WO2023188748A1 - 帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法 - Google Patents

帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法 Download PDF

Info

Publication number
WO2023188748A1
WO2023188748A1 PCT/JP2023/002212 JP2023002212W WO2023188748A1 WO 2023188748 A1 WO2023188748 A1 WO 2023188748A1 JP 2023002212 W JP2023002212 W JP 2023002212W WO 2023188748 A1 WO2023188748 A1 WO 2023188748A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
strip
mass
alloy material
room temperature
Prior art date
Application number
PCT/JP2023/002212
Other languages
English (en)
French (fr)
Inventor
宗彦 中妻
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to TW112104980A priority Critical patent/TWI842388B/zh
Publication of WO2023188748A1 publication Critical patent/WO2023188748A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Definitions

  • the present invention relates to a strip-shaped copper alloy material that can be suitably used for manufacturing electronic components such as electronic materials, a semiconductor lead frame, a semiconductor integrated circuit, and an electronic device using the same, a method for manufacturing a lead frame, and a strip-shaped copper alloy material. on how to use it as a lead frame.
  • a method for manufacturing a semiconductor package a method has been used in which a semiconductor chip is placed at a predetermined position on each lead frame, the lead portion of the lead frame and the semiconductor chip are connected with a conductive wire, and the semiconductor chip is sealed with a resin.
  • a MAP (Mold Alley Process) method has been developed for the purpose of improving production efficiency.
  • FIG. A plurality of semiconductor chips 102, 104, .
  • the cutting direction E1, E2 between the connecting bar 6 and each lead part 2, 4 is diced by the rotary blade 50 to separate the semiconductor package products into individual semiconductor package products.
  • the MAP method is suitably applied to a leadless structure in which the leads do not protrude, which is called a QFN (Quad Flat Non lead package) type semiconductor package.
  • Patent Document 1 In lead frames, higher strength is required of the copper alloy that is the material of the lead frame, and techniques for improving the strength of copper alloys have been developed (Patent Document 1).
  • the lead part 2 sealed with the resin 30 is cut into pieces together with the resin 30, so that the cut surface along the cutting direction E1 is such that the lead part 2 is included in the resin 30.
  • a shape defect called a dicing burr 2a is often observed on the downstream side of the cut surface of the lead portion 2 in the cutting direction E1. If the burr 2a at the tip of the lead part 2 protrudes larger than the lead part 2 itself and comes into contact with an adjacent lead part, there is a risk of short circuiting the circuit.
  • the width W1 of the lead portion 2 is required to be controlled within a tolerance range from a predetermined design width W0 (for example, tolerance
  • is ⁇ 10% or less of W0.
  • the present invention has been made to solve the above problems, and provides a belt-shaped copper alloy material that has high strength and can suppress the occurrence of burrs when cutting in a resin-sealed state, and a method using the same.
  • the present invention aims to provide a semiconductor lead frame, a semiconductor integrated circuit, an electronic device, a method for manufacturing the lead frame, and a method for using a strip copper alloy material as a lead frame.
  • the present inventors found that the dicing burr 2a shown in FIG. It has been discovered that it is formed by extending in the cutting direction E1 perpendicular to the extending direction L. Furthermore, it has been found that the ratio of the burr width W2 to the design width W0 when diced in the cutting direction perpendicular to the lead portion is almost the same as the elongation at break of the copper alloy material itself when subjected to heat treatment. This is because, for example, in the above-mentioned QFN (Quad Flat Non lead package) type semiconductor package, the leads are cut while being restrained by resin, so a mechanism similar to that in a tensile test of copper material works. Conceivable.
  • QFN Quad Flat Non lead package
  • solder lead frame used for semiconductor packages
  • a plated layer is formed on the plated layer, and the plated layer and the island are heat-treated at a temperature of about 400° C. in a stacked state, and bonded by thermal diffusion.
  • Another die attach method is to solder the island and the semiconductor chip, but the soldering temperature in this case is also 300° C. or higher. Therefore, from the viewpoint of suppressing the occurrence of dicing burrs, it was found that it is necessary to control the elongation at break of the copper alloy to a low level even when the copper alloy is heated at 400°C for 30 minutes. .
  • the strip-shaped copper alloy material of the present disclosure consists of more than 0.1% by mass of Si, Ni, and the balance copper and unavoidable impurities, and has a 0.2% yield strength of 550 MPa or more as measured by the following method, and This is a strip-shaped copper alloy material whose elongation at break is 10% or less when heated at 400° C. for 30 minutes, left to stand in an air atmosphere, cooled to room temperature, and measured by the following method. How to measure 0.2% yield strength: Using a tensile tester, the 0.2% yield strength (YS) in the direction parallel to the rolling direction is measured in accordance with JIS-Z2241 (2011). A JIS No.
  • 13B test piece is prepared using a press so that the tensile direction is parallel to the rolling direction.
  • the sample is wrapped in tough pitch copper foil with a thickness of 35 ⁇ m, and the sample is heated at 400° C. for 30 minutes in an air atmosphere while shielded from the outside air. Thereafter, the test piece is allowed to stand still in an air atmosphere, and the temperature of the copper alloy is lowered to room temperature (25° C.). Thereafter, the elongation at break (%) specified in JIS-Z2241 (2011) is measured using a tensile tester in accordance with JIS-Z2241 (2011).
  • the strip-shaped copper alloy material of the present disclosure may further contain one or more elements that form a compound with Si, and the one or more elements that form a compound with Si are Co, Cr, Mn, Mg, and Fe. Preferably, it is one or more elements selected from the group.
  • the strip-shaped copper alloy material of the present disclosure preferably contains more than 0.1% by mass of Si and a total of 0.5% by mass or more of Ni and one or more elements that form a compound with Si.
  • the strip-shaped copper alloy material of the present disclosure contains more than 0.1% by mass to 1.8% by mass of Si, and a total of 0.5 to 7.0% by mass of Ni and one or more elements that form a compound with Si. It is preferable to contain.
  • the strip-shaped copper alloy material of the present disclosure contains Sn and/or Zn.
  • the strip-shaped copper alloy material of the present disclosure is preferably a Cu--Ni--Si based copper alloy.
  • the band-shaped copper alloy material of the present disclosure includes Ni: 2.2 to 4.2 mass%, Si: 0.25 to 1.2 mass%, Pb: less than 0.1 mass%, and Zn: less than 1.0 mass%.
  • Fe less than 0.20% by mass
  • Mn less than 0.10% by mass
  • Mg 0.05 to 0.30% by mass
  • the balance consists of Cu and inevitable impurities. It is preferable that
  • TS tensile strength
  • the strip-shaped copper alloy material of the present disclosure preferably has a conductivity of 30% or more, and is preferably used in a semiconductor package manufactured by the MAP method.
  • the semiconductor lead frame of the present disclosure is made of the strip-shaped copper alloy material. It is preferable that the semiconductor lead frame of the present disclosure includes a plurality of lead parts and a connecting bar, and the plurality of lead parts are connected via the connecting bar.
  • a semiconductor integrated circuit of the present disclosure includes the semiconductor lead frame. It is preferable that the semiconductor integrated circuit of the present disclosure includes the semiconductor lead frame, a plurality of semiconductor chips, and a conductive wire, and the semiconductor chip is electrically connected to the lead portion and the conductive wire.
  • An electronic device of the present disclosure uses the semiconductor integrated circuit.
  • the method for manufacturing the lead frame of the present disclosure has a 0.2% yield strength of 550 MPa or more, and a fracture elongation of 10 when the copper alloy is heated at 400° C. for 30 minutes and then left to stand in the air and the temperature of the copper alloy falls to room temperature.
  • This is a method for manufacturing a lead frame using a strip-shaped copper alloy material having a content of less than %.
  • the method for manufacturing a lead frame of the present disclosure includes a step of etching the strip-shaped copper alloy material.
  • the method of using the strip-shaped copper alloy material of the present disclosure as a lead frame is to have a 0.2% yield strength of 550 MPa or more, heat it at 400°C for 30 minutes, and then let it stand still in the air to reduce the temperature of the copper alloy to room temperature.
  • This method uses a strip-shaped copper alloy material with an elongation of 10% or less as a lead frame.
  • a strip-shaped copper alloy material can be obtained that has high strength and suppresses the occurrence of burrs when cutting in a resin-sealed state.
  • FIG. 3 is a diagram illustrating a method for manufacturing a semiconductor package using the MAP method.
  • FIG. 2 is a partially enlarged view of the vicinity of the lead portion in FIG. 1;
  • the ratio of (tensile strength/electrical conductivity) of the samples of Example 1 and Comparative Example 1 and the temperature of the copper alloy decreased to room temperature (25°C) after heating at 400°C for 30 minutes and leaving it standing in the air atmosphere.
  • FIG. 3 is a diagram showing the relationship between the elongation at break and the elongation measured at room temperature after
  • An alloy mainly containing copper can be used as the copper alloy in the embodiment of the present invention.
  • a Corson alloy can be used as the copper alloy in the embodiment of the present invention.
  • a Corson alloy typically refers to a copper alloy containing Si and an element that forms a compound with Si (for example, one or more of Ni, Co, and Cr).
  • Si and an element that forms a compound with Si form a compound, and the compound precipitates as second phase particles in the parent phase.
  • an element that forms a compound with Si refers to a phase diagram relating to Si and the element (which may be a binary phase diagram or a multi-component phase diagram such as a ternary phase diagram). It refers to an element in which it can be confirmed that a compound exists between Si and the element.
  • the "element that forms a compound with Si” is preferably an element that has a phase diagram with copper. This is because there is a possibility that a large amount of the element can be included in the copper alloy. Examples of “elements that form compounds with Si” include Ni, Co, Cr, Mn, Mg, and Fe.
  • the "element that forms a compound with Si” is preferably an element that dissolves in copper as a solid solution. This is because there is a possibility that a large amount of the element can be included in the copper alloy. Examples of elements that dissolve in copper include Ni, Co, Cr, Mn, Mg, and Fe. Furthermore, the "element that forms a compound with Si” may be a metal element.
  • the copper alloy in the embodiment of the present invention preferably contains more than 0.1% by mass of Si.
  • the copper alloy in the embodiment of the present invention may contain 1.8% by mass or less of Si.
  • the copper alloy in the embodiment of the present invention preferably contains a total of 0.5% by mass or more of one or more elements that form a compound with Si.
  • the copper alloy in the embodiment of the present invention can contain a total of 7.0% by mass or less of one or more elements that form a compound with Si.
  • the copper alloy in the embodiment of the present invention may contain a total of 0.5% by mass or more of one or more elements selected from the group consisting of Co, Cr, Mn, Mg, and Fe.
  • the copper alloy according to the embodiment of the present invention may contain a total of 7.0% by mass or less of one or more elements selected from the group consisting of Co, Cr, Mn, Mg, and Fe.
  • Corson alloy is an alloy containing copper, Si, and one or more elements selected from the group consisting of Ni, Co, and Cr.
  • a Corson alloy has a composition containing 0.5 to 4.5% by mass of Ni, more than 0.1% to 1.4% by mass of Si, and the balance consisting of copper and unavoidable impurities.
  • a Corson alloy contains 0.5 to 4.5% by mass of Ni, more than 0.1% to 1.4% by mass of Si, 0.03 to 0.5% by mass of Cr, and the remainder It has a composition consisting of copper and unavoidable impurities.
  • the Corson alloy contains 0.5 to 4.5% by mass of Ni, more than 0.1% to 1.4% by mass of Si, and 0.5 to 2.5% by mass of Co, The balance consists of copper and unavoidable impurities.
  • a Corson alloy contains 0.5 to 4.5 mass% Ni, more than 0.1 mass% to 1.3 mass% Si, 0.5 to 2.5 mass% Co, and Cr. It contains 0.03 to 0.5% by mass, with the balance consisting of copper and unavoidable impurities.
  • the Corson alloy has a composition of a Cu--Ni--Si based copper alloy, which will be described later.
  • Corson alloy may be optionally added to the Corson alloy. These other elements are generally added in a total amount of about 5.0% by mass.
  • the Corson alloy contains 0.5 to 4.5 mass% Ni, 0.1 to 1.4 mass% Si, 0.01 to 2.0 mass% Sn, and 0 mass% Zn. It contains .01 to 2.0% by mass, with the balance consisting of copper and unavoidable impurities.
  • the Cu-Ni-Si based copper alloy strip according to the embodiment of the present invention has Ni: 2.2 to 4.2 mass%, Si: 0.25 to 1.2 mass%, and Pb: 0.1 mass%.
  • Mg 0.05 to 0.30% by mass, with the balance containing Cu and inevitable impurities.
  • Ni and Si When Ni and Si are subjected to aging treatment, they form fine precipitated particles of an intermetallic compound mainly composed of Ni 2 Si, thereby significantly increasing the strength of the alloy. Furthermore, the conductivity improves due to the precipitation of Ni 2 Si during the aging treatment.
  • the Ni concentration is 2.2% or more, or when the Si concentration is 0.25% or more, it becomes easier to obtain the desired strength. Further, when the Ni concentration is 4.2% or less, or when the Si concentration is 1.2% or less, the conductivity tends to be good. Therefore, the Ni content is set to 2.2 to 4.2%, and the Si content is set to 0.25 to 1.2%.
  • the Ni content is 2.2 to 3.2%, and the Si content is 0.4 to 0.6%.
