WO2023185208A1 - 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 - Google Patents
催化剂油煤浆及其制备方法和煤直接液化的方法及应用 Download PDFInfo
- Publication number
- WO2023185208A1 WO2023185208A1 PCT/CN2023/071350 CN2023071350W WO2023185208A1 WO 2023185208 A1 WO2023185208 A1 WO 2023185208A1 CN 2023071350 W CN2023071350 W CN 2023071350W WO 2023185208 A1 WO2023185208 A1 WO 2023185208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molybdenum
- coal
- oil
- weight
- catalyst
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 117
- 239000003054 catalyst Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title abstract description 12
- 239000002002 slurry Substances 0.000 title abstract description 7
- 239000010742 number 1 fuel oil Substances 0.000 title abstract 4
- 238000007613 slurry method Methods 0.000 title 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 116
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 113
- 239000011733 molybdenum Substances 0.000 claims abstract description 113
- 239000002904 solvent Substances 0.000 claims abstract description 57
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 52
- 239000011593 sulfur Substances 0.000 claims abstract description 51
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000003250 coal slurry Substances 0.000 claims description 66
- 239000007788 liquid Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- QDAYJHVWIRGGJM-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QDAYJHVWIRGGJM-UHFFFAOYSA-B 0.000 claims description 4
- -1 molybdenum carboxylate Chemical class 0.000 claims description 4
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- 239000012991 xanthate Substances 0.000 claims description 3
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims description 2
- 125000001741 organic sulfur group Chemical group 0.000 claims description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 claims description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 2
- OXRIHKFHLPFPSJ-UHFFFAOYSA-J molybdenum(4+) tetracarbamate Chemical compound C(N)([O-])=O.[Mo+4].C(N)([O-])=O.C(N)([O-])=O.C(N)([O-])=O OXRIHKFHLPFPSJ-UHFFFAOYSA-J 0.000 claims 2
- 239000003921 oil Substances 0.000 abstract description 73
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 239000004079 vitrinite Substances 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical group [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000012990 dithiocarbamate Substances 0.000 description 4
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 4
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical group O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ZMZMUSYHKBEHBA-UHFFFAOYSA-J butanoate molybdenum(4+) Chemical group C(CCC)(=O)[O-].[Mo+4].C(CCC)(=O)[O-].C(CCC)(=O)[O-].C(CCC)(=O)[O-] ZMZMUSYHKBEHBA-UHFFFAOYSA-J 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- XXPBFNVKTVJZKF-UHFFFAOYSA-N dihydrophenanthrene Natural products C1=CC=C2CCC3=CC=CC=C3C2=C1 XXPBFNVKTVJZKF-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000005329 tetralinyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/226—Sulfur, e.g. thiocarbamates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/27—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/008—Controlling or regulating of liquefaction processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/06—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
- C10G1/065—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/08—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
- C10G1/083—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/08—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
- C10G1/086—Characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/60—Complexes comprising metals of Group VI (VIA or VIB) as the central metal
- B01J2531/64—Molybdenum
Definitions
- the invention relates to the technical field of direct coal liquefaction, and specifically relates to a catalyst oil coal slurry and its preparation method, as well as a method and application of direct coal liquefaction.
- Direct coal liquefaction is a clean coal technology that uses hydrogen-donating solvents and catalysts to enter the molecular structure of coal and its derivatives under high-temperature and high-pressure conditions, thereby converting coal into liquid products.
- the coal liquefaction reaction conditions at that time were quite harsh, with reaction pressures as high as 70MPa. Since the development of direct coal liquefaction for more than 100 years, research in various countries has begun to pay attention to the use of catalysts and solvent hydrogenation technology, thus easing the reaction conditions.
- the current direct coal liquefaction technology still faces the problem of low oil yield and high production costs caused by low oil yield. Therefore, there is an urgent need to develop a direct coal liquefaction technology that can significantly increase oil yield.
- the purpose of the present invention is to overcome the above-mentioned problems existing in the prior art and provide a catalyst oil-coal slurry and its preparation method and a method and application of direct coal liquefaction.
- Using the catalyst oil-coal slurry for direct coal liquefaction can obtain higher Improve oil yield and reduce production costs.
- the first aspect of the present invention provides a preparation method of catalyst oil coal slurry, which method includes: mixing an oil-soluble molybdenum source, a solvent, coal powder and an optional sulfur source to obtain the catalyst oil coal slurry .
- a second aspect of the present invention provides a catalyst oil-coal slurry, which includes an oil-soluble molybdenum source, a solvent, pulverized coal and an optional sulfur source;
- the catalyst oil coal slurry is prepared by the method described in the first aspect.
- the present invention provides a method for direct coal liquefaction, which method includes: subjecting the catalyst oil coal slurry described in the second aspect to direct coal liquefaction;
- the pulverized coal is subjected to direct coal liquefaction in the presence of a solvent, an oil-soluble molybdenum source, and an optional sulfur source.
- the present invention provides the application of the catalyst oil coal slurry described in the second aspect or the method described in the first aspect in direct coal liquefaction.
- the present invention can achieve the following beneficial effects:
- the catalyst oil-coal slurry provided by the present invention is highly dispersed in the catalyst oil and coal slurry, has better dispersion under liquefaction conditions, is highly loaded on coal powder, and has higher activity after being converted into molybdenum disulfide. , can better catalyze the reaction, and can effectively prevent the agglomeration of macromolecules during the reaction process.
- the catalyst oil-coal slurry provided by the invention is used for direct coal liquefaction, the oil yield can be increased by about 10 percentage points, and the conversion rate is also significantly improved, thereby reducing the Cost of production.
- the oil-soluble molybdenum source is molybdenum dialkyl dithiophosphate and molybdenum dialkyl dithiocarbamate
- the above two substances are commonly used lubricating oil additives and are cheap, and there is no need to add additional sulfur sources. , reducing the operational complexity and further reducing production costs.
- the oil-soluble molybdenum source is molybdenum dialkyldithiocarbamate, the use of phosphorus can be avoided, further reducing environmental pollution, and the chemical stability is better, which is more conducive to direct liquefaction reactions.
- the present invention provides a method for preparing catalyst oil coal slurry, which method includes:
- the oil-soluble molybdenum source, solvent, coal powder and optional sulfur source are mixed to obtain the catalyst oil coal slurry.
- the inventor of the present invention found in the research that using the above method to prepare catalyst oil-coal slurry, especially using the above oil-soluble molybdenum source as the catalyst, not only avoids the large water consumption in the preparation of traditional water-soluble highly dispersed catalysts , the problem of cumbersome preparation process, and also avoids the problems of large particle size and poor dispersion in powdered inorganic catalysts.
