WO2023188300A1 - 溶融混合物、組成物、並びに成形品 - Google Patents

溶融混合物、組成物、並びに成形品 Download PDF

Info

Publication number
WO2023188300A1
WO2023188300A1 PCT/JP2022/016616 JP2022016616W WO2023188300A1 WO 2023188300 A1 WO2023188300 A1 WO 2023188300A1 JP 2022016616 W JP2022016616 W JP 2022016616W WO 2023188300 A1 WO2023188300 A1 WO 2023188300A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
molten mixture
parts
resin
mixture
Prior art date
Application number
PCT/JP2022/016616
Other languages
English (en)
French (fr)
Other versions
WO2023188300A9 (ja
Inventor
洋美 橋場
陽造 山本
Original Assignee
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中越パルプ工業株式会社 filed Critical 中越パルプ工業株式会社
Priority to PCT/JP2022/016616 priority Critical patent/WO2023188300A1/ja
Priority to JP2022544781A priority patent/JP7175429B1/ja
Publication of WO2023188300A1 publication Critical patent/WO2023188300A1/ja
Publication of WO2023188300A9 publication Critical patent/WO2023188300A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to melt mixtures, compositions, and molded articles.
  • biomass materials have attracted attention from the perspective of environmental protection, and composite materials with naturally-derived organic fillers and biopolymers have begun to be used as materials for automobiles, OA, electrical and electronic fields, etc.
  • Patent Document 1 a polyolefin resin composition containing a specific range of terpene phenolic compounds in a resin mixture consisting of cellulose nanofibers prepared by defibrating polysaccharides with a high-pressure water stream and a polyolefin resin.
  • Patent Document 2 a melt mixture containing cellulose nanofibers and a styrene polymer having a weight average molecular weight within a specific range for 1 part by mass of cellulose nanofibers. Disclosed.
  • both of these inventions have shown that it is possible to produce resin compositions or molten mixtures containing cellulose nanofibers that are well dispersed in the resin. Furthermore, all of the compositions were shown to have superior values in mechanical strength, including flexural modulus, etc., than the base resin. However, there is still room for improvement in terms of increasing the adhesion between the resin and cellulose nanofiber interface and improving the dispersibility of cellulose nanofibers in the resin. In addition, there is still room for improvement in the tensile yield point stress and Charpy impact strength of the composition to provide a molded article with high impact resistance.
  • the present invention provides a molten mixture containing a nano natural polymer that has good interfacial adhesion with a resin and is highly dispersible in the resin, and a method for producing the same. With the goal.
  • a further object of the present invention is to provide a composition that can have excellent tensile yield stress and Charpy impact strength while ensuring sufficient mechanical properties.
  • a further object of the present invention is to provide a resin composition with suppressed coloring.
  • the present inventors have discovered that a mixture containing a nano natural polymer having a specific average fiber diameter and average fiber length and a solvent, at least a polyolefin and water. It has been found that the above problems can be solved by blending a molten mixture obtained by melt-mixing a polyolefin resin containing an aqueous dispersion into a resin or the like.
  • the molten mixture of the present invention is a molten mixture containing a mixture containing cellulose nanofibers and a solvent, and 0.05 to 1 part by mass of an aqueous dispersion of polyolefin resin per 1 part by mass of cellulose nanofibers.
  • a resin composition is provided that can have tensile yield stress and Charpy impact strength. Furthermore, a molten mixture capable of suppressing coloring of the resin composition itself and a resin composition with suppressed coloring are provided.
  • FIG. 2 is a conceptual diagram of a CNF production (fibrillation treatment) device.
  • FIG. 2 is a conceptual diagram of another CNF production (fibrillation treatment) device.
  • FIG. 3 is a conceptual diagram showing an enlarged part of the CNF production (fibrillation processing) apparatus in FIG. 2.
  • FIG. 2 is a conceptual diagram of a CNF production (fibrillation treatment) device.
  • FIG. 2 is a conceptual diagram of another CNF production (fibrillation treatment) device.
  • FIG. 3 is a conceptual diagram showing an enlarged part of the CNF production (fibrillation processing) apparatus in FIG. 2.
  • the molten mixture is a mixture consisting of at least a nano natural polymer and an aqueous dispersion of polyolefin resin, which is heated and cooled.
  • the composition is a composition obtained by melt-kneading a melt mixture and a polyolefin, or a melt mixture, a polyolefin, and a modified polyolefin.
  • the nano natural polymer used in the present invention is a fibrous material with a diameter of 1 to less than 1000 nm and a length of 100 times or more of the diameter, or a natural polymer nanofiber with a diameter of 10 to 50 nm and a length of 10 to 50 nm.
  • Natural polymer nanocrystals are rod-shaped or spindle-shaped ultrafine crystals of 100 to 500 nm or less.
  • Natural polymers used in the present invention include, but are not particularly limited to, polysaccharides such as cellulose, chitin, and chitosan, proteins such as collagen and gelatin, polylactic acid, and polycaprolactam.
  • a nano natural polymer having a crystallinity of 50% or more it is preferable to use.
  • a nano natural polymer with low crystallinity the specific surface area of the nano natural polymer decreases, resulting in poor loading ability on the resin, resulting in a decrease in strength, elasticity, and thixotropy, resulting in poor resin molded products. This is because the capacity and workability (fluidity of the resin, shape retention of the resin molded product) are inferior. Also, if the degree of crystallinity is low, it is more likely to rot.
  • a nano natural polymer having an average degree of polymerization in the range of 400 to 900. This is because if the polymerization degree is higher than the average polymerization degree of 900, the specific surface area of the nano natural polymer decreases, resulting in a poor ability to support the resin and a poor reinforcing effect on the resin.
  • the average degree of polymerization is less than 400, the number of steps required for fibrillation increases, resulting in an increase in the cost of producing the nano natural polymer.
  • CNFs include, for example, CNFs derived from polysaccharides including wood fibers, hardwoods, conifers, bamboo fibers, sugarcane fibers, seed hair fibers, leaf fibers, and natural plants such as seaweed. You may use individually or in mixture of 2 or more types. It may also be produced from crop residues derived from leaves, flowers, stems, roots, outer skins, etc. of plants, such as bagasse, rice straw, used tea leaves, and lees from squeezed fruit juice. These CNFs may be used alone or in combination of two or more.
  • the polysaccharide it is preferable to use pulp having an ⁇ -cellulose content of 60% to 99% by mass. If the purity is higher than ⁇ -cellulose content of 60% by mass, the fiber diameter and fiber length can be easily adjusted and entanglement between fibers can be suppressed. Compared to the case, the thermal stability during melting is high, there is no reduction in impact strength, and the effect of suppressing coloring is good, so that the effects of the present invention can be made even more excellent. On the other hand, if 99% by mass or more is used, it becomes difficult to defibrate the fibers to the nano level.
  • the CNF in the present invention is obtained as a CNF dispersion (hereinafter also referred to as CNF in a water-containing state) by performing the following defibration treatment.
  • the defibration process is performed using the underwater opposing collision method (hereinafter also referred to as the ACC method) shown in FIG. This is a method in which pulp suspended in water is introduced into two opposing nozzles (108a, 108b in Figure 1) in a chamber (107 in Figure 1), and these nozzles spray it toward a single point and collide with it. be.
  • the device shown in Figure 1 is of a liquid circulation type, including a tank (109 in Figure 1), a plunger (110 in Figure 1), two opposing nozzles (108a and 108b in Figure 1), and heat if necessary. Equipped with an exchanger (Figure 1: 111), fine particles dispersed in water are introduced into two nozzles and are injected from opposing nozzles ( Figure 1: 108a, 108b) under high pressure to cause them to collide with each other in the water.
  • a defibration process may be performed using a pretreatment device (FIGS. 2 and 3). Further, such a pretreatment device may be used as another defibration method.
  • the defibration treatment using the pretreatment device is performed by colliding high-pressure water of about 50 to 400 MPa against the polysaccharide made into a 0.5 to 10 mass % water mixture. This can be done, for example, using the manufacturing apparatus 1 shown in FIG.
  • the manufacturing apparatus 1 includes a polysaccharide slurry supply path 3, which is a first liquid medium supply path arranged to be able to supply a polysaccharide slurry to one chamber 2, and a non-polysaccharide slurry, such as water, to one chamber. 2, and a second liquid medium supply path 4 which is circulated through the medium.
  • One chamber 2 is provided with an orifice injection section 5 that injects the non-polysaccharide slurry from the second liquid medium supply path 4 in a direction intersecting the polysaccharide slurry supply direction from the polysaccharide slurry supply path 3 .
  • the polysaccharide slurry supply path 3 is enabled to circulate the polysaccharide slurry through one chamber 2 .
  • the polysaccharide slurry supply route 3 and the second liquid medium supply route 4 have a mutual intersection 6 within one chamber 2 .
  • the polysaccharide slurry supply route 3 is a polysaccharide slurry supply unit, and includes a tank 7 for storing polysaccharide slurry, and a pump 8 disposed in a circulation route 9.
  • the second liquid medium supply route 4 has a tank 10, a pump 11, and a heat pump 8.
  • An exchanger 12 and a plunger 13 are arranged in a liquid medium supply path 4 which is a circulation path.
  • non-polysaccharide slurry is, for example, water, and is initially stored in the tank 10, and then passes through the intersection 6 and is stored in the tank 10 as the cellulose nanofiber production apparatus 1 is operated. It also comprehensively refers to substances that are contained in concentrations depending on the degree of operation.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is arranged in such a manner that it passes through the chamber 2, and the non-polysaccharide slurry can be injected through the orifice in a direction that intersects with the circulation path 9 to penetrate the circulation path 9.
  • the orifice injection port 15 of the orifice injection section 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2 .
  • a discharge port 16 of the chamber 2 is provided at a position facing the orifice injection port 15 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 16 of the chamber 2, so that a second liquid medium is supplied.
  • a medium supply path 4 is configured.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is formed using, for example, a vinyl hose, a rubber hose, an aluminum pipe, etc., and the entrance side of the circulation path 9 to the chamber 2 has a valve that is opened only in the direction of the chamber 2.
  • a directional valve 17 is attached.
  • a one-way valve 18 that is opened only in the direction of discharge from the chamber 2 is attached to the outlet side of the circulation path 9 from the chamber 2 .
  • an air suction valve 19 is attached to the circulation path 9 between the chamber 2 and the one-way valve 18, and this air suction valve 19 is opened only in the direction in which air is sucked into the circulation path 9 from the outside.
  • cellulose nanofibers are manufactured in the following manner.
  • the non-polysaccharide slurry is circulated through the chamber 2 and through the second liquid medium supply path 4 .
  • the pump 11 is used to circulate the non-polysaccharide slurry in the tank 10 through the heat exchanger 12 and the plunger 13 in the liquid medium supply path 4 .
  • the polysaccharide slurry is circulated within the polysaccharide slurry supply path 3 via the chamber 2 .
  • a pump 8 is used to circulate the polysaccharide slurry in a tank 7 through a circulation path 9 formed using a vinyl hose, a rubber hose, or the like.
  • the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is injected into the orifice with respect to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2.
  • high-pressure water is supplied from the plunger 13 to an orifice injection port 14 connected to the plunger 13, and is injected from the orifice injection port 15 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
  • the non-polysaccharide slurry is discharged toward the outlet 16 of the chamber 2 while involving the polysaccharide slurry circulating in the circulation path 9, and flows into the second liquid medium supply path 4. This causes the non-polysaccharide slurry to circulate within the second liquid medium supply path 4 again.
  • the polysaccharides in the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2 and in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated.
  • a CNF dispersion liquid with a highly uniform degree of defibration depending on the application can be obtained.
  • the degree of defibration of pulp fibers into CNF can be evaluated by the viscosity value of the CNF dispersion. That is, since the CNF contained in the CNF dispersion having an increased degree of defibration has short fiber length, the viscosity value is low. Therefore, a CNF dispersion liquid with a high degree of defibration has a low viscosity. On the other hand, a CNF dispersion having a higher viscosity value has a higher viscosity value because the CNF contained in the CNF dispersion has a longer fiber length. Therefore, the degree of defibration is lower than that of the CNF dispersion.
  • the viscosity value of the CNF dispersion liquid differs for each pulp fiber.
  • the viscosity of a 1 wt % CNF aqueous dispersion can be adjusted in the range of approximately 300 to 10,000 mPa ⁇ s.
  • CNF used in the present invention undergoes nano-fine refinement by only cleavage of interactions between natural cellulose fibers, so there is no structural change in cellulose molecules and has a structural formula represented by the following chemical formula 1.
  • CNF used in the present invention has six hydroxyl groups in the cellobiose unit in Chemical Formula 1, meaning that it is not chemically modified. This can be confirmed by comparing the IR spectrum of cellulose and CNF used in the present invention using FT-IR.
  • the average fiber length of cellulose fibers can be pulverized to 10 ⁇ m, and as a result, CNF having an average thickness of 3 to 200 nm and an average length of 0.1 ⁇ m or more can be obtained.
  • Cellulose nanocrystals in the present invention can be produced by chemically treating cellulose fibers obtained by the ACC method such as acid hydrolysis using an acid such as sulfuric acid, or by applying a chemical treatment to the cellulose fibers obtained by the ACC method, such as acid hydrolysis using an acid such as sulfuric acid, or to the pulp before micronization treatment by the ACC method. It is obtained by performing chemical treatment such as acid hydrolysis using sulfuric acid or the like, followed by micronization treatment using the ACC method. Cellulose nanocrystals are also called cellulose nanowhiskers.
  • the average thickness and average fiber length were measured by observing and measuring CNF using a scanning electron microscope (SEM), transmission electron microscope (TEM), scanning probe microscope (SPM), etc. as appropriate. It is determined by selecting 20 or more photos and averaging them.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • SPM scanning probe microscope
  • the cellulose nanofiber obtained by the present ACC method has both hydrophilic sites and hydrophobic sites and exhibits amphiphilic properties.
  • cellulose nanofibers include a TEMPO oxidation catalyst, phosphoric acid esterification treatment, ozone treatment, enzyme treatment, maleic acid treatment, hydrophobic modification with alkenylsuccinic anhydride, and alkyl ketene dimer.