  • the ratio of Ni (mass %)/Si (mass %) is preferably 3 to 5.
  • the content of Pb is preferably less than 0.1% by mass from the viewpoint of improving hot workability.
  • Zn is an element that improves solder heat resistance and peeling characteristics, and when the content is less than 1.0% by mass, the conductivity tends to be good.
  • Fe is an element that contributes to strength, and when it is less than 0.20% by mass, the conductivity tends to be good.
  • Mn is an element that improves hot workability, and when it is less than 0.10% by mass, conductivity tends to be good.
  • Mg is an element that contributes to strength, and by controlling it to 0.30% by mass or less, the conductivity tends to be good. Further, by setting the content to 0.05% by mass or more, the strength can be further improved.
  • the composition of the strip copper alloy material can be measured by fluorescent X-ray analysis. Specifically, the fluorescent X-ray analysis is performed using Simultix 14 manufactured by Rigaku Corporation.
  • the analysis surface may be cut or mechanically polished so that the maximum surface roughness Rz (JIS-B0601 (2013) is 6.3 ⁇ m or less.
  • Rz JIS-B0601 (2013)
  • the analysis surface is repeatedly cut or mechanically polished until the maximum surface roughness Rz (JIS-B0601 (2013)) becomes 6.3 ⁇ m or less.
  • the composition of the strip-shaped copper alloy material may be determined by wet analysis in addition to measurement using fluorescent X-rays.
  • the copper separation dimethylglyoxime gravimetric method JIS-H1056 (2003)
  • Si silicon dioxide gravimetric method
  • ICP emission spectrometry may be used. Specifically, the measurement is performed using an ICP optical emission spectrometer (ICP-OES) SPS3100 manufactured by Hitachi High-Tech Science.
  • ICP emission spectrometry a sample is dissolved in a mixed acid of hydrochloric acid and nitric acid (2 parts of hydrochloric acid, 1 part of nitric acid, and 2 parts of water) and used after being diluted.
  • a mixed acid of hydrochloric acid and nitric acid (2 parts of hydrochloric acid, 1 part of nitric acid, and 2 parts of water)
  • JIS standard described below may be referred to.
  • Fe is JIS-H1054 (2002)
  • Pb is JIS-H1053 (2009)
  • Sn is JIS-H1052 (2010)
  • P is JIS-H1058 (2013)
  • Zn is JIS-H1062 (2006)
  • ICP emission spectrometry may be performed for Co in accordance with JIS-H1060 (2002) and for Mn in accordance with JIS-H1055 (2003).
  • the copper alloy of the present invention has a 0.2% proof stress of 550 MPa or more as defined in JIS-Z2241 (2011). If the 0.2% proof stress is less than 550 MPa, the lead portion may be deformed by the spray pressure during etching when manufacturing the lead frame. Furthermore, when processing into a semiconductor package, pressure from the wire bonding part or pressure applied when embedding resin in a mold may deform the lead part. From the viewpoint of further suppressing deformation of the lead portion, the 0.2% proof stress is preferably 630 MPa or more, and more preferably 750 MPa or more.
  • a tensile tester was used to test the JIS-13B test piece at a tensile speed (gauge length 50 mm, tensile speed 5 mm/min) of 0.2% in the direction parallel to the rolling direction.
  • ⁇ Elongation at break> The copper alloy according to the embodiment of the present invention is placed in an atmosphere that prevents surface oxidation (a non-oxidizing gas such as argon or nitrogen; or a reducing gas such as a mixture of a gas such as argon or nitrogen and a gas such as hydrogen). Alternatively, wrap it in 35 ⁇ m copper foil to prevent oxidation and heat it in the air at 400°C for 30 minutes, then leave it to stand until the temperature of the copper alloy falls to room temperature. A tensile test was conducted to measure the 0.2% proof stress at (25°C), and the elongation at break was 10% or less.
  • elongation means elongation at break (%) defined in JIS-Z2241 (2011).
  • the lead portion sealed with resin is perpendicular to the extending direction. It is possible to suppress the generation of burrs (dicing burrs) when cutting in a certain direction.
  • the reason for the elongation after heating at 400°C for 30 minutes is that, as mentioned above, the temperature of the thermal diffusion method, which is the highest temperature (approximately 400°C), is the method for electrically connecting the lead part and the semiconductor chip. It is assumed that
  • the reason why the upper limit of elongation at break is set at 10% is that, as already mentioned, the ratio of the amount of protrusion of the dicing burr on the lead part in the cutting direction to the design width is This is because it is considered that the elongation is almost the same as that of the strip copper alloy material subjected to 30 minutes).
  • the width W2 (Fig. 2) of the dicing burr on the lead in the semiconductor lead frame manufactured from the strip copper alloy material is the width W2 of the dicing burr (Fig. 2) from the design width W0 of the lead section. It can be made within the tolerance ( ⁇ 10%).
  • the strip-shaped copper alloy material according to the embodiment of the present invention has a tensile strength TS of 800 MPa or more.
  • the tensile strength TS is 800 MPa or more, the strength is further improved and deformation of the lead frame can be prevented. Due to the increase in processing capacity associated with higher functionality of semiconductor elements, heat generation due to electricity in circuits such as lead frames increases, so it is preferable that the conductivity of the strip copper alloy material is 30% IACS or more, and 40% IACS or more.
  • the electrical conductivity is preferably 51% IACS or less, more preferably 47% IACS or less, and even more preferably 43% IACS or less.
  • preferred ranges of conductivity include 30-51% IACS, 30-47% IACS, 30-43% IACS, 40-51% IACS, and 40-47% IACS.
  • the strip-shaped copper alloy material of the embodiment of the present invention can be used in the form of a strip, plate, foil, or the like.
  • the term "belt shape” is a concept that includes a wide and elongated shape, a rectangle, a rectangle, a square, a quadrilateral, and the like.
  • a strip-shaped copper alloy material can usually be manufactured by subjecting an ingot to hot rolling, cold rolling, solution treatment, aging treatment, finish cold rolling, and strain relief annealing in this order.
  • Cold rolling before solution treatment is not essential and may be performed as needed.
  • cold rolling may be performed as needed after solution treatment and before aging treatment, or solution treatment and aging treatment may be performed two or more times each.
  • grinding, polishing, shot blasting, pickling, degreasing, etc. can be performed as appropriate to remove oxidized scale from the surface.
  • Solution treatment is a heat treatment in which silicides such as Ni-Si compounds, Co-Si compounds, Cr-Si compounds, etc. are dissolved in the Cu matrix, and at the same time the Cu matrix is recrystallized. .
  • Hot rolling can also serve as the solution treatment.
  • the silicide dissolved in the solution treatment is precipitated as fine particles of intermetallic compounds mainly containing Ni 2 Si, Co 2 Si, Cr 2 Si, and the like. This aging treatment increases strength and conductivity.
  • the aging treatment can be performed, for example, at 375 to 625° C. for 1 to 50 hours, thereby improving the strength.
  • the aging treatment temperature and time are below the above range, the amount of precipitation of silicides such as Ni 2 Si, Co 2 Si, Cr 2 Si will be small and sufficient strength (tensile strength, 0.2% yield strength, etc.) will not be obtained. Sometimes there isn't. If the temperature or time of the aging treatment exceeds the above range, the precipitated particles may become coarser or solid-dissolved again, and the strength and conductivity may not be sufficiently improved. In addition, when the aging temperature and time exceed the above range, if the aging time is short, the tensile strength will be high but the electrical conductivity will tend to be low, and if the aging temperature is high, the tensile strength and electrical conductivity will decrease due to redissolution. Both rates tend to be low.
  • cold rolling is preferably performed at a workability of 40% or more. Finish cold rolling imparts processing strain to the material and can improve its strength. If the degree of work in finish cold rolling is less than 40%, it may be difficult to sufficiently improve the strength.
  • the working degree of finish cold rolling is preferably 40 to 90%. If the degree of working exceeds 90%, the electrical conductivity may decrease due to processing strain due to heavy working even if the strength is improved.
  • the working degree of finish cold rolling is the rate of change in thickness due to finish cold rolling with respect to the material thickness immediately before finish cold rolling.
  • the thickness of the Cu--Ni--Si based copper alloy strip of the present invention is not particularly limited, but may be, for example, 0.03 to 0.6 mm.
  • Strain relief annealing is performed after finish cold rolling. Strain relief annealing may be performed under general conditions, for example, at 300° C. to 550° C. and for a holding time of 5 seconds to 300 seconds. However, after strain relief annealing, the elongation measured at room temperature after the temperature of the copper alloy falls to room temperature (25°C) by standing in an air atmosphere is less than 10%, preferably 7% or less, more preferably 5%. The following conditions shall be met. By lowering the temperature or shortening the time during strain relief annealing after final cold rolling, the temperature of the copper alloy can be lowered to room temperature (25°C) by leaving it in the air after strain relief annealing.
  • the elongation at break measured at room temperature after As mentioned above, by controlling the elongation at break, which is measured at room temperature after strain relief annealing and after the temperature of the copper alloy has fallen to room temperature (25°C) by allowing it to stand still in the air, After heating for 30 minutes, the elongation at break is easily controlled to 10% or less when measured at room temperature after the copper alloy is allowed to stand still in an air atmosphere and the temperature of the copper alloy falls to room temperature (25° C.).
  • the strain relief annealing conditions not only satisfy the range of temperature or time, but also select a combination of temperature and time with the following in mind.
  • General strain relief annealing is performed for the purpose of improving stress relaxation properties, bendability, elongation, thermal expansion and contraction properties, or reducing residual stress, but optimal conditions differ depending on the purpose.
  • the atmosphere is the atmosphere.
  • the conditions are such that the elongation at break measured at room temperature after the temperature of the copper alloy falls to room temperature (25°C) by standing still in a room is less than 10%, preferably 7% or less, more preferably 5% or less. .
  • ⁇ EL coarsening of precipitates during strain relief annealing
  • the elongation at break when measured can be controlled to 10% or less.
  • Tensile strength is an indicator of the extent to which fine precipitates and elements dissolved in copper exist in a copper alloy, which contribute to improving strength and preventing softening due to heating. That is, it can be assumed that when the tensile strength is high, there are many fine precipitates that contribute to improving the strength and preventing softening due to heating, and that there are many elements dissolved in copper. Furthermore, if the tensile strength is low, it can be assumed that there are few fine precipitates that contribute to improving the strength and preventing softening due to heating, and that there are few elements solidly dissolved in the copper.
  • the electrical conductivity is an indicator of the extent to which elements other than copper are dissolved in the copper of the parent phase of the copper alloy. If the conductivity is low, it can be assumed that many elements other than copper are dissolved in solid solution. Furthermore, if the conductivity is high, it can be assumed that there are few elements other than copper in solid solution. If many elements other than copper are dissolved in solid solution, the lattice strain becomes large and the ductility decreases. After heating at 400°C for 30 minutes, the copper alloy is left standing in the air and the temperature reaches room temperature (25°C). ), the elongation at break measured at room temperature tends to become smaller. If there are few elements other than copper in solid solution, the lattice strain will be small and the ductility will be improved. After the elongation at break has decreased, the elongation at break measured at room temperature tends to increase.
  • the tensile strength/electrical conductivity values are controlled by the elongation at break measured at room temperature after heating at 400°C for 30 minutes and allowing the copper alloy to cool down to room temperature (25°C). It can be used as an indicator for However, what value should the tensile strength/electrical conductivity be when measured at room temperature after being heated at 400°C for 30 minutes, left standing in the air, and the temperature of the copper alloy falling to room temperature (25°C)? Whether the value of elongation at break is 10% or less depends on the composition of the alloy, the order and number of steps after solution treatment (i.e. the order and number of aging treatment after solution treatment, strain relief annealing, etc.) It depends.
  • the final cold rolling or aging treatment conditions are adjusted with reference to the content described below, and the tensile strength/conductivity value is adjusted. make larger or smaller.
  • the copper alloy is heated at 400°C for 30 minutes, left to stand in the air, and the temperature of the copper alloy is lowered to room temperature (25°C).
  • the value of elongation at break measured in can be controlled to a desired value.
  • the tensile strength and 0.2% proof stress are adjusted by finishing cold rolling and aging treatment after solution treatment. If the degree of work in finish cold rolling is low, the tensile strength and 0.2% proof stress will be low. A weaker aging treatment (lower temperature, shorter time) may result in higher tensile strength and 0.2% yield strength. Also, the electrical conductivity is adjusted by aging treatment, and if the aging treatment is weak (lower temperature, shorter time), the electrical conductivity may become lower.