- the oil-soluble molybdenum source is highly dispersed in the catalyst oil coal slurry and is highly loaded on the pulverized coal. Under liquefaction conditions, it is converted into ultra-fine catalyst molybdenum disulfide, which has better activity and can exert higher hydrogenation catalytic activity.
- the amount of oil-soluble molybdenum source calculated as molybdenum element is 0.005-1 parts by weight, preferably 0.1-0.3 parts by weight, and more preferably 0.2-0.25 parts by weight relative to 100 parts by weight of pulverized coal. .
- the inventor of the present invention found during research that when the above range is met, significantly higher catalytic effect can be obtained, and higher oil yield and conversion rate can be obtained.
- the oil-soluble molybdenum source is selected from at least one selected from the group consisting of molybdenum phosphate, molybdenum hexacarbonyl, molybdenum naphthenate, molybdenum carboxylate, molybdenum sulfonate, molybdenum hydroxythiol and molybdenum xanthate.
- the oil-soluble molybdenum source is molybdenum dialkyl dithiophosphate (a molybdenum phosphate), molybdenum dialkyl dithiocarbamate (a molybdenum carboxylate), molybdenum hexacarbonyl and molybdenum naphthenate.
- molybdenum dialkyl dithiophosphate a molybdenum phosphate
- molybdenum dialkyl dithiocarbamate a molybdenum carboxylate
- molybdenum hexacarbonyl and molybdenum naphthenate At least one of, more preferably at least one of molybdenum dialkyldithiocarbamate (MoDTP) and molybdenum dialkyldithiocarbamate (MoDTC).
- naphthenic acid is a mixture of dark oily organic acids separated during the refining of petroleum products.
- the molybdenum naphthenate prepared accordingly is also a mixture.
- Molybdenum naphthenate is mainly a carboxyl group of a five-membered carbon ring. derivative.
- the length of the alkyl carbon chain corresponds to different specific substances.
- Molybdenum dialkyl dithiophosphate is the same, that is, in molybdenum dialkyl dithiophosphate , the different lengths of the alkyl carbon chains correspond to different specific substances.
- molybdenum dialkyldithiocarbamate when there are fewer carbon atoms in the alkyl carbon chain, such as 2-6, such as 3, 4 or 5, the substance is generally in powder form (solid state); when the alkyl carbon chain When the number of carbon atoms is large, such as 12-14, the substance is generally in an oily (liquid) state.
- Molybdenum dialkyl dithiophosphate is generally in the form of oil (liquid). More preferred is liquid molybdenum dialkyldithiocarbamate.
- molybdenum dialkyl dithiophosphate or molybdenum dialkyl dithiocarbamate are commonly used components in lubricating oils. They are cheap and can reduce production costs. They can also be directly decomposed under liquefied conditions to form direct Catalytic MoS 2 eliminates the need to add additional sulfur for vulcanization, making the production operation simpler and lower cost.
- the inventor of the present invention further discovered during the research that when liquid molybdenum dialkyldithiocarbamate is used, not only can better dispersion effect and higher oil yield be obtained, but the use of phosphorus element can also be avoided, and further Reduce environmental impact.
- the amount of the solvent is 80-220 parts by weight, preferably 100-190 parts by weight, and more preferably 120-150 parts by weight relative to 100 parts by weight of pulverized coal.
- the solvent is a hydrogen-donating solvent
- the ⁇ 20 of the hydrogen-donating solvent is lower than 0.98 g ⁇ cm -3
- the kinematic viscosity at 40°C is lower than 5 mm 2 /s
- the hydrogen-donating solvent refers to a solvent that can dissolve coal during the coal liquefaction process (that is, cause the coal to swell and then form a uniform oil-coal slurry with the hydrogen-donating solvent), and diffuse hydrogen to the coal or catalyst surface to provide hydrogen and transfer hydrogen.
- the solvent also has the function of preventing the thermal decomposition of coal from free radical fragment condensation.
- the hydrogen-donating solvent can include one or more of tetralin, dihydrophenanthrene, dihydroanthracene, etc.
- the hydrogen-donating solvent used can usually be a self-produced circulating solvent for direct coal liquefaction, such as CN104893751A Part of the liquefied oil will be used as a circulating solvent. It can be understood that during the continuous operation of the direct coal liquefaction device, the mixed oil of medium oil and heavy oil produced by the direct coal liquefaction itself is called the self-produced circulating solvent of the direct coal liquefaction.
- the use of this solvent can not only play the role of a hydrogen-donating solvent, but also further recycle materials to avoid waste.
- ⁇ 20 refers to the density measured at 20°C.
- the kinematic viscosity is measured using the method in GB/T 265-1988; the molar ratio of H and C is an indicator of the hydrogen content of the solvent. The higher it is, the stronger the hydrogen supply capacity is.
- Using the solvent as mentioned above can further improve the dispersion of the oil-soluble molybdenum source in the catalyst oil coal slurry, and further control the concentration of each material within a more appropriate range, thereby further increasing the oil yield.
- the sulfur source is a sulfur-containing substance that can convert the oil-soluble molybdenum source into molybdenum disulfide. Therefore, when the oil-soluble molybdenum source itself contains sulfur and can (especially under direct coal liquefaction conditions) be converted into disulfide In the case of molybdenum, no additional sulfur source can be introduced.
- the sulfur source is used in an amount such that the molar ratio of sulfur element to molybdenum element in the catalyst oil coal slurry is 0-3.5, preferably 2-2.8, and more preferably 2.2-2.5. It can be understood that the oil-soluble molybdenum source may also contain sulfur.
- the amount of the sulfur source is based on the principle that the molar ratio of the total amount of sulfur in the catalyst oil coal slurry to the molybdenum satisfies the above molar ratio.
- the sulfur source is selected from at least one of elemental sulfur, inorganic sulfur and organic sulfur, preferably at least one of sulfur, carbon disulfide, sodium sulfide and sodium hydrosulfide.
- the mixing order when mixing the oil-soluble molybdenum source, solvent, coal powder and optional sulfur source is not particularly restricted, as long as the oil-soluble molybdenum source can be ensured to be dispersed as much as possible and the materials as uniform as possible.
- the method includes: first mixing an oil-soluble molybdenum source and a solvent, and then mixing it with pulverized coal, and adding or not adding a sulfur source to obtain the catalyst oil coal slurry.
- the inventor of the present invention found during research that mixing the oil-soluble molybdenum source and the solvent first can make the oil-soluble molybdenum source more uniformly dispersed in the catalyst oil coal slurry, thereby obtaining a higher oil yield.
- the method of the present invention is targeted at pulverized coal with low vitrinite content, such as Coal of 40-48% by weight, such as 42% by weight, 44% by weight or 46% by weight, can also have a better conversion effect.