  • Cellulose nanofibers are obtained by chemical treatments such as hydrophobic modification by hydrophobic modification and hydrophobic modification by acetylation, or cellulose is obtained by wet grinding using mechanical action such as a grinder (stone mill type crusher), disc type refiner, or conical refiner. Even cellulose nanofibers obtained by a physical method of thinning the fibers can be used as the CNF dispersion in the present invention.
  • cellulose nanofibers obtained by a method that uses a combination of chemical treatment and physical treatment can also be used as a CNF dispersion.
  • the CNF concentration of the CNF dispersion obtained as described above is usually in the range of 0.1 to 10%.
  • the obtained CNF dispersion is desolvated to have a CNF solid content concentration in the range of 20 to 50%.
  • the CNF solid content concentration is less than 20%, aggregates are likely to be formed between the cellulose nanofibers during production of the molten mixture, and the aggregates become a factor in deteriorating the dispersibility in the resin. Furthermore, the amount of solvent increases, leading to loss of thermal energy during production of the molten mixture.
  • the solid content concentration is higher than 50%, some of the CNFs have already aggregated with each other, and the aggregates cannot be redispersed during production of the molten mixture, which is not preferable.
  • the solvent only needs to contain water, and even if it contains other solvents such as organic solvents in addition to water, it can be used without particular limitation.
  • Aqueous dispersions of polyolefin resins are those in which polyolefins are dispersed in water, and can be produced by dispersing a kneaded mixture of polyolefins and a water-soluble polymer such as polyvinyl alcohol in water, or by dispersing polyolefins and carboxyl group-containing polyolefins in water. After melt-kneading, it can be produced by a method such as supplying it into hot water containing a basic substance and applying shearing force to obtain a dispersion.
  • the polyolefin used here is a crystalline or amorphous olefin polymer. Further, it may contain a diene.
  • olefin constituting the polymer examples include, in addition to ethylene, ⁇ -olefins such as propylene, butene-1, pentene-1, hexene-1, and octene-1. These may be used alone or in combination.
  • Dienes include isoprene, butadiene, dicyclopentadiene, pentadiene-1,4, 2-methyl-pentadiene-1,4, hexadiene-1,4, divinylbenzene, methylidene norbornene, ethylidene norbornene, etc. However, they may be used in combination. Furthermore, styrene, vinyl acetate, acrylic acid, acrylic acid esters such as methyl acrylate, methacrylic acid esters such as methacrylic acid, methyl methacrylate, etc. can also be used.
  • polyolefins include polyethylene, polypropylene, ethylene/propylene copolymer, ethylene/butene-1 copolymer, propylene/butene-1 copolymer, ethylene/propylene/hexadiene-1,4 copolymer, and ethylene.
  • Polyolefins include polyethylene, polypropylene, ethylene/propylene copolymer, ethylene/butene-1 copolymer, propylene/butene-1 copolymer, ethylene/propylene/hexadiene-1,4 copolymer, and ethylene.
  • Polypropylene/propylene/5-ethylidene-2-norbornene copolymer ethylene/propylene/5
  • the water-soluble polymer to be mixed with the polyolefin is saponified polyvinyl alcohol, etc., and is not particularly limited.
  • the carboxyl group-containing polyolefin is one obtained by reacting the above-mentioned polyolefin with maleic anhydride, maleic acid, fumaric acid, etc., or one obtained by copolymerizing acrylic acid, methacrylic acid, etc.
  • an anionic surfactant and/or a nonionic surfactant may be included in the mixture.
  • the solid content concentration of the aqueous dispersion of polyolefin resin produced in this manner is usually 10 to 70%, and the average particle size of the solid particles is 0.01 to 20 ⁇ m. Note that the average particle size can be measured by either the coal counter method or the microtrack method.
  • the molten mixture of the present invention may further contain a silane coupling agent.
  • the silane coupling agent is used to improve the adhesion between the cellulose nanofibers and the resin used in the composition.
  • a silane coupling agent is an organosilicon compound having both a hydrolyzable group and an organic functional group in one molecule.
  • a hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond through a hydrolysis reaction and/or a condensation reaction. Generally, it represents a hydrogen atom or an alkyl group having 1 or more and 22 or less carbon atoms. The alkyl group may be linear, branched, or cyclic.
  • the substituents may be the same or different from each other.
  • the organic functional group is generally preferably at least one selected from vinyl group, epoxy group, styryl group, methacrylic group, acrylic group, amino group, ureido group, mercapto group, sulfide group, isocyanate group, isocyanurate group, etc. .
  • the organic functional groups may be the same or different from each other.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • the melt mixture of the present invention may further contain a modified polyolefin.
  • Modified polyolefin is used to improve the dispersibility between cellulose nanofibers and other components.
  • the molten mixture of the present invention may contain both (B-1: silane coupling agent) and (B-2: modified polyolefin).
  • the modified polyolefin is not particularly limited as long as it is a polyolefin modified to impart polarity, but examples thereof include polypropylene modified with (anhydrous) carboxylic acid, epoxide, oxazoline, isocyanate, carbodiimide, etc., preferably polyolefin Examples include maleic acid-modified polypropylene, carbodiimide-modified polypropylene, and epoxy-modified polypropylene.
  • a modified polyolefin having a weight average molecular weight of 500,000 or less, preferably 300,000 or less, more preferably 200,000 or less may be used.
  • the molten mixture of the present invention preferably contains an aqueous dispersion of (B) polyolefin resin based on 1 part by mass of (A) cellulose nanofibers, preferably from 0.05 to 1 part by mass, preferably from 0.1 part by mass on a solid basis.
  • the amount is 0.5 part by weight, more preferably 0.2 part to 0.3 part by weight. If the aqueous dispersion of polyolefin resin is less than 0.05 part by mass, it will have no effect on the dispersibility of cellulose nanofibers, and if it is more than 1 part by mass, it will act as a lubricant, and water in the molten mixture will not come out without shearing. It is.
  • the molten mixture contains (B-1: silane coupling agent), based on 100 parts by mass of the molten mixture consisting of (A) nano natural polymer and (B) aqueous dispersion of polyolefin resin, (B-1)
  • the silane coupling agent may be blended in an amount of 1.8 parts by mass or more and 13.2 parts by mass or less.
  • the molten mixture contains (B-2: modified polyolefin), based on 100 parts by mass of the molten mixture consisting of (A) nano natural polymer and (B) aqueous dispersion of polyolefin resin, (B-2) (modified polyolefin) may be blended in an amount of 1 part by mass or more and 30 parts by mass or less.
  • the molten mixture contains (B-1: silane coupling agent) and (B-2: modified polyolefin), an aqueous dispersion of (A) nano natural polymer and (B) polyolefin resin.
  • B-1 silane coupling agent
  • B-2 modified polyolefin
  • (B-1) 1.8 parts by mass or more of a silane coupling agent and 13.2 parts by mass or less
  • (B-2) (modified polyolefin) 1 part by mass or more for 100 parts by mass of a molten mixture consisting of , 30 parts by mass or less.
  • the molten mixture of the present invention is prepared by mixing (A) a mixture containing cellulose nanofibers and a solvent and (B) an aqueous dispersion of polyolefin resin using a mixer, etc. It can be obtained by heating, shearing, and removing the solvent.
  • the method for producing a molten mixture includes a mixing step of mixing (A) a mixture containing cellulose nanofibers and a solvent and (B) an aqueous dispersion of polyolefin resin to obtain a mixture.
  • the reason for using an aqueous dispersion of polyolefin resin is that both components (A) and (B) are in the form of water-insoluble components dispersed in water, and it is also difficult to produce a composition containing polyolefin. This is because the presence of olefin in the molten mixture can improve the dispersibility of cellulose nanofibers and resin.
  • a high-speed mixer such as a tumble mixer, Henschel mixer, ribbon blender, super mixer, etc. can be used as the device used for mixing.
  • the moisture content of the resulting molten mixture is preferably 5.0% or less, preferably 3.0% or less, more preferably 1.0% or less. This is because if the moisture value of the molten mixture is higher than 5.0%, the dispersibility of the nano natural polymer becomes poor when the molten mixture (D) is mixed with the resin (C) described below.
  • the means for pulverizing is not particularly limited as long as it can heat and apply shearing force.
  • a single-screw extruder, a twin-screw extruder, a twin-screw kneader, a kneader, a Banbury mixer, a reciprocating kneader, a roll kneader, etc. can be exemplified.
  • a continuous extruder such as a twin-screw kneader because the work can be carried out continuously up to the step of kneading the resin etc., resulting in good efficiency.
  • a deaeration facility or the like may be used.
  • the heating conditions for the nano natural polymer mixture such as the heating time, are not particularly limited.
  • the form of the molten mixture can be made into a powder-like molten mixture or a pellet-like molten mixture. Furthermore, if a T-die is installed in an extruder or the like, a sheet-like molten mixture can be obtained.
  • Components of the resin (C) used in the composition of the present invention include (C-1) thermoplastic resin, (C-2) thermosetting resin, or (C-3) rubber.
  • thermoplastic resin refers to a resin that is melt-molded by heating.
  • specific examples include polyethylene (HDPE, MDPE, LDPE, LLDPE), polyvinyl chloride, polypropylene, polystyrene, ABS resin, AS resin (copolymer of polystyrene and acrylonitrile), general-purpose plastics such as methacrylic resin, polyamide, General-purpose engineering plastics such as polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polyethylene for ultrahigh polymers, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, polyetherimide, polyetherketone, polyimide, liquid crystal polymer , super engineering plastics such as fluororesins, and biodegradable plastics such as polylactic acid, polycaprolactone, and polybutylene succinate.
  • Resins that can be used in liquids such as PVA
  • thermosetting resin in the resin composition of the present invention, when (C-2) thermosetting resin is used as the (C) matrix component, the thermosetting resin is the resin composition of the present invention. In products, it exists in a uniformly dispersed state with cellulose nanofibers.
  • thermosetting resins include epoxy resins, phenolic resins, urea resins, melamine resins, polyurethanes, unsaturated polyester resins, silicone resins, polyimide resins, dilyaphthalate resins, and the like.
  • Resins that can be used as liquids such as dicyclopentadiene resins that are soluble in water and are liquid at room temperature can also be used.
  • these thermosetting resins can be used individually or in combination of two or more types.
  • Polymerized rubber polybutadiene, styrene-butadiene block copolymer rubber, styrene-butadiene copolymer rubber, partially hydrogenated styrene-butadiene-styrene block copolymer rubber, styrene-isoprene block copolymer rubber, partially hydrogenated styrene-isoprene block copolymer Rubber, polyurethane rubber, styrene grafted ethylene-propylene-nonconjugated diene copolymer rubber, styrene-grafted ethylene-propylene copolymer rubber, styrene/acrylonitrile-grafted ethylene-propylene-nonconjugated diene copolymer rubber, styrene/acrylonitrile Examples include -graft-ethylene-propylene copolymer rubber, chlorosulfonated polyethylene rubber, silicone rubber, ethylene-vin
  • these rubbers can be used individually or in combination of two or more types.
  • a polymer alloy formed by blending these rubbers with the resins (C-1) and (C-2) above may also be used. Rubbers that can be used in liquid form, such as latex rubber, can also be used. Note that the content of rubber in the polymer alloy is preferably 50% by mass or less from the viewpoint of adding new properties to the properties of the resin.
  • component (C) is less than 40% by mass, moldability will be poor and a composite will not be obtained in the kneading process of the composition, while if it exceeds 99.5% by mass, differentiation from the resin component alone will be poor. This is because it becomes difficult.
  • component (D) is 0.5 to 60% by mass
  • Component (C) is 35 to 99% by mass
  • the method for producing the composition of the present invention is obtained by the step of compounding (D) the molten mixture and (C) the resin while melt-kneading.
  • the kneading device known kneading devices such as a single-screw extruder, a twin-screw extruder, a twin-screw kneader, a kneader, a Banbury mixer, a reciprocating kneader, and a roll kneader can be used.
  • the temperature during melt-kneading in the production of the composition of the present invention is appropriately set depending on the melting temperature of component (C), but for example, it may be set at a temperature 20 to 30°C higher than the melting point of component (C).
  • the temperature is below the melting point, the resin to be kneaded will not melt, making it virtually impossible to manufacture. If it exceeds this range, the fluidity of component (C) will increase too much, making it difficult to pelletize, or (A) the nano natural polymer will be damaged by heat, resulting in molecular chain rupture and oxidative deterioration. , degeneration, etc. occur, which not only deteriorate mechanical properties but also lead to generation of unpleasant odor and discoloration.
  • thermosetting resin is used as component (C)
  • no curing catalyst or curing agent is added during this melt-kneading to prevent thermosetting from occurring during this melt-kneading. It is necessary to take measures.
  • the molten mixture or composition of the present invention may contain other resins during mixing, molding, or manufacturing, as long as the physical properties are not impaired or for the purpose of imparting functionality such as impact resistance and energy absorption.
  • Additives such as various thermoplastic elastomers such as styrene, olefin, vinyl chloride, urethane, ester, amide, 1,2-BR, or fluorine, compatibilizers, surfactants, starches, Polysaccharides, gelatin, glue, natural proteins, tannins, zeolites, ceramics, metal powders, pigments, dyes, reinforcing agents, fillers, heat resistant agents, oxidation inhibitors, heat stabilizers, weathering agents, lubricants, mold release agents, crystals Nucleating agents, coloring agents, fragrances, leveling agents, plasticizers, fluidity improvers, conductive agents, antistatic agents, etc., ultraviolet absorbers, ultraviolet dispersants, deodorants, or metal soaps can be added.
  • the content of any additive may be contained as appropriate within a range that does not impair the effects of the present invention, but for example, in a molten mixture, it is desirable that the content is 50% by mass or less in the molten mixture. Further, in the composition, the content is preferably about 15% by mass or less, more preferably about 10% by mass or less.
  • thermoplastic elastomer in the present invention examples include a mixture of a polymer consisting of hard segments and a polymer consisting of soft segments, a copolymer of a polymer consisting of hard segments and a polymer consisting of soft segments, etc. .
  • Examples of hard segments in the styrene thermoplastic elastomer include segments made of polystyrene.
  • Examples of the soft segment include polybutadiene, hydrogenated polybutadiene, polyisoprene, and segments made of hydrogenated polyisoprene.
  • SBS styrene-butadiene-styrene
  • SIS styrene-isoprene-styrene
  • SEBS styrene-ethylene-butylene-styrene
  • SEPS styrene-butadiene-butylene-styrene
  • SBBS styrene-butadiene-butylene-styrene
  • Examples of the hard segment of the polyolefin elastomer include segments made of polypropylene, propylene-ethylene copolymers, polyethylene, and the like.
  • Examples of the soft segment include polyethylene and a copolymer of ethylene and a small amount of diene component.