  • Figure 3 shows the ratio of (tensile strength/electrical conductivity) of the samples of Example 1 and Comparative Example 1, and the ratio of (tensile strength/electrical conductivity) of the samples of Example 1 and Comparative Example 1. It is a figure which shows the relationship with the elongation at break when measured at room temperature after the temperature has decreased to room temperature (25°C). These include 2.3% by mass of Ni, 0.5% by mass of Si, 0.001% by mass of Pb, less than 0.02% by mass of Zn, 0.02% by mass of Fe, and 0.005% by mass of Mn.
  • Example 1 and Comparative Example 1 It is common in copper alloys with a composition of less than 0.1% by mass of Mg, the balance consisting of Cu and unavoidable impurities, and in Example 1 and Comparative Example 1, after solution treatment, aging treatment, final cold rolling, Strain relief annealing was performed in this order. That is, Example 1 and Comparative Example 1 have the same order and number of steps after solution treatment.
  • the composition of each sample was measured by the above-mentioned fluorescent X-ray analysis.
  • Example 1 and Comparative Example 1 were prepared using the above-mentioned composition and process, and copper alloy plates with a thickness of 0.15 mm were manufactured. The differences in manufacturing conditions in each step between Example 1 and Comparative Example 1 are as follows.
  • Example 1 the temperature and time were adjusted within the above-mentioned conditions so that the conductivity became 40% IACS or higher in the aging treatment after the solution treatment.
  • the aging temperature was set lower than in Comparative Example 1 so that the tensile strength was high and the electrical conductivity was low.
  • the working degree was set such that the 0.2% proof stress was 550 MPa or more in the final cold rolling.
  • the aging temperature was such that the tensile strength was low and the electrical conductivity was high, so in the finish cold rolling of Comparative Example 1, the degree of work was set higher than in Example 1.
  • strain relief annealing after finish cold rolling was performed under the conditions of ⁇ EL shown in Table 1.
  • ⁇ Electrical conductivity (%IACS)> The electrical conductivity (%IACS) of the obtained sample at 25° C. was measured by a four-terminal method based on JIS-H0505 (1975).
  • TS tensile strength
  • JIS No. 13B test pieces were prepared from each sample using a press so that the tensile direction was in the rolling direction.
  • the sample was wrapped in tough pitch copper foil with a thickness of 35 ⁇ m, and the sample was heated at 400° C. for 30 minutes in an air atmosphere while shielded from the outside air. Thereafter, the test piece was allowed to stand still in an air atmosphere, and the temperature of the copper alloy was sufficiently lowered to room temperature (25° C.). Thereafter, the elongation at break (%) specified in JIS-Z2241 (2011) was measured using a tensile tester in accordance with JIS-Z2241 (2011).
  • ⁇ Presence or absence of dicing burrs> For the obtained sample, a lead portion of a predetermined size was created, embedded in the resin, and diced perpendicularly to the direction in which the lead portion extends using a predetermined round blade. If the burr dimensions meet the customer standards, the product is considered good; if it does not meet the customer standards, it is bad. Note that, considering the dimensional accuracy required for the lead frame, it can be said that dicing burrs are well suppressed if the burr size is 10% or less of the width of the lead portion. Therefore, the customer standards are that if the burr dimension is 10% or less of the width of the lead part, it is judged to be good, and if the burr size is more than 10% of the lead part width, it is judged to be defective. Seem.
  • Example 1 since strain relief annealing was performed under conditions where the value of ⁇ EL is small, the elongation at break was almost the same before and after strain relief annealing, and the elongation at break increased due to strain relief annealing. was hardly observed, and the elongation at break was as low as less than 5%.
  • Comparative Example 1 the elongation before strain relief annealing was less than 10% because strain relief annealing was performed under conditions with a large value of ⁇ EL, but the elongation at break was significantly higher after strain relief annealing. , reached a level of almost 10%.
  • Comparative Example 1 had a remarkable property that the elongation at break was easily increased by heating. This is because the comparative example has a lower ratio of (tensile strength/electrical conductivity) than Example 1, so it has the characteristic that the plastic deformability tends to increase when subjected to strain relief annealing and heating at 400°C for 30 minutes. Conceivable.
  • Ni is 2.3% by mass
  • Si is 0.5% by mass
  • Pb is 0.001% by mass
  • Zn is less than 0.02% by mass
  • Fe is 0.02% by mass
  • Mn 0.
  • a copper alloy having a composition of less than .005% by mass, 0.1% by mass of Mg, and the balance consisting of Cu and unavoidable impurities is subjected to solution treatment, aging treatment, final cold rolling, and strain relief annealing in this order.
  • the ratio of (tensile strength/electrical conductivity) to approximately 15 or more for copper alloys manufactured by The elongation at break when measured at room temperature (25° C.) after this can be reduced to 10% or less.
  • Example 2 is obtained as an example in which the aging treatment temperature is higher than that of Example 1 and lower than that of Comparative Example 1.
  • this ratio varies depending on the composition of the copper alloy, the order and number of manufacturing steps, etc., so if the composition of the copper alloy and the order and number of manufacturing steps after solution treatment are different, conduct experiments for each. We need to find the leverage ratio.
  • Example 2 when the temperature of the aging treatment was set higher than in Example 1 and lower than in Comparative Example 1, some of the precipitated particles, which are a compound of Ni and Si, became coarser than in Example 1. Since it no longer contributes to strength, the tensile strength and 0.2% proof stress are lower than those of Example 1. On the other hand, since the precipitated particles, which are a compound of Ni and Si, do not become as coarse as in Comparative Example 1, the tensile strength and 0.2% proof stress are higher than in Comparative Example 1. In addition, Ni and Si, which had been dissolved in the matrix, precipitated in a larger amount than in Example 1, and the amount of precipitation was smaller than in Comparative Example 1, so the conductivity was higher than in Example 1, and The value will be lower than .
  • Example 1 when the temperature of the aging treatment was set higher than in Example 1 and lower than in Comparative Example 1, some of the precipitated particles, which are compounds of Ni and Si, became coarser than in Example 1. Therefore, the elongation at break when measured at room temperature (25°C) after heating at 400°C for 30 minutes and standing in the air to allow the temperature of the copper alloy to sufficiently drop to room temperature is as follows from Example 1. is also a large value.
  • Example 2 obtained based on the results of Example 1 and Comparative Example 1, the temperature of the aging treatment was adjusted as described above to control the value of (tensile strength/electrical conductivity) to 15.
  • Example 2 after heating at 400°C for 30 minutes, the value of the elongation at break is measured at room temperature (25°C) after allowing the copper alloy to stand still in the air and the temperature of the copper alloy has sufficiently decreased to room temperature. is 9.5%.
  • Example 2 after heating at 400°C for 30 minutes and then lowering the temperature to room temperature, the elongation at break was 9 when measured in a tensile test when measuring 0.2% proof stress at room temperature (25°C). .5%, it is estimated that dicing burrs are well suppressed based on the dicing burr generation mechanism.
  • Ni and Si form an intermetallic compound and precipitate into the copper alloy.
  • concentration of Ni and Si the more the intermetallic compound of Ni and Si will precipitate. It is thought that when the amount of precipitated intermetallic compounds of Ni and Si increases, dislocations are restrained by the intermetallic compounds of Ni and Si, resulting in a decrease in ductility.
  • Example 1 if a copper alloy with a higher concentration of Ni and Si than in Example 1 is manufactured in the same manner as in Example 1, the ductility will be lower than in Example 1, so after heating at 400°C for 30 minutes, When the elongation at break is measured at room temperature (25°C) after the temperature of the copper alloy has sufficiently decreased to room temperature by leaving it to stand still in the room, it is thought that the elongation at break will be smaller than the elongation of 4.9% in Example 1. It will be done. Moreover, as for Mg, it is thought that ductility decreases as a result of increasing lattice strain by solid solution in the copper alloy.
  • Example 3 is obtained as an example of manufacturing.
  • the elongation at break when measured at room temperature (25°C) after heating at 400°C for 30 minutes and standing still in the air to allow the temperature of the copper alloy to sufficiently drop to room temperature is the same as that of Example 1.
  • the value is smaller than the elongation of 4.9%, and based on the mechanism by which dicing burrs occur, it is estimated that dicing burrs can be suppressed well.
  • Elements other than Ni that form compounds with Si also form intermetallic compounds with Si and precipitate in the copper alloy.
  • Example 1 part of the Ni in Example 1 is replaced with an element other than Ni that forms a compound with Si, and the total concentration of the elements that form a compound with Si is higher than the Ni concentration in Example 1, and the Si concentration is Regarding a copper alloy higher than that of Example 1, if it is produced in the same manner as in Example 1, the ductility will be lower than that of Example 1, so the copper alloy should be heated at 400°C for 30 minutes and then allowed to stand still in the air to fully form the copper alloy.
  • the elongation at break when measured at room temperature (25° C.) after the temperature has decreased to room temperature is considered to be a value smaller than the elongation of Example 1, 4.9%.
  • Example 4 is obtained as an example.
  • the elongation at break when measured at room temperature (25°C) after heating at 400°C for 30 minutes and standing still in the air to allow the temperature of the copper alloy to sufficiently drop to room temperature is the same as the elongation at break in Example 4.
  • the value is smaller than the elongation of 4.9%, and based on the mechanism by which dicing burrs occur, it is estimated that dicing burrs can be suppressed well.
  • Example 5 is obtained as an example in which a copper alloy was manufactured in the same manner as in Example 1 using. Since the amounts of Ni and Si added are smaller than in Example 1, the elongation at break before heating at 400° C. for 30 minutes tends to be higher than in Example 1. On the other hand, since it does not contain any element other than Ni that forms a compound with Si, it is unlikely that the precipitated particles will become significantly coarser.
  • the elongation at break is not so large when measuring at room temperature (25°C) after heating the copper alloy at 400°C for 30 minutes and then allowing the copper alloy to cool down sufficiently to room temperature.
  • the elongation was less than 10.0%, and based on the mechanism by which dicing burrs occur, it is estimated that dicing burrs can be suppressed well.
  • the elongation at break when measured at 25° C. can be reduced. Therefore, if the other conditions are the same as in this Example 1 and the temperature of the aging treatment is lowered, even if the strength is improved compared to this Example 1, after being heated at 400°C for 30 minutes, the aging treatment is left standing in the air. It is estimated that the elongation at break can be 10% or less when measured at room temperature (25° C.) after the temperature of the copper alloy has sufficiently decreased to room temperature.
  • the precipitated particles which are effective in preventing softening due to heating, will become coarser and more likely to soften due to heating. It is inferred that the elongation at break becomes larger when measured at room temperature (25° C.) after the copper alloy is allowed to stand still in the air after the test and the temperature of the copper alloy is sufficiently lowered to room temperature. In other words, when aging treatment is performed for a short time with other conditions being the same, after heat treatment at 400°C for 30 minutes, the copper alloy is allowed to stand still in the air, and the temperature of the copper alloy is sufficiently lowered to room temperature. It is presumed that the elongation at break can be reduced when measured at room temperature (25° C.) after the copper alloy is allowed to stand still in the air after the test and the temperature of the copper alloy is sufficiently lowered to room temperature. It is presumed that the elongation at break can be reduced when measured at room temperature (25° C.) after the copper alloy is allowed to stand still in the air after the test and the temperature of the copper alloy is sufficiently
  • the aging treatment is shortened, even if the strength is improved compared to this Example 1, it will not be possible to leave the aging treatment in an air atmosphere after heat treatment at 400°C for 30 minutes. It is estimated that the elongation at break can be 10% or less when measured at room temperature (25° C.) after the temperature of the copper alloy has sufficiently decreased to room temperature.
  • the degree of work in finish cold rolling it is thought that if the degree of work in finish cold rolling is increased, strain will accumulate and softening will occur more easily during heat treatment. In other words, when other conditions are the same and the degree of finish cold rolling is lowered, after heat treatment at 400°C for 30 minutes, the copper alloy is left to stand still in the air, and the temperature of the copper alloy is sufficiently lowered to room temperature. It is presumed that the elongation at break when measured at room temperature (25° C.) can be reduced.
  • Example 1 the degree of finish cold rolling is lowered, even if the strength is lower than in Example 1, the strength will be lower than in Example 1, but after heat treatment at 400°C for 30 minutes, the It is estimated that the elongation at break can be 10% or less when measured at room temperature (25° C.) after the temperature of the copper alloy has sufficiently decreased to room temperature. From the above, it is possible to obtain a copper alloy that has the desired strength and can maintain the elongation at break of the copper alloy at 10% or less when subjected to heat treatment.