- coal generally includes vitrinite, inertinite and chitinite. Vitrinite has higher oxygen content, lower carbon content, and medium hydrogen content. During hydrogenation and liquefaction, vitrinite is easier to liquefy than the other two groups. Therefore, the level of vitrinite content can generally indicate the difficulty of coal liquefaction. degree.
- the higher the vitrinite content in coal powder the easier it is to liquefy. In the existing technology, it is generally hoped to use coal powder with higher vitrinite content.
- the method of the present invention is not only suitable for coal with higher vitrinite content.
- Coal powder with low vitrinite content for example, the vitrinite content is 40-48% by weight
- the vitrinite content is 40-48% by weight
- the invention provides a catalyst oil-coal slurry, which includes an oil-soluble molybdenum source, a solvent, coal powder and an optional sulfur source;
- the catalyst oil coal slurry is prepared by the method described in the first aspect.
- the amounts and types of each raw material are as mentioned above and will not be described again here.
- the present invention provides a method for direct coal liquefaction, which method includes: subjecting the catalyst oil coal slurry described in the second aspect to direct coal liquefaction;
- the pulverized coal is subjected to direct coal liquefaction in the presence of a solvent, an oil-soluble molybdenum source, and an optional sulfur source.
- a solvent an oil-soluble molybdenum source
- an optional sulfur source an optional sulfur source.
- the direct coal liquefaction conditions when performing direct coal liquefaction, can adopt the direct coal liquefaction conditions commonly used in the field, such as the direct coal liquefaction conditions disclosed in CN104893751A and CN100381540C.
- the direct coal liquefaction conditions The conditions include: pressure is 18-22MPa, such as pressure is 20MPa, temperature is 435-475°C, such as temperature is 450 or 460°C, time is 0.5-1.5h, such as reaction time is 1h.
- Direct liquefaction of coal is generally carried out in the presence of hydrogen, and the amount of hydrogen is such that the pressure is within the above range.
- the present invention provides the application of the catalyst oil coal slurry described in the second aspect or the method described in the first aspect in direct coal liquefaction.
- the catalyst oil coal slurry is prepared according to the following method and the coal is directly liquefied:
- the present invention will be described in detail below through examples.
- the pulverized coal in Examples 1-11 is Shendong coal, and more than 80% of the particles have a particle size smaller than 200 mesh.
- Mad refers to the water content on an air dry basis
- Ad refers to the ash content on a dry basis
- Vdaf refers to the volatile matter on a dry ashless basis. Measured according to the methods in GB/T211-2017 and GB/T212-2008.
- FC daf refers to dry ash-free fixed carbon
- C, H, O, N, and S refer to the content of each element respectively; follow the methods in GB/T214-2007, GB/T476-2008 and GB/T19227-2008 Determination.
- Vitrinite refers to vitrinite content
- Inertinite refers to inertinite content
- Exinite refers to chitinite content. Measured according to the method in GB/T8899-2013.
- the solvent in Examples 1-11 is a self-produced circulating solvent for direct liquefaction of coal.
- the main properties of the solvent are analyzed in Table 2.
- the liquid molybdenum dialkyldithiocarbamate (molybdenum element content is 10.45% by weight, and the carbon atom in the alkyl carbon chain is 13) with the solvent and stir evenly, then add pulverized coal to the mixed solution, and add carbon disulfide. Mix and stir evenly to obtain catalyst oil coal slurry.
- the amount of oil-soluble molybdenum source calculated as molybdenum element is 0.2 parts by weight, and the amount of solvent is 120 parts by weight; the amount of sulfur added is such that the sulfur and molybdenum elements in the catalyst oil coal slurry are The molar ratio is 2.5.
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that no sulfur source was added.
- the catalyst oil coal slurry was prepared according to the method of Example 3, except that the liquid molybdenum dialkyldithiocarbamate was replaced with molybdenum hexacarbonyl powder.
- the catalyst oil coal slurry was prepared according to the method of Example 3, except that the liquid molybdenum dialkyldithiocarbamate was replaced with molybdenum naphthenate powder.
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that, relative to 100 parts by weight of pulverized coal, the amount of oil-soluble molybdenum source calculated as molybdenum element was 0.1 parts by weight, and the amount of solvent was 100 parts by weight; sulfur The addition amount makes the molar ratio of sulfur element and molybdenum element in the catalyst oil coal slurry be 2.
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that relative to 100 parts by weight of pulverized coal, the amount of oil-soluble molybdenum source calculated as molybdenum element was 0.3 parts by weight, and the amount of solvent was 190 parts by weight; sulfur The addition amount makes the molar ratio of sulfur element and molybdenum element in the catalyst oil coal slurry to 2.8.
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that the liquid molybdenum dialkyldithiocarbamate was replaced with molybdenum dialkyldithiocarbamate powder (the carbon atom in the alkyl carbon chain is 4) .
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that liquid molybdenum dialkyldithiocarbamate, solvent, coal powder, and sulfur were mixed simultaneously.
- the catalyst oil coal slurry was prepared according to the method of Example 3, except that the liquid molybdenum dialkyldithiophosphate was replaced with molybdenum butyrate powder.
- Catalyst oil coal slurry was prepared according to the method of Example 3, except that the solvent was replaced with tetralin (its ⁇ 20 was 0.9659 g ⁇ cm -3 , the kinematic viscosity at 40°C was 1.8 mm 2 /s, H and C molar ratio is 1.2).
- the preparation method of the iron-based catalyst is: the raw coal is Shendong coal, and the particle size is less than 200 mesh accounting for more than 80%.
- the solvent oil is directly liquefied from coal and the self-produced circulating solvent oil is used.
- the precipitant is ammonia water. Dissolve 49.64g FeSO 4 ⁇ 7H 2 O crystals with 446.44g deionized water at room temperature, prepare a certain aqueous solution, fully dissolve and stir evenly, add 158.864g pulverized coal to it, and after sufficient stirring, obtain a pulverized coal concentration of approximately 24.12%.
- Coal water slurry add 24.272g of commercially available ammonia water with a concentration of 26% by weight and add 330.58g of deionized water to dilute it to a dilute ammonia water with a concentration of about 1.71%.
- the coal-water slurry and the above-mentioned dilute ammonia water are co-flowed and precipitated in a neutralization reaction to generate amorphous precipitates of divalent iron, which are evenly loaded on the pulverized coal.
- Set the air flow rate to 1.456L/min and the ventilation time to 1 hour; while introducing oxygen, continue to add ammonia drops to ensure that the pH value of the process is 7-7.5.
