上2.0mm以下
 厚鋼材の底部における溶融深さをより深く安定して得るには、底部開先における溶接ワイヤの先端の側端部と厚鋼材の開先面との距離を0.5mm以上2.0mm以下とすることが好ましい。
 というのは、底部開先における溶接ワイヤの先端の側端部と厚鋼材の開先面との距離が0.5mm未満では、アークがワイヤ上部と開先面との間で発生し、厚鋼材底部の開先面を効率良く溶融できない。一方、2.0mmを超えるとアークが開先面から離れてしまい、開先面を効率良く溶融できないからである。より好ましくは0.5~1.0mmの範囲である。
 なお、ここで言う溶接ワイヤの先端の側端部とは、各パスで溶融させようとする厚鋼材の開先面に近い側の側端部を指すものとする。
給電チップに送給する溶接ワイヤの曲率半径:150mm以上300mm以下
 溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度の制御には、先端を曲げた給電チップを使用することができる。この場合、溶接ワイヤが先端を曲げた給電チップを通ることになるが、よりスムーズに通過させるためには、いわゆる3点ローラー等を用いて溶接ワイヤを予め湾曲させておくことが好ましい。
 ここに、溶接ワイヤの曲率半径が150mm未満ではワイヤの送給抵抗が大きくなって、安定して溶接ワイヤを送給することができず、アークを維持することが困難となる。一方、溶接ワイヤの曲率半径が300mmを超えると、給電チップ先端が曲がった状態でのワイヤの送給抵抗軽減に効果がないため、やはり安定して溶接ワイヤを送給することができず、アークを維持することが困難となる。
 従って、給電チップに送給する溶接ワイヤの曲率半径は150mm以上300mm以下とすることが好ましい。より好ましくは175mm以上275mm以下である。
溶接盛り高さH:底部開先ギャップGの0.4倍以上1.0倍以下
 開先ギャップに対する1層当りの溶接盛り高さを適正に管理することにより、各パスでの溶け込みを含めた溶接ビード形状が一定となり、また開先面の安定した溶け込みを確保することが可能となる。さらに、より深い溶け込みを得るためにはより高い入熱が有効であるが、入熱が高くなりすぎると、溶接盛り高さが大きくなって、両側の開先面を均等に溶融することが困難になる。
 ここで、1層当りの溶接盛り高さが底部開先ギャップGの0.4倍未満では、入熱が不足し、開先面の深い溶融が困難になるだけでなく、1パス当りの溶着量が不足して各層での溶接ビード形状が変化してしまう。一方、1層当りの溶接盛り高さが底部開先ギャップGの1.0倍を超えると、1パス当りの溶着量が多くなりすぎ、両側の開先面を均等に溶融することができない。
 従って、溶接盛り高さ、特に初層の溶接盛り高さは、底部開先ギャップGの0.4倍以上1.0倍以下とすることが好ましい。より好ましくは底部開先ギャップGの0.5倍以上0.8倍以下である。
シールドガス組成:COガスを60体積%以上
 シールドガス組成は、溶接金属中の酸素量に大きく影響する。このため、シールドガス組成としては、COガスを60体積%以上、残りをAr等の不活性ガスとして含有する混合ガスを使用することが好ましい。特に好ましくはCOガス:100体積%である。
 また、溶接部の溶け込みは、アークの指向性およびガウジング効果にも影響される。従って、溶接の極性は、アークの指向性およびガウジング効果のより大きいワイヤマイナス(正極性)とすることが好ましい。
 上記以外の条件については、特に規定する必要はなく、定法に従えばよい。例えば、溶接電流:280~360A、溶接電圧:32~37V(電流とともに上昇)、溶接速度:30~80cm/分、ワイヤ突き出し長さ:15~30mm、ワイヤ径:1.2~1.6mm、1パス当りの溶接入熱:10~25kJ/cmとすればよい。
 上記したような好適条件で継手溶接を行うことにより、本発明で目的とする高温割れや融合不良等による欠陥の発生がなく、しかも溶着量も少ない溶接継手を安定して得ることができるのである。
 なお、本発明の溶接継手において、必要な厚鋼材の底部における溶融深さを確保するには、特に初層溶接が重要となる。また、初層以外の層では、必ずしもこれらの条件を満足させなくてもよいが、基本的には上記した溶接条件と同様とすればよい。
 表1に示す開先形状の鋼材について、表2に示す溶接条件で狭開先ガスシールドアーク溶接を施した。
 なお、鋼材の開先加工には、ガス切断を用い、開先面には研削等の手入れは行わなかった。また、開先面の最大凹部深さはレーザ変位計を用いて測定した。
 すなわち、図4に示すように、測定点の最も高い凸部と最も低い凹部をそれぞれ通り、全ての測定点をその間に含む2本の平行線とその中間線を引く。ここで、凹部とはこの中間線より低い部分であり、開先面の凹部深さとは、凹部と中間線との距離とした。開先面の最大凹部深さとは、この凹部深さの最大値である。
 測定結果を表1に併せて示す。
 かくして得られた溶接継手を5断面で切り出し、各断面で底部の溶融幅を測定した。そして、各断面について、測定した溶融幅から底部開先ギャップ分の長さを減じ、この値を2で除することにより、溶融深さを測定し、その平均値を求めた。この値を鋼材の底部における溶融深さとした。
 また、得られた溶接継手について、超音波探傷検査を実施し、次のように評価した。
 ◎:検出欠陥なし
 ○:欠陥長さが3mm以下の合格欠陥のみを検出
 ×:欠陥長さが3mmを超える欠陥を検出
 これらの結果も併せて表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、発明例であるNo.1~12では、いずれも鋼材の底部における溶融深さが1.5mm以上であり、また超音波探傷検査では検出欠陥がないか、あっても欠陥長さが3mm以下であった。
 一方、比較例であるNo.13~17はいずれも、鋼材の底部における溶融深さが1.5mmに満たず、また超音波探傷検査においては、欠陥長さが3mm超の欠陥が検出された。
 また、図5に、発明例であるNo.7の初層溶接後の開先断面写真を示す。図中(1)、(2)は、それぞれ1および2パス目の溶接ビードを示す。同図より、厚鋼材の底部における溶融深さは、1パス目の溶接で3.2mm程度、2パス目の溶接では2.4mm程度であり、厚鋼材の底部における開先面の両側で良好な溶融深さが得られていることがわかる。
 1:厚鋼材
 2:厚鋼材の開先面
 3:底部開先
 4:溶接トーチの給電チップ
 5:溶接ワイヤ
 6:裏当て材
 7:溶接ビード
 θ:底部開先角度
 G:底部開先ギャップ
 h:底部開先高さ
 t:板厚
 φ:溶接トーチ先端の給電チップから供給する溶接ワイヤの供給角度
 d:底部開先における溶接ワイヤの先端の側端部と厚鋼材の開先面との距離
 P:厚鋼材の底部における溶融深さ
 H:溶接平均盛り高さ