Abstract

本願発明の課題は、強度が高くかつ切断時のバリの発生を抑制した帯状銅合金材を提供することである。 本願発明は、Siを0.1質量%超と、Niと、残部銅及び不可避不純物から成り、所定の方法で測定した0.2%耐力が550MPa以上であり、かつ、所定の方法で測定した400℃30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びが10%以下である帯状銅合金材である。

Description

帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法
 本発明は、電子材料などの電子部品の製造に好適に使用可能な帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法に関する。
 半導体パッケージの製造方法として、従来は、個々のリードフレームの所定位置に半導体チップを配置し、リードフレームのリード部と半導体チップとを導線で接続して樹脂封止する手法が用いられてきた。一方、近年、生産効率の向上を目的として、MAP(Mold Alley Process)方式が開発されている。
 このMAP方式では、図1に示すように、製品形状のリードフレームのリード部2,4が、コネクティングバー6を介して縦横に複数個繋がったリードフレーム素形体10xを用い、このリードフレーム素形体10xの所定位置にそれぞれ複数の半導体チップ102、104・・・を配置して各リード部2,4と電気的に接続するとともに、全体を一括して樹脂封止する。そして、コネクティングバー6と各リード部2,4との間の切断方向E1,E2を回転刃50によってダイシングして個片化し、個々の半導体パッケージ製品に切り分ける。
 特に、MAP方式は、QFN(Quad Flat Non lead package)型半導体パッケージと称される、リードがはみ出ないリードレス構造に好適に適用される。
 リードフレームにおいてはリードフレームの素材である銅合金の高強度化が要求され、銅合金の強度を向上させる技術が開発されている(特許文献1)。
特開2019-167612号公報
 ところで、図2に示すように、ダイシングは、樹脂30で封止されたリード部2を樹脂30とともに切り分けるため、切断方向E1に沿う切断面は樹脂30にリード部2が含まれた形態である。そして、切断面のリード部2の切断方向E1下流側には、ダイシングバリ2aと称される形状不良がしばしば観察される。リード部2の先端のバリ2aがリード部2自身より大きく突出し、隣接するリード部に接触すると回路が短絡するおそれがある。
 又、リード部2の幅W1は所定の設計幅W0からの許容差(例えば、許容差|W1-W0|が、W0の±10%以下)の範囲内に管理されることが求められる。しかし、リード部2の先端のバリ2aが大きくなると、その部位の幅W2が許容差を大きく超えてしまい、製品不良となる。
 以上の点から、ダイシングバリを低減することが必要である。特に、電子部品の小型化にともない、リード部の幅および間隔は小さくなる傾向にあり、ダイシングバリを低減することがさらに要求される。
 すなわち、本発明は上記の課題を解決するためになされたものであり、高強度であり、かつ樹脂封止された状態における切断時のバリの発生を抑制できる帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法の提供を目的とする。
 本発明者らは種々検討した結果、図2に示されるダイシングバリ2aは、リード部2と垂直な切断方向E1に回転刃を当ててダイシングする際のせん断力により、切断面のリード部2がその延在方向Lに対して垂直な切断方向E1に伸びることで形成されることを発見した。
 さらに、リード部と垂直な切断方向にダイシングした際のバリの幅W2の設計幅W0に対する比率が、加熱処理を受けたときの銅合金素材そのものの破断伸びとほぼ同一であることを見出した。これは、例えば上記したQFN(Quad Flat Non lead package)型半導体パッケージのように、リード部が樹脂に拘束された状態で切断されるため、銅素材の引張試験と同じような機構が働くためと考えられる。
 また、半導体パッケージ用に用いられるリードフレーム(以下、単に「半導体リードフレーム」とも記載する)として銅合金を用いる際、アイランドと半導体チップとを接合するダイアタッチの工程があり、ここでは、チップ表面にメッキ層を形成し、メッキ層とアイランドを重ねた状態で400℃程度の温度で加熱処理し、熱拡散により接合する。また、ダイアタッチの別の方法としてアイランドと半導体チップとをはんだ付けする方法もあるが、この場合もはんだ付け温度は、300℃以上である。従って、ダイシングバリの発生を抑制する観点から、銅合金に400℃で30分間の加熱を行った場合であっても、当該銅合金の破断伸びを低く制御することが必要であることが分かった。
 すなわち、本開示の帯状銅合金材は、Siを0.1質量%超と、Niと、残部銅及び不可避不純物から成り、下記の方法で測定した0.2%耐力550MPa以上であり、かつ、400℃30分加熱後に大気雰囲気中で静置して室温まで低下させて下記の方法で測定したときの破断伸びが10%以下である帯状銅合金材である。
  0.2%耐力の測定方法:
 引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における0.2%耐力(YS)をそれぞれ測定する。引張方向が圧延方向と平行な方向になるように、プレス機を用いてJIS13B号試験片を作製する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとする。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の0.2%耐力とする。
  400℃30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びの測定方法:
 引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製する。当該試験片を表面の酸化を防止するため、厚みが35μmのタフピッチ銅箔で試料を包装し、外気から遮断された試料について、大気雰囲気で400℃で30分間の加熱を行う。その後、大気雰囲気中で試験片を静置し、銅合金の温度を室温(25℃)まで低下させる。その後にJIS-Z2241(2011)に準拠して、JIS-Z2241(2011)に規定される破断伸び(%)を引張試験機により測定する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとする。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を破断伸び(%)とする。
 本開示の帯状銅合金材において、さらにSiと化合物を形成する一種以上の元素を含むことができ、前記Siと化合物を形成する一種以上の元素は、Co、Cr、Mn、Mg及びFeからなる群から選択される一種以上の元素であることが好ましい。
 本開示の帯状銅合金材は、Siを0.1質量%超と、Niと、Siと化合物を形成する一種以上の元素を合計で0.5質量%以上含有することが好ましい。
 本開示の帯状銅合金材は、Siを0.1質量%超~1.8質量%と、Niと、Siと化合物を形成する一種以上の元素を合計で0.5~7.0質量%含有することが好ましい。
 本開示の帯状銅合金材は、Sn、及び/又はZnを含有することが好ましい。
 本開示の帯状銅合金材は、Cu-Ni-Si系銅合金であることが好ましい。
 本開示の帯状銅合金材は、Ni:2.2~4.2質量%、Si:0.25~1.2質量%、Pb:0.1質量%未満、Zn:1.0質量%未満、Fe:0.20質量%未満、Mn:0.10質量%未満、Mg:0.05~0.30質量%を含有し、残部Cu及び不可避的不純物からなるCu-Ni-Si系銅合金であることが好ましい。
 本開示の帯状銅合金材は、以下の方法で測定した引張強さが800MPa以上であることが好ましい。
  引張強さの測定方法:
 引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における引張強さ(TS)を測定する。その際、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとする。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の引張強さ(TS)とする。
 本開示の帯状銅合金材は導電率が30%以上であることが好ましく、MAP方式で製造される半導体パッケージに用いられることが好ましい。
 本開示の半導体リードフレームは前記帯状銅合金材からなる。
 本開示の半導体リードフレームは、複数のリード部と、コネクティングバーとを備え、前記複数のリード部は前記コネクティングバーを介して繋がっていることが好ましい。
 本開示の半導体集積回路は、前記半導体リードフレームを備えてなる。
 本開示の半導体集積回路は、前記半導体リードフレームと、複数の半導体チップと、導線と、を備え、前記半導体チップが前記リード部と前記導線で電気的に接続されていることが好ましい。
 本開示の電子機器は、前記半導体集積回路を用いてなる。
 本開示のリードフレームを製造する方法は、0.2%耐力550MPa以上、かつ400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びが10%以下である帯状銅合金材を用いてリードフレームを製造する方法である。
 本開示のリードフレームを製造する方法は、前記帯状銅合金材をエッチングする工程を含むことが好ましい。
 本開示の帯状銅合金材をリードフレームとして使用する方法は、0.2%耐力550MPa以上かつ400℃30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びが10%以下である帯状銅合金材をリードフレームとして使用する方法である。
 本発明によれば、高強度であり、かつ樹脂封止された状態における切断時のバリの発生を抑制した帯状銅合金材が得られる。
MAP方式で半導体パッケージを製造する方法を示す図である。 図1のリード部付近の部分拡大図である。 実施例1及び比較例1の試料の、(引張強さ/導電率)の比と、400℃30分加熱後に、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びとの関係を示す図である。
 本発明の実施形態における銅合金として銅を主として含む合金を用いることができる。また、本発明の実施形態における銅合金としては、コルソン合金を用いることができる。
 コルソン合金は典型的にはSiと、Siと化合物を形成する元素(例えば、Ni、Co及びCrの何れか一種以上)とを含む銅合金をいう。コルソン合金に対して溶体化処理ならびに時効処理を行った場合、Siと、Siと化合物を形成する元素とは化合物を形成し、当該化合物は母相中に第二相粒子として析出する。なお、「Siと化合物を形成する元素」とは、Siと当該元素とに関する状態図(二元系状態図であってもよく、三元系状態図など、多元系の状態図であってもよい)などにおいて、Siと当該元素との間に化合物が存在することが確認できる元素のことをいう。「Siと化合物を形成する元素」は、銅との状態図が存在する元素であることが好ましい。銅合金中に当該元素を多く含ませることができる可能性があるためである。「Siと化合物を形成する元素」は、例えばNi,Co,Cr,Mn,Mg,Feなどである。
 また、「Siと化合物を形成する元素」は、銅に固溶する元素であることが好ましい。銅合金中に当該元素を多く含ませることができる可能性があるためである。銅に固溶する元素としては例えばNi, Co, Cr,Mn,Mg,Feなどが挙げられる。また、「Siと化合物を形成する元素」は金属元素であってもよい。本発明の実施形態における銅合金はSiを0.1質量%超含有することが好ましい。
 本発明の実施形態における銅合金はSiを1.8質量%以下含有することができる。
 本発明の実施形態における銅合金はSiと化合物を形成する元素の一種以上を合計で0.5質量%以上含有することが好ましい。
 本発明の実施形態における銅合金はSiと化合物を形成する元素の一種以上を合計で7.0質量%以下含有することができる。
 本発明の実施形態における銅合金はCo,Cr,Mn,Mg及びFeからなる群から選択される一種以上の元素を合計で0.5質量%以上含むことができる。
 本発明の実施形態における銅合金はCo,Cr,Mn,Mg及びFeからなる群から選択される一種以上の元素を合計で7.0質量%以下含むことができる。
 一例としてコルソン合金は、銅とSiと、Ni、Co及びCrからなる群から選択される一種以上の元素を含む合金である。別の一例として、コルソン合金はNiを0.5~4.5質量%、Siを0.1質量%超~1.4質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。別の一例として、コルソン合金はNiを0.5~4.5質量%、Siを0.1質量%超~1.4質量%、Crを0.03~0.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
 更に別の一例として、コルソン合金はNiを0.5~4.5質量%、Siを0.1質量%超~1.4質量%、Coを0.5~2.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