- the slurry is then centrifuged using a centrifuge, and the filter cake is placed in a blast drying oven to dry overnight at 40°C; the obtained catalyst is ground to less than 200 mesh for later use.
- the iron content in the catalyst is 6% by weight.
- F daf mass of anhydrous and ashless base coal, g;
- H 1 The mass of hydrogen remaining in the reactor after the reaction, g;
- W water yield, the oxygen element in coal minus the oxygen element contained in the gas products CO and CO 2 , and then converted into the mass of water/F daf ;
- A Asphalt yield, mass difference between n-hexane insoluble matter and tetrahydrofuran insoluble matter/F daf ;
- Example 1 Coal conversion rate (%) Oil yield (%)
- Example 1 87.54 64.23
- Example 2 87.21 63.81
- Example 3 88.66 64.93
- Example 4 85.31 62.19
- Example 5 83.52 60.48
- Example 6 83.06 59.27
- Example 7 82.86 58.79
- Example 8 84.15 60.83
- Example 9 83.13 59.57
- Example 10 84.61 61.32
- Example 11 82.59 59.16
- Example 12 88.51 63.92 Comparative example 1 81.37 54.43 Comparative example 2 81.18 54.53 Comparative example 3 81.68 53.62 Comparative example 4 82.82 55.73
- the Shendong coal used as above has a low vitrinite content and is a coal that is difficult to liquefy.
- a better conversion effect can be achieved for the Shendong coal that is difficult to liquefy.
- When applied When used with other coal types that have higher vitrinite and are easy to liquefy, better conversion effects can be achieved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
本发明涉及煤直接液化领域,公开了一种催化剂油煤浆及其制备方法和煤直接液化的方法及应用。该方法包括:将油溶性钼源、溶剂、煤粉和任选的硫源混合,得到所述催化剂油煤浆。采用该催化剂油煤浆进行煤直接液化,能够获得较高的油收率,降低生产成本。
Description
本发明涉及煤直接液化技术领域,具体涉及一种催化剂油煤浆及其制备方法和煤直接液化的方法及应用。
煤直接液化是在高温高压的条件下,借助于供氢溶剂和催化剂的作用,使氢进入煤及其衍生物的分子结构,从而将煤转化为液体产物的洁净煤技术。在直接液化发展之初,由于没有发现煤液化催化剂和溶剂预加氢这两个关键影响因素对煤液化的促进作用,当时的煤液化反应条件相当苛刻,反应压力高达70MPa。煤直接液化发展100多年以来,各国的研究开始重视催化剂的使用和溶剂加氢技术,从而使反应条件趋向缓和。然而,目前的煤直接液化技术,仍然面临着油收率较低,以及较低的油收率带来的高生产成本的问题。因此,亟需开发一种能够明显提高油收率的煤直接液化技术。
发明内容
本发明的目的是为了克服现有技术存在的上述问题,提供一种催化剂油煤浆及其制备方法和煤直接液化的方法及应用,采用该催化剂油煤浆进行煤直接液化,能够获得较高的油收率,降低生产成本。
为了实现上述目的,本发明第一方面提供一种催化剂油煤浆的制备方法,该方法包括:将油溶性钼源、溶剂、煤粉和任选的硫源混合,得到所述催化剂油煤浆。
本发明第二方面提供一种催化剂油煤浆,所述催化剂油煤浆包括油溶性钼源、溶剂、煤粉和任选的硫源;
或者,所述催化剂油煤浆由第一方面所述的方法制备得到。
第三方面,本发明提供了一种煤直接液化的方法,所述方法包括:将第二方面所述的催化剂油煤浆进行煤直接液化;
或者,在溶剂、油溶性钼源和任选的硫源的存在下,将煤粉进行煤直接液化。
第四方面,本发明提供了第二方面所述的催化剂油煤浆或第一方面所述的方法在煤直接液化中的应用。
通过上述技术方案,本发明可以取得如下的有益效果:
1、相对于现有技术,本发明提供的催化剂油煤浆,催化剂在其中高度分散,在液化条件下的分散性更好,高度负载于煤粉上;转化为二硫化钼后,活性较高,能够更好的催化反应,并能有效防止反应过程中大分子的团聚。
2、在和现有的铁基催化剂在相同的液化条件下,采用本发明提供的催化剂油煤浆进行煤直接液化,油收率可以提高约10个百分点,转化率也有明显提升,进而降低了生产成本。
3、特别是当油溶性钼源为二烷基二硫代磷酸钼、二烷基二硫代氨基甲酸钼时,上述两种物质是常用的润滑油添加剂,价格便宜,还无需额外添加硫源,减少了操作复杂度,能够进一步降低生产成本。并且,当油溶性钼源为二烷基二硫代氨基甲酸钼时,还能避免采用磷,进一步减小了对环境的污染,并且化学稳定性更好,更有利于直接液化反应。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
第一方面,本发明提供了一种催化剂油煤浆的制备方法,该方法包括:
将油溶性钼源、溶剂、煤粉和任选的硫源混合,得到所述催化剂油煤浆。
目前的煤直接液化技术,仍然面临着油收率较低,生产成本较高的问题。
本发明的发明人在研究中发现,采用如上所述的方法制备催化剂油煤浆,特别是采用上述油溶性钼源作为催化剂,不仅避免了传统的水溶性高分散催化剂在制备中耗水量较大,制备过程繁琐的问题,还避免了粉体无机催化剂中颗粒粒度大,分散性差的问题。油溶性钼源在催化剂油煤浆中高度分散,并高度负载于煤粉上,在液化条件下,转化为超细微的催化剂二硫化钼,活性更好,能够发挥较高的加氢催化活性,获得较高的油收率和转化率,并可以有效防止反应过程中大分子的团聚。并且,可以根据具体采用的油溶性钼源,来确定是否添加硫源。此外,本发明的发明人还发现,采用如上所述的催化剂油煤浆,相对于采用铁系催化剂的催化剂油煤浆,在相同的液化条件时,能够获得明显较高的油收率。
根据本发明,优选的,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.005-1重量份,优选为0.1-0.3重量份,更优选为0.2-0.25重量份。本发明的发明人在研究中发现,当满足如上所述的范围时,能够获得明显更高的催化效果,获得更高的油收率和转化率。