  • ethylene-butene copolymer EPR (ethylene-propylene copolymer), modified ethylene-butene copolymer, EEA (ethylene-ethyl acrylate copolymer), modified EEA, modified EPR, modified EPDM (ethylene-propylene-diene terpolymer), ionomer, ⁇ -olefin copolymer, modified IR (isoprene rubber), modified SEBS (styrene-ethylene-butylene-styrene copolymer), halogenated isobutylene-paramethyl Examples include styrene copolymers, ethylene-acrylic acid modified products, ethylene-vinyl acetate copolymers, acid-modified products thereof, and mixtures containing these as main components. These may be used alone or in combination of two or more.
  • polyester thermoplastic elastomers include those obtained by copolymerizing a polyester structure as a hard segment and polyether or polyester as a soft segment.
  • examples of hard segments include polyurethanes produced by the reaction of diisocyanates and short-chain diols as chain extenders.
  • examples of the soft segment include polymer diols such as polyester diols, polyether diols, and polycarbonate diols.
  • Examples of the compatibilizer in the present invention include compounds consisting of a polar group that has a high affinity for cellulose and a hydrophobic group that has a high affinity for a resin. More specifically, examples of the polar group include maleic anhydride, maleic acid, and glycidyl methacrylate, and examples of the hydrophobic group include polypropylene, polyethylene, and the like.
  • Examples of the metal soap in the present invention include, but are not limited to, metal salts of aliphatic carboxylic acids, metal salts of alicyclic carboxylic acids, metal salts of aromatic carboxylic acids, and preferably those having 35 or less carbon atoms. It is a metal salt of an aliphatic carboxylic acid, more preferably a metal salt of a monocarboxylic acid having 35 or less carbon atoms, and even more preferably a metal salt of a monocarboxylic acid having 10 to 32 carbon atoms.
  • metal salts include salts of alkali metals, alkaline earth metals, zinc, etc. Among these, zinc is preferred.
  • the crystal nucleating agent in the present invention is not particularly limited, but from the viewpoint of impact resistance and moldability of the resin composition, compounds having a hydroxyl group and an amide group in the molecule, phenylphosphonic acid metal salts, phthalocyanines, phosphoric esters, etc. From metal salts, metal salts of aromatic sulfonic acid dialkyl esters, metal salts of rosin acids, aromatic carboxylic acid amides, rosin acid amides, carbohydrazides, N-substituted ureas, salts of melamine compounds, uracils, and talc. It is preferable that it is at least one selected from the group consisting of:
  • surfactants in the present invention include the following.
  • Ionic surfactants include cationic surfactants, zwitterionic surfactants and anionic surfactants.
  • the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • amphoteric surfactants include alkyl betaine surfactants and amine oxide surfactants.
  • anionic surfactants include alkylbenzene sulfonates such as dodecylbenzenesulfonic acid, aromatic sulfonic acid surfactants such as dodecyl phenyl ether sulfonate, monosoap anionic surfactants, and ether sulfate surfactants. Examples include active agents, phosphate surfactants, and carboxylic acid surfactants.
  • nonionic surfactants examples include sugar ester surfactants such as sorbitan fatty acid ester and polyoxyethylene sorbitan fatty acid ester, fatty acid ester surfactants such as polyoxyethylene resin acid ester and polyoxyethylene fatty acid diethyl ester.
  • alkyl may be an alkyl having 1 to 20 carbon atoms. These surfactants may be used alone or in combination of two or more.
  • the composition of the present invention obtained as described above is made into a molded article by various molding methods, but the molding method varies depending on the thermoplastic resin composition, thermosetting resin composition, and rubber composition. It has a surface and can be molded using the following molding methods as appropriate. That is, if a plate-shaped product is manufactured from the composition of the present invention, extrusion molding is generally used, but flat pressing is also possible. In addition, it is possible to use a profile extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, etc.
  • a solution casting method can be used in addition to the melt extrusion method.
  • a molded article can be manufactured using various curing methods using active energy rays.
  • thermoplastic resin when adding cellulose nanofibers to liquid thermoplastic resin, there is a molding method in which the molding material is made into prepreg and heated under pressure using a press or an autoclave.
  • RTM Resin Transfer Molding
  • examples include VaRTM (Vaccum assist Resin Transfer Molding) molding, FW (Filament Winding) molding, lamination molding, hand lay-up molding, and the like.
  • Example 1 Using Mechano Hybrid (Nippon Coke Industry Co., Ltd., model: MMH-75B/I), an aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 50%, moisture 50%, average degree of polymerization 810) and polyolefin resin. John (manufactured by BIC Chemie Japan Co., Ltd.: HORDAMAR PE02, polyethylene, nonvolatile rate 40%) at a ratio of 9:1 (1:0.1) to obtain a mixture. Next, the obtained mixture was subjected to a twin screw extruder (Japan Steel Works, Ltd., model: TEX25 ⁇ III) to obtain a molten mixture. The screw diameter was ⁇ 25 mm, and the average cylinder temperature was 121°C.
  • Example 2 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl A100, PE-based elastomer, solid content concentration 40%, Particle size: 4 ⁇ m (coal counter method; viscosity: 5000 mPa ⁇ s (6 rotations of B-type viscometer)) A molten mixture was obtained in the same manner as in Example 1.
  • Example 3 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Inc.: Chemipearl M200, LDPE, solid content concentration 40%, particle size 0.7 ⁇ m (coal counter method) viscosity 5000 mPa ⁇ s (6 rotations of B-type viscometer))) was mixed at a ratio of 9:1 (1:0.1), and the average cylinder temperature was 125 ° C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 4 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl S500, ionomer, solid content concentration 42%, particle size 0.7 ⁇ m (microtrack method) viscosity 150 mPa ⁇ s (B-type viscometer 6 rotations)) was mixed at a ratio of 9:1 (1:0.1), and the average cylinder temperature was 124 ° C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 5 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl S300, ionomer, solid content concentration 35%, particle size 0.5 ⁇ m (microtrack method) viscosity 400 mPa ⁇ s (B-type viscometer 6 rotations)) was mixed at a ratio of 9:1 (1:0.1), and the average cylinder temperature was 125 ° C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 6 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl W401, polyethylene wax, solid content concentration 40%, granules
  • the diameter was 1 ⁇ m (Microtrack method)
  • the viscosity was 500 mPa ⁇ s (B-type viscometer 60 revolutions)
  • the ratio was 9:1 (1:0.1)
  • the average cylinder temperature was 127°C.
  • a molten mixture was obtained in the same manner as in Example 1.
  • Example 7 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Inc.: Chemipearl W700, polyethylene wax, solid content concentration 40%, granules All except that the ratio was 9:1 (1:0.1) with a diameter of 1 ⁇ m (micro track method) and a viscosity of 800 mPa ⁇ s (60 revolutions of a B-type viscometer), and the average cylinder temperature was 125°C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 8 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 20%, moisture 80%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl W500, polyethylene wax, solid content concentration 40%, granules Other than mixing with a diameter of 2.5 ⁇ m (coal counter method) and a viscosity of 1000 mPa ⁇ s (B-type viscometer 60 revolutions) at a ratio of 9:1 (1:0.1) and an average cylinder temperature of 128 ° C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 9 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl S100, ionomer, solid content concentration 27%, particle size 0.1 ⁇ m (microtrack method) viscosity 500 mPa ⁇ s (B-type viscometer 6 rotations)) was mixed at a ratio of 9:1 (1:0.1), and the average cylinder temperature was 127 ° C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 10 Aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin (manufactured by Mitsui Chemicals, Ltd.: Chemipearl V300, EVA, solid content concentration 40%, particle size 6 ⁇ m (coal counter method) viscosity 7000mPa ⁇ s (B-type viscometer 6 rotations)) was mixed at a ratio of 9:1 (1:0.1), and the average cylinder temperature was 124°C. A molten mixture was obtained in the same manner as in Example 1.
  • Example 11 Using MechanoHybrid (Nippon Coke Industry Co., Ltd., model: MMH-75B/I), an aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin. John (manufactured by BIC Chemie Japan Co., Ltd.: HORDAMAR PE02)) with a ratio of 9:1 (1:0.1), As a silane coupling agent, 3.3 parts by mass of 3-glycidoxypropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-403) was mixed with 100 parts by mass of the mixture. And so. A molten mixture was obtained by using a twin-screw extruder (Japan Steel Works, Model: TEX25 ⁇ III). The screw diameter was ⁇ 25 mm, and the average cylinder temperature was 123°C.
  • Example 12 The procedure was the same as in Example 11 except that 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-503) was used as the silane coupling agent and the average cylinder temperature was 124°C. A molten mixture was obtained.
  • Example 13 Except that N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-603) was used as the silane coupling agent, and the average cylinder temperature was 124°C. A molten mixture was obtained in the same manner as in Example 11.
  • Example 14 As a silane coupling agent, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-603) diluted 20 times was used, and the average cylinder temperature was 123. A molten mixture was obtained in the same manner as in Example 11 except that the temperature was changed to .degree.
  • Example 15 As a silane coupling agent, 13.2 parts by mass of 3-glycidoxypropyltrimethoxysilane (manufactured by Dow Toray Industries, Inc.: OFS-6040 Silane) was used with respect to 100 parts by mass of the mixture, and the average cylinder temperature was A molten mixture was obtained in the same manner as in Example 11 except that the temperature was 123°C.
  • Example 16 As a silane coupling agent, 1.8 parts by mass of 3-glycidoxypropyltrimethoxysilane (manufactured by Dow Toray Industries, Inc.: OFS-6040 Silane) was used with respect to 100 parts by mass of the mixture, and the average cylinder temperature was A molten mixture was obtained in the same manner as in Example 11 except that the temperature was 123°C.
  • Example 17 Using MechanoHybrid (Nippon Coke Industry Co., Ltd., model: MMH-75B/I), an aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 31%, moisture 69%, average degree of polymerization 810) and polyolefin resin.
  • Maleic anhydride-modified polypropylene ((BIK Chemie Japan Co., Ltd.: SCONA TSPP) was added to 100 parts by mass of the mixture with a ratio of 9:1 (1:0.1) to John (manufactured by Mitsui Chemicals Co., Ltd.: Chemipearl W401). 22113GA)) was mixed in an amount of 12 parts by mass to obtain a mixture.
  • a twin screw extruder Japan Steel Works, Ltd., model: TEX25 ⁇ III
  • Example 18 Using MechanoHybrid (Nippon Coke Industry Co., Ltd., model: MMH-75B/I), an aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin. John (manufactured by BIC Chemie Japan Co., Ltd.: HORDAMAR PE02) was mixed at a mass % ratio of 9:1 to obtain a mixture. Next, the obtained mixture was subjected to a twin screw extruder (Japan Steel Works, Ltd., model: TEX25 ⁇ III) to obtain a molten mixture.
  • a twin screw extruder Japan Steel Works, Ltd., model: TEX25 ⁇ III
  • the screw diameter was ⁇ 25 mm, and the average cylinder temperature was 125°C.
  • polypropylene manufactured by Prime Polymer Co., Ltd.: J105G, injection molding grade, MFR9
  • maleic anhydride-modified polypropylene (manufactured by BYK Chemie Japan Co., Ltd.: SCONA TSPP 22113GA)) were mixed at 33.3:
  • the mixture was mixed at a mass % ratio of 64.7:2.0, supplied to a twin-screw extruder (Japan Steel Works, Model: TEX25 ⁇ III), melted and kneaded at 180°C, and pelletized.
  • the obtained pellets were dried at 80°C for 12 hours and then injection molded using an injection molding machine (Nissei Jushi Kogyo Co., Ltd., model: NEX80IV) under conditions of a cylinder temperature of 190°C and a mold of 50°C to obtain a multipurpose test piece. A1 was produced.
  • Example 19 Using MechanoHybrid (Nippon Coke Industry Co., Ltd., model: MMH-75B/I), an aqueous dispersion of CNF water mixture derived from softwood pulp (CNF solid content 30%, moisture 70%, average degree of polymerization 810) and polyolefin resin. John (manufactured by BIC Chemie Japan Co., Ltd.: HORDAMAR PE02) was mixed at a mass % ratio of 9:1 to obtain a mixture.
  • the obtained pellets were dried at 80°C for 12 hours and then injection molded using an injection molding machine (Nissei Jushi Kogyo Co., Ltd., model: NEX80IV) under conditions of a cylinder temperature of 190°C and a mold of 50°C to obtain a multipurpose test piece. A1 was produced.
  • Example 20 A multipurpose test piece A1 was prepared in the same manner as in Example 19, except that the ratio of the molten mixture, polypropylene, and maleic anhydride-modified polypropylene was 57.7:34.3:8.
  • Example 21 to 30 Examples 2 to 8 and Examples 15 to 17, the melt mixture obtained in Reference Example 1, polypropylene (made by Prime Polymer Co., Ltd.: J105G, injection molding grade, MFR 9) and maleic anhydride-modified polypropylene (BIK Chemie Japan) Co., Ltd.: SCONA TSPP 22113GA) were mixed at a ratio of 64.7:33.3:2.0 mass% and fed to a twin screw extruder (Japan Steel Works, Ltd., model: TEX25 ⁇ III). , melt-kneaded at 180°C and pelletized.
  • polypropylene made by Prime Polymer Co., Ltd.: J105G, injection molding grade, MFR 9
  • maleic anhydride-modified polypropylene (BIK Chemie Japan) Co., Ltd.: SCONA TSPP 22113GA) were mixed at a ratio of 64.7:33.3:2.0 mass% and fed to a twin screw extruder (Japan Steel Works, Ltd., model: TEX25 ⁇
  • the obtained pellets were dried at 80°C for 12 hours and then injection molded using an injection molding machine (Nissei Jushi Kogyo Co., Ltd., model: NEX8IV) under conditions of a cylinder temperature of 190°C and a mold of 50°C to obtain multipurpose test pieces. A1 was produced.
  • the screw diameter was ⁇ 25 mm, and the average cylinder temperature was 113°C.
  • the obtained powdered cellulose nanofibers, polypropylene (manufactured by Prime Polymer Co., Ltd.: J105G, injection molding grade, MFR9) and maleic anhydride-modified polypropylene ((manufactured by BIC Chemie Japan Co., Ltd.: SCONA TSPP 22113GA) were mixed in 42.
  • the mixture was mixed in a mass % ratio of 9:55.1:2.0, supplied to a twin screw extruder (Japan Steel Works, Model: TEX25 ⁇ III), melted and kneaded at 180°C, and pelletized.
  • the obtained pellets were dried at 80°C for 12 hours and then injection molded using an injection molding machine (Nissei Jushi Kogyo Co., Ltd., model: NEX80IV) at a cylinder temperature of 190°C and a mold temperature of 50°C to obtain a multipurpose test piece A1. was created.
  • an injection molding machine Nei Jushi Kogyo Co., Ltd., model: NEX80IV
  • the molten mixture of the present invention has excellent uniform dispersibility in resin, compatibility with resin, and interfacial adhesion, so it can be easily and uniformly blended into thermoplastic resin, thermosetting resin, or rubber component. can. Furthermore, parts for various uses can be obtained by general resin molding methods such as injection molding.
  • industrial mechanical parts e.g., industrial mechanical parts, general mechanical parts, automobile/railroad/vehicle parts (e.g., outer panels, chassis, aerodynamic parts, tires, seats, etc.), marine parts (e.g., hulls, seats, etc.), aviation-related parts (e.g., Seats, interior materials, etc.), spacecraft/satellite components (motor cases, antennas, etc.), electronic/electrical components, sliding components (gears, gears, bearings, metals, etc.), architectural/civil engineering materials, water treatment materials (prevention It can also be suitably used for vibration isolation materials, bearings, etc.), paints, inks, adhesives, sealants, coating agents, binders, packaging, packaging, film materials, etc.
  • vibration isolation materials e.g., vibration isolation materials, bearings, etc.
  • paints e.g., inks, adhesives, sealants, coating agents, binders, packaging, packaging, film materials, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】樹脂との界面密着性が良好で、かつ、樹脂中での分散性が高いセルロースナノファイバーを含む溶融混合物、及び、成形品が、十分な機械的特性を確保しつつ、優れた引張降伏応力及びシャルピー衝撃強度を有することができる樹脂組成物を提供する。 【解決手段】 セルロースナノファイバーと溶媒とを含む混合物と、セルロースナノファイバー1質量部に対して、ポリオレフィン樹脂の水性ディスパージョンを0.05~1質量部含む、溶融混合物。 