 更に別の一例として、コルソン合金はNiを0.5~4.5質量%、Siを0.1質量%超~1.3質量%、Coを0.5~2.5質量%、Crを0.03~0.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
 更に別の一例として、コルソン合金は後述するCu-Ni-Si系銅合金の組成を有する。
 コルソン合金には随意にその他の元素(例えばSn、Znなど)が添加されてもよい。これらその他の元素は総計で5.0質量%程度まで添加するのが一般的である。例えば、更に別の一例として、コルソン合金はNiを0.5~4.5質量%、Siを0.1~1.4質量%、Snを0.01~2.0質量%、Znを0.01~2.0質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
 以下、本発明の実施形態の1つであるCu-Ni-Si系帯状銅合金材について説明する。なお、本発明の合金組成における%とは、特に断らない限り、質量%を示すものとする。
 まず、帯状銅合金材の組成について説明する。本発明の実施形態に係るCu-Ni-Si系帯状銅合金材は、Ni:2.2~4.2質量%、Si:0.25~1.2質量%、Pb:0.1質量%未満、Zn:1.0質量%未満、Fe:0.20質量%未満、Mn:0.10質量%未満、Mg:0.05~0.30質量%を含有し、残部Cu及び不可避的不純物からなる。
<Ni及びSi>
 Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。
 Ni濃度が2.2%以上の場合、またはSi濃度が0.25%以上の場合は、所望とする強度が得られやすくなる。また、Ni濃度が4.2%以下の場合、またはSi濃度が1.2%以下の場合は、導電性が良好となりやすい。よって、Niの含有量を2.2~4.2%とし、Siの含有量を0.25~1.2%とする。好ましくは、Niの含有量を2.2~3.2%とし、Siの含有量を0.4~0.6%とする。
 Ni(質量%)/Si(質量%)の比が3~5であることが好ましい。
<その他の元素>
 Pbは、熱間加工性向上の観点から0.1質量%未満とすることが好ましい。
 Znは、はんだ耐熱剥離特性を改善する元素であり、1.0質量%未満とすることで、導電性も良好となりやすい。
 Feは、強度に寄与する元素であり、0.20質量%未満とすることで、導電性も良好となりやすい。
 Mnは、熱間加工性を改善する元素であり、0.10質量%未満とすることで、導電性も良好となりやすい。
 Mgは、強度に寄与する元素であり、0.30質量%以下とすることで、導電性も良好となりやすい。また、0.05質量%以上とすることでより強度を向上させることができる。
<組成の測定>
 帯状銅合金材の組成は蛍光X線分析により測定できる。具体的には、蛍光X線分析はリガク社製Simultix14を使用し測定する。
 分析面は表面最大粗さRz(JIS-B0601(2013)が6.3μm以下となるように切削もしくは機械研磨したものを用いればよい。溶解鋳造中の溶湯から分析サンプルを採取する場合は30~40mmΦ、厚み50~80mm程度の形状に鋳込んだのち、厚み10~20mm程度に切断したのち切断面を分析面とする。
 分析面は表面最大粗さRz(JIS-B0601(2013))が6.3μm以下になるまで切削もしくは機械研磨を繰り返す。
 なお、帯状銅合金材の組成は蛍光X線による測定の他に湿式分析を用いても良い。Niは銅分離ジメチルグリオキシム重量法(JIS-H1056(2003))を用いてよく、Siは二酸化けい素重量法(JIS-H1061(2006))を用いてよい。その他添加元素および不純物元素はICP発光分光分析法を用いてもよい。
 具体的には、日立ハイテクサイエンス社製ICP発光分光分析装置(ICP-OES)SPS3100を用いて測定を行う。ICP発光分光分析法の場合はサンプルを塩酸と硝酸による混酸(塩酸2,硝酸1,水2)にて溶解したものを希釈して用いる。ICP発光分光分析法における各元素の一般的な測定方法としては後述のJIS規格を参考にしても良い。具体的には、FeはJIS-H1054(2002)、PbはJIS-H1053(2009)、SnはJIS-H1052(2010)、PはJIS-H1058(2013)、ZnはJIS-H1062(2006)、CoはJIS-H1060(2002)、MnはJIS-H1055(2003)に従ってICP発光分光分析を実施すればよい。
<0.2%耐力>
 本発明の銅合金は、JIS-Z2241(2011)に規定する0.2%耐力が550MPa以上である。0.2%耐力が550MPa未満であると、リードフレームを製造する際、エッチング時のスプレー圧によりリード部分が変形する場合がある。また、半導体パッケージに加工する際、ワイヤーボンディング部からの圧力や樹脂を金型に埋め込む際に圧力がかかり、リード部が変形する場合がある。
 リード部分の変形をより抑制する観点からは0.2%耐力は630MPa以上が好ましく、750MPa以上がさらに好ましい。
 なお、引張試験機により、JIS-Z2241(2011)に従い、JIS-13B号試験片につき、引張速度(ゲージ長さ50mm、引張速度5mm/min)で、圧延方向と平行な方向における0.2%耐力(YS)を繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均とする。
<破断伸び>
 本発明の実施形態に係る銅合金は、表面の酸化を防止する雰囲気(アルゴン、窒素等の非酸化性ガス;又は、アルゴン若しくは窒素等のガスに水素等のガスを混合した還元性ガス)中、もしくは酸化防止のため35μmの銅箔にて包装し、外気から遮断されたものを大気雰囲気中で400℃で30分加熱後、静置して、銅合金の温度が室温まで低下した後に室温(25℃)で0.2%耐力を測定する際の引張試験を実施し、破断したときの伸びが10%以下である。ここで、伸びとはJIS-Z2241(2011)に規定される破断伸び(%)のことを意味する。なお、JISの付属書G及びHは適用していない。
 破断伸びが10%以下であると、本発明の実施形態に係るCu-Ni-Si系銅合金から製造した半導体リードフレームにおいて、樹脂によって封止されたリード部をその延在方向に対して垂直な方向に切断したときのバリ(ダイシングバリ)の発生を抑制することができる。
 ここで、400℃で30分加熱後の伸びとする理由は、上述のようにリード部と半導体チップとを電気的に接続する方法として、最も高温となる熱拡散法の温度(400℃程度)を想定したものである。
 又、破断伸びの上限を10%とする理由は、既に述べたように、リード部のダイシングバリの切断方向への突出量の設計幅に対する比率が、リード部を想定して熱処理(400℃で30分)を受けた帯状銅合金材の伸びとほぼ同一と考えられるからである。
 つまり、帯状銅合金材の伸びの上限を10%とすれば、帯状銅合金材から製造した半導体リードフレームにおけるリード部のダイシングバリの幅W2(図2)を、リード部の設計幅W0からの許容差(±10%)以下とすることができる。
 破断伸びの測定は、繰り返し回数N=2(2個の試験片)引張試験にて、破断したときの伸び(JIS Z2241(2011)に規格される破断伸び(%))の2つのデータの平均とする。
<引張強さTSと導電率>
 本発明の実施形態に係る帯状銅合金材は、引張強さTSが800MPa以上であることが好ましい。引張強さTSを800MPa以上とすると強度がより向上し、リードフレームの変形等を防止できる。
 半導体素子の高機能化に伴う処理能力の増大等により、リードフレーム等の回路の通電発熱が増大するので、帯状銅合金材の導電率を30%IACS以上とすることが好ましく、40%IACS以上とすることがより好ましい。また、400℃で30分加熱後の破断伸びを抑制するため、導電率を51%IACS以下とすることが好ましく、47%IACS以下とすることがより好ましく、43%IACS以下とすることがさらに好ましい。
 例えば、導電率の好適範囲としては、30~51%IACS、30~47%IACS、30~43%IACS、40~51%IACS、40~47%IACSが挙げられる。
 本発明の実施形態の帯状銅合金材は、条、板、箔などの形態で用いることができる。ここで、「帯状」とは幅があって細長い形、矩形、長方形、正方形および四辺形等を含む概念である。
<帯状銅合金材の製造>
 帯状銅合金材は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、仕上冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延は必須ではなく、必要に応じて実施してもよい。また、溶体化処理後で時効処理前に冷間圧延を必要に応じて実施してもよいし、溶体化処理と時効処理をそれぞれ2回以上行ってもよい。上記各工程の間に、表面の酸化スケール除去のための研削、研磨、ショットブラスト、酸洗、脱脂等を適宜行うことができる。
 溶体化処理は、Ni-Si系化合物、Co-Si系化合物、Cr-Si系化合物などのシリサイド(珪化物)をCu母地中に固溶させ、同時にCu母地を再結晶させる熱処理である。溶体化処理を、熱間圧延で兼ねることもできる。
 時効処理は、溶体化処理で固溶させたシリサイドを、NiSi、CoSi、CrSiなどを主とした金属間化合物の微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効処理は、例えば375~625℃、1~50時間の条件で行うことができ、これにより強度を向上させことができる。
 時効処理の温度や時間が上記範囲未満であると、NiSi、CoSi、CrSiなどのシリサイドの析出量が少なく十分な強度(引張強さや0.2%耐力など)が得られないことがある。時効処理の温度や時間が上記範囲を超えると、析出粒子の粗大化や再固溶が起こり、強度や導電率が十分に向上しないことがある。なお、時効処理の温度や時間が上記範囲を超える場合においては時効時間が短いと、引張強さは高いが導電率は低い傾向にあり、時効温度が高いと、再固溶により引張強度、導電率ともに低い傾向にある。
<仕上冷間圧延>
 次に、時効処理の後に冷間圧延(仕上冷間圧延)を加工度40%以上で行うとよい。仕上冷間圧延によって材料に加工歪を与え、強度を向上させることができる。
 仕上冷間圧延の加工度が40%未満であると、強度を十分に向上させることが困難な場合がある。仕上冷間圧延の加工度は40~90%が好ましい。加工度が90%を超えると、強加工の加工歪により強度が向上しても導電率が低下する場合がある。
 仕上冷間圧延の加工度は、仕上冷間圧延の直前の材料厚みに対する、仕上冷間圧延による厚みの変化率である。
 本発明のCu-Ni-Si系帯状銅合金材の厚みは特に限定されないが、例えば0.03~0.6mmとすることができる。
<歪取焼鈍>
 仕上冷間圧延の後に歪取焼鈍を行う。歪取焼鈍は一般的な条件で行えばよく、例えば300℃~550℃、保持時間を5秒~300秒で行うことができる。但し、歪取焼鈍後、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した伸びが10%未満、好ましくは7%以下、より好ましくは5%以下となる条件とする。仕上冷間圧延の後に歪取焼鈍において温度をより低くする、または、時間をより短くすることにより歪取焼鈍後、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びをより小さくすることができる。上述のように、歪取焼鈍後、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びを制御することにより、銅合金の400℃で30分間加熱後に、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びを10%以下に制御しやすくなる。
 また、歪取焼鈍の条件は、温度または時間の範囲を満たすだけでなく、以下に留意し温度と時間の組み合わせを選定することが好ましい。
 一般的な歪取焼鈍は、応力緩和特性、曲げ性、伸び、熱伸縮特性の向上又は残留応力の低減を目的として行われるが、最適な条件は、目的ごとに異なる。本発明の実施形態では、一般的な応力緩和特性、曲げ性、伸び、熱伸縮特性を改善、向上又は残留応力の低減する点からは不利な条件であっても、歪取焼鈍後、大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びが10%未満、好ましくは7%以下、より好ましくは5%以下となるような条件とする。
 また、歪取焼鈍において、焼鈍温度を低くし、および/または、時間を短くすることで、析出物の粗大化を抑制することが重要である。そのため、析出物の成長の程度を評価・制御する指標として、歪取焼鈍前と歪取焼鈍後との破断伸びの差ΔEL(=歪取焼鈍後の破断伸び(%)-歪取焼鈍前の破断伸び(%))を用いる。なお、歪取焼鈍前の破断伸びについても銅合金の温度が室温(25℃)の状態で室温にて測定を行った。
 ΔELを3.0%以下とすることで、歪取焼鈍における析出物の粗大化を低減することができる。それによって、400℃30分加熱したときの析出物の粗大化を低減し、400℃30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定したときの破断伸びを10%以下に制御することができる。
 以下の内容を指針として、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びが10%以下である銅合金を製造することができる。