根据本发明,优选的,所述油溶性钼源选自磷酸钼、六羰基钼、环烷酸钼、羧酸钼、磺酸钼、羟基硫醇钼和黄原酸钼中的至少一种。更优选的,油溶性钼源为二烷基二硫代磷酸钼(一种磷酸钼)、二烷基二硫代氨基甲酸钼(一种羧酸钼)、六羰基钼和环烷酸钼中的至少一种,更优选为二烷基二硫代磷酸钼(MoDTP)和二烷基二硫代氨基甲酸钼(MoDTC)中的至少一种。
能够理解的是,环烷酸是石油产品精制时分离出的、呈深色油状的有机酸的混合物,相应制备出的环烷酸钼也是混合物,环烷酸钼主要是五元碳环的羧基衍生物。并且,二烷基二硫代氨基甲酸钼中,烷基碳链长度的不同,对应不同的具体物质,二烷基二硫代磷酸钼与之相同,也即二烷基二硫代磷酸钼中,烷基碳链长度的不同,对应不同的具体物质。对于二烷基二硫代氨基甲酸钼,当烷基碳链中碳原子较少,例如为2-6 比如3、4或5时,该物质一般呈粉末状(固态);当烷基碳链中碳原子数目较多,例如为12-14时,该物质一般呈油状(液态)。二烷基二硫代磷酸钼一般均呈油状(液态)。进一步优选为液态的二烷基二硫代氨基甲酸钼。
本发明的发明人在研究中发现,采用如上所述的油溶性钼源,催化效果更好,能够获得更高的油收率。特别是二烷基二硫代磷酸钼或二烷基二硫代氨基甲酸钼,是润滑油中常用的组分,价格便宜,还能够降低生产成本,在液化条件下还能够直接分解形成有直接催化作用的MoS
2,无需额外添加硫来进行硫化,使得生产操作更简单,成本更低。本发明的发明人在研究中进一步发现,采用液态的二烷基二硫代氨基甲酸钼时,不仅能获得更好的分散效果,更高的油收率,还能够避免磷元素的使用,进一步减少对环境的影响。
根据本发明,优选的,相对于100重量份的煤粉,所述溶剂的用量为80-220重量份,优选为100-190重量份,更优选为120-150重量份。
根据本发明,优选的,所述溶剂为供氢溶剂,所述供氢溶剂的ρ
20低于0.98g·cm
-3,40℃时的运动粘度低于5mm
2/s,H和C摩尔比高于0.25。所述供氢溶剂指的是在煤液化过程中能够溶解煤(也即使煤发生溶胀,进而与供氢溶剂形成均匀的油煤浆)、使氢向煤或催化剂表面扩散以提供氢和传递氢的溶剂,其还具有防止煤热分解的自由基碎片缩聚作用。
供氢溶剂可包括四氢萘、二氢菲和二氢蒽等中的一种或多种,在煤直接液化中,所采用的供氢溶剂通常可以为煤直接液化自产循环溶剂,如CN104893751A中将部分液化产油作为循环溶剂。能够理解的是,在煤炭直接液化装置的连续运转过程中,煤直接液化自身产生的中质油和重质油的混合油,称作煤直接液化自产循环溶剂。采用这种溶剂,不仅能够发挥供氢溶剂的作用,还能够进一步循环利用物料,避免浪费。ρ
20指的是20℃时测定的密度,运动粘度的测定采用GB/T 265-1988中的方法;H和C摩尔比是溶剂含氢量的标志,越高说明供氢能力越强。
采用如上所述的溶剂,能够进一步提高催化剂油煤浆中油溶性钼源的分散性,还能进一步控制各物料浓度在更为合适的范围内,从而进一 步提高油收率。
根据本发明,所述硫源为能够使油溶性钼源转化为二硫化钼的含硫物质,因此当油溶性钼源自身含硫并能够(特别是在煤直接液化条件下)转化为二硫化钼的情况下,可以不再另外引入硫源。优选的,所述硫源的用量使得:催化剂油煤浆中硫元素和钼元素的摩尔比为0-3.5,优选为2-2.8,更优选为2.2-2.5。能够理解的是,油溶性钼源也可能含有硫元素,硫源的用量以催化剂油煤浆硫元素的总量和钼元素的摩尔比满足上述摩尔比为原则。
根据本发明,优选的,所述硫源选自硫单质、无机硫和有机硫中的至少一种,优选为硫磺、二硫化碳、硫化钠和硫氢化钠中的至少一种。
其中,将油溶性钼源、溶剂、煤粉和任选的硫源混合时的混合顺序不受特别的限制,只要能够保证油溶性钼源尽量分散,物料尽量均匀即可。但优选的,该方法包括:将油溶性钼源和溶剂先混合,然后和煤粉混合,并加入或不加入硫源,得到所述催化剂油煤浆。本发明的发明人在研究中发现,将油溶性钼源和溶剂先混合,能够使得油溶性钼源在催化剂油煤浆中的分散更加均匀,从而获得更高的油收率。
本发明中,对所述煤粉没有特别的限制,可以为各种不同来源的煤,本发明的发明人发现,本发明的方法针对镜质组含量较低的煤粉,如镜质组含量为40-48重量%比如42重量%、44重量%或46重量%的煤也能具有较好的转化效果。能够理解的是,煤一般包括镜质组、惰质组和壳质组。镜质组中氧含量较高,碳含量较低,氢含量中等,在加氢液化时,相对于其他两组,镜质组更易液化,因此镜质组含量高低一般可以表征煤液化的难易程度。一般的,煤粉中镜质组含量越高,越易液化,现有技术中,一般希望采用镜质组含量较高的煤粉,而本发明的方法不仅对于镜质组含量较高的煤粉能够达到较好的转化效果,对于现有技术较难转化的镜质组含量较低(如镜质组含量为40-48重量%)的煤粉,也能具有较好的转化效果。
第二方面,本发明提供了一种催化剂油煤浆,所述催化剂油煤浆包括油溶性钼源、溶剂、煤粉和任选的硫源;
或者,所述催化剂油煤浆由第一方面所述的方法制备得到。在该方面中,各个原料的用量和种类如前所述,在此不再赘述。
第三方面,本发明提供了一种煤直接液化的方法,所述方法包括:将第二方面所述的催化剂油煤浆进行煤直接液化;
或者,在溶剂、油溶性钼源和任选的硫源的存在下,将煤粉进行煤直接液化。在该方面中,各个原料的用量和种类如前所述,在此不再赘述。
根据本发明,进行煤直接液化时,煤直接液化条件可以采用本领域常用的煤直接液化条件,例如CN104893751A和CN100381540C中公开的煤直接液化条件,在一种实施方式中,所述煤直接液化的条件包括:压力为18-22MPa比如压力为20MPa,温度为435-475℃比如温度为450或460℃,时间为0.5-1.5h比如反应时间为1h。煤直接液化一般在氢气的存在下进行,氢气的用量使得压力在上述范围内。
第四方面,本发明提供了第二方面所述的催化剂油煤浆或第一方面所述的方法在煤直接液化中的应用。
根据本发明一种特别优选的实施方式,按照如下的方法制备催化剂油煤浆并进行煤直接液化:
将液态二烷基二硫代氨基甲酸钼与溶剂充分混合搅拌均匀,然后向混合液加入煤粉,并加入硫磺,充分混合搅拌均匀,得到催化剂油煤浆。其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.24-0.25重量份,溶剂的用量为125-140重量份;硫磺的添加量使得催化剂油煤浆中硫和钼的摩尔比为2.25-2.35;
将催化剂油煤浆加入反应器中,充入氢气,设定反应压力为19-20MPa,反应温度为455-460℃,反应时间为1-1.3h。
以下将通过实施例对本发明进行详细描述。实施例1-11中的煤粉为神东煤,其中80%以上的粒径小于200目。
表1神东煤煤质分析
表1中,各符号代表含义如下:
工业分析部分:Mad指空气干燥基水含量;Ad指干燥基灰分;Vdaf指干燥无灰基挥发分。按照GB/T211-2017和GB/T212-2008中的方法测定。
元素分析部分:FC
daf指干燥无灰基固定碳;C、H、O、N、S分别指各元素含量;按照GB/T214-2007、GB/T476-2008和GB/T19227-2008中的方法测定。
岩相分析部分:Vitrinite指镜质组含量;Inertinite指惰质组含量;Exinite指壳质组含量。按照GB/T8899-2013中的方法测定。
实施例1-11中的溶剂为煤直接液化自产循环溶剂,溶剂的主要性质分析见表2。
表2
实施例1
用于说明本发明提供的催化剂油煤浆的制备方法