Description

溶融混合物、組成物、並びに成形品
 本発明は、溶融混合物、組成物、並びに成形品に関する。
 近年、環境保護の観点からバイオマス材料が注目されており、自動車、OA・電気電子分野等に向けた材料として天然由来の有機充填材やバイオポリマーとの複合材料が、使用され始めている。
 本願出願人は、特許文献1に多糖を高圧水流にて解繊してなるセルロースナノ繊維、ポリオレフィン樹脂からなる樹脂混合物に対し、特定の範囲のテルペンフェノール系化合物を含むポリオレフィン樹脂組成物を開示した。
 また、本願出願人は、特許文献2に、セルロースナノファイバーと、セルロースナノファイバー1質量部に対して、重量平均分子量が特定の範囲にあるスチレン系重合体を、特定の範囲で含む溶融混合物を開示した。
 これら両発明は、セルロースナノファイバーを含有する、樹脂組成物或いは溶融混合物を樹脂中に良好に分散させた組成物を製造することが可能であることを示した。また、いずれの組成物も、ベース樹脂よりも、曲げ弾性率等を初めとする機械的強度に優れた値を有する物であることを示した。
しかしながら、樹脂とセルロースナノファイバーの界面の密着性を高め、樹脂中におけるセルロースナノファイバーの分散性を改善するという点において、未だ追求の余地がある。
また、組成物の引張降伏点応力やシャルピー衝撃強さの値を改善し、高い耐衝撃性能を有する成形品を提供するという点において、未だ追求の余地がある。
特許6502645号 特許6704551号
 本発明は、以上の従来技術における問題に鑑み、樹脂との界面密着性が良好で、かつ、樹脂中での分散性が高いナノ天然高分子を含む溶融混合物、およびその製造方法を提供することを目的とする。
 また、本発明は、十分な機械的特性を確保しつつ、優れた引張降伏点応力及びシャルピー衝撃強度を有することができる組成物を提供することをさらなる目的とする。
 さらに、本発明は、着色が抑えられた樹脂組成物を提供することをさらなる目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った結果、特定の平均繊維径及び平均繊維長を有するナノ天然高分子と溶媒とを含む混合物と、少なくとも、ポリオレフィンと水とを含むポリオレフィン樹脂の水性ディスパージョンとを溶融混合して得られる溶融混合物を樹脂等へ配合することにより、上記課題を解決し得ることを見出した。
すなわち、本発明の溶融混合物は、セルロースナノファイバーと溶媒とを含む混合物と、セルロースナノファイバー1質量部に対して、ポリオレフィン樹脂の水性ディスパージョンを0.05~1質量部含む溶融混合物である。
 本発明により、樹脂との界面密着性が良好で、かつ、樹脂中での分散性が高いナノ天然高分子を含む溶融混合物と、成形品が、十分な機械的特性を確保しつつ、優れた引張降伏応力及びシャルピー衝撃強度を有することができる樹脂組成物が提供される。また、樹脂組成物自体の着色を抑えることのできる溶融混合物並びに着色が抑えられた樹脂組成物が提供される。 
CNFの製造(解繊処理)装置の概念図である。 他のCNFの製造(解繊処理)装置の概念図である。 図2におけるCNFの製造(解繊処理)装置の一部を拡大して示す概念図である。
以下、本発明を実施例に基づき、より具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
(用語の定義)
本発明において、溶融混合物とは、少なくとも、ナノ天然高分子とポリオレフィン樹脂の水性ディスパージョンとからなる混合物に、熱を加えて、冷却したものである。
本発明において、組成物とは、溶融混合物とポリオレフィン又は溶融混合物とポリオレフィンと変性ポリオレフィンとを溶融混練して得られる組成物である。
[(A)ナノ天然高分子]
 本発明に用いるナノ天然高分子としては、直径が1~1000nm未満の繊維状物質であり、長さが直径の100倍以上である天然高分子ナノファイバー、又は直径が10~50nm、長さが100~500nm以下の棒状、あるいは紡錘形をした超微細結晶である天然高分子ナノクリスタルである。
 本発明に用いる天然高分子としては、特に限定しないが、セルロース、キチン、キトサン等の多糖類、コラーゲン、ゼラチン等のタンパク質、ポリ乳酸、ポリカプロラクタム等が挙げられる。
 本発明においてナノ天然高分子の結晶化度は50%以上の範囲にあるものを使用することが好ましい。結晶化度が低いナノ天然高分子を使用した場合には、ナノ天然高分子の比表面積が低下することにより樹脂への担持する能力が劣り、強度、弾性及びチキソ性の低下によって樹脂成形品の能力及び作業性(樹脂の流動性、樹脂成型品の保形性)が劣るからである。また結晶化度が低いと腐敗もしやすくなる。
 本発明においてナノ天然高分子の平均重合度は400~900の範囲にあるものを使用することが好ましい。平均重合度900より高い重合度のものは、ナノ天然高分子の比表面積が低下することにより樹脂への担持する能力が劣り、樹脂の補強効果が劣るためである。平均重合度が400未満の場合は、解繊に必要な工程が増加するため、ナノ天然高分子製造時のコストが増加する。
 次いで、天然高分子としてセルロースを用いたセルロースナノファイバー及びセルロースナノクリスタル水溶液の調製方法について説明する。本発明において、CNFとしては例えば、木材繊維、広葉樹、針葉樹、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維、海藻類等の天然の植物を含む多糖由来のCNFが挙げられ、これらCNFは一種を単独で又は二種以上を混合して用いてもよい。また、バガス、稲わら、茶殻、果汁の搾り粕等の植物の葉、花、茎、根、外皮等に由来する作物残渣から産出されるものであっても良い。これらCNFは一種を単独で又は二種以上を混合して用いてもよい。また多糖としてはα-セルロース含有率60%~99質量%のパルプを用いるのが好ましい。α-セルロース含有率60質量%以上の純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができ、α-セルロース含有率60質量%未満のものを用いた場合に比べ、溶融時の熱安定性が高く、衝撃強度の低下を引き起こすことがないほか、着色抑制効果が良好であり、本発明の効果をより優れたものとすることができる。一方、99質量%以上のものを用いた場合、繊維をナノレベルに解繊することが困難になる。
 本発明におけるCNFは、以下の解繊処理行うことによりCNF分散液(以下、含水状態のCNFということもある。)として得られる。
解繊処理は、図1に示した水中対向衝突法(以下、ACC法と言うこともある。)を用いて行う。これは、水に懸濁したパルプをチャンバー(図1:107)内で相対する二つのノズル(図1:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図1:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108a,108b)から噴射して水中で対向衝突させる。
 前記解繊処理を実施する前に、前処理装置を使用して解繊処理を実施してもよい(図2、図3)。また、その他の解繊方法として、かかる前処理装置を使用してもよい。前記前処理装置を使用した解繊処理は、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させて行う。これは例えば図2に示す製造装置1を用いて行うことができる。製造装置1は、一のチャンバー2に対して多糖スラリを供給可能に配置される第1の液状媒体供給経路であるところの多糖スラリ供給経路3と、例えば水である非多糖スラリを一のチャンバー2を介して循環させる第2の液状媒体供給経路4とよりなる。一のチャンバー2内には第2の液状媒体供給経路4の非多糖スラリを多糖スラリ供給経路3からの多糖スラリ供給方向と交差する方向にオリフィス噴射するオリフィス噴射部5を備える。多糖スラリ供給経路3は、多糖スラリを一のチャンバー2を介して循環可能にされる。
 多糖スラリ供給経路3と第2の液状媒体供給経路4とは一のチャンバー2内に相互の交差部6を有する。
 多糖スラリ供給経路3は多糖スラリ供給部であり多糖スラリを貯留するタンク7、ポンプ8を循環路9に配置してなり、一方、第2の液状媒体供給経路4はタンク10、ポンプ11、熱交換器12、プランジャ13を循環路である液状媒体供給経路4に配置してなる。
 なお非多糖スラリは、例えば水であり、当初タンク10に収納され、その後セルロースナノ繊維の製造装置1の作動に伴い交差部6を通過してタンク10に収納されたナノ微細化された多糖を操業の度合いに応じた濃度で含むことになった状態のものをも、包括的に指称する。
 図3に示すようにチャンバー2を貫通する態様で多糖スラリ供給経路3の循環路9が配置され、これと交差する方向に非多糖スラリをオリフィス噴射して循環路9を貫通させることができるように第2の液状媒体供給経路4のプランジャ13に接続されるオリフィス噴射部5のオリフィス噴射口15がチャンバー2内側において開口する。チャンバー2のオリフィス噴射口15と対向する位置にチャンバー2の排出口16が設けられ、このチャンバー2の排出口16に第2の液状媒体供給経路4の循環路が接続されて、第2の液状媒体供給経路4が構成される。
 一方、多糖スラリ供給経路3の循環路9は例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成され、その循環路9のチャンバー2への入り側にはチャンバー2方向にのみ開弁される一方向弁17が取りつけられる。さらに循環路9のチャンバー2からの出側にはチャンバー2からの排出方向にのみ開弁される一方向弁18が取りつけられる。加えてチャンバー2と一方向弁18の間の循環路9にはエア吸入弁19が取りつけられ、このエア吸入弁19は外部から循環路9へエアを吸入する方向にのみ開弁される。
 以上のセルロースナノ繊維の製造装置によれば以下のようにしてセルロースナノファイバーが製造される。
 非多糖スラリを、チャンバー2を介して第2の液状媒体供給経路4を循環させる。具体的にはポンプ11を用いてタンク10内の非多糖スラリを熱交換器12、プランジャ13を通過させて液状媒体供給経路4内を循環させる。一方、多糖スラリを、チャンバー2を介して多糖スラリ供給経路3内を循環させる。具体的にはポンプ8を用いてタンク7内の多糖スラリをビニルホース、ゴムホース等を用いて形成された循環路9内を循環させる。
 これにより、多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリに対して第2の液状媒体供給経路4を循環する非多糖スラリがオリフィス噴射される。具体的にはプランジャ13に接続されるオリフィス噴射口14にプランジャ13から高圧水が供給され、これがオリフィス噴射口15から循環路9に向けて50~400MPa程度の高圧でオリフィス噴射される。
 その結果、例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成された循環路9に予め形成された貫通孔27a、bを通過して、循環路9と交差する方向に循環路9内側を通過した非多糖スラリが循環路9内を循環する多糖スラリを巻き込みながらチャンバー2の排出口16に向けて排出され、第2の液状媒体供給経路4に流入する。これによって、非多糖スラリが第2の液状媒体供給経路4内を再度循環する。
 以上のプロセスを反復する過程で多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリ及び第2の液状媒体供給経路4を循環する非多糖スラリ中の多糖が徐々に解繊されて、用途に応じた解繊度合の均一性の高いCNF分散液が得られる。
 パルプ繊維からCNFへの解繊度合は、CNF分散液の粘度値により評価することが出来る。すなわち、解繊度を高めたCNF分散液に含まれるCNFは繊維長さが短いものであるため、粘度値が低いものとなる。したがって、解繊度が高いCNF分散液は、粘度が低いものとなる。一方、これより粘度値が高いCNF分散液は、係るCNF分散液に含まれるCNFは繊維長さが長いものであるため、その粘度値が高いものとなる。したがって、前記CNF分散液と比較して解繊度が低いものとなる。
 また、解繊後の繊維径に対する繊維長の比(アスペクト比)がパルプ繊維毎に異なるので、CNF分散液の粘度値はそれぞれ異なるものとなる。
 さらに、例えば、異なる種類のパルプ繊維を組み合わせることにより、又は、前記解繊度合を調製することにより、CNF水分散液1wt%における粘度を概ね300~10000mPa・sの範囲で調整することができる。
 以上のようにして得るCNFは、天然セルロース繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、以下の化学式1に表わされる構造式を有する。換言すると、本願発明で用いるCNFは、化学式1中のセロビオースユニット内に水酸基6個を有し、化学修飾されていないことを意味する。これは、FT-IRを使用してセルロースのIRスペクトルと本願発明に使用するCNFとを比較することで確認することができる。 本ACC法により、セルロース繊維の平均繊維長を10μmにまで粉砕することができ、その結果、平均太さ3~200nmであり、平均長さ0.1μm以上であるCNFが得られる。
 本発明におけるセルロースナノクリスタルは、ACC法により得られたセルロースファイバーに、硫酸などの酸を用いる酸加水分解などの化学的処理を施すことにより、若しくは、ACC法による微細化処理の前のパルプに、硫酸等の酸加水分解等の化学的処理を施した後、ACC法により微細化処理を行うことにより得られる。また、セルロースナノクリスタルは、セルロースナノウィスカーとも呼ばれる。
 平均太さと平均繊維長さの測定は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、走査型プローブ顕微鏡(SPM)等を適宜選択し、CNFを観察・測定し、得られた写真から20本以上を選択し、これをそれぞれ平均化することにより求める。一方で、対向衝突処理においては、加えられるエネルギーが共有結合を切断するエネルギーには、はるかに及ばず(推定1/300以下)、セルロースの重合度の低下は生じにくい。本ACC法によって得られたセルロースナノファイバーは、親水サイトと疎水サイトが共存し、両親媒性を示す。
