WO2023188880A1 - 高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置 - Google Patents

高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置 Download PDF

Info

Publication number
WO2023188880A1
WO2023188880A1 PCT/JP2023/004841 JP2023004841W WO2023188880A1 WO 2023188880 A1 WO2023188880 A1 WO 2023188880A1 JP 2023004841 W JP2023004841 W JP 2023004841W WO 2023188880 A1 WO2023188880 A1 WO 2023188880A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
image
average brightness
slag level
raw ore
Prior art date
Application number
PCT/JP2023/004841
Other languages
English (en)
French (fr)
Inventor
宏 安原
哲也 山本
亮太郎 松永
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023532833A priority Critical patent/JP7359336B1/ja
Publication of WO2023188880A1 publication Critical patent/WO2023188880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Definitions

  • the present disclosure relates to a method for determining a slag level in a blast furnace, a method for operating a blast furnace, and a control device.
  • a blast furnace is equipment located upstream of the process of manufacturing steel.
  • Blast furnaces produce pig iron using raw materials such as iron ore, coke, and limestone.
  • Raw materials such as iron ore, coke, and limestone are charged into the blast furnace from the top of the furnace.
  • Approximately 40 tuyeres are installed around the lower part of the blast furnace. In a blast furnace, iron ore reacts with coke and is reduced by hot air at about 1000° C. blown through the tuyere, producing liquid pig iron.
  • Blow-through is a phenomenon in which the hot air blown into the blast furnace from the tuyeres locally flows in the circumferential direction inside the blast furnace. If blow-by occurs, the top of the blast furnace may be damaged.
  • conventional methods include lap tapping, which involves opening two holes at the same time to lower the slag level, and reducing the air flow rate to reduce the flow rate inside the furnace. Efforts are being made to lower the pressure.
  • Known methods for measuring the slag level include the material balance method, the tap hole nitrogen injection method, the electrical resistance method, and the furnace body strain measurement method.
  • the material balance method is a method of estimating the slag level based on the difference between the amount of material input to the blast furnace and the amount of material discharged.
  • the taphole nitrogen blowing method is a method in which nitrogen is blown from the taphole and the slag level is calculated from the nitrogen pressure.
  • the electrical resistance method is a method of determining the slag level by measuring the electrical resistance when an alternating current is passed through an electrode installed inside the shell of a blast furnace.
  • the furnace body strain measurement method is a method for determining the slag level by calculating strain using a strain measuring device attached to the surface of the blast furnace shell.
  • Patent Document 1 discloses a method of determining the slag level by detecting the amount of change in radiant heat from the slag surface using a thermometer embedded in the tuyere.
  • Patent Document 2 discloses a method for determining the slag level by measuring the electromotive force generated as the molten metal level changes using an electrode welded to the surface of the iron skin of a blast furnace.
  • the material balance method requires information such as the instantaneous ironmaking slag rate, coke porosity, and wear status of bricks in the furnace.
  • This information is difficult to measure.
  • the tap hole nitrogen blowing method requires a lance to be inserted into the tap hole, which makes it unsuitable for regular use.
  • the electrical resistance method has the problem of low accuracy because the electrical resistance fluctuates depending on the furnace heat level.
  • the furnace body strain measurement method requires the installation of strain measurement equipment throughout the blast furnace, which poses the problem of high cost.
  • Patent Document 1 has a problem in that when the amount of raw ore falling increases, the tuyere embedding temperature decreases, making it impossible to measure accurately.
  • the method disclosed in Patent Document 2 requires opening holes in the steel shell in order to bring the electrode into contact with the carbon brick. However, there is a problem in that drilling holes in the steel shell damages the furnace body.
  • An object of the present disclosure is to provide a method for determining a slag level in a blast furnace, a method for operating a blast furnace, and a control device that can improve the method for measuring a slag level.
  • a method for determining a slag level in a blast furnace includes: obtaining an image of the raceway inside the blast furnace taken through the tuyere by a camera installed in front of the tuyere installed on the furnace wall of the blast furnace; calculating an average brightness of the image; calculating the degree of raw ore fallout based on the image; correcting the average brightness based on the degree of raw ore fallout to calculate a corrected average brightness; determining the slug level based on the corrected average brightness; including.
  • a blast furnace operating method includes: If the corrected average brightness calculated using the slag level determination method is lower than a predetermined threshold, lap tapping is performed or processing is performed to lower the air flow rate from the tuyere to the blast furnace.
  • a blast furnace control device includes: A control device for determining a slag level in a blast furnace, the control device comprising: Obtaining an image of the raceway inside the blast furnace taken through the tuyere by a camera installed in front of the tuyere installed on the furnace wall of the blast furnace; calculating the average brightness of the image; Calculate the degree of raw ore fall based on the image, correcting the average brightness based on the degree of raw ore fallout to calculate a corrected average brightness; a control unit that determines the slag level based on the corrected average brightness; Equipped with.
  • the method for determining the slag level in a blast furnace the method for operating the blast furnace, and the control device according to the present disclosure, it is possible to improve the method for measuring the slag level.
  • FIG. 1 is a diagram illustrating an example of a blast furnace to which a method for determining a slag level in a blast furnace according to an embodiment of the present disclosure is applied.
  • FIG. 2 is an enlarged view of the vicinity of the tuyere in FIG. 1.
  • 1 is a diagram schematically showing a configuration example of a control device according to an embodiment of the present disclosure. It is a figure which shows an example of the image when there is little raw ore fall. It is a figure which shows an example of the image when there are many raw ore falls.
  • 3 is a flowchart illustrating a procedure example of a slag level determination method according to an embodiment of the present disclosure. It is a figure showing the time change of various data in an example.
  • FIG. 1 is a diagram showing an example of a blast furnace to which a method for determining a slag level in a blast furnace according to an embodiment of the present disclosure is applied.