Claims (2)

  1.  板厚が22mm以上である厚鋼材を、狭開先ガスシールドアーク溶接の多層盛りにより得た溶接継手であって、
     上記厚鋼材の底部における溶融深さが1.5mm以上であり、さらに溶接金属中に含有される酸素(O)および硫黄(S)の合計量が400質量ppm以上1000質量ppm以下の範囲である狭開先ガスシールドアーク溶接継手。
  2.  前記狭開先ガスシールドアーク溶接の初層溶接における溶接盛り高さが、底部開先ギャップの0.4倍以上1.0倍以下である請求項1に記載の狭開先ガスシールドアーク溶接継手。
PCT/JP2013/082899 2012-12-04 2013-12-03 狭開先ガスシールドアーク溶接継手 WO2014088111A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014551165A JP5954433B2 (ja) 2012-12-04 2013-12-03 狭開先ガスシールドアーク溶接継手
EP13860637.1A EP2929974B1 (en) 2012-12-04 2013-12-03 Narrow-groove gas-shielded arc welded joint
CN201380063884.9A CN104853876B (zh) 2012-12-04 2013-12-03 窄坡口气体保护弧焊接头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-265518 2012-12-04
JP2012265518 2012-12-04

Publications (2)

Publication Number Publication Date
WO2014088111A1 true WO2014088111A1 (ja) 2014-06-12
WO2014088111A8 WO2014088111A8 (ja) 2015-06-18

Family

ID=50883523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082899 WO2014088111A1 (ja) 2012-12-04 2013-12-03 狭開先ガスシールドアーク溶接継手

Country Status (5)

Country Link
EP (1) EP2929974B1 (ja)
JP (1) JP5954433B2 (ja)
KR (1) KR20150086373A (ja)
CN (1) CN104853876B (ja)
WO (1) WO2014088111A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144600A1 (en) * 2013-04-26 2015-05-28 China National Chemical Engineering Third Construction Co., Ltd Stainless steel weldment and pad combined welding method
WO2019182081A1 (ja) * 2018-03-22 2019-09-26 Jfeスチール株式会社 鋼板のガスシールドアーク溶接方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032106B1 (ko) * 2015-12-09 2019-10-15 제이에프이 스틸 가부시키가이샤 수직 방향 협개선 가스 실드 아크 용접 방법
CN109641306B (zh) * 2016-08-24 2021-09-07 杰富意钢铁株式会社 立式窄坡口气体保护弧焊方法
CN108705185A (zh) * 2018-07-20 2018-10-26 四川汇源钢建装配建筑有限公司 一种0.8mm焊丝焊接窄间隙的方法及焊接件
CN111318790A (zh) * 2018-12-17 2020-06-23 施凯元 潜弧焊方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067758A (ja) 1973-10-22 1975-06-06
JPS5111033A (ja) * 1974-07-18 1976-01-28 Nozawa Kogyo Kenkyujo Kk Renzokutasoseikyokaisengasushiirudoyosetsuhooyobisono sochi
JPS59212176A (ja) * 1983-05-16 1984-12-01 Kawasaki Steel Corp 潜弧溶接方法
JPS60210368A (ja) * 1984-03-31 1985-10-22 Hitachi Zosen Corp 横向き溶接方法
JPS6149779A (ja) * 1984-08-20 1986-03-11 Hitachi Zosen Corp 横向き溶接方法
JPS63207475A (ja) * 1987-02-24 1988-08-26 Tomoegumi Iron Works Ltd 横向狭開先溶接方法
JPH01148469A (ja) * 1987-12-04 1989-06-09 Kobe Steel Ltd 狭開先サブマージアーク溶接方法