 なお、本発明においては、他のセルロースナノファイバーの製造方法として公知であるTEMPO酸化触媒、リン酸エステル化処理、オゾン処理、酵素処理、マレイン酸処理、無水アルケニルコハク酸による疎水変性、アルキルケテンダイマーによる疎水変性、アセチル化による疎水変性などの化学的処理をする方法によって得られるセルロースナノファイバー又はグラインダー(石臼型粉砕機)、ディスク型リファイナー、コニカルリファイナーなどの機械的作用を利用する湿式粉砕でセルロース系繊維を細くする物理的方法によって得られるセルロースナノファイバーであっても、本発明においてCNF分散液として使用することができる。また、化学的処理及び物理的処理を併用する方法によって得られたセルロースナノファイバーをもCNF分散液として利用することができる。
 以上の様にして得られるCNF分散液のCNF濃度は、通常、0.1~10%の範囲である。
 次いで、得られたCNF分散液を脱溶媒してCNF固形分濃度を20~50%の範囲とする。
CNF固形分濃度が20%未満である場合には、溶融混合物の製造時に、セルロースナノ繊維同士で凝集物を生成しやすいため、その凝集物が樹脂中での分散性の悪化要因となる。さらには、溶媒量が多くなり、溶融混合物の製造時に、熱エネルギーのロスを招くことになる。
一方、固形分濃度が50%より高い場合には、既にCNF同士が一部凝集しており、溶融混合物の製造時に、凝集物を再分散させることができないため、好ましくない。
前記溶媒は、水が含まれていればよく、水の他に有機溶媒等の他の溶媒が含まれていても、特に制限されることなく使用することができる。
[(B)(ポリオレフィン樹脂の水性ディスパージョン)]
ポリオレフィン樹脂の水性ディスパージョンとは、ポリオレフィンを水に分散したものであり、ポリオレフィンとポリビニルアルコール等の水溶性高分子とからなる混練物を水中に分散される方法、ポリオレフィンとカルボキシル基含有ポリオレフィンとを溶融混練後、塩基性物質を含有する熱水中に供給し、剪断力を加えて分散液を得る方法等により製造できる。
ここで使用されるポリオレフィンとは結晶性ないし非晶性のオレフィン系重合体である。また、ジエンを含有していてもよい。
該重合体を構成するオレフィンとしては、エチレンのほかプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、オクテン-1等のα-オレフィンをあげることができる。これらは単独でも、複数組み合わせて使用しても良い。
ジエンとしては、イソプレン、ブタジエン、ジシクロペンタジエン、ペンタジエン-1,4、2-メチル-ペンタジエン-1,4、ヘキサジエン-1,4、ジビニルベンゼン、メチリデンノルボルネン、エチリデンノルボルネン等があり、これらは単独でも、複数組み合わせて使用しても良い。更にはスチレン、酢酸ビニル、アクリル酸、アクリル酸メチル等のアクリル酸エステル、メタクリル酸、メタクリル酸メチル等のメタクリル酸エステル等も使用できる。
ポリオレフィンとして具体的には、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・ブテン-1共重合体、プロピレン・ブテン-1共重合体、エチレン・プロピレン・ヘキサジエン-1,4共重合体、エチレン・プロピレン・ジシクロペンタジエン共重合体、エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体、エチレン・プロピレン・5-ビニル-2-ノルボルネン共重合体、エチレン・ブテン-1・5-エチリデン-2-ノルボルネン共重合体、エチレン・ブテン-1・ジシクロペンタジエン共重合体、エチレン・ジシクロペンタジエン共重合体、エチレン・酢酸ビニル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体、エチレン・ブタジエン共重合体などを例示できる。
上記ポリオレフィンと混合する水溶性高分子とはケン化ポリビニルアルコール等であり、特に限定はない。また、カルボキシル基含有ポリオレフィンとは上記ポリオレフィンに無水マレイン酸、マレイン酸、フマル酸等を反応させたもの或いはアクリル酸、メタクリル酸等を共重合したものである。
また、それらの混合物を水に分散して分散体を製造する際、該混合物中にアニオン系界面活性剤および/またはノニオン系界面活性剤を含有させてもよい。
そのようにして製造されるポリオレフィン樹脂の水性ディスパージョンの固形分濃度は通常10~70%であり、固形分粒子の平均粒径は0.01~20μmである。なお、平均粒径は、コールカウンター法、マイクロトラック法のいずれかで測定することができる。
[(B-1)(シランカップリング剤)]
本発明の溶融混合物に、シランカップリング剤を更に含有させてもよい。シランカップリング剤はセルロースナノファイバーと組成物に使用される樹脂との間の密着性を向上させるために用いる。
 シランカップリング剤とは、加水分解性基と有機官能基とを一つの分子中に併せ持つ有機ケイ素化合物である。
 加水分解性基とは、珪素原子に直結し、加水分解反応及び/又は縮合反応によってシロキサン結合を生じ得る置換基をいう。一般には、水素原子又は炭素原子数1以上22以下のアルキル基を表す。アルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよい。シランカップリング剤の分子中に加水分解性基が複数存在する場合、前記置換基は同一であってもよいし、互いに異なっていてもよい。
 有機官能基は、一般には、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基、イソシアヌレート基等から選択される少なくとも一種が好ましい。シランカップリング剤の分子中に有機官能基が複数存在する場合には、前記有機官能基は、同一であってもよいし、互いに異なっていてもよい。
このようなシランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス(- トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
[(B-2)(変性ポリオレフィン)]
本発明の溶融混合物に、変性ポリオレフィンを更に含有させてもよい。変性ポリオレフィンはセルロースナノファイバーと他の成分との間の分散性などを向上させるために用いる。なお、本発明の溶融混合物には、(B-1:シランカップリング剤)と(B-2:変性ポリオレフィン)とを共に含有させてもよい。
変性ポリオレフィンとしては、極性を付与するようポリオレフィンを変性したものであれば特に限定されないが、例えば(無水)カルボン酸、エポキシド、オキサゾリン、イソシアネート、カルボジイミド等で変性したポリプロピレンが挙げられ、好ましくは、無水マレイン酸変性ポリプロピレン、カルボジイミド変性ポリプロピレン、エポキシ変性ポリプロピレンが挙げられる。
変性ポリオレフィンの重量平均分子量が、500,000以下、好ましくは、300,000以下、より好ましくは200,000以下のものを使用するよい。
((D)溶融混合物)
 本発明の溶融混合物は、(A)セルロースナノファイバー1質量部に対し、(B)ポリオレフィン樹脂の水性ディスパージョンを好ましくは固形換算で0.05~1質量部、好ましくは0.1質量部~0.5質量部、さらに好ましくは0.2質量部~0.3質量部である。ポリオレフィン樹脂の水性ディスパージョンは0.05質量部未満では、セルロースナノファイバーの分散性に効果は無く、1質量部より多いと滑剤として働き、せん断がかからず溶融混合物中の水分が抜けないからである。
溶融混合物に、(B-1:シランカップリング剤)を含有させる場合には、(A)ナノ天然高分子と(B)ポリオレフィン樹脂の水性ディスパージョンとからなる溶融混合物100質量部に対して、(B-1)シランカップリング剤を1.8質量部以上、13.2質量部以下となるように配合すればよい。
また、溶融混合物に、(B-2:変性ポリオレフィン)を含有させる場合には、(A)ナノ天然高分子と(B)ポリオレフィン樹脂の水性ディスパージョンとからなる溶融混合物100質量部に対して、(B-2)(変性ポリオレフィン)を1質量部以上、30質量部以下となるように配合すればよい。
 さらに、溶融混合物に、(B-1:シランカップリング剤)及び(B-2:変性ポリオレフィン)を含有させる場合には、(A)ナノ天然高分子と(B)ポリオレフィン樹脂の水性ディスパージョンとからなる溶融混合物100質量部に対して、(B-1)シランカップリング剤を1.8質量部以上、13.2質量部以下、及び(B-2)(変性ポリオレフィン)を1質量部以上、30質量部以下となるように配合すればよい。
(溶融混合物の製造方法)
 本発明の溶融混合物は、(A)セルロースナノファイバーと溶媒とを含む混合物と(B)ポリオレフィン樹脂の水性ディスパージョンとをミキサー等を用いて混合物とし、これを二軸押出機、加圧ニーダー等を用いて加熱し、剪断及び溶媒除去をすることによって得られる。
 溶融混合物の製造方法は、(A)セルロースナノファイバーと溶媒とを含む混合物と(B)ポリオレフィン樹脂の水性ディスパージョンとを混合して混合物を得る混合工程を行う。ポリオレフィン樹脂の水性ディスパージョンを用いる理由は、(A)と(B)の成分は、共に水に不溶な成分が水に分散している形態のものであり、また、ポリオレフィンを含む組成物を製造する際に、溶融混合物中にオレフィンを存在させることによって、セルロースナノファイバーと樹脂との分散性を向上させることができるからである。
また、混合に用いる装置は、タンブルミキサーやヘンシェルミキサー、リボンブレンダー、スーパーミキサー等で代表される高速ミキサーを用いることができる。
 次いで、得られた混合物を加熱するとともに剪断力を加えて、前記混合物の水分を除去し、粉末化する工程を行う。
 得られる溶融混合物の水分は、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下にするとよい。溶融混合物の水分値が5.0%よりも高い値であると、(D)溶融混合物と後述する(C)樹脂と混合したときにナノ天然高分子の分散性が悪くなるからである。
 また、粉末化する手段は、加熱するとともに、剪断力を加えることができれば特に制限されない。具体的には、単軸押出機、二軸押出機、二軸混練機、ニーダー、バンバリーミキサー、往復式混練機、ロール混練機等を例示することができる。ここで、二軸混練機等の連続式押出機を用いると、樹脂等への混練工程まで連続して作業を行うことができるため効率性が良く特に好ましい。また、粉末化工程において発生する水分その他の揮発分を除去するため、脱気設備等を用いてもよい。なお、ナノ天然高分子混合物への加熱条件としては、加熱時間等の加熱条件は特には制限されない。
  このとき、セルロースナノファイバーとポリオレフィン樹脂の水性ディスパージョンの配合率を変えることにより、溶融混合物の形態を粉末状の溶融混合物或いはペレット状の溶融混合物とすることができる。また、押出機などにTダイを設置すれば、シート状の溶融混合物とすることができる。
[(C)樹脂]
  本発明の組成物に用いられる(C)樹脂の成分としては、(C-1)熱可塑性樹脂、(C-2)熱硬化性樹脂、あるいは(C-3)ゴムが挙げられる。
  (C-1)熱可塑性樹脂:
  ここで、熱可塑性樹脂とは、加熱により溶融成形を行う樹脂を言う。その具体例としては、ポリエチレン(HDPE、MDPE、LDPE、LLDPE)、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ABS樹脂、AS樹脂(ポリスチレンとアクリルニトリルの共重合体)、メタクリル樹脂等の汎用プラスチック、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタラート、超高分子用ポリエチレンなどの汎用エンプラ、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルケトン、ポリイミド、液晶ポリマー、フッ素樹脂等のスーパーエンプラ又は、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート等の生分解性プラスチックの各群から選ばれた少なくとも1種が挙げられる。PVAやポリエチレングリコールといった水に可溶や常温で液体である特長を持つ液体で用いることができる樹脂も利用できる。なお、これらの熱可塑性樹脂は1種を単独で又は2種以上を組み合わせて用いることができる。
  (C-2)熱硬化性樹脂
  本発明の樹脂組成物において、(C)マトリックス成分として、(C-2)熱硬化性樹脂を用いる場合には、熱硬化性樹脂は、本発明の樹脂組成物において、セルロースナノファイバーと均一に分散した状態で存在している。熱硬化性樹脂の種類に特に制限はない。熱硬化性樹脂の例としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリウレタン、不飽和ポリエステル樹脂、シリコン樹脂、ポリイミド樹脂、ジリアフタレート樹脂などが挙げられる。ジシクロペンタジエン樹脂といった水に可溶や常温で液体である特長を持つ液体で用いることができる樹脂も利用できる。なお、これらの熱硬化性樹脂は1種を単独で又は2種類以上を組み合わせて用いることができる。
  (C-3)ゴム
  使用するゴムとしては、例えば天然ゴム、クロロプレンゴム、エチレン-プロピレン-非共役ジエン共重合ゴム、エチレン-ブテン-1共重合ゴム、エチレン-ヘキセン共重合ゴム、エチレン-オクテン共重合ゴム、ポリブタジエン、スチレン-ブタジエンブロック共重合ゴム、スチレン-ブタジエン共重合ゴム、部分水添スチレン-ブタジエン-スチレンブロック共重合ゴム、スチレン-イソプレンブロック共重合ゴム、部分水添スチレン-イソプレンブロック共重合ゴム、ポリウレタンゴム、スチレングラフト-エチレン-プロピレン-非共役ジエン共重合ゴム、スチレン-グラフト-エチレン-プロピレン共重合ゴム、スチレン/アクリロニトリル-グラフト-エチレン-プロピレン-非共役ジエン共重合ゴム、スチレン/アクリロニトリル-グラフト-エチレン-プロピレン共重合ゴム、クロロスルホン化ポリエチレンゴム、シリコンゴム、エチレン-酢酸ビニルゴム、エピクロルヒドリンゴム、多硫化ゴムがなど挙げられる。なお、これらのゴムは1種を単独で又は2種類以上を組み合わせて用いることができる。
更に、上記の(C-1)、(C-2)の樹脂に、これらゴムを配合してなるポリマーアロイを用いてもよい。ラテックスゴムといった液体で用いることができるゴムも利用できる。なお、ポリマーアロイ中のゴムの含量は、樹脂の特性に新たな特性を付加するという観点から、50質量%以下であることが好ましい。
(組成物)
本発明の組成物が、(D)溶融混合物と(C)樹脂の成分からなる場合には、(D)成分が(0.5)~(60)質量%、(C)成分が40~99.5質量%、[ただし、(D)+(C)=100質量%]である。
  (D)成分が0.5質量%未満では、得られる組成物の強度、樹脂単体との差別化が困難となり、一方60%を超えると溶融粘度が高くなり得られる樹脂組成物の成形性が劣るからである。