将液态二烷基二硫代磷酸钼(钼元素含量为10.45重量%,烷基碳链中碳原子为13)与溶剂充分混合搅拌均匀,然后向混合液加入煤粉,并加入硫磺后,充分混合搅拌均匀,得到催化剂油煤浆。其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.22重量份,溶剂的用量为150重量份;硫磺的添加量使得催化剂油煤浆中硫元素和钼元素的摩尔比为2.2。
实施例2
用于说明本发明提供的催化剂油煤浆的制备方法
将液态二烷基二硫代氨基甲酸钼(钼元素含量为10.45重量%,烷基碳链中碳原子为13)与溶剂充分混合搅拌均匀,然后向混合液加入煤粉,并加入二硫化碳,充分混合搅拌均匀,得到催化剂油煤浆。其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.2重量份,溶剂的用量为120重量份;硫磺的添加量使得催化剂油煤浆中硫元素和钼元素的摩尔比为2.5。
实施例3
用于说明本发明提供的催化剂油煤浆的制备方法
将液态二烷基二硫代氨基甲酸钼(钼元素含量为9.86重量%,烷基碳链中碳原子为13)与溶剂充分混合搅拌均匀,然后向混合液加入煤粉,并加入硫磺,充分混合搅拌均匀,得到催化剂油煤浆。其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.25重量份,溶剂的用量为130重量份;硫磺的添加量使得催化剂油煤浆中硫元素和钼元素的摩尔比为2.3。
实施例4
用于说明本发明提供的催化剂油煤浆的制备方法
按照实施例3的方法制备催化剂油煤浆,不同的是,不加入硫源。
实施例5
按照实施例3的方法制备催化剂油煤浆,不同的是,将液态二烷基二硫代氨基甲酸钼替换为六羰基钼粉末。
实施例6
按照实施例3的方法制备催化剂油煤浆,不同的是,将液态二烷基二硫代氨基甲酸钼替换为环烷酸钼粉末。
实施例7
按照实施例3的方法制备催化剂油煤浆,不同的是,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.1重量份,溶剂的用量为100重量份;硫磺的添加量使得催化剂油煤浆中硫元素和钼元素的摩尔比为2。
实施例8
按照实施例3的方法制备催化剂油煤浆,不同的是,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.3重量份,溶剂的用量为190重量份;硫磺的添加量使得催化剂油煤浆中硫元素和钼元素的摩尔比为2.8。
实施例9
按照实施例3的方法制备催化剂油煤浆,不同的是,将液态二烷基二硫代氨基甲酸钼替换为二烷基二硫代氨基甲酸钼粉末(烷基碳链中碳原子为4)。
实施例10
按照实施例3的方法制备催化剂油煤浆,不同的是,将液态二烷基二硫代氨基甲酸钼、溶剂、煤粉、硫磺同时进行混合。
实施例11
按照实施例3的方法制备催化剂油煤浆,不同的是,将液态二烷基二硫代磷酸钼替换为丁酸钼粉末。
实施例12
按照实施例3的方法制备催化剂油煤浆,不同的是,将溶剂替换为四氢萘(其ρ
20为0.9659g·cm
-3,40℃时的运动粘度为1.8mm
2/s,H和C摩尔比为1.2)。
对比例1
按照实施例3的方法,不同的是,将液态二烷基二硫代氨基甲酸钼替换为三氧化钼粉末(非油溶性)。结果如表1所示。
对比例2
按照实施例3的方法,不同的是,将液态二烷基二硫代氨基甲酸钼替换为二硫化钼粉末(非油溶性)。结果如表1所示。
对比例3
按照实施例3的方法,不同的是,将液态二烷基二硫代氨基甲酸钼替换为七钼酸铵粉末(非油溶性)。结果如表1所示。
对比例4
将4.67g铁基催化剂(其中含煤粉3.97g)与24.03g煤粉、42g溶剂、0.32g硫磺充分混合搅拌均匀,制得铁系催化剂油煤浆。即,相对于100重量份的煤粉,铁元素的用量为1重量份,溶剂的用量为150重量份;
其中,铁基催化剂的制备方法为:原料煤采用神东煤,粒径为小于200目的占80%以上,溶剂油采用煤直接液化自产循环溶剂油,沉淀剂采用氨水。将49.64g FeSO
4·7H
2O晶体在常温下用446.44g去离子水溶解,配成一定水溶液充分溶解搅拌均匀,向其中加入158.864g煤粉,充分搅拌后得到煤粉浓度约为24.12%的水煤浆;将浓度为26重量%的市售氨水24.272g加入330.58g去离子水稀释为浓度约1.71%的稀氨水。将水煤浆和上述稀氨水进行共流并沉淀的中和反应,生成二价铁的无定型沉淀,并均匀负载在煤粉上。设置空气流量为1.456L/min,通气时间为1h;在通入氧气的同时,继续将氨水滴加入其中,保证过程pH值为7-7.5。之后采用离心机将浆液离心分离,将滤饼放入鼓风干燥箱40℃干燥过夜;取得的催化剂磨至200目以下备用。催化剂中铁含量为6重量%。
测试例1
取相同量的实施例1-11和对比例1-4中制备的催化剂油煤浆,分别按照如下的方法进行煤直接液化:
将催化剂油煤浆加入反应器中,充入氢气,设定反应压力为19MPa,反应温度为455℃,反应时间为1h。
反应结束后,得到气相产物和液-固相产物。采用气相色谱法测定气相产物组成;对液-固相产物,依次用正己烷和四氢呋喃进行索氏抽提,定义正己烷可溶物为油,四氢呋喃可溶物为沥青烯和前沥青烯;四氢呋喃不溶物经干燥后在马弗炉内815℃焙烧6h的剩余物为残灰(RA);煤转化率(X)、气产率(G)、氢耗(H)、油收率(O)及沥青烯(包括前沥青烯和沥青烯,A)产率按如下公式计算:
X=1-(TI-RA)/F
daf
A=(HI-TI)/F
daf
H=(H
0-H
1)/F
daf
G=(G
1-H
1)/F
daf
O=X+H-G-W-A
其中,F
daf:无水无灰基煤质量,g;
H
0:反应前充入反应釜内氢气质量,g;
H
1:反应后反应釜内剩余氢气质量,g;
G
1:反应后反应釜内气体质量,g;
HI:正己烷不溶物质量,g;
TI:四氢呋喃不溶物质量,g;
RA:四氢呋喃不溶物焙烧后剩余物质量,g;
H:氢耗;
G:气产率;
W:水产率,煤中氧元素减去气体产物CO、CO
2中所含氧元素,再换算为水的质量/F
daf;
A:沥青产率,正己烷不溶物质量与四氢呋喃不溶物的质量差值/F
daf;
O:油收率。
煤转化率、油收率见表3。
表3
煤转化率(%) | 油收率(%) | |
实施例1 | 87.54 | 64.23 |
实施例2 | 87.21 | 63.81 |
实施例3 | 88.66 | 64.93 |
实施例4 | 85.31 | 62.19 |
实施例5 | 83.52 | 60.48 |
实施例6 | 83.06 | 59.27 |
实施例7 | 82.86 | 58.79 |
实施例8 | 84.15 | 60.83 |
实施例9 | 83.13 | 59.57 |
实施例10 | 84.61 | 61.32 |
实施例11 | 82.59 | 59.16 |
实施例12 | 88.51 | 63.92 |
对比例1 | 81.37 | 54.43 |
对比例2 | 81.18 | 54.53 |
对比例3 | 81.68 | 53.62 |
对比例4 | 82.82 | 55.73 |
通过表3的结果可以看出,采用本发明的实施例1-12能够获得较高的转化率和油收率,相对于对比例1-4,油收率能提高约十个百分点。此外,实施例1-4中采用的二烷基二硫代氨基甲酸钼和二烷基二硫代磷酸钼,价格便宜,还能够进一步降低生产成本。
此外,如上采用的神东煤的镜质组含量较低,是较为难液化的一种煤,采用本发明的技术方案,对于较难液化的神东煤能够达到较好的转化效果,当应用于其他镜质组较高、易液化的煤种时,能够达到更好的转化效果。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
Claims (10)
- 一种催化剂油煤浆的制备方法,其特征在于,该方法包括:将油溶性钼源、溶剂、煤粉和任选的硫源混合,得到所述催化剂油煤浆。