  • Raw materials such as iron ore, coke, and limestone are charged into the blast furnace from the top of the furnace.
  • Blast furnaces produce pig iron using raw materials such as iron ore, coke, and limestone.
  • impurities combine with limestone to form slag.
  • FIG. 2 is an enlarged view of the vicinity of the tuyere 2. Note that in FIG. 2, illustration of a lance 4, which will be described later, is omitted.
  • a configuration of a blast furnace to which a method for determining a slag level in a blast furnace according to an embodiment of the present disclosure is applied will be described with reference to FIGS. 1 and 2. Note that the slag level means the height of the slag surface.
  • the tuyere 2 is a nozzle that makes it possible to blow hot air into the blast furnace. Although one tuyere 2 is shown in FIG. 1, a plurality of tuyeres 2 may be installed at the lower part of the furnace wall 1 of the blast furnace.
  • a blow pipe 3 is connected to the tuyere 2.
  • the blast pipe 3 is a pipe for blowing hot air supplied from a hot stove (not shown) into the inside of a blast furnace.
  • a lance 4 is installed in the blast pipe 3 so as to penetrate a part of the wall of the blast pipe 3. From the lance 4, fuel such as pulverized coal, oxygen, city gas, etc. can be blown into the blast furnace.
  • a combustion space called a raceway 5 is formed near the tuyere 2 inside the blast furnace. Combustion and gasification of coke are mainly performed in this raceway 5. Iron ore is reduced by combustion and gasification of coke to produce pig iron. The produced pig iron is discharged from the tap hole 6.
  • a monitoring window 8 is installed in the blast pipe 3.
  • the monitoring window 8 makes it possible to monitor the inside of the blast furnace through the tuyere 2.
  • a camera 7 is installed in front of the monitoring window 8, that is, in front of the tuyere 2.
  • the camera 7 can take an image of the raceway 5 through the tuyere 2 from the monitoring window 8 .
  • the camera 7 may be any camera that can take images of the raceway 5.
  • the camera 7 may be a monochrome camera, a color camera, or the like.
  • the control device 10 acquires an image of the raceway 5 taken by the camera 7 from the camera 7.
  • the control device 10 determines the slag level inside the blast furnace based on the image of the raceway 5 acquired from the camera 7.
  • FIG. 3 is a diagram schematically showing a configuration example of the control device 10 according to an embodiment of the present disclosure.
  • the control device 10 may be a general-purpose computer such as a workstation or a personal computer, or may be a dedicated computer for use in the method for determining the slag level of a blast furnace according to an embodiment of the present disclosure. .
  • the configuration of the control device 10 will be described with reference to FIG. 3.
  • the control device 10 includes a control section 11, an input section 12, an output section 13, a storage section 14, and a communication section 15.
  • the control unit 11 includes at least one processor, at least one dedicated circuit, or a combination thereof.
  • the processor is a general-purpose processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), or a dedicated processor specialized for specific processing.
  • the dedicated circuit is, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the control unit 11 reads programs, data, etc. stored in the storage unit 14 and executes various functions.
  • the input unit 12 includes one or more input interfaces that detect user input and obtain input information based on user operations.
  • the input unit 12 includes, for example, physical keys, capacitive keys, a touch screen provided integrally with the display of the output unit 13, a microphone that accepts voice input, and the like.
  • the output unit 13 includes one or more output interfaces that output information and notify the user.
  • the output unit 13 includes, for example, a display that outputs information as an image, a speaker that outputs information as audio, and the like.
  • the display included in the output unit 13 may be, for example, an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube) display, or the like.
  • the storage unit 14 is, for example, a flash memory, a hard disk, an optical memory, or the like. A part of the storage unit 14 may be located outside the control device 10. In this case, part of the storage unit 14 may be a hard disk, a memory card, etc. connected to the control device 10 via an arbitrary interface.
  • the storage unit 14 stores programs for the control unit 11 to execute each function, data used by the programs, and the like.
  • the communication unit 15 includes at least one of a communication module that supports wired communication and a communication module that supports wireless communication.
  • the control device 10 can communicate with other devices via the communication unit 15.
  • control device 10 determines the slag level inside the blast furnace based on the image of the raceway 5 acquired from the camera 7.
  • the brightness of the raceway 5 is correlated with the slag level. Using this correlation, the control device 10 determines the slag level based on the brightness of the image of the raceway 5.
  • the control device 10 corrects the average brightness of the image of the raceway 5 based on the degree of raw ore dropout. Thereafter, the control device 10 determines the slag level based on the corrected average brightness of the image of the raceway 5 (hereinafter also referred to as "corrected average brightness").
  • FIG. 4A is a diagram showing an example of an image 110 of the raceway 5 when there is little raw ore fallout.
  • FIG. 4B is a diagram illustrating an example of an image 120 of the raceway 5 when there are many raw ore falls.
  • reference numeral 111 is an image in which the lance 4 is reflected.
  • Reference numeral 112 is an image of the raceway 5 seen through the tuyere 2.
  • reference numeral 121 is an image in which the lance 4 is reflected.
  • Reference numeral 122 is an image of the raceway 5 seen through the tuyere 2.
  • the image indicated by reference numeral 122 in FIG. 4B Comparing the image indicated by reference numeral 122 in FIG. 4B with the image indicated by reference numeral 112 in FIG. 4A, the image indicated by reference numeral 122 has many parts with low brightness. This area with low brightness indicates that the brightness is low due to the reflection of raw ore droplets.
  • the control unit 11 of the control device 10 acquires an image of the raceway 5 taken by the camera 7 from the camera 7 via the communication unit 15.
  • the control unit 11 calculates the average brightness of the image of the raceway 5 obtained from the camera 7. Further, the control unit 11 calculates, based on the image of the raceway 5 acquired from the camera 7, the degree of raw ore dropout that contributes to a decrease in the brightness of the image of the raceway 5.
  • the control unit 11 may calculate the degree of raw ore falling by analyzing the image of the raceway 5.
  • control unit 11 calculates one-dimensional statistics such as standard deviation, variance, skewness, and kurtosis using a brightness histogram showing the frequency of appearance of brightness for each pixel of the image of the raceway 5, and calculates one-dimensional statistics such as standard deviation, variance, skewness, and kurtosis.
  • the degree of raw ore dropout may be calculated using the one-dimensional statistics of .