  また、(C)成分が40質量%未満では、成形性が劣り、また組成物の混練工程にて複合体が得られなくなり、一方、99.5質量%を超えると樹脂成分単体との差別化が困難となるからである。
 また、本発明の組成物が、(D)溶融混合物と(C)樹脂と(B-2)(変性ポリプロピレン)の成分からなる場合には、(D)成分が0.5~60質量%、(C)成分が35~99質量%、(B-2)成分が0.5~5質量%、[ただし、(D)+(C)+(B-2)=100質量%]である。
  (B-2)成分が0.5%未満では、(B-2)変性ポリプロピレンの効果がなく、一方、5%を超えると、物性値の低下となるからである。 
(組成物の製造方法)
本発明の組成物の製造方法は、(D)溶融混合物と(C)樹脂とを溶融混練しながら複合化する工程によって得られる。なお、組成物に(B-2)(変性ポリプロピレン)を含有させる場合も同様である。
  混練装置としては、単軸押出機、二軸押出機、二軸混練機、ニーダー、バンバリーミキサー、往復式混練機、ロール混練機等、公知の混練装置を使用する事ができる。
  本発明の組成物の製造における、溶融混練時の温度は、(C)成分の溶融温度に応じて適宜設定されるが、例えば、(C)成分の融点から20~30℃高い温度に設定すればよい。融点を下回る場合、混練すべき樹脂が溶融せず、実質的に製造する事が不可能である。この範囲を上回る場合、(C)成分の流動性が上がりすぎて、ペレット化することが困難となることや、(A)ナノ天然高分子が熱によるダメージを受けて分子鎖の断裂、酸化劣化、変性等が発生し、機械物性を低下させるばかりでなく、不快な臭気の発生や変色につながる。
  なお、(C)成分として、(C-2)熱硬化性樹脂を用いる場合には、この溶融混練時には、硬化触媒あるいは硬化剤を加えずに、この溶融混練時に熱硬化が生じないようにする手立てを講じる必要がある。
[添加剤]
 本発明の溶融混合物又は組成物は、その物性を損なわない限りにおいて又は耐衝撃性、エネルギー吸収性等の機能性を付与することを目的として、その混合時、成形時又は製造時に他の樹脂、添加剤、例えば、スチレン系、オレフィン系、塩ビ系、ウレタン系、エステル系、アミド系、1,2-BR系又はフッ素系等の各種熱可塑性エラストマー、相溶化剤、界面活性剤、でんぷん類、多糖類、ゼラチン、ニカワ、天然たんぱく質、タンニン、ゼオライト、セラミックス、金属粉末、顔料、染料、強化剤、充填剤、耐熱剤、酸化抑制剤、熱安定剤、耐候剤、滑剤、離型剤、結晶核剤、着色剤、香料、レベリング剤、可塑剤、流動性改良剤、導電剤、帯電抑制剤等、紫外線吸収剤、紫外線分散剤、消臭剤又は金属石鹸を添加することができる。
 任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されても良いが、例えば、溶融混合物においては、溶融混合物中50質量%以下であることが望ましい。また、組成物においては、組成物中15質量%程度以下が好ましく、10質量%程度以下がより好ましい。
 本発明における熱可塑性エラストマーは、ハードセグメントからなる重合体とソフトセグメントからなる重合体との混合物や、ハードセグメントからなる重合体とソフトセグメントからなる重合体との共重合物等を挙げることができる。
 スチレン系熱可塑性エラストマーは、ハードセグメントとしては、例えば、ポリスチレンからなるセグメント等を挙げることができる。また、ソフトセグメントとしては、例えば、ポリブタジエン、水素添加されたポリブタジエン、ポリイソプレン、水素添加されたポリイソプレンからなるセグメント等を挙げることができる。より具体的には、スチレン-ブタジエン-スチレン(SBS)共重合体、スチレン-イソプレン-スチレン(SIS)共重合体、スチレン-エチレン-ブチレン-スチレン(SEBS)共重合体、スチレン-エチレン-プロピレン-スチレン(SEPS)共重合体、スチレン-ブタジエン-ブチレン-スチレン(SBBS)共重合体等のブロック共重合体を挙げることができる。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。
ポリオレフィン系エラストマーは、ハードセグメントとしては、ポリプロピレンやプロピレン-エチレンの共重合体、ポリエチレン等からなるセグメント等を挙げることができる。また、ソフトセグメントとしては、たとえば、ポリエチレンや、エチレンと共に少量のジエン成分を共重合したものを挙げることができる。より具体的には、エチレン・ブテン共重合体、EPR(エチレン-プロピレン共重合体)、変性エチレン・ブテン共重合体、EEA(エチレン-エチルアクリレート共重合体)、変性EEA、変性EPR、変性EPDM(エチレン-プロピレン-ジエン三元共重合体)、アイオノマー、α-オレフィン共重合体、変性IR(イソプレンゴム)、変性SEBS(スチレン-エチレン-ブチレン-スチレン共重合体)、ハロゲン化イソブチレン-パラメチルスチレン共重合体、エチレン-アクリル酸変性体、エチレン-酢酸ビニル共重合体、及びその酸変性物、及びそれらを主成分とする混合物等が挙げられる。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。
 ポリエステル系熱可塑性エラストマーは、ハードセグメントとしてポリエステル構造を、ソフトセグメントとしてポリエーテルあるいはポリエステル等を共重合したものを挙げることができる。
  ウレタン系エラストマーは、ハードセグメントとしては、例えば、ジイソシアナート類と鎖延長剤である短鎖ジオール類等との反応により生成するポリウレタンを挙げることができる。また、ソフトセグメントとしては、例えば、ポリエステルジオール類、ポリエーテルジオール類、ポリカーボネートジオール類等のポリマージオールが挙げられる。
 本発明における相溶化剤としては、セルロースと親和性の高い極性基と樹脂と親和性の高い疎水性基からなる化合物が挙げられる。より具体的には極性基としては、例えば無水マレイン酸、マレイン酸、グリシジルメタクリレートが例示され、疎水性基としては、例えばポリプロピレン、ポリエチレン等が例示される。
本発明における金属石鹸としては、特に限定されないが、脂肪族カルボン酸の金属塩、脂環式カルボン酸の金属塩、芳香族のカルボン酸の金属塩等が挙げられ、好ましくは炭素数35以下の脂肪族カルボン酸の金属塩であり、より好ましくは炭素数35以下のモノカルボン酸の金属塩、さらに好ましくは炭素数10~32のモノカルボン酸の金属塩である。金属塩としては、アルカリ金属、アルカリ土類金属、亜鉛等の塩が挙げられ、これらの中では亜鉛が好ましい。
 本発明における結晶核剤は、特に限定されないが、樹脂組成物の耐衝撃性と成形性の観点から、分子中に水酸基とアミド基を有する化合物、フェニルホスホン酸金属塩、フタロシアニン、リン酸エステルの金属塩、芳香族スルホン酸ジアルキルエステルの金属塩、ロジン酸類の金属塩、芳香族カルボン酸アミド、ロジン酸アミド、カルボヒドラジド類、N-置換尿素類、メラミン化合物の塩、ウラシル類、及びタルクからなる群より選ばれる少なくとも1種であることが好ましい。
本発明における界面活性剤の例としては以下のものをあげることができる。イオン性界面活性剤としては、陽イオン性界面活性剤、両イオン性界面活性剤および陰イオン性界面活性剤が挙げられる。陽イオン性界面活性剤としては、アルキルアミン塩、第四級アンモニウム塩などが挙げられる。両イオン性界面活性剤としては、アルキルベタイン系界面活性剤、アミンオキサイド系界面活性剤が挙げられる。陰イオン性界面活性剤としては、ドデシルベンゼンスルホン酸等のアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩等の芳香族スルホン酸系界面活性剤、モノソープ系アニオン性界面活性剤、エーテルサルフェート系界面活性剤、フォスフェート系界面活性剤およびカルボン酸系界面活性剤などが挙げられる。
  非イオン性界面活性剤の例としては、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルなどの糖エステル系界面活性剤、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン脂肪酸ジエチルなどの脂肪酸エステル系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン・ポリプロピレングリコールなどのエーテル系界面活性剤、ポリオキシアルキレンオクチルフェニルエーテル、ポリオキシアルキレンノニルフェニルエーテル、ポリオキシアルキルジブチルフェニルエーテル、ポリオキシアルキルスチリルフェニルエーテル、ポリオキシアルキルベンジルフェニルエーテル、ポリオキシアルキルビスフェニルエーテル、ポリオキシアルキルクミルフェニルエーテル等の芳香族系非イオン性界面活性剤があげられる。上記において、アルキルとは炭素数が1-20から選択されるアルキルであって良い。これらの界面活性剤は、単独または2種以上を組み合わせて配合することができる。
<成形>
  以上のようにして得られる本発明の組成物は、各種の成形方法で成形品とされるが、成形方法は、熱可塑性樹脂組成物や熱硬化性樹脂組成物、さらにはゴム組成物により異なる面があり、以下の成形方法から適宜使い分けて成形すればよい。
  すなわち、本発明の組成物から板状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。また、フィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて成形体を製造することができる。特に、液状の熱可塑性樹脂にセルロースナノファイバーを添加する場合には、成形材料をプリプレグ化してプレスやオートクレーブにより加圧加熱する成形法が挙げられ、この他にもRTM(Resin  Transfer  Molding)成形、VaRTM(Vaccum  assist  Resin  Transfer  Molding)成形、FW(Filament  Winding)成形、積層成形、ハンドレイアップ成形等が挙げられる。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例及び比較例に記載の平均重合度は以下の測定方法により測定した。
(CNFの重合度測定)
 CNF固形分量0.15gを30mLの0.5M銅エチレンジアミン溶液に溶解させ、キャノン・フェンスケ動粘度管を用いて、CNF・銅エチレンジアミン溶液の粘度ηを測定し、0.5M銅エチレンジアミン溶液の粘度をη0として、下記のSchulz-Blaschke式から極限粘度[η]を求めて、下記のMark-Houwink-Sakurada式から重合度DPを算出した。
   比粘度 ηsp=η/η0-1
   極限粘度[η]=ηsp/{c(1+A×ηsp)}
 η0は0.5M銅エチレンジアミン溶液の粘度であり、cはCNF濃度(g/mL)であり、Aは溶液の種類によって決まる固有値であって0.5M銅エチレンジアミン溶液の場合にはA=0.28である。
   重合度DP=[η]/Ka
 Kとaは高分子と溶媒の種類によって決まる固有値であって、銅エチレンジアミン溶液に溶解したセルロースの場合としてK=0.57、a=1とした。
 (実施例1)
  メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分50%、水分50%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(ビックケミー・ジャパン株式会社製:HORDAMAR PE02、ポリエチレン、不揮発率40%)との割合を9:1(1:0.1)として混合し、混合物を得た。
 次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を121℃とした。
(実施例2)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールA100、PE系エラストマー、固形分濃度40%、粒径4μm(コールカウンター法)粘度5000mPa・s(B型粘度計6回転)))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を125℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例3)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールM200、LDPE、固形分濃度40%、粒径0.7μm(コールカウンター法)粘度5000mPa・s(B型粘度計6回転)))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を125℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例4)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールS500、アイオノマー、固形分濃度42%、粒径0.7μm(マイクロトラック法)粘度150mPa・s(B型粘度計6回転))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を124℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例5)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールS300、アイオノマー、固形分濃度35%、粒径0.5μm(マイクロトラック法)粘度400mPa・s(B型粘度計6回転))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を125℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例6)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールW401、ポリエチレンワックス、固形分濃度40%、粒径1μm(マイクロトラック法)、粘度500mPa・s(B型粘度計60回転))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を127℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例7)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールW700、ポリエチレンワックス、固形分濃度40%、粒径1μm(マイクロトラック法)、粘度800mPa・s(B型粘度計60回転))との割合を9:1(1:0.1)とし、平均シリンダー温度を125℃として混合したこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例8)