JPH07116852A (ja) 1993-10-25 1995-05-09 Babcock Hitachi Kk 狭開先mig溶接用トーチおよびそれを用いた溶接方法
JPH10211597A (ja) * 1997-01-24 1998-08-11 Nippon Steel Corp ラインパイプ用ガスシールドアーク溶接ワイヤおよび円周自動溶接方法
JP2000218391A (ja) * 1999-02-02 2000-08-08 Nippon Steel Corp ラインパイプ用ガスシールドアーク溶接ワイヤおよびラインパイプ円周のガスシールドアーク溶接方法
JP2001001148A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 900MPa以上級厚肉高張力鋼板のガスシールドアーク溶接方法
JP2002539950A (ja) * 1999-03-23 2002-11-26 エクソンモービル アップストリーム リサーチ カンパニー 溶接法及び溶接継手
JP2007118068A (ja) * 2005-10-31 2007-05-17 Jfe Steel Kk 厚鋼板の狭開先突合せ溶接方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373139A (en) * 1993-02-25 1994-12-13 Westinghouse Electric Corporation Apparatus and method for narrow groove welding
CN102225494B (zh) * 2011-06-07 2013-05-01 上海交通大学 激光电弧复合双丝窄坡口焊接方法
JP5472244B2 (ja) * 2011-09-21 2014-04-16 Jfeスチール株式会社 厚鋼板の狭開先突合せ溶接方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067758A (ja) 1973-10-22 1975-06-06
JPS5111033A (ja) * 1974-07-18 1976-01-28 Nozawa Kogyo Kenkyujo Kk Renzokutasoseikyokaisengasushiirudoyosetsuhooyobisono sochi
JPS59212176A (ja) * 1983-05-16 1984-12-01 Kawasaki Steel Corp 潜弧溶接方法
JPS60210368A (ja) * 1984-03-31 1985-10-22 Hitachi Zosen Corp 横向き溶接方法
JPS6149779A (ja) * 1984-08-20 1986-03-11 Hitachi Zosen Corp 横向き溶接方法
JPS63207475A (ja) * 1987-02-24 1988-08-26 Tomoegumi Iron Works Ltd 横向狭開先溶接方法
JPH01148469A (ja) * 1987-12-04 1989-06-09 Kobe Steel Ltd 狭開先サブマージアーク溶接方法
JPH07116852A (ja) 1993-10-25 1995-05-09 Babcock Hitachi Kk 狭開先mig溶接用トーチおよびそれを用いた溶接方法
JPH10211597A (ja) * 1997-01-24 1998-08-11 Nippon Steel Corp ラインパイプ用ガスシールドアーク溶接ワイヤおよび円周自動溶接方法
JP2000218391A (ja) * 1999-02-02 2000-08-08 Nippon Steel Corp ラインパイプ用ガスシールドアーク溶接ワイヤおよびラインパイプ円周のガスシールドアーク溶接方法
JP2002539950A (ja) * 1999-03-23 2002-11-26 エクソンモービル アップストリーム リサーチ カンパニー 溶接法及び溶接継手
JP2001001148A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 900MPa以上級厚肉高張力鋼板のガスシールドアーク溶接方法
JP2007118068A (ja) * 2005-10-31 2007-05-17 Jfe Steel Kk 厚鋼板の狭開先突合せ溶接方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144600A1 (en) * 2013-04-26 2015-05-28 China National Chemical Engineering Third Construction Co., Ltd Stainless steel weldment and pad combined welding method
US9808876B2 (en) * 2013-04-26 2017-11-07 China National Chemical Engineering Third Construction Co., Ltd Stainless steel weldment and pad combined welding method
WO2019182081A1 (ja) * 2018-03-22 2019-09-26 Jfeスチール株式会社 鋼板のガスシールドアーク溶接方法