  • control unit 11 calculates two-dimensional statistics such as homogeneity, entropy, contrast, and heterogeneity using, for example, an autocorrelation function that indicates the degree of similarity between adjacent pixels in the image of the raceway 5,
  • the degree of raw ore dropout may be calculated using these two-dimensional statistics as an index.
  • control unit 11 uses the frame difference method to detect raw ore, which is a moving object, from the difference between temporally consecutive images of the raceway 5, and calculates the portion of the raw ore that occupies the image of the raceway 5. By this, the degree of raw ore fallout can be calculated.
  • control unit 11 After calculating the degree of raw ore dropout, the control unit 11 corrects the average brightness of the image of the raceway 5 based on the degree of raw ore dropout, and calculates a corrected average brightness.
  • the control unit 11 can calculate the brightness reduction amount z due to raw ore dropout, for example, as shown in equation (2) below.
  • z a ⁇ x 2 +b ⁇ x+c (2)
  • x is an index indicating the degree of raw ore dropout
  • a, b, and c indicate parameters.
  • control unit 11 calculates the amount of brightness reduction due to raw ore dropout is not limited to the format of formula (2).
  • the control unit 11 may use, for example, a linear equation, a polynomial of degree 3 or higher, instead of a quadratic equation, to calculate the amount of reduction in brightness due to raw ore dropout.
  • the control unit 11 may identify the parameters a, b, and c of equation (2) through prior learning, and store the identified parameters a, b, and c in the storage unit 14 in advance.
  • the control unit 11 may acquire a plurality of images of the raceway 5 and identify the parameters a, b, and c in equation (2) using the acquired images of the raceway 5 as a data set.
  • the control unit 11 calculates the slag level based on the calculated corrected average luminance, and determines the slag level.
  • the control unit 11 determines that the slag level is low when the corrected average brightness is high, and determines that the slag level is high when the corrected average brightness is low.
  • the control unit 11 can determine the slag level with high accuracy. Further, an image of the raceway 5 can be taken simply by setting the camera 7 on the tuyere 2. Therefore, the slag level determination method according to this embodiment can determine the slag level at low cost. Further, since it is not necessary to embed electrodes or the like in the furnace wall 1, the slag level determination method according to the present embodiment does not damage the furnace wall 1 of the blast furnace.
  • the control unit 11 performs lap tapping or performs processing to lower the amount of air blown from the tuyere 2 to the blast furnace.
  • the predetermined threshold value may be, for example, a threshold value set to coincide with the timing at which the operator manually performed lap tapping or the process of lowering the blast air volume in the past.
  • Lap tapping is a process in which multiple tap holes 6 are opened.
  • the control unit 11 is capable of controlling opening and closing of the tap holes 6, and performs lap tapping by opening the plurality of tap holes 6.
  • control unit 11 can control the amount of hot air supplied from the blast pipe 3 to the blast furnace through the tuyeres 2.
  • control unit 11 performs lap tapping or reduces the amount of air blown from the tuyere 2 to the blast furnace. can be prevented from happening.
  • step S101 the control device 10 acquires an image of the raceway 5 taken by the camera 7 from the camera 7.
  • step S102 the control device 10 calculates the average brightness of the acquired image of the raceway 5.
  • step S103 the control device 10 calculates the degree of raw ore falling that contributes to the reduction in the brightness of the image of the raceway 5, based on the acquired image of the raceway 5.
  • step S104 the control device 10 corrects the average brightness calculated in step S102 based on the degree of raw ore fallout calculated in step S103, and calculates a corrected average brightness.
  • step S105 the control device 10 determines the slag level based on the calculated corrected average luminance.
  • step S105 if the calculated corrected average luminance is lower than the predetermined threshold, the control device 10 may perform lap tapping or may perform a process of lowering the air flow rate from the tuyere 2 to the blast furnace. Thereby, the control device 10 can prevent blow-through from occurring in the blast furnace.
  • Example As an example, a case will be described in which the degree of raw ore dropout is indexed using homogeneity, which is a two-dimensional statistic.
  • This homogeneity is a two-dimensional statistic of the image texture, and is an index in which the smaller the luminance difference between adjacent pixels, the higher the homogeneity value. Further, in this embodiment, when the corrected average luminance of the image of the raceway 5 became 150 or less, lap tapping was performed.
  • Equation (3) P ⁇ (i, j) indicates the frequency with which a certain luminance pair is in adjacent elements.
  • Equation (3) was calculated using Equation (4) below.
  • a ⁇ (i, j) indicates the frequency at which the brightness of a point separated by ⁇ from the brightness i is j.
  • FIG. 6 is a diagram showing changes over time of various data in the example.
  • the top graph is a graph showing the change in average brightness of the image of raceway 5 over time.
  • the second graph is a graph showing temporal changes in corrected average luminance.
  • the bottom graph is a graph showing how the tap hole 6 is opened and closed in order to perform lap tapping.
  • the method for determining the slag level of a blast furnace includes the steps of acquiring an image of the raceway 5 taken by the camera 7, calculating the average brightness of the image of the raceway 5, a step of calculating the degree of raw ore dropout that contributes to a decrease in the brightness of the image of raceway 5 based on the image of raceway 5, and calculating a corrected average brightness by correcting the average brightness based on the degree of raw ore dropout. and determining a slug level based on the corrected average brightness.
  • the method for determining the slag level in a blast furnace according to the present embodiment can determine the slag level with high accuracy.
  • the method for determining the slag level of a blast furnace according to the present embodiment can determine the slag level at low cost. Therefore, according to the method for determining the slag level in a blast furnace, the method for operating the blast furnace, and the control device according to the present embodiment, it is possible to improve the method for measuring the slag level.
  • the present disclosure is not limited to the embodiments described above.
  • a plurality of blocks shown in the block diagram may be integrated, or one block may be divided. Instead of performing the steps in the flowchart in chronological order as described, they may be performed in parallel or in a different order depending on the processing power of the device performing each step or as needed. Other changes are possible without departing from the spirit of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

