WO2023182028A1 - パターニング方法及びパターニング装置 - Google Patents

パターニング方法及びパターニング装置 Download PDF

Info

Publication number
WO2023182028A1
WO2023182028A1 PCT/JP2023/009518 JP2023009518W WO2023182028A1 WO 2023182028 A1 WO2023182028 A1 WO 2023182028A1 JP 2023009518 W JP2023009518 W JP 2023009518W WO 2023182028 A1 WO2023182028 A1 WO 2023182028A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist film
etching
gas
infiltration
infiltrated
Prior art date
Application number
PCT/JP2023/009518
Other languages
English (en)
French (fr)
Inventor
一希 山田
伶子 都築
智仁 山地
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023182028A1 publication Critical patent/WO2023182028A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the disclosed embodiments relate to a patterning method and a patterning device.
  • Patent Document 1 discloses a technique for improving the etching resistance of a resist after it has been formed by exposing the resist to a metal-containing gas that contains metal to infiltrate the resist after it has been formed.
  • the present disclosure provides a technique that enables a pattern exposed on a photoresist film to be developed by a dry process.
  • a patterning method includes an infiltration step and an etching step.
  • the infiltration step a material that increases the selectivity between the exposed and unexposed portions is infiltrated into the photoresist film of the substrate, which is provided with a photoresist film on the surface of which is formed an exposed portion and an unexposed portion by exposure.
  • the etching process the photoresist film that has been subjected to the infiltration process is dry etched.
  • a pattern exposed on a photoresist film can be developed by a dry process.
  • FIG. 1 is a diagram schematically showing an example of the overall flow of substrate processing according to an embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of the patterning apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the process flow of the patterning method according to the embodiment.
  • FIG. 4 is a diagram conceptually showing an example of the substrate according to the embodiment.
  • FIG. 5 is a diagram showing an example of the profile of silicon contained in the photoresist film according to the embodiment.
  • FIG. 6 is a diagram showing an example of a dry etching profile of a photoresist film according to the embodiment.
  • FIG. 7 is a diagram conceptually showing an example of the result of etching the substrate according to the embodiment.
  • FIG. 8 is a diagram conceptually showing another example of the result of etching the substrate according to the embodiment.
  • FIG. 9 is a diagram schematically showing an example of the overall flow of substrate processing including a conventional lithography process.
  • FIG. 9 is a diagram schematically showing an example of the overall flow of substrate processing including a conventional lithography process.
  • the processes (1) to (8) are performed on the substrate W.
  • the substrate W is, for example, a silicon substrate such as a silicon wafer.
  • a target film for forming a pattern is formed on the substrate W.
  • predetermined pretreatment such as cleaning of the substrate W is performed.
  • the photoresist film PR includes a negative type in which an exposed portion EP remains after development, and a positive type in which an unexposed portion UP remains after development.
  • a pattern is developed on the photoresist film PR by a lithography process. (7) Etching is performed using the photoresist film PR as a mask to process the substrate W. (8) In resist stripping, the photoresist film PR is stripped and removed. As a result, a pattern is formed on the substrate W.
  • the pattern exposed on the photoresist film PR is developed by a wet process such as (6) development + rinsing, the roughness deteriorates due to expansion of the photoresist film PR, and the pattern deteriorates due to surface tension. There is a concern that pattern defects such as collapse may occur.
  • the above problem does not occur if development is performed by a dry process.
  • the difference in etching rate between the exposed portion EP and the unexposed portion UP was small, making it difficult to develop the exposed pattern on the photoresist film PR. Therefore, there are expectations for a technology that enables a pattern exposed on the photoresist film PR to be developed by a dry process.
  • FIG. 1 is a diagram schematically showing an example of the overall flow of substrate processing according to an embodiment.
  • FIG. 1 shows substrate processing including processing of a patterning method according to an embodiment.
  • the step (6) development + rinsing of the conventional substrate processing shown in FIG. 9 is changed to the steps of (6) infiltration and (7) etching.