Also Published As

Publication number Publication date
EP2929974A1 (en) 2015-10-14
EP2929974A4 (en) 2016-04-13
JP5954433B2 (ja) 2016-07-20
CN104853876A (zh) 2015-08-19
CN104853876B (zh) 2018-10-02
EP2929974B1 (en) 2018-07-11
JPWO2014088111A1 (ja) 2017-01-05
KR20150086373A (ko) 2015-07-27
WO2014088111A8 (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5861785B2 (ja) 狭開先ガスシールドアーク溶接方法
JP6137053B2 (ja) 狭開先ガスシールドアーク溶接方法
JP5954433B2 (ja) 狭開先ガスシールドアーク溶接継手
US9278407B2 (en) Dual-wire hybrid welding system and method of welding
JP6119940B1 (ja) 立向き狭開先ガスシールドアーク溶接方法
KR101888780B1 (ko) 수직 방향 협개선 가스 실드 아크 용접 방법
JP2007283363A (ja) Uoe鋼管の製造方法
JP6439882B2 (ja) 立向き狭開先ガスシールドアーク溶接方法
JP6119948B1 (ja) 立向き狭開先ガスシールドアーク溶接方法
CN108367376B (zh) 立式窄坡口气体保护弧焊方法
CN108290239B (zh) 立式窄坡口气体保护弧焊方法
CN115279528A (zh) 多电极气体保护电弧单面焊方法和多电极气体保护电弧单面焊装置
JP7351436B1 (ja) 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置
WO2023189026A1 (ja) 狭開先ガスシールドアーク溶接方法および狭開先ガスシールドアーク溶接用溶接装置
JP2007216275A (ja) ハイブリッド溶接用シールドガスおよび該ガスを用いたハイブリッド溶接方法
JP2023152736A (ja) 厚鋼板の狭開先ガスシールドアーク溶接方法
JP6119949B1 (ja) 立向き狭開先ガスシールドアーク溶接方法
JP6715682B2 (ja) サブマージアーク溶接方法
JP5600619B2 (ja) 異材接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013860637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157016818

Country of ref document: KR

Kind code of ref document: A