高炉のスラグレベルの判定方法は、高炉の炉壁1に設置されている羽口2の前に設置されたカメラ7によって羽口2を通して撮影された高炉の内部のレースウェイ5の画像を取得するステップと、画像の平均輝度を算出するステップと、画像に基づいて画像の輝度の低下に寄与する生鉱落ちの程度を算出するステップと、生鉱落ちの程度に基づいて平均輝度を補正して補正平均輝度を算出するステップと、補正平均輝度に基づいてスラグレベルを判定するステップと、を含む。

Description

高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置
 本開示は、高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置に関する。
 高炉は、鉄鋼を製造するプロセスの上流に位置する設備である。高炉は、鉄鉱石、コークス、石灰石などを原料として、銑鉄を生産する。鉄鉱石、コークス、石灰石などの原料は、高炉の炉頂部から炉内に装入される。高炉の炉下部周辺には約40個の羽口が設置されている。高炉においては、羽口から吹き込まれる約1000℃の熱風により、鉄鉱石がコークスと反応して還元され、液体状の銑鉄が得られる。
 銑鉄を生産する際、不純物は、石灰石と結びついてスラグとなる。スラグ表面の高さであるスラグレベルが上昇して羽口に達すると、高炉の下部において吹き抜けの原因となる。吹き抜けとは、羽口から高炉内に送風している熱風が、高炉内部の円周方向において局所的に流れる現象である。吹き抜けが起きると、高炉の炉頂部が損傷することがある。
 吹き抜けが起こることを防ぐため、スラグレベルが予め定めた閾値を超えた場合は、従来、2本の銑孔を同時に開孔してスラグレベルを下げるラップ出銑、送風流量を減らして炉内の圧力を下げることなどが行われている。
 スラグレベルを測定する手法としては、物質収支法、出銑孔窒素吹き込み法、電気抵抗法、炉体ひずみ測定法などが知られている。
 物質収支法は、高炉への物質の投入量と排出量との差に基づいてスラグレベルを推定する方法である。出銑孔窒素吹き込み法は、出銑孔から窒素を吹き込み、窒素圧からスラグレベルを算出する方法である。電気抵抗法は、高炉の鉄皮内部に取り付けた電極に交流電流を流した際の電気抵抗を測定することによってスラグレベルを求める方法である。炉体ひずみ測定法は、高炉の鉄皮表面に取り付けた歪み測定機器によって歪みを算出することによりスラグレベルを求める方法である。
 また、特許文献1には、羽口に埋め込んだ温度計によってスラグ表面からの輻射熱の変化量を検知して、スラグレベルを求める方法が開示されている。特許文献2には、高炉の鉄皮表面に溶接した電極によって、溶銑レベルの変化に伴い発生する起電力を測定し、スラグレベルを求める方法が開示されている。
特開平1-198412号公報 特開2000-192123号公報
 物質収支法は、瞬間的な造銑造滓速度、コークス空隙率、炉内レンガの摩耗状況などの情報を必要とする。しかしながら、これらの情報は測定が困難であるという課題がある。出銑孔窒素吹き込み法は、出銑孔にランスを装入する必要があるため、常用には不向きという課題がある。電気抵抗法は、炉熱レベルにより電気抵抗が変動するため、精度が低いという課題がある。炉体ひずみ測定法は、高炉全体にひずみ測定機器を取り付ける必要があり、コストが高いという課題がある。
 また、特許文献1に開示されている方法は、生鉱落ちが増えると、羽口埋込温度が低下し、精度良く測定できないという課題がある。特許文献2に開示されている方法は、電極をカーボンレンガに接触させるために鉄皮を開孔する必要がある。しかしながら、鉄皮を開孔すると炉体にダメージを与えてしまうという課題がある。
 このように、従来知られているスラグレベルの測定方法には改善の余地があった。
 本開示の目的は、スラグレベルの測定方法を改善することが可能な、高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置を提供することである。
 本開示の一実施形態に係る高炉のスラグレベルの判定方法は、
 前記高炉の炉壁に設置されている羽口の前に設置されたカメラによって前記羽口を通して撮影された前記高炉の内部のレースウェイの画像を取得するステップと、
 前記画像の平均輝度を算出するステップと、
 前記画像に基づいて生鉱落ちの程度を算出するステップと、
 前記生鉱落ちの程度に基づいて前記平均輝度を補正して補正平均輝度を算出するステップと、
 前記補正平均輝度に基づいて前記スラグレベルを判定するステップと、
 を含む。
 本開示の一実施形態に係る高炉の操業方法は、
 上記スラグレベルの判定方法を用いて算出した前記補正平均輝度が所定の閾値より低い場合、ラップ出銑を行うか、又は、前記羽口から前記高炉への送風流量を下げる処理を行う。
 本開示の一実施形態に係る高炉の制御装置は、
 高炉のスラグレベルを判定する制御装置であって、
 前記高炉の炉壁に設置されている羽口の前に設置されたカメラによって前記羽口を通して撮影された前記高炉の内部のレースウェイの画像を取得し、
 前記画像の平均輝度を算出し、
 前記画像に基づいて生鉱落ちの程度を算出し、
 前記生鉱落ちの程度に基づいて前記平均輝度を補正して補正平均輝度を算出し、
 前記補正平均輝度に基づいて前記スラグレベルを判定する、制御部、
 を備える。
 本開示に係る高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置によれば、スラグレベルの測定方法を改善することができる。