  • processes (1) to (9) are performed.
  • the processes (1) to (5), (8), and (9) in Figure 1 are the same as the processes (1) to (5), (7), and (8) in Figure 9, so we will not explain them here. Omitted.
  • the photoresist film PR of the substrate W On the photoresist film PR of the substrate W, a latent image of a pattern consisting of an exposed portion EP and an unexposed portion UP is formed by (4) exposure.
  • the photoresist film PR is, for example, an organic film containing a photosensitive resin as a main component. Examples of such a photoresist film PR include KrF photoresist and EUV photoresist.
  • the photoresist film PR of the substrate W is infiltrated with a material that increases the selectivity between the exposed portion EP and the unexposed portion UP.
  • a difference in etching rate occurs due to a difference in infiltration depth, that is, a difference in the degree of denaturation of the photoresist film PR.
  • the substrate W is exposed to a gas containing a material that increases the selectivity between the exposed portion EP and the unexposed portion UP, and the material is infiltrated into the photoresist film PR.
  • the exposed portion EP and the unexposed portion UP have different infiltration depths, a difference in etching rate occurs from a location where a difference in infiltration depth occurs, and a pattern can be developed. Further, even if the amount of infiltration is different between the exposed portion EP and the unexposed portion UP, the pattern can be developed. This includes the fact that the material reacts only in one part. If the amount of infiltration is different, a difference will occur in the etching groove from the start of etching, forming a pattern.
  • Materials that can increase the selectivity between the exposed portion EP and the unexposed portion UP of the photoresist film PR include metals and metalloid elements.
  • the metal include aluminum (Al), titanium (Ti), and germanium (Ge).
  • Silicon (Si) is an example of the semimetal.
  • TMSDMA N-(trimethylsilyl)dimethylamine
  • HMDS bis(trimethylsilyl)amine
  • HCD hexachlorosilane
  • materials used for infiltration include trimethylaluminum (TMA), triethylaluminum (TEA), and the like.
  • examples of materials used for infiltration include TDMAT and TiCl 4 .
  • the material to be infiltrated infiltrates into the photoresist film PR by being exposed to the photoresist film PR as vapor by vaporization, bubbling, or skimming.
  • the photoresist film PR infiltrated with the material is dry etched.
  • the selectivity between the exposed part EP and the unexposed part UP has expanded, and when etching is performed, the exposed part EP is deeper than the unexposed part UP. etched.
  • the exposed portion EP of the photoresist film PR can be removed by etching, leaving the unexposed portion UP.
  • the parts to be removed and the parts to be left in the exposed part EP and unexposed part UP may be reversed.
  • the photoresist film PR is patterned by (6) infiltration and (7) etching steps.
  • (6) Infiltration and (7) etching steps correspond to the processing of the patterning method of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the configuration of the patterning apparatus 1 according to the embodiment.
  • the patterning apparatus 1 according to this embodiment includes an infiltration processing section 11 and an etching processing section 12.
  • the infiltration processing section 11 is a unit that implements (6) infiltration processing.
  • the infiltration processing section 11 includes a reaction chamber in which a substrate W on which an exposed portion EP and an unexposed portion UP are formed on a photoresist film PR is placed, a heating device that heats the substrate W, and a gas such as a metal-containing gas in the reaction chamber.
  • the reaction chamber may be configured using a supply device for supplying gas, an exhaust device for exhausting the inside of the reaction chamber, and the like.
  • the etching processing section 12 is a unit that implements the (7) etching process.
  • the etching processing section 12 may be configured using, for example, a dry etching device or the like.
  • the etching processing unit 12 performs reactive ion etching using an etching gas.
  • the etching gas include hydrogen-containing gas.
  • hydrogen (H 2 ) gas may be used.
  • the infiltration processing section 11 and the etching processing section 12 do not need to be configured as one unit.
  • FIG. 3 is a diagram illustrating an example of the process flow of the patterning method according to the embodiment.