針葉樹パルプ由来のCNF水混合物(CNF固形分20%、水分80%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールW500、ポリエチレンワックス、固形分濃度40%、粒径2.5μm(コールカウンター法)、粘度1000mPa・s(B型粘度計60回転))との割合を9:1(1:0.1)とし、平均シリンダー温度を128℃として混合したこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例9)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールS100、アイオノマー、固形分濃度27%、粒径0.1μm(マイクロトラック法)粘度500mPa・s(B型粘度計6回転))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を127℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(実施例10)
針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパールV300、EVA、固形分濃度40%、粒径6μm(コールカウンター法)粘度7000mPa・s(B型粘度計6回転))との割合を9:1(1:0.1)として混合し、平均シリンダー温度を124℃としたこと以外はすべて実施例1と同様にして、溶融混合物を得た。
(溶融混合物の黄色度評価)
 実施例1~10で得られた溶融混合物について、測色色差計(日本電色工業株式会社製 型式:ZE6000、光源C/2)を用いて、JIS  K  7373に従い、黄変度評価を行った。測定方法は、パウダー専用丸セルに溶融混合物を空隙がないように適度に詰め、1サンプルにつき3回測定を行った。
上記測定により得られた三刺激値X、Y、Z値から下記式を用いて黄色度(YI)を算出した。
YI=100(1.2769X-1.0592Z)/Y
結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例11)
メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(ビックケミー・ジャパン株式会社製:HORDAMAR PE02))との割合を9:1(1:0.1)として、
シランカップリング剤として、3-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製:KBE-403)を、混合物100質量部に対して、3.3質量部としたものを混合し、混合物とした。
二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を123℃とした。
(実施例12)
シランカップリング剤として、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBE-503)を用いたこと、平均シリンダー温度を124℃としたこと以外は全て実施例11と同様にして溶融混合物を得た。
(実施例13)
シランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製:KBE-603)を用いたこと、平均シリンダー温度を124℃としたこと以外は全て実施例11と同様にして溶融混合物を得た。
(実施例14)
シランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製:KBE-603)を20倍希釈したものを用いたこと、平均シリンダー温度を123℃としたこと以外は全て実施例11と同様にして溶融混合物を得た。
(実施例15)
シランカップリング剤として、3-グリシドキシプロピルトリメトキシシラン(ダウ・東レ株式会社製:OFS-6040 Silane)を混合物100質量部に対して、13.2質量部としたこと、平均シリンダー温度を123℃としたこと以外は全て実施例11と同様にして溶融混合物を得た。
(実施例16)
シランカップリング剤として、3-グリシドキシプロピルトリメトキシシラン(ダウ・東レ株式会社製:OFS-6040 Silane)を混合物100質量部に対して、1.8質量部としたこと、平均シリンダー温度を123℃としたこと以外は全て実施例11と同様にして溶融混合物を得た。
(実施例17)
メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分31%、水分69%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(三井化学株式会社製:ケミパール W401)との割合を9:1(1:0.1)と混合物100質量部に対して、無水マレイン酸変性ポリプロピレン((ビックケミー・ジャパン株式会社製:SCONA TSPP 22113GA))を、12質量部として混合し、混合物を得た。
これらを二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を128℃とした。  
(参考例1)
メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分50%、水分50%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(ビックケミー・ジャパン株式会社製:HORDAMAR PE02)との割合を9:1(1:0.1)として混合し、混合物を得た。
 次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を121℃とした。
(溶融混合物の水分値測定)
 実施例1~17、参考例1で得られた溶融混合物について、赤外線・ハロゲン水分計(メトラー・トレド株式会社製 型式:HC103)を用いて水分値測定を行った。
 結果を表2、3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例18) 
  メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(ビックケミー・ジャパン株式会社製:HORDAMAR PE02)とを、9:1の質量%比となるように混合し、混合物を得た。
 次いで、得られた混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を125℃とした。
 次いで、得られた溶融混合物とポリプロピレン(株式会社プライムポリマー製:J105G、射出成形グレード、MFR9)と無水マレイン酸変性ポリプロピレン((ビックケミー・ジャパン株式会社製:SCONA TSPP 22113GA))を、33.3:64.7:2.0の質量%比となるように混合し、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
 得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社、型式:NEX80IV)にて、シリンダー温度190℃ 金型 50℃の条件で射出成形して多目的試験片A1を作製した。
(実施例19)
  メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とポリオレフィン樹脂の水性ディスパージョン(ビックケミー・ジャパン株式会社製:HORDAMAR PE02)とを、9:1の質量%比となるように混合し、混合物を得た。
 次いで、得られた混合物と、シランカップリング剤として、3-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製:KBE-403)を混合物100質量部に対して、3.3質量部とし、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、溶融混合物を得た。スクリュー径はΦ25mm、平均シリンダー温度を123℃とした。
 次いで、得られた溶融混合物とポリプロピレン(日本ポリプロ株式会社製:J105G、射出成形グレード、MFR9)と無水マレイン酸変性ポリプロピレン(ビックケミー・ジャパン株式会社製:SCONA TSPP22113GA)を、34.3:64.7:1の質量%比となるように混合し、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
 得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社、型式:NEX80IV)にて、シリンダー温度190℃ 金型 50℃の条件で射出成形して多目的試験片A1を作製した。
(実施例20)
溶融混合物とポリプロピレンと無水マレイン酸変性ポリプロピレンの比率を57.7:34.3:8としたこと以外は、実施例19と同様にして、多目的試験片A1を作製した。
(実施例21~30) 
 実施例2~実施例8及び実施例15~17、参考例1において得られた溶融混合物とポリプロピレン(株式会社プライムポリマー製:J105G、射出成形グレード、MFR9)と無水マレイン酸変性ポリプロピレン(ビックケミー・ジャパン株式会社製:SCONA TSPP 22113GA)の比率を64.7:33.3:2.0質量%比となるように混合し、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
 得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社、型式:NEX8IV)にて、シリンダー温度190℃ 金型 50℃の条件で射出成形して多目的試験片A1を作製した。
(比較例1)
 ポリプロピレン(株式会社プライムポリマー製:J105G、射出成形グレード、MFR9)を、射出成形機(日精樹脂工業株式会社、型式:NEX80IV)シリンダー温度190℃、金型温度50℃の条件で射出成形して多目的試験片A1を作製した。
(比較例2)
  メカノハイブリッド(日本コークス工業株式会社、型式:ΜMH-75B/I)を用いて、針葉樹パルプ由来のCNF水混合物(CNF固形分30%、水分70%、平均重合度810)とスチレン系重合体(ヤスハラケミカル株式会社製:YSレジンSX100)とを、7:3の質量%比となるように混合した。
 次いで、得られたCNFとスチレン系重合体の混合物を、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供し、粉末状セルロースナノファイバーを得た。スクリュー径はΦ25mm、平均シリンダー温度を113℃とした。
 次いで、得られた粉末状セルロースナノファイバーとポリプロピレン(株式会社プライムポリマー製:J105G、射出成形グレード、MFR9)と無水マレイン酸変性ポリプロピレン((ビックケミー・ジャパン株式会社製:SCONA TSPP 22113GA)を、42.9:55.1:2.0の質量%比となるように混合し、二軸押出機(株式会社日本製鋼所、型式:TEX25αIII)に供給し、180℃で溶融混練し、ペレット化した。
 得られたペレットを、80℃で12時間乾燥させ後、射出成形機(日精樹脂工業株式会社、型式:NEX80IV)シリンダー温度190℃、金型温度50℃の条件で射出成形して多目的試験片A1を作製した。
(物性値測定)
  実施例18~実施例30及び比較例1、2において得られた試験片(10%のCNF配合量とした。(比較例1を除く))の強度物性について、曲げ強度測定(曲げ弾性率、曲げ応力、曲げひずみ)、引張強度測定(引張弾性率、引張降伏点応力、引張降伏点ひずみ、引張破断応力、引張破断ひずみ)を行った。いずれも小型卓上試験機(株式会社島津製作所製  型式:Ex-LX)を用い、曲げ強度測定では、短冊試験片を用いて、曲げ試験速度2.0mm/minにおいて、引張強度測定では、ダンベル試験片A1を用いて、引張試験速度  50mm/minの条件で実施した。表2表4に結果を示す。
(シャルピー衝撃試験)
 実施例18~実施例30及び比較例1、2において得られた試験片を用いて、JIS K7111-1:2012に従い、デジタル衝撃試験機(株式会社東洋精機製作所、型式:衝撃試験機IT、ハンマー容量:0.5J)を用いて衝撃試験を行った。表2~表4に結果を示す。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
表4~表6の結果により、比較例1、比較例2よりも、引張降伏点応力及びシャルピー衝撃強度の値が向上させることができることが明らかとなった。
また、実施例21~30の引張降伏点ひずみの値は、比較例2の値と比べて、高い値となることが明らかとなった。これは、引張降伏点ひずみの値が高くなることで、樹脂とCNFとの界面接着性が向上することとなり、その結果、引張降伏点応力の値が高くなり、また、シャルピー衝撃値が向上したということが考えられる。
(組成物の分散性評価値測定)
 実施例21~30、比較例2及び参考例1において得られたペレットを用いて以下の方法で、シートを作成して、シートに存在する凝集物の個数を目視で計測した。表7に結果を示す。
-分散性評価値測定方法-
(1)0.03gを、熱プレス200℃で1分30秒間予熱する。 
(2)予熱後 30秒間、0.6MPaの圧力を加圧し、シート30μmを12枚作成する。
(3)得られたシートに存在する凝集物を目視で計測して、その全量の数を分散性評価値とする。
Figure JPOXMLDOC01-appb-T000008
表7の結果より、本願発明に係る組成物は分散性に優れていることが明らかとなった。
 本発明の溶融混合物は、樹脂への均一分散性、樹脂とのなじみ性、界面接着性に優れているので、熱可塑性樹脂、熱硬化性樹脂、あるいはゴム成分に容易に均一にブレンドすることができる。また射出成形などの一般の樹脂成形法によりさまざまな用途の部品を得ることも出来る。例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品(例えば外板、シャシー、空力部材、タイヤ、座席など)、船舶部材(例えば船体、座席など)、航空関連部品(例えば、座席、内装材など)、宇宙航空機・人工衛星部材(モーターケース、アンテナなど)、電子・電気部品、摺動部材(歯車、ギア、ベアリング、メタルなど)、建築・土木材料・水処理材料(防振免振材、支承など)、塗料・インク、接着剤・シール剤・コート剤・バインダ剤、梱包・包装・フィルム材等にも好適に使用することができる。
 