本開示の一実施形態に係る高炉のスラグレベルの判定方法が適用される高炉の一例を示す図である。 図1の羽口付近の拡大図である。 本開示の一実施形態に係る制御装置の構成例を模式的に示す図である。 生鉱落ちが少ない場合の画像の一例を示す図である。 生鉱落ちが多い場合の画像の一例を示す図である。 本開示の一実施形態に係るスラグレベルの判定方法の手順例を示すフローチャートである。 実施例における各種データの時間変化を示す図である。
 以下、本開示の実施形態について図面を参照して説明する。
 図1は、本開示の一実施形態に係る高炉のスラグレベルの判定方法が適用される高炉の一例を示す図である。
 高炉には、鉄鉱石、コークス、石灰石などの原料が、炉頂部から装入される。高炉は、鉄鉱石、コークス、石灰石などを原料として、銑鉄を生産する。銑鉄を生産する際、不純物が石灰石と結びついてスラグとなる。
 高炉の炉壁1の下部には、羽口2が設置されている。図2は、羽口2付近を拡大した図である。なお、図2においては、後述するランス4の図示を省略している。図1及び図2を参照して、本開示の一実施形態に係る高炉のスラグレベルの判定方法が適用される高炉の構成について説明する。なお、スラグレベルとは、スラグの表面の高さを意味する。
 羽口2は、高炉に熱風を吹き込むことを可能とするノズルである。図1においては1つの羽口2を示しているが、複数の羽口2が、高炉の炉壁1の下部に設置されていてよい。
 羽口2には、送風管3が接続されている。送風管3は、図示しない熱風炉から供給される熱風を、高炉の炉内に送風するためのパイプである。
 送風管3には、送風管3の壁の一部を貫通するようにして、ランス4が設置されている。ランス4からは、高炉の炉内に、微粉炭、酸素、都市ガスなどの燃料を吹き込むことが可能である。
 高炉の内部の羽口2の付近には、レースウェイ5と称される燃焼空間が形成される。主に、このレースウェイ5において、コークスの燃焼及びガス化が行われる。コークスの燃焼及びガス化により鉄鉱石が還元され、銑鉄が造られる。造られた銑鉄は、出銑孔6から排出される。
 図2に示すように、送風管3には、監視窓8が設置されている。監視窓8は、羽口2を通して高炉の内部を監視することを可能とする。
 監視窓8の前、すなわち羽口2の前には、カメラ7が設置されている。カメラ7は、監視窓8から羽口2を通して、レースウェイ5の画像を撮影することが可能である。
 カメラ7は、レースウェイ5の画像を撮影可能な任意のカメラであってよい。例えば、カメラ7は、モノクロカメラ、カラーカメラなどであってよい。
 制御装置10は、カメラ7が撮影したレースウェイ5の画像を、カメラ7から取得する。制御装置10は、カメラ7から取得したレースウェイ5の画像に基づいて、高炉の内部におけるスラグレベルを判定する。
 図3は、本開示の一実施形態に係る制御装置10の構成例を模式的に示す図である。制御装置10は、ワークステーション、パソコンなどのような汎用のコンピュータであってもよいし、本開示の一実施形態に係る高炉のスラグレベルの判定方法に用いるための専用のコンピュータであってもよい。
 図3を参照して、制御装置10の構成について説明する。制御装置10は、制御部11と、入力部12と、出力部13と、記憶部14と、通信部15とを備える。
 制御部11は、少なくとも1つのプロセッサ、少なくとも1つの専用回路、又はこれらの組み合わせを含む。プロセッサは、CPU(Central Processing Unit)若しくはGPU(Graphics Processing Unit)などの汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。専用回路は、例えば、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)である。
 制御部11は、記憶部14に記憶されているプログラム、データなどを読み込み、各種機能を実行する。
 入力部12は、ユーザ入力を検出して、ユーザの操作に基づく入力情報を取得する1つ以上の入力用インターフェースを含む。入力部12は、例えば、物理キー、静電容量キー、出力部13のディスプレイと一体的に設けられたタッチスクリーン、又は音声入力を受け付けるマイク等を含む。
 出力部13は、情報を出力してユーザに通知する1つ以上の出力用インターフェースを含む。出力部13は、例えば、情報を画像で出力するディスプレイ、情報を音声で出力するスピーカ等を含む。出力部13が含むディスプレイは、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)ディスプレイなどであってよい。
 記憶部14は、例えば、フラッシュメモリ、ハードディスク、光メモリ等である。記憶部14の一部は、制御装置10の外部にあってもよい。この場合、記憶部14の一部は、制御装置10と任意のインターフェースを介して接続されたハードディスク、メモリーカード等であってよい。
 記憶部14は、制御部11が各機能を実行するためのプログラム、当該プログラムが使用するデータなどを格納している。
 通信部15は、有線通信に対応する通信モジュール及び無線通信に対応する通信モジュールの少なくとも一方を含む。制御装置10は、通信部15を介して他の装置と通信可能である。
 続いて、制御装置10が、カメラ7から取得したレースウェイ5の画像に基づいて、高炉の内部におけるスラグレベルを判定する処理について説明する。