  • FIG. 3 shows the processing details of (6) infiltration and (7) etching steps.
  • the infiltration processing unit 11 reduces the pressure inside the reaction chamber to bring the inside of the reaction chamber into a reduced pressure state (step S10). Further, the infiltration processing unit 11 heats the substrate W placed in the reaction chamber, and raises the temperature of the substrate W to a predetermined temperature suitable for infiltration (step S11).
  • the infiltration processing unit 11 exposes the photoresist film PR under predetermined conditions to a gas containing a material that expands the selectivity between the exposed portion EP and the unexposed portion UP.
  • the infiltration processing unit 11 exposes the photoresist film PR to a gas containing a metal or a metalloid under predetermined conditions (step S12).
  • a gas containing a metal or metalloid will be referred to as a "metal-containing gas.”
  • the infiltration processing unit 11 purges the metal-containing gas from the reaction chamber using an inert gas such as N 2 (step S13). Thereafter, the infiltration processing unit 11 exposes the photoresist film PR to water vapor under predetermined conditions (S14). Thereafter, the infiltration processing unit 11 purges water vapor from the reaction chamber using an inert gas such as N 2 (step S15).
  • the processing of steps S12 to S15 described above may be repeated multiple times.
  • the patterning apparatus 1 takes out the substrate W from the infiltration processing section 11 and transports it to the etching processing section 12 (step S16). Note that if the infiltration processing section 11 and the etching processing section 12 are configured as one unit, step S16 is unnecessary.
  • the etching processing unit 12 etches the photoresist film PR of the substrate W (step S17). For example, the etching processing unit 12 dry-etches the photoresist film PR by reactive ion etching using H 2 gas. By appropriately controlling the etching time, the exposed portion EP of the photoresist film PR can be removed and the unexposed portion UP can be left.
  • the "temperature of the substrate W” is the temperature of at least a portion of the substrate W including the photoresist film PR, and may be the surface temperature of the photoresist film PR.
  • the "predetermined temperature” is preferably within the range of room temperature to 200°C.
  • Room temperature is a temperature in a natural state without external heating or cooling, and is, for example, a temperature selected from the range of 1° C. to 40° C. (for example, 25° C.).
  • room temperature is a temperature in a natural state without external heating or cooling, and is, for example, a temperature selected from the range of 1° C. to 40° C. (for example, 25° C.).
  • 200° C. which is exemplified as the upper limit of the temperature of the substrate W, is a temperature that is sufficiently higher than the transition temperature of the photoresist film PR.
  • the "predetermined conditions" when exposing the metal-containing gas include the temperature of the substrate W, the gas flow rate, the exposure time, and the pressure.
  • the amount of metal or metalloid infiltrated into the photoresist film PR increases as the temperature of the substrate W increases, and decreases as the temperature of the substrate W decreases. Further, the amount of infiltration increases as the gas flow rate of the metal-containing gas increases, and decreases as the gas flow rate decreases. Further, the amount of infiltration increases as the exposure time of the metal-containing gas to the photoresist film PR becomes longer, and decreases as the exposure time becomes shorter. Further, the amount of infiltration increases as the pressure inside the reaction chamber increases, and decreases as the pressure decreases.
  • the processing in steps S14 and S15 is not essential.
  • infiltration can be promoted by exposing water vapor after exposure to metal-containing gas.
  • the "predetermined conditions" when exposing to water vapor include the temperature of the substrate W, the gas flow rate, the exposure time, and the pressure.
  • the infiltration promoting effect of water vapor increases as the temperature of the substrate W increases, and decreases as the temperature of the substrate W decreases. Further, the infiltration promoting effect increases as the gas flow rate of water vapor increases, and decreases as the gas flow rate decreases. Further, the infiltration promotion effect increases as the exposure time of water vapor to the photoresist film PR becomes longer, and decreases as the exposure time becomes shorter. Furthermore, the infiltration promoting effect increases as the pressure inside the reaction chamber increases, and decreases as the pressure decreases.