 

Claims (10)

  1. セルロースナノファイバーと溶媒とを含む混合物と、セルロースナノファイバー1質量部に対して、ポリオレフィン樹脂の水性ディスパージョンを0.05~1質量部含む、溶融混合物。
  2. 前記溶融混合物のYI値が29以下である請求項1に記載の溶融混合物。
  3. 請求項1又は請求項2に記載の溶融混合物100質量部に対して、シランカップリング剤を1.8質量部以上、13.2質量部以下含む、溶融混合物。
  4. 請求項1又は請求項2に記載の溶融混合物100質量部に対して、
    変性ポリオレフィンを1質量部以上、30質量部以下含む、溶融混合物。
  5. 請求項1又は請求項2に記載の溶融混合物100質量部に対して、
    変性ポリオレフィンを1質量部以上、30質量部以下、
    シランカップリング剤を1.8質量部以上、13.2質量部以下含む、溶融混合物。
  6. 請求項1~請求項5に記載の溶融混合物と熱可塑性樹脂、熱硬化性樹脂及びゴムから選ばれた1又は2以上の成分とを含む組成物。  
  7. 請求項1~請求項3に記載の溶融混合物と、
    熱可塑性樹脂、熱硬化性樹脂及びゴムから選ばれた1又は2以上の成分と、
    変性ポリオレフィンと、を含む組成物。  
  8. 請求項1~請求項3に記載の溶融混合物と、
    熱可塑性樹脂、熱硬化性樹脂及びゴムから選ばれた1又は2以上の成分と、
    変性ポリオレフィンと、を含む組成物であって、
    前記溶融混合物と前記変性ポリオレフィンと前記1又は2以上の成分との合計を100質量部としたときに、
    前記溶融混合物を0.5~60質量部、
    前記1又は2以上の成分を35~99質量部、
    前記変性ポリオレフィンを0.5~5質量部
    の割合で含有する、組成物。
  9. 請求項8に記載の組成物であって、以下の測定条件における分散性評価値が20以下である組成物
    -分散性評価値測定方法-
    (1)0.03gを、熱プレス200℃で1分30秒間予熱する。 
    (2)予熱後 30秒間、0.6MPaの圧力を加圧し、シート直径30μmを12枚作成する。
    (3)得られたシートに存在する凝集物を目視で計測して、その全量の数を分散性評価値とする。
  10. 請求項6~請求項9に記載の組成物を成型してなる、成形品。
     
PCT/JP2022/016616 2022-03-31 2022-03-31 溶融混合物、組成物、並びに成形品 WO2023188300A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/016616 WO2023188300A1 (ja) 2022-03-31 2022-03-31 溶融混合物、組成物、並びに成形品
JP2022544781A JP7175429B1 (ja) 2022-03-31 2022-03-31 溶融混合物、組成物、並びに成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016616 WO2023188300A1 (ja) 2022-03-31 2022-03-31 溶融混合物、組成物、並びに成形品

Publications (2)

Publication Number Publication Date
WO2023188300A1 true WO2023188300A1 (ja) 2023-10-05
WO2023188300A9 WO2023188300A9 (ja) 2023-11-23

Family

ID=84101895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016616 WO2023188300A1 (ja) 2022-03-31 2022-03-31 溶融混合物、組成物、並びに成形品

Country Status (2)

Country Link
JP (1) JP7175429B1 (ja)
WO (1) WO2023188300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101450A1 (ja) * 2022-11-11 2024-05-16 中越パルプ工業株式会社 ゴム組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141323A (ja) * 2016-02-08 2017-08-17 大日精化工業株式会社 易分散性セルロース組成物、易分散性セルロース組成物の製造方法、セルロース分散樹脂組成物及びセルロース分散樹脂組成物の製造方法
JP2019014845A (ja) * 2017-07-10 2019-01-31 三井・デュポンポリケミカル株式会社 ディスパージョンの製造方法
JP2019026702A (ja) * 2017-07-28 2019-02-21 東洋レヂン株式会社 熱可塑性複合樹脂、該樹脂を用いた3dプリンタ用フィラメント及びそれらの製造方法
JP2020063347A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース配合ポリオレフィン系樹脂組成物の製造方法
JP2020075996A (ja) * 2018-11-07 2020-05-21 バンドー化学株式会社 伝動ベルト用ゴム組成物及びその製造方法、並びにそれを用いた伝動ベルト
JP2021138875A (ja) * 2020-03-06 2021-09-16 ユニチカ株式会社 ポリプロピレン樹脂組成物およびそれを用いた樹脂組成物
JP2022045900A (ja) * 2020-09-09 2022-03-22 三洋化成工業株式会社 セルロースナノファイバー用改質剤、改質セルロースナノファイバーの製造方法、改質セルロースナノファイバー及び繊維強化複合材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923370B2 (ja) * 2011-06-07 2016-05-24 花王株式会社 樹脂改質用添加剤及びその製造方法
JP2019172752A (ja) * 2018-03-27 2019-10-10 三菱製紙株式会社 ミクロフィブリル化セルロース含有ポリプロピレン樹脂複合体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141323A (ja) * 2016-02-08 2017-08-17 大日精化工業株式会社 易分散性セルロース組成物、易分散性セルロース組成物の製造方法、セルロース分散樹脂組成物及びセルロース分散樹脂組成物の製造方法
JP2019014845A (ja) * 2017-07-10 2019-01-31 三井・デュポンポリケミカル株式会社 ディスパージョンの製造方法
JP2019026702A (ja) * 2017-07-28 2019-02-21 東洋レヂン株式会社 熱可塑性複合樹脂、該樹脂を用いた3dプリンタ用フィラメント及びそれらの製造方法
JP2020063347A (ja) * 2018-10-16 2020-04-23 旭化成株式会社 セルロース配合ポリオレフィン系樹脂組成物の製造方法
JP2020075996A (ja) * 2018-11-07 2020-05-21 バンドー化学株式会社 伝動ベルト用ゴム組成物及びその製造方法、並びにそれを用いた伝動ベルト
JP2021138875A (ja) * 2020-03-06 2021-09-16 ユニチカ株式会社 ポリプロピレン樹脂組成物およびそれを用いた樹脂組成物
JP2022045900A (ja) * 2020-09-09 2022-03-22 三洋化成工業株式会社 セルロースナノファイバー用改質剤、改質セルロースナノファイバーの製造方法、改質セルロースナノファイバー及び繊維強化複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101450A1 (ja) * 2022-11-11 2024-05-16 中越パルプ工業株式会社 ゴム組成物

Also Published As

Publication number Publication date
JPWO2023188300A1 (ja) 2023-10-05
JP7175429B1 (ja) 2022-11-18
WO2023188300A9 (ja) 2023-11-23

Similar Documents

Publication Publication Date Title
Ishak et al. Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites
EP3022255B1 (en) Nanofibril-polymer composites
JP6894681B2 (ja) 改質セルロース繊維
JP6570103B2 (ja) 複合樹脂組成物及び複合樹脂組成物の製造方法。
JP5433949B2 (ja) セルロース繊維含有ポリオレフィン系樹脂組成物
JP2012201767A (ja) 樹脂組成物
JPWO2016010016A1 (ja) 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
JP6403328B2 (ja) 非晶化セルロースを複合化した熱可塑性樹脂組成物とその製造方法
EP3594246A1 (en) Method for producing modified cellulose fiber
WO2023188300A1 (ja) 溶融混合物、組成物、並びに成形品
JP7109813B2 (ja) 溶融混合物、溶融混合物の製造方法、組成物、組成物の製造方法並びに成形品
JP6704551B1 (ja) 溶融混合物、溶融混合物の製造方法、組成物、組成物の製造方法並びに成形品
TWI791478B (zh) 纖維素纖維複合體之製造方法及樹脂組合物之製造方法
CN112823180B (zh) 纤维素纤维增强聚丙烯树脂成型体及其制造方法
Salmah et al. The effect of filler loading and maleated polypropylene on properties of rubberwood filled polypropylene/natural rubber composites
Ikeo et al. Nano clay reinforced biodegradable plastics of PCL starch blends
JP2021138875A (ja) ポリプロピレン樹脂組成物およびそれを用いた樹脂組成物
JP7282339B2 (ja) 複合粉体及びその製造方法
TW202035531A (zh) 木質纖維素纖維之製造方法、木質纖維素纖維及複合材料
Li Properties of agave fiber reinforced thermoplastic composites
JP2009149795A (ja) 難燃性ポリプロピレン樹脂組成物及びその製造方法
CN115702191A (zh) 纤维素纤维增强树脂成型体及其制造方法
KR20220122698A (ko) 셀룰로오스 섬유 복합체
JP7492657B1 (ja) ゴム組成物
JP2019026658A (ja) 熱可塑性樹脂組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022544781

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935442

Country of ref document: EP

Kind code of ref document: A1