 レースウェイ5の明るさは、スラグレベルと相関がある。この相関関係を利用し、制御装置10は、レースウェイ5の画像の輝度に基づいて、スラグレベルを判定する。
 高炉においては、完全に溶融していない未還元の鉄鉱石などが落下する現象である「生鉱落ち」という現象が発生する。生鉱落ちが発生すると、生鉱落ちによって落下している鉱石がレースウェイ5の画像に映り込む場合がある。そうすると、生鉱落ちが映り込んだ部分は画像の輝度が低下するため、レースウェイ5の画像の平均輝度が低下することになる。
 生鉱落ちに起因してレースウェイ5の画像の平均輝度が低下すると、レースウェイ5の画像の平均輝度は、スラグレベルに対応する輝度よりも生鉱落ちの影響で低下してしまう。そのため、制御装置10は、生鉱落ちの程度に基づいてレースウェイ5の画像の平均輝度を補正する。その後、制御装置10は、補正後のレースウェイ5の画像の平均輝度(以後、「補正平均輝度」とも称する)に基づいて、スラグレベルを判定する。
 図4Aは、生鉱落ちが少ない場合のレースウェイ5の画像110の一例を示す図である。図4Bは、生鉱落ちが多い場合のレースウェイ5の画像120の一例を示す図である。
 図4Aにおいて、符号111は、ランス4が映り込んでいる画像である。符号112は、羽口2を通して見えるレースウェイ5の画像である。
 図4Bにおいて、符号121は、ランス4が映り込んでいる画像である。符号122は、羽口2を通して見えるレースウェイ5の画像である。
 図4Bの符号122で示す画像を、図4Aの符号112で示す画像と比較すると、符号122で示す画像は、輝度が低い部分が多い。この輝度が低い部分は、生鉱落ちが映り込むことによって輝度が低くなっていることを示している。
 制御装置10の制御部11は、カメラ7が撮影したレースウェイ5の画像を、カメラ7から通信部15を介して取得する。
 制御部11は、カメラ7から取得したレースウェイ5の画像の平均輝度を算出する。また、制御部11は、カメラ7から取得したレースウェイ5の画像に基づいて、レースウェイ5の画像の輝度の低下に寄与する生鉱落ちの程度を算出する。
 制御部11は、レースウェイ5の画像を画像解析することによって、生鉱落ちの程度を算出してよい。
 制御部11は、例えば、レースウェイ5の画像の画素毎の輝度の出現頻度を示す輝度ヒストグラムを用いて、標準偏差、分散、歪度、尖度のような1次元統計量を算出し、これらの1次元統計量を指標として生鉱落ちの程度を算出してよい。
 また、制御部11は、例えば、レースウェイ5の画像において隣接する画素の類似度を示す自己相関関数を用いて、均質性、エントロピー、コントラスト、異質性のような2次元統計量を算出し、これらの2次元統計量を指標として生鉱落ちの程度を算出してよい。
 また、制御部11は、フレーム差分法を用いて、時間的に連続するレースウェイ5の画像の差分から動体である生鉱を検出し、レースウェイ5の画像に占める生鉱の部分を算出することによって、生鉱落ちの程度を算出してよい。
 制御部11は、生鉱落ちの程度を算出すると、生鉱落ちの程度に基づいてレースウェイ5の画像の平均輝度を補正して、補正平均輝度を算出する。
 制御部11は、例えば、以下の式(1)に示すように、レースウェイ5の画像の平均輝度に、生鉱落ちに起因する輝度減少量を加算することによって、補正平均輝度を算出することができる。
 y=y0+z   (1)
ただし、式(1)において、yは補正平均輝度を示し、y0はレースウェイ5の画像の平均輝度を示す、zは生鉱落ちに起因する輝度減少量を示す。
 制御部11は、例えば、以下の式(2)に示すように、生鉱落ちに起因する輝度減少量zを算出することができる。
 z=a×x+b×x+c   (2)
ただし、式(2)において、xは生鉱落ちの程度を示す指標であり、a、b、cはパラメータを示す。
 なお、上述した式(2)は一例であり、制御部11が生鉱落ちに起因する輝度減少量を算出する式は、式(2)の形式に限定されない。制御部11は、例えば、2次式の代わりに、1次式、3次以上の多項式などを用いて、生鉱落ちに起因する輝度減少量を算出してよい。
 制御部11は、式(2)のパラメータa、b、cを、事前の学習によって同定し、同定したパラメータa、b、cを予め記憶部14に格納しておいてよい。制御部11は、レースウェイ5の画像を複数枚取得し、取得した複数枚のレースウェイ5の画像をデータセットとして、式(2)のパラメータa、b、cを同定してよい。
 制御部11は、算出した補正平均輝度に基づいてスラグレベルを算出し、スラグレベルを判定する。
 補正平均輝度とスラグレベルには負の相関がある。制御部11は、補正平均輝度が高いとスラグレベルが低いと判定し、補正平均輝度が低いとスラグレベルが高いと判定する。
 このように、生鉱落ちの影響を補正した補正平均輝度を算出することによって、制御部11は、高い精度でスラグレベルを判定することができる。また、レースウェイ5の画像は、羽口2にカメラ7を設定するだけで撮影することができる。そのため、本実施形態に係るスラグレベルの判定方法は、低コストでスラグレベルを判定することができる。また、炉壁1に電極などを埋め込むというようなことを必要としないため、本実施形態に係るスラグレベルの判定方法は、高炉の炉壁1を損傷しない。
 制御部11は、補正平均輝度が所定の閾値より低い場合、ラップ出銑を行うか、又は、羽口2から高炉への送風風量を下げる処理を行う。所定の閾値は、例えば、過去にオペレータが手動で、ラップ出銑又は送風風量を下げる処理を行っていたタイミングと一致するように設定された閾値であってよい。