- 根据权利要求1所述的方法,其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的用量为0.005-1重量份,优选为0.1-0.3重量份,更优选为0.2-0.25重量份;和/或,所述油溶性钼源选自磷酸钼、六羰基钼、环烷酸钼、羧酸钼、磺酸钼、羟基硫醇钼和黄原酸钼中的至少一种,优选为二烷基二硫代磷酸钼、二烷基二硫代氨基甲酸钼、六羰基钼和环烷酸钼中的至少一种,更优选为二烷基二硫代磷酸钼和二烷基二硫代氨基甲酸钼的至少一种,最优选为液态的二烷基二硫代氨基甲酸钼。
- 根据权利要求1所述的方法,其中,相对于100重量份的煤粉,所述溶剂的用量为80-220重量份,优选为100-190重量份,更优选为120-150重量份;和/或,所述溶剂为供氢溶剂,所述供氢溶剂的ρ 20低于0.98g·cm -3,40℃时的运动粘度低于5mm 2/s,H和C摩尔比高于0.25。
- 根据权利要求1所述的方法,其中,所述硫源的用量使得:催化剂油煤浆中硫元素和钼元素的摩尔比为0-3.5,优选为2-2.8,更优选为2.2-2.5;和/或,所述硫源选自硫单质、无机硫和有机硫中的至少一种,优选为硫磺、二硫化碳、硫化钠和硫氢化钠中的至少一种。
- 根据权利要求1-4中任意一项所述的方法,其中,该方法包括:将油溶性钼源和溶剂先混合,然后和煤粉混合,并加入或不加入硫源,得到所述催化剂油煤浆。
- 一种催化剂油煤浆,其特征在于,所述催化剂油煤浆包括油溶性钼源、溶剂、煤粉和任选的硫源;或者,所述催化剂油煤浆由权利要求1-5中任意一项所述的方法制备得到。
- 根据权利要求6所述的催化剂油煤浆,其中,相对于100重量份的煤粉,以钼元素计的油溶性钼源的含量为0.005-1重量份,优选为0.1-0.3重量份,更优选为0.2-0.25重量份;和/或,所述油溶性钼源选自磷酸钼、六羰基钼、环烷酸钼、羧酸钼、磺酸钼、羟基硫醇钼和黄原酸钼中的至少一种,优选为二烷基二硫代磷酸钼、二烷基二硫代氨基甲酸钼、六羰基钼和环烷酸钼中的至少一种,更优选为二烷基二硫代磷酸钼和二烷基二硫代氨基甲酸钼的至少一种,最优选为液态的二烷基二硫代氨基甲酸钼。
- 一种煤直接液化的方法,其特征在于,所述方法包括:将权利要求6或7中所述的催化剂油煤浆进行煤直接液化;或者,在溶剂、油溶性钼源和任选的硫源的存在下,将煤粉进行煤直接液化。
- 根据权利要求8所述的方法,其中,所述煤直接液化的条件包括:压力为18-22MPa,温度为435-475℃,时间为0.5-1.5h。
- 权利要求6所述的催化剂油煤浆或权利要求1-5中任意一项所述的方法在煤直接液化中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2023247381A AU2023247381A1 (en) | 2022-03-31 | 2023-01-09 | Catalyst coal-oil slurry and preparation method therefor, direct coal liquefaction method, and use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210336303.5A CN114768833B (zh) | 2022-03-31 | 2022-03-31 | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 |
CN202210336303.5 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023185208A1 true WO2023185208A1 (zh) | 2023-10-05 |
Family
ID=82426593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/071350 WO2023185208A1 (zh) | 2022-03-31 | 2023-01-09 | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN114768833B (zh) |
AU (1) | AU2023247381A1 (zh) |
WO (1) | WO2023185208A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114768833B (zh) * | 2022-03-31 | 2024-08-02 | 中国神华煤制油化工有限公司 | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 |
WO2024148466A1 (zh) * | 2023-01-09 | 2024-07-18 | 中国神华煤制油化工有限公司 | 一种钼胺络合物催化剂及其制备方法和应用 |
CN116474832A (zh) * | 2023-01-09 | 2023-07-25 | 中国神华煤制油化工有限公司 | 一种钼胺络合物催化剂及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055174A (en) * | 1984-06-27 | 1991-10-08 | Phillips Petroleum Company | Hydrovisbreaking process for hydrocarbon containing feed streams |
US5246570A (en) * | 1992-04-09 | 1993-09-21 | Amoco Corporation | Coal liquefaction process using soluble molybdenum-containing organophosphorodithioate catalyst |
CN114768833A (zh) * | 2022-03-31 | 2022-07-22 | 中国神华煤制油化工有限公司 | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA773429B (en) * | 1976-10-12 | 1978-04-26 | Exxon Research Engineering Co | Liquefaction of coal in a non-hydrogen donor solvent |
US8206577B2 (en) * | 2008-06-18 | 2012-06-26 | Kuperman Alexander E | System and method for pretreatment of solid carbonaceous material |
CA2817595C (en) * | 2010-12-20 | 2021-01-05 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
CN102732295B (zh) * | 2011-04-14 | 2015-03-18 | 中国石油化工股份有限公司 | 一种油煤加氢共炼油煤浆的制备方法及其油煤浆和其共炼方法 |
CN107999138B (zh) * | 2016-10-28 | 2019-12-27 | 中国石油化工股份有限公司 | 含有机钼化合物油溶液及其制备方法和应用和加氢转化的方法 |
CN108690650A (zh) * | 2017-04-09 | 2018-10-23 | 何巨堂 | 一种煤加氢液化过程和高芳烃加氢热裂化过程的组合方法 |