 後述する表1、図3から、(引張強さ/導電率)すなわち、引張強さ(MPa)を導電率(%IACS)で割った値と、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びとの間に相関がみられた。引張強さは、強度の向上や加熱による軟化防止に寄与する微細な析出物や銅に固溶している元素がどの程度銅合金中に存在するかの指標となる。
 すなわち、引張強さが高いと強度の向上や加熱による軟化防止に寄与する微細な析出物や、銅に固溶している元素が多いと推定できる。また、引張強さが低いと強度の向上や加熱による軟化防止に寄与する微細な析出物や、銅に固溶している元素が少ないと推定できる。
 よって、引張強さが高い場合には、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びが小さくなる傾向にある。また、引張強さが低い場合には、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びが大きくなる傾向にある。
 また、導電率は銅合金の母相の銅中にどの程度銅以外の元素が固溶しているかの指標となる。導電率が低いと、銅以外の元素が多く固溶していると推定できる。
 また、導電率が高いと、銅以外の元素が少なく固溶していると推定できる。そして、銅以外の元素が多く固溶していると、格子歪が大きくなり、延性が低下し、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びの値が小さくなる傾向にある。銅以外の元素が少なく固溶していると、格子歪は小さくなり、延性が向上し、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びの値は大きくなる傾向にある。
 以上より、引張強さ/導電率の値が大きいほど、軟化防止に寄与する微細な析出物が多く、また、銅合金中に固溶している銅以外の元素の量が多いことを意味するため、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びの値は小さくなる傾向にある。
 また、引張強さ/導電率の値が小さいほど、軟化防止に寄与する微細な析出物が少なく、また、銅合金中に固溶している銅以外の元素の量が少ないことを意味するため、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びの値は大きくなる傾向にある。
 そのため、引張強さ/導電率の値を、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びを制御するための指標として使用することができる。ただし、引張強さ/導電率をどの値以上とすれば、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びの値が10%以下となるかは、合金の組成や、溶体化処理後の各工程の順番や回数(すなわち、溶体化処理後の時効処理、歪取焼鈍などの順番や回数)によって異なる。
 そのため、まず、合金の組成や、溶体化処理後の各工程の順番や回数を固定して1度銅合金の製造を行い、引張強さ/導電率の値と、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びの値を測定する必要がある。その後、所望の400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びを得るために、引張強さ/導電率の値を大きくするのか、小さくするのかの方針を決定する。
 そして、当該方針に従って、引張強さ/導電率の値を調整するために、後述の内容を参考にして、仕上冷間圧延または時効処理の条件を調整して、引張強さ/導電率の値を大きく、または、小さくする。そして、引張強さ/導電率の値を大きく、または、小さくすることにより、400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びの値を所望の値に制御することができる。
 引張強さおよび0.2%耐力は仕上冷間圧延および溶体化処理後の時効処理によって調整される。仕上冷間圧延の加工度が低いと、引張強さおよび0.2%耐力が低くなる。時効処理が弱い(より低温、より短時間)と、引張強さおよび0.2%耐力が高くなる場合がある。
 又、導電率は時効処理によって調整され、時効処理が弱い(より低温、より短時間)と、導電率が低くなる場合がある。
 なお、図3は実施例1と比較例1の試料の、(引張強さ/導電率)の比と、400℃30分加熱後に、大気雰囲気中で静置して十分に銅合金の温度が室温(25℃)まで低下した後に室温で測定した場合の破断伸びとの関係を示す図である。これらはNiが2.3質量%、Siが0.5質量%、Pbが0.001質量%、Znが0.02質量%未満、Feが0.02質量%、Mn:0.005質量%未満、Mgが0.1質量%、残部がCuおよび不可避的不純物から成る組成の銅合金で共通しており、実施例1及び比較例1は溶体化処理後、時効処理、仕上冷間圧延、歪取焼鈍、をこの順に行った。すなわち、実施例1と比較例1は溶体化処理後の工程の順番、回数において共通する。なお、各試料の配合は上述する蛍光X線分析にて測定した。
 それぞれの銅合金についての、(引張強さ/導電率)の値と、400℃30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温(25℃)まで低下した後に室温で測定した破断伸びとの関係を示す図3より、当該組成の銅合金を溶体化処理後に時効処理、仕上冷間圧延、歪取焼鈍の工程で製造する場合には、(引張強さ/導電率)の値を概ね15以上に調整することにより、400℃30分加熱後大気雰囲気中で静置して十分に銅合金の温度が室温(25℃)まで低下した後に測定した破断伸びを10%以下にすることができることがわかる。
 一方で、組成が異なる場合や、溶体化処理後の各工程の順番や回数が異なる場合には、(引張強さ/導電率)を横軸、400℃30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定した破断伸びの値を縦軸としてプロットした場合のグラフの傾きは、図3の傾きとは異なることが想定される。また、400℃30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に25℃で測定した破断伸びを10%以下に制御することができる(引張強さ/導電率)の値も異なると想定される。
 そのため、銅合金の組成や、溶体化処理後の各工程の順番や回数が異なる場合には、別途、図3と同様な図を作成する必要がある。
 ここで、溶体化処理後の各工程の順番や回数が異なる場合に別途図を作成する必要がある、すなわち溶体化処理後の各工程の順番や回数が同じであれば別途図を作成する必要がない、とするのは、溶体化処理により銅合金中に析出している化合物が固溶するためである。溶体化処理によって、一旦、化合物や元素の固溶状態が所定の状態、すなわち、銅合金の大部分がα相(Cuに添加元素が固溶している相)に戻るためである。溶体化処理の後に、時効処理や、圧延加工をすることによって、所定の微細な析出物の析出状態や、所定元素が銅合金中に固溶している元素の状態となり所定の特性が得られる。
 実施例1及び比較例1の試料を上述の組成及び工程にて作製し、厚み0.15mmの銅合金板を製造した。
 実施例1と比較例1の各工程における製造条件の違いは以下のとおりである。
 実施例1は、溶体化処理後の時効処理にて導電率を40%IACS以上になるように温度及び時間を上述の条件内で調整した。ここで、実施例1は、引張強さが高く、導電率が低くなるよう、比較例1に比べ時効温度を低く設定した。
 実施例1は、仕上冷間圧延にて、0.2%耐力が550MPa以上になる加工度を設定した。ここで、比較例1は、引張強さが低く、導電率が高くなる時効温度であったため、比較例1の仕上冷間圧延では、実施例1に比べ加工度を高く設定した。
 又、仕上冷間圧延後の歪取焼鈍は、表1に記載のΔELの条件で行った。
<導電率(%IACS)>
 得られた試料につき、JIS-H0505(1975)に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
<引張強さ(TS)>
 得られた試料につき、引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における引張強さ(TS)をそれぞれ測定した。まず、各試料から、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製した。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとした。繰り返し回数N=2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の引張強さ(TS)とした。
<0.2%耐力(YS)>
 得られた試料につき、引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における0.2%耐力(YS)をそれぞれ測定した。
 まず、各試料から、引張方向が圧延方向と平行な方向になるように、プレス機を用いてJIS13B号試験片を作製した。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとした。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の0.2%耐力とした。
<破断伸び>
 まず、各試料から、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製した。当該試験片の表面の酸化を防止するため、厚みが35μmのタフピッチ銅箔で試料を包装し、外気から遮断された試料について、大気雰囲気で400℃で30分間の加熱を行った。
 その後、大気雰囲気中で試験片を静置し、十分に銅合金の温度を室温(25℃)まで低下させた。その後にJIS-Z2241(2011)に準拠して、JIS-Z2241(2011)に規定される破断伸び(%)を引張試験機により測定した。
 引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとした。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の400℃で30分間加熱後に室温まで冷却して測定した場合の破断伸び(%)とした。なお、JIS-Z2241(2011)の付属書GおよびHは適用しなかった。
<ダイシングバリの有無>
 得られた試料につき、所定寸法のリード部を作成して樹脂に埋設し、所定の丸刃を用いてリード部の延びる方向に垂直にダイシングした。バリの寸法が顧客基準を満たしている場合には良好、顧客基準を満たしていない場合には不良とする。なお、リードフレームにおいて要求される寸法精度等を考慮すると、バリ寸法がリード部の幅の10%以下であればダイシングバリは良好に抑制されているといえる。そのため顧客基準も、バリ寸法がリード部の幅の10%以下である場合には良好と判断し、バリ寸法がリード部の幅の10%超である場合には不良と判断するものであると思われる。
 得られた結果を表1、図3に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、400℃で30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定した破断伸びが10%以下である実施例1の場合、ダイシングバリの評価は良好となった。
 一方、400℃で30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定した破断伸びが10%を超えた比較例1の場合、ダイシングバリが生じた。
 ここで、実施例1は、ΔELの値が小さい条件での歪取焼鈍を行ったため歪取焼鈍前と歪取焼鈍後とで、破断伸びはほぼ同レベルで、歪取焼鈍による破断伸びの増加はほとんど認められなかったと共に、破断伸びの値も5%未満と低かった。
 一方、比較例1は、ΔELの値が大きい条件での歪取焼鈍を行ったため歪取焼鈍前の伸びが10%未満であったが、歪取焼鈍後の時点で破断伸びが大幅に高くなり、ほぼ10%のレベルに達した。これより、比較例1は、加熱により破断伸びが高くなりやすい性質を顕著に有することが明らかになった。原因として、比較例は、(引張強さ/導電率)の比が実施例1より小さいために、歪取焼鈍および400℃で30分加熱といった加熱により塑性変形能が高くなりやすい特性を持つと考えられる。
 なお、比較例1の400℃で30分加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で0.2%耐力を測定する際の引張試験で測定した破断伸びが大きくなりやすいのは、時効処理を実施例に比べ高温で行った結果、加熱における軟化を防止するのに有効な析出粒子が粗大化し、加熱により軟化し易くなったためと考えられる。
 また、仕上げ冷間の加工度を高くしたことにより、その後の加熱処理で軟化しやすくなったと考えられる。
 なお、図3より、Niが2.3質量%、Siが0.5質量%、Pbが0.001質量%、Znが0.02質量%未満、Feが0.02質量%、Mn:0.005質量%未満、Mgが0.1質量%、残部がCuおよび不可避的不純物から成る組成の銅合金を、溶体化処理後、時効処理、仕上冷間圧延、歪取焼鈍、をこの順に行って製造した銅合金については(引張強さ/導電率)の比を概ね15以上に調整することにより、400℃30分後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びを10%以下にすることができる。