 ラップ出銑は、複数の出銑孔6を開ける処理である。制御部11は、出銑孔6の開閉を制御することが可能であり、複数の出銑孔6を開状態にすることによって、ラップ出銑を行う。
 また、制御部11は、送風管3から羽口2を通して高炉に供給する熱風の送風風量を制御可能である
 このように、補正平均輝度が所定の閾値より低い場合に、ラップ出銑を行うか、又は、羽口2から高炉への送風風量を下げる処理を行うことにより、制御部11は、高炉において吹き抜けが起こることを防ぐことができる。
 図5に示すフローチャートを参照して、本開示の一実施形態に係る高炉のスラグレベルの判定方法の手順例を説明する。
 ステップS101において、制御装置10は、カメラ7によって撮影されたレースウェイ5の画像を、カメラ7から取得する。
 ステップS102において、制御装置10は、取得したレースウェイ5の画像の平均輝度を算出する。
 ステップS103において、制御装置10は、取得したレースウェイ5の画像に基づいて、レースウェイ5の画像の輝度の低下に寄与する生鉱落ちの程度を算出する。
 ステップS104において、制御装置10は、ステップS103で算出した生鉱落ちの程度に基づいて、ステップS102で算出した平均輝度を補正して、補正平均輝度を算出する。
 ステップS105において、制御装置10は、算出した補正平均輝度に基づいて、スラグレベルを判定する。
 ステップS105において、算出した補正平均輝度が所定の閾値より低い場合、制御装置10は、ラップ出銑を行うか、又は、羽口2から高炉への送風流量を下げる処理を行ってよい。これにより、制御装置10は、高炉において吹き抜けが起こることを防ぐことができる。
(実施例)
 実施例として、生鉱落ちの程度を2次元統計量である均質性を用いて指標化した場合を例に挙げて説明する。この均質性は、画像テクスチャの2次元統計量であり、隣接する画素との輝度差が小さいほど均質性の数値が高くなる指標である。また、この実施例においては、レースウェイ5の画像の補正平均輝度が150以下になった場合に、ラップ出銑を行うという処理を行った。
 均質性は、以下の式(3)により算出した。
Figure JPOXMLDOC01-appb-M000001
ただし、式(3)において、Pδ(i,j)はある輝度のぺアが隣接した要素にある頻度を示す。
 また、式(3)におけるPδ(i,j)は、以下の式(4)により算出した。
Figure JPOXMLDOC01-appb-M000002
ただし、式(4)において、Aδ(i,j)は、輝度iからδだけ離れた点の輝度がjである頻度を示している。
 図6は、実施例における各種データの時間変化を示す図である。一番上のグラフは、レースウェイ5の画像の平均輝度の時間変化を示すグラフである。2番目のグラフは、補正平均輝度の時間変化を示すグラフである。一番下のグラフは、ラップ出銑を行うため、出銑孔6を開閉している様子を示すグラフである。
 図6に示すように、一番上のグラフと一番下のグラフとを対比すると、補正をする前のレースウェイ5の画像の平均輝度とラップ出銑との間には大きな相関は見られない。
 2番目のグラフと一番下のグラフとを対比すると、補正平均輝度が150まで低下したときに出銑孔6を開状態にしてラップ出銑を行うと補正平均輝度が上昇し、その後、出銑孔6を閉状態にすると補正平均輝度が低下している。
 この実施例のような制御をして6ヶ月間の操業を行ったところ、高炉において吹き抜けが発生することはなかった。すなわち、スラグレベルが羽口2まで上昇することを防ぐことができた。
 上述のように、本実施形態に係る高炉のスラグレベルの判定方法は、カメラ7によって撮影されたレースウェイ5の画像を取得するステップと、レースウェイ5の画像の平均輝度を算出するステップと、レースウェイ5の画像に基づいてレースウェイ5の画像の輝度の低下に寄与する生鉱落ちの程度を算出するステップと、生鉱落ちの程度に基づいて平均輝度を補正して補正平均輝度を算出するステップと、補正平均輝度に基づいてスラグレベルを判定するステップと、を含む。このように、生鉱落ちの影響を補正する補正平均輝度を算出することによって、本実施形態に係る高炉のスラグレベルの判定方法は、高い精度でスラグレベルを判定することができる。また、レースウェイ5の画像は、羽口2にカメラ7を設定するだけで撮影することができる。そのため、本実施形態に係る高炉のスラグレベルの判定方法は、低コストでスラグレベルを判定することができる。したがって、本実施形態に係る高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置によれば、スラグレベルの測定方法を改善することができる。
 本開示は上述の実施形態に限定されるものではない。例えば、ブロック図に記載の複数のブロックを統合してもよいし、又は1つのブロックを分割してもよい。フローチャートに記載の複数のステップを記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行してもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。
 1 炉壁
 2 羽口
 3 送風管
 4 ランス
 5 レースウェイ
 6 出銑孔
 7 カメラ
 8 監視窓
 10 制御装置
 11 制御部
 12 入力部
 13 出力部
 14 記憶部
 15 通信部