CN109423322B (zh) * | 2017-08-24 | 2021-02-09 | 中国石油化工股份有限公司 | 一种煤衍生物催化裂解的方法 |
CN111876209A (zh) * | 2020-07-15 | 2020-11-03 | 中国神华煤制油化工有限公司 | 煤液化制备油煤浆的方法及其制得的油煤浆 |
CN111876189B (zh) * | 2020-07-21 | 2022-09-02 | 中国神华煤制油化工有限公司 | 煤两段催化直接液化的方法及其应用 |
-
2022
- 2022-03-31 CN CN202210336303.5A patent/CN114768833B/zh active Active
-
2023
- 2023-01-09 WO PCT/CN2023/071350 patent/WO2023185208A1/zh active Application Filing
- 2023-01-09 AU AU2023247381A patent/AU2023247381A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055174A (en) * | 1984-06-27 | 1991-10-08 | Phillips Petroleum Company | Hydrovisbreaking process for hydrocarbon containing feed streams |
US5246570A (en) * | 1992-04-09 | 1993-09-21 | Amoco Corporation | Coal liquefaction process using soluble molybdenum-containing organophosphorodithioate catalyst |
CN114768833A (zh) * | 2022-03-31 | 2022-07-22 | 中国神华煤制油化工有限公司 | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 |
Non-Patent Citations (2)
Title |
---|
JIAWEN XU, U WENBIN, CHEN SHAOHUI, YANG AIWU: "Advances in the direct coal liquefaction", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 31, no. S1, 15 July 2012 (2012-07-15), pages 119 - 123, XP093096139, DOI: 10.16085/j.issn.1000-6613.2012.s1.096 * |
WENZHENG ZHANG: "CURRENT STATUS OF RESEARCH AND DEVELOPMENT FOR COAL LIQUEFACTION", CHINA MOLYBDENUM INDUSTRY, vol. 26, no. 3, 30 June 2022 (2022-06-30), pages 3 - 6, XP093096141 * |
Also Published As
Publication number | Publication date |
---|---|
CN114768833A (zh) | 2022-07-22 |
AU2023247381A1 (en) | 2024-09-05 |
CN114768833B (zh) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023185208A1 (zh) | 催化剂油煤浆及其制备方法和煤直接液化的方法及应用 | |
CN105647578A (zh) | 一种油煤混合加氢炼制技术及设备 | |
CN108745385B (zh) | 一种自硫化油溶性钼基双金属催化剂及其制备方法和应用 | |
WO2016176947A1 (zh) | 一种铁系催化剂及其制备方法和用途 | |
CN102413932B (zh) | 加氢转化多金属催化剂及其制备方法 | |
SA02230247B1 (ar) | عملية لتحويل شحنات ثقيله | |
CN104907078B (zh) | 一种加氢催化剂及其制备方法和用途 | |
CN103977822A (zh) | 一种油溶性复合型悬浮床加氢裂化催化剂及其制备方法 | |
CN103097026A (zh) | 低品质烃类原料的加氢转化方法 | |
US4260471A (en) | Process for desulfurizing coal and producing synthetic fuels | |
Zhong et al. | Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations | |
JPS5861178A (ja) | 石炭または石炭液原料の脱硫脱金属脱窒素方法 | |
CN111876189B (zh) | 煤两段催化直接液化的方法及其应用 | |
US11492563B2 (en) | Conversion process for an inferior oil | |
CN114073984A (zh) | 一种油溶性辛酸钼催化剂、制备方法及其应用 | |
CN111686735A (zh) | 一种载体煤改性制备高分散型煤/重油加氢共炼催化剂 | |
CN101468309B (zh) | 一种非负载型加氢催化剂的制备方法 | |
CA2781416A1 (en) | Hydrogenation of solid carbonaceous materials using mixed catalysts | |
CA2781305A1 (en) | Hydrogenation of solid carbonaceous materials using mixed catalysts | |
EP3608388B1 (en) | Substandard oil product conversion process | |
CN104560173B (zh) | 一种重油加氢转化方法 | |
CN104549278B (zh) | 一种渣油双功能催化剂及其制备和应用 | |
Zhao et al. | Applications of metals and metal sulphides in catalytic hydrocracking of coal and their related model compounds | |
CN109513459B (zh) | 一种钼钨复合油溶性渣油悬浮床加氢催化剂及其制备方法 | |
WO2024148466A1 (zh) | 一种钼胺络合物催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23777587 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU23247381 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2023247381 Country of ref document: AU Date of ref document: 20230109 Kind code of ref document: A |