 次に、実施例1および比較例1のデータに基づき、種々の製造条件および銅合金組成における特性を推定し、実施例2~5として表1に示す。時効処理の温度を実施例1よりも高く、比較例1よりも低くした場合の実施例として実施例2が得られる。但し、この比は、銅合金の組成、製造工程の順番や回数等により異なるので、銅合金の組成や、溶体化処理後の製造工程の順番や回数が異なる場合には、それぞれに実験を行ってこの比を求める必要がある。
 実施例2につき、時効処理の温度を実施例1よりも高く、比較例1よりも低くした場合、実施例1よりも、NiとSiとの化合物である析出粒子が一部粗大化するため、強度に寄与しなくなるため、引張強さ、0.2%耐力は実施例1よりも低い値となる。
 一方で、比較例1ほどはNiとSiとの化合物である析出粒子が粗大化しないため、比較例1よりは引張強さ、0.2%耐力は高い値となる。また、母相中に固溶していたNiとSiとが実施例1よりも多く析出し、比較例1よりはその析出量が少ないため、導電率は実施例1よりも高く、比較例1よりも低い値となる。
 また、時効処理の温度を実施例1よりも高く、比較例1よりも低くした場合、実施例1よりも、NiとSiとの化合物である析出粒子が一部粗大化して、実施例1よりも軟化するため、400℃で30分間加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは、実施例1よりも大きい値となる。
 一方で、比較例1ほどはNiとSiとの化合物である析出粒子が粗大化しないため、比較例1よりは軟化しない。そのため、400℃で30分間加熱後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは、比較例1よりも小さい値となる。以上より、実施例1、比較例1の結果に基づいて得られる実施例2においては、上述のように時効処理の温度を調整して(引張強さ/導電率)の値を15に制御しているため、実施例2は400℃30分加熱した後に、大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びの値は9.5%となる。そして、実施例2は、400℃30分加熱した後に、室温までその温度を低下した後に室温(25℃)で0.2%耐力を測定する際の引張試験で測定する場合の破断伸びが9.5%であるので、ダイシングバリの発生メカニズムに基づくと、ダイシングバリは良好に抑制されていると推定される。
 ここで、NiとSiとは金属間化合物を形成して銅合金中に析出する。そして、NiとSiの濃度が高いほどNiとSiとの金属間化合物が当該析出する量は増加する。NiとSiとの金属間化合物の析出量が増加すると、転位がNiとSiとの金属間化合物によって拘束されるため、延性は低下すると考えられる。
 そうすると、実施例1よりもNiとSiとの濃度が高い銅合金については、実施例1と同様に製造した場合、実施例1よりも延性が低下するため、400℃30分加熱した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びを測定すると、実施例1の伸び4.9%よりも小さい値となると考えられる。
 また、Mgについては、銅合金中に固溶することで、格子歪が大きくなった結果、延性は低下すると考えられる。
 そのため、実施例1の結果に基づいて得られるNi、Si及びMgの濃度が高い銅合金であって、Niが4.2質量%、Siが1.0質量%、Pbが0.05質量%、Znが0.1質量%、Feが0.03質量%、Mgが0.30質量%、残部がCuおよび不可避的不純物から成る組成の銅合金を用いて、実施例1と同様に銅合金を製造した例として実施例3が得られる。実施例3は400℃30分加熱した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは、実施例1の破断伸び4.9%よりも小さい値となり、ダイシングバリの発生メカニズムに基づくと、ダイシングバリは良好に抑制できると推定される。
 Ni以外のSiと化合物を形成する元素もSiと金属間化合物を形成して銅合金中に析出する。そして、Siと化合物を形成する元素の合計濃度とSiの濃度が高いほど、Siと化合物を形成する元素とSiとの金属間化合物が析出する量は増加する。Siと化合物を形成する元素とSiとの金属間化合物の析出量が増加すると、転位がSiと化合物を形成する元素とSiとの金属間化合物によって拘束されるため、延性は低下すると考えられる。
 そうすると、実施例1のNiの一部をNi以外のSiと化合物を形成する元素に置き換えて、且つ、Siと化合物を形成する元素の合計濃度が実施例1のNi濃度より高く、Si濃度が実施例1より高い銅合金については、実施例1と同様に製造した場合、実施例1よりも延性が低下するため、400℃30分加熱した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは、実施例1の伸び4.9%よりも小さい値となると考えられる。
 そのため、実施例1の結果に基づいて得られるSiと化合物を形成する元素であるNi、Co、Crの合計濃度と及びSiの濃度が高い銅合金であって、Niが1.8質量%、Coが1.0質量%、Crが0.15質量%、Siが0.6質量%、残部がCuおよび不可避的不純物から成る組成の銅合金を用いて実施例1と同様に銅合金を製造した例として実施例4が得られる。
 実施例4は400℃30分加熱した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは、実施例4の破断伸び4.9%よりも小さい値となり、ダイシングバリの発生メカニズムに基づくと、ダイシングバリは良好に抑制できると推定される。
 さらに、実施例1の結果及び金属間化合物の析出粒子の形成メカニズムに基づくと、Niが1.6質量%、Siが0.35質量%、残部がCuおよび不可避的不純物から成る組成の銅合金を用いて実施例1と同様に銅合金を製造した例として実施例5が得られる。実施例1よりもNi,Siの添加量が少ないので実施例1よりも400℃30分加熱前の破断伸びは増加する傾向にある。一方でNi以外のSiとの化合物を形成する元素が入っていないので析出粒子が著しく粗大化する可能性は低い。そのため400℃30分加熱した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びはそれほど大きくはならないと推定され、破断伸びは10.0%未満となり、ダイシングバリの発生メカニズムに基づくと、ダイシングバリは良好に抑制できると推定される。
 なお、加熱処理後の銅合金の破断伸びに対する時効処理、仕上げ冷間圧延の関係については下記のことが本発明者らの研究により推察される。
 時効処理の温度を上述の時効処理条件の範囲内において高くすると加熱における軟化を防止するのに有効な析出粒子が粗大化し、加熱により軟化し易くなり、400℃で30分間の加熱処理を行った後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは大きくなると推察される。
 すなわち、他の条件を同じにして時効処理の温度を低くした場合、400℃で30分間の加熱処理した後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びを低減することができると推察される。
 したがって、本実施例1と他の条件を同じにして時効処理の温度を低くした場合、本実施例1より強度が向上したとしても400℃で30分間の加熱処理後後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは10%以下とすることができると推察される。
 また、時効処理の時間を上述の時効処理条件の範囲内において長くすると加熱における軟化を防止するのに有効な析出粒子が粗大化し、加熱により軟化し易くなり、400℃で30分間の加熱処理を行った後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは大きくなると推察される。すなわち、他の条件を同じにして時効処理を短時間にした場合、400℃で30分間の加熱処理後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びを低減することができると推察される。
 したがって、本実施例1と他の条件を同じにして時効処理を短時間にした場合、本実施例1より強度が向上したとしても400℃で30分間の加熱処理後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは10%以下とすることができると推察される。
 仕上げ冷間圧延の加工度については、仕上げ冷間圧延の加工度を高くすると歪が蓄積し、加熱処理で軟化しやすくなると考えられる。
 すなわち、他の条件を同じにして仕上げ冷間圧延の加工度を低くした場合、400℃で30分間の加熱処理後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びを低減することができると推察される。
 したがって、本実施例1と他の条件を同じにして仕上げ冷間圧延の加工度を低くした場合、本実施例より強度は落ちたとしても400℃で30分間の加熱処理後に大気雰囲気中で静置して十分に銅合金の温度が室温まで低下した後に室温(25℃)で測定する場合の破断伸びは10%以下とすることができると推察される。
 以上のことから、所望する強度かつ加熱処理したときの銅合金の破断伸びを10%以下に維持できる銅合金を得ることができる。