Claims (5)

  1.  高炉のスラグレベルの判定方法であって、
     前記高炉の炉壁に設置されている羽口の前に設置されたカメラによって前記羽口を通して撮影された前記高炉の内部のレースウェイの画像を取得するステップと、
     前記画像の平均輝度を算出するステップと、
     前記画像に基づいて生鉱落ちの程度を算出するステップと、
     前記生鉱落ちの程度に基づいて前記平均輝度を補正して補正平均輝度を算出するステップと、
     前記補正平均輝度に基づいて前記スラグレベルを判定するステップと、
     を含む、高炉のスラグレベルの判定方法。
  2.  前記スラグレベルを判定するステップは、前記補正平均輝度が高いと前記スラグレベルが低いと判定し、前記補正平均輝度が低いと前記スラグレベルが高いと判定する、請求項1に記載の高炉のスラグレベルの判定方法。
  3.  前記生鉱落ちの程度を算出するステップは、前記画像の均質性を指標として前記生鉱落ちの程度を算出する、請求項1又は2に記載の高炉のスラグレベルの判定方法。
  4.  請求項1から3のいずれか一項に記載のスラグレベルの判定方法を用いて算出した前記補正平均輝度が所定の閾値より低い場合、ラップ出銑を行うか、又は、前記羽口から前記高炉への送風流量を下げる処理を行う、高炉の操業方法。
  5.  高炉のスラグレベルを判定する制御装置であって、
     前記高炉の炉壁に設置されている羽口の前に設置されたカメラによって前記羽口を通して撮影された前記高炉の内部のレースウェイの画像を取得し、
     前記画像の平均輝度を算出し、
     前記画像に基づいて生鉱落ちの程度を算出し、
     前記生鉱落ちの程度に基づいて前記平均輝度を補正して補正平均輝度を算出し、
     前記補正平均輝度に基づいて前記スラグレベルを判定する、制御部、
     を備える、制御装置。
PCT/JP2023/004841 2022-03-28 2023-02-13 高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置 WO2023188880A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532833A JP7359336B1 (ja) 2022-03-28 2023-02-13 高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052123 2022-03-28
JP2022-052123 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188880A1 true WO2023188880A1 (ja) 2023-10-05

Family

ID=88200916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004841 WO2023188880A1 (ja) 2022-03-28 2023-02-13 高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置

Country Status (2)

Country Link
JP (1) JP7359336B1 (ja)
WO (1) WO2023188880A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270319A (ja) * 1985-05-24 1986-11-29 Nippon Steel Corp 高炉溶銑中のSi濃度制御方法
JP2015025199A (ja) * 2013-06-19 2015-02-05 Jfeスチール株式会社 未溶融鉱石検出方法及び高炉操業方法
JP2015048508A (ja) * 2013-09-02 2015-03-16 新日鐵住金株式会社 高炉羽口状態観察方法及び高炉羽口状態観察装置
JP2015052148A (ja) * 2013-09-06 2015-03-19 新日鐵住金株式会社 高炉の操業状況判定に基づく制御方法
JP2015227478A (ja) * 2014-05-30 2015-12-17 Jfeスチール株式会社 羽口閉塞検出装置及びその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270319A (ja) * 1985-05-24 1986-11-29 Nippon Steel Corp 高炉溶銑中のSi濃度制御方法
JP2015025199A (ja) * 2013-06-19 2015-02-05 Jfeスチール株式会社 未溶融鉱石検出方法及び高炉操業方法
JP2015048508A (ja) * 2013-09-02 2015-03-16 新日鐵住金株式会社 高炉羽口状態観察方法及び高炉羽口状態観察装置
JP2015052148A (ja) * 2013-09-06 2015-03-19 新日鐵住金株式会社 高炉の操業状況判定に基づく制御方法
JP2015227478A (ja) * 2014-05-30 2015-12-17 Jfeスチール株式会社 羽口閉塞検出装置及びその方法

Also Published As

Publication number Publication date
JPWO2023188880A1 (ja) 2023-10-05
JP7359336B1 (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
TWI512110B (zh) Abnormal detection methods and blast furnace operation methods
JP5867619B2 (ja) 高炉異常検出方法及び高炉操業方法
CN104392213B (zh) 一种适用于熔炼过程中的图像信息状态识别系统
JP6327236B2 (ja) 高炉における溶銑温度予測方法
JP2015052148A (ja) 高炉の操業状況判定に基づく制御方法
JP2017190482A (ja) 高炉のセンサ故障検知システム及び異常状況の予測システム
JP7359336B1 (ja) 高炉のスラグレベルの判定方法、高炉の操業方法及び制御装置
JP5644910B1 (ja) 異常検知方法および高炉操業方法
CN114065526A (zh) 一种炼钢高炉自适应优化安全控制系统
JP5935828B2 (ja) 未溶融鉱石検出方法及び高炉操業方法
JPS5855512A (ja) 高炉の炉況判定方法
JP6515342B2 (ja) 高炉羽口閉塞除去装置及び高炉羽口閉塞除去方法
JP6477751B2 (ja) 底吹き転炉の炉底羽口健全性評価方法、炉底羽口寿命延長方法及び底吹き転炉の操業方法
JP7017973B2 (ja) 生下り判定装置及び方法
JP7017972B2 (ja) 生下り判定装置及び方法
JP5862612B2 (ja) 未溶融鉱石検出方法及び高炉操業方法
JP2018154887A (ja) 微粉炭吹き込み状況監視方法及び微粉炭吹き込み状況監視装置
JP6944393B2 (ja) プラント状態評価システム、プラント状態評価方法、及びプログラム
KR20130034294A (ko) 고로 풍구 점검 장치
JP7264321B1 (ja) 溶銑温度の予測方法、操業ガイダンス方法、溶銑の製造方法、溶銑温度の予測装置、操業ガイダンス装置、高炉操業ガイダンスシステム、高炉操業ガイダンスサーバ及び端末装置
JP2022144010A (ja) 高炉の羽口景観評価方法、羽口景観評価装置及び羽口景観評価プログラム
WO2021182220A1 (ja) 高炉の炉況学習方法、炉況学習装置、異常検出方法、異常検出装置、及び操業方法
TWI697561B (zh) 轉爐之底吹孔之熔損的評估方法
JPS6148508A (ja) 高炉炉況のレ−スウエイ情報定量化による判定方法
JP2023103049A (ja) 転炉の吹錬制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532833

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778914

Country of ref document: EP

Kind code of ref document: A1