Claims (18)

  1.  Siを0.1質量%超と、
     Niと、
    残部銅及び不可避不純物から成り、
     下記の方法で測定した0.2%耐力が550MPa以上であり、かつ、400℃30分加熱後に大気雰囲気中で静置して室温まで低下させて下記の方法で測定したときの破断伸びが10%以下である帯状銅合金材。
      0.2%耐力の測定方法:
     引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における0.2%耐力(YS)をそれぞれ測定する。引張方向が圧延方向と平行な方向になるように、プレス機を用いてJIS13B号試験片を作製する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとする。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の0.2%耐力とする。
      破断伸びの測定方法:
     引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製する。当該試験片を表面の酸化を防止するため、厚みが35μmのタフピッチ銅箔で試料を包装し、外気から遮断された試料について、大気雰囲気で400℃で30分間の加熱を行う。その後、大気雰囲気中で試験片を静置し、銅合金の温度を室温(25℃)まで低下させる。その後にJIS-Z2241(2011)に準拠して、JIS-Z2241(2011)に規定される破断伸び(%)を引張試験機により測定する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとした。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を破断伸び(%)とする。
  2.  さらにSiと化合物を形成する一種以上の元素を含む請求項1に記載の帯状銅合金材。
  3.  前記Siと化合物を形成する一種以上の元素は、Co、Cr、Mn、Mg及びFeからなる群から選択される一種以上の元素である請求項2に記載の帯状銅合金材。
  4.  前記Siと化合物を形成する一種以上の元素を合計で0.5質量%以上含有する請求項2又は3に記載の帯状銅合金材。
  5.  Siを0.1質量%超~1.8質量%と、
     Niと、
     Siと化合物を形成する一種以上の元素を合計で0.5~7.0質量%含有する請求項2~4のいずれか1項に記載の帯状銅合金材。
  6.  Sn及び/又はZnを含有する請求項1~5のいずれか1項に記載の帯状銅合金材。
  7.  Ni:2.2~4.2質量%、Si:0.25~1.2質量%、Pb:0.1質量%未満、Zn:1.0質量%未満、Fe:0.20質量%未満、Mn:0.10質量%未満、Mg:0.05~0.30質量%を含有し、残部Cu及び不可避的不純物からなるCu-Ni-Si系銅合金である請求項6に記載の帯状銅合金材。
  8.  以下の方法で測定した引張強さが800MPa以上である請求項1~7のいずれか1項に記載の帯状銅合金材。
      引張強さの測定方法:
     引張試験機により、JIS-Z2241(2011)に従い、圧延方向と平行な方向における引張強さ(TS)を測定する。その際、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製する。引張試験の条件は、試験片幅12.5mm、室温(25℃)、引張速度5mm/min、ゲージ長さ50mmとする。繰り返し回数N=2(2個の試験片)で試験を行い、2つのデータの平均値を得られた試料の引張強さ(TS)とする。
  9.  導電率が30%以上である、請求項1~8のいずれか1項に記載の帯状銅合金材。
  10.  MAP方式で製造される半導体パッケージに用いられる請求項1~9のいずれか1項に記載の帯状銅合金材。
  11.  請求項1~10のいずれか1項に記載の帯状銅合金材からなる半導体リードフレーム。
  12.  複数のリード部と、コネクティングバーとを備え、前記複数のリード部は前記コネクティングバーを介して繋がっている、請求項11に記載の半導体リードフレーム。
  13.  請求項11又は12に記載の半導体リードフレームを備えてなる半導体集積回路。
  14.  前記半導体リードフレームと、複数の半導体チップと、導線と、を備え、
     前記半導体チップが前記リード部と前記導線で電気的に接続されている請求項13に記載の半導体集積回路。
  15.  請求項13又は14に記載の半導体集積回路を用いてなる電子機器。
  16.  0.2%耐力550MPa以上、かつ400℃で30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びが10%以下である帯状銅合金材を用いてリードフレームを製造する方法。
  17.  前記帯状銅合金材をエッチングする工程を含む、請求項16に記載のリードフレームを製造する方法。
  18.  0.2%耐力550MPa以上かつ400℃30分加熱後に大気雰囲気中で静置して銅合金の温度が室温まで低下したときの破断伸びが10%以下である帯状銅合金材をリードフレームとして使用する方法。
PCT/JP2023/002212 2022-03-29 2023-01-25 帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法 WO2023188748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112104980A TWI842388B (zh) 2022-03-29 2023-02-13 帶狀銅合金材、使用其之半導體引線架、半導體積體電路及電子機器,以及製造引線架之方法及將帶狀銅合金材使用作為引線架之方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052880 2022-03-29
JP2022052880A JP7166476B1 (ja) 2022-03-29 2022-03-29 帯状銅合金材及びその利用方法、帯状銅合金材を用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法

Publications (1)

Publication Number Publication Date
WO2023188748A1 true WO2023188748A1 (ja) 2023-10-05

Family

ID=83931121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002212 WO2023188748A1 (ja) 2022-03-29 2023-01-25 帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法

Country Status (2)

Country Link
JP (3) JP7166476B1 (ja)
WO (1) WO2023188748A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166476B1 (ja) 2022-03-29 2022-11-07 Jx金属株式会社 帯状銅合金材及びその利用方法、帯状銅合金材を用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036129A (ja) * 2012-08-09 2014-02-24 Mitsui High Tec Inc リードフレーム
JP2017179407A (ja) * 2016-03-28 2017-10-05 古河電気工業株式会社 銅合金板材およびコネクタならびに銅合金板材の製造方法
JP2020158837A (ja) * 2019-03-27 2020-10-01 Jx金属株式会社 金型摩耗性に優れたCu−Ni−Si系銅合金条

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190469A (ja) 2010-03-11 2011-09-29 Hitachi Cable Ltd 銅合金材、及びその製造方法
JP6531383B2 (ja) 2014-12-16 2019-06-19 住友ベークライト株式会社 封止用樹脂組成物、半導体装置、および構造体
JP7166476B1 (ja) 2022-03-29 2022-11-07 Jx金属株式会社 帯状銅合金材及びその利用方法、帯状銅合金材を用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036129A (ja) * 2012-08-09 2014-02-24 Mitsui High Tec Inc リードフレーム
JP2017179407A (ja) * 2016-03-28 2017-10-05 古河電気工業株式会社 銅合金板材およびコネクタならびに銅合金板材の製造方法
JP2020158837A (ja) * 2019-03-27 2020-10-01 Jx金属株式会社 金型摩耗性に優れたCu−Ni−Si系銅合金条

Also Published As

Publication number Publication date
JP7166476B1 (ja) 2022-11-07
JP2023145952A (ja) 2023-10-12
JP7300049B1 (ja) 2023-06-28
JP2023147168A (ja) 2023-10-12
JP2023147170A (ja) 2023-10-12
JP7300051B1 (ja) 2023-06-28
TW202338110A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
TWI503425B (zh) 電子機器用銅合金,電子機器用銅合金之製造方法以及電子機器用銅合金軋製材
JP5312920B2 (ja) 電子材料用銅合金板又は条
KR101114656B1 (ko) 다이싱 가공성이 우수한 qfn 패키지용 구리 합금판 및 qfn 패키지
KR101207250B1 (ko) 도전성과 굽힘성을 개선한 Cu-Ni-Si-Mg계 합금
JP4851596B2 (ja) 銅合金材の製造方法
JP5225787B2 (ja) 電子材料用Cu−Ni−Si系合金板又は条
JP2008196042A (ja) 強度と成形性に優れる電気電子部品用銅合金板
JP2006219733A (ja) 異方性の小さい電気電子部品用銅合金板
JP2001335864A (ja) 電気・電子部品用銅合金
JP2014073529A (ja) 合金ワイヤ
JP7126321B2 (ja) Alボンディングワイヤ
WO2023188748A1 (ja) 帯状銅合金材、それを用いた半導体リードフレーム、半導体集積回路及び電子機器、並びにリードフレームを製造する方法及び帯状銅合金材をリードフレームとして使用する方法
KR101582449B1 (ko) 은 합금 본딩 와이어 및 이를 이용한 반도체 장치
KR102285168B1 (ko) Cu-Ni-Si계 구리 합금조 및 그 제조 방법
JP7126322B2 (ja) Alボンディングワイヤ
CN113557596A (zh) Al接合线
JP2012126933A (ja) 電子・電気機器用銅合金
JP5755892B2 (ja) 銅合金板の製造方法
JP5236973B2 (ja) ダイシング加工性に優れるqfnパッケージ用銅合金板
CN115315793A (zh) Al接合线
JP2000080426A (ja) 電子機器用銅合金
CN115280475A (zh) Al接合线
JP2020015986A (ja) Cu−Ni−Si系銅合金条及びその製造方法
TW202136533A (zh) Al接合線
JP2019167612A (ja) Cu−Ni−Si系銅合金条

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778786

Country of ref document: EP

Kind code of ref document: A1