  • the conditions for exposure to water vapor may be the same as the conditions for exposure to metal-containing gas, or the conditions for exposure to metal-containing gas may be the same as the conditions for exposure to metal-containing gas. It may be set differently.
  • the amount of metal or metalloid infiltrated into the photoresist film PR is preferably within the range of 4 atomic % to 20 atomic %.
  • the amount of infiltration is lower than 4 atomic %, the effect of increasing the etching resistance of the photoresist film PR is often not substantially observed.
  • the amount of infiltration is higher than 20 atomic%, the original organic properties of the photoresist film PR (for example, solubility in alkaline solutions, etc.) will be impaired, and the removability of the photoresist film PR will be reduced. In this case, it becomes difficult to peel off the photoresist film PR from the film to be etched.
  • the amount of infiltration can be controlled by adjusting the conditions during exposure to the metal-containing gas, the conditions during exposure to water vapor, and the number of times the processes of steps S12 to S15 are repeated.
  • the pressure during exposure to the metal-containing gas is preferably within the range of 0.05 Torr to 760 Torr. If the pressure is lower than 0.05 Torr, the amount of infiltration may be less than 4 atomic%, and if the pressure is higher than 760 Torr, the amount of infiltration may be greater than 20 atomic%.
  • FIG. 4 is a diagram conceptually showing an example of the substrate W according to the embodiment.
  • FIG. 4 shows a substrate W in which TMSDMA is exposed and silicon is infiltrated into the photoresist film PR.
  • a photoresist film PR is formed on the substrate W.
  • exposed portions EP and unexposed portions UP are provided alternately.
  • the depth to which silicon in the photoresist film PR infiltrates is schematically indicated by a line L1. As shown by line L1, silicon infiltrates deeper into unexposed portion UP than exposed portion EP.
  • FIG. 5 is a diagram showing an example of the profile of silicon contained in the photoresist film PR according to the embodiment.
  • FIG. 5 shows the silicon content ratio with respect to the depth from the surface of the photoresist film PR for each exposed portion EP and unexposed portion UP.
  • the silicon content is slightly higher in the unexposed portion UP than in the exposed portion EP.
  • the silicon content is clearly higher in the unexposed portion UP than in the exposed portion EP. From this, silicon infiltrates deeper into the unexposed portion UP than the exposed portion EP. In this way, the depth of silicon infiltration is different between the unexposed portion UP and the exposed portion EP.
  • FIG. 6 is a diagram showing an example of a dry etching profile of the photoresist film PR according to the embodiment.
  • FIG. 6 shows a profile of the remaining film thickness of the photoresist film PR with respect to the etching time when the photoresist film PR is dry-etched.
  • the profile of the exposed portion EP of the photoresist film PR infiltrated with silicon is shown by a line L11
  • the profile of the unexposed portion UP is shown by a line L12.
  • the profile of the exposed portion EP of the photoresist film PR without silicon infiltration is shown by line L13
  • the profile of the unexposed portion UP is shown by line L14. .
  • the photoresist film PR not infiltrated with silicon is etched deeply in a shorter etching time than the photoresist film PR infiltrated with silicon shown by lines L11 and L12. High etching rate.
  • the etching resistance of the photoresist film PR is increased by infiltration of silicon. Therefore, as shown by the lines L11 and L12, the etching rate of the exposed portion EP and the unexposed portion UP of the photoresist film PR infiltrated with silicon is lower than that of the lines L13 and L14. Furthermore, the etching rate increases midway through the exposed portion EP, as shown by line L11. This is because, as shown by the line L1 in FIG. 4 and in FIG. This is because when the depth becomes deeper than the range, the etching rate changes to the same level as lines L13 and L14. On the other hand, in the unexposed portion UP, as shown by the line L12, the etching rate remains low because the infiltration range where silicon is infiltrated is deep.
  • the exposed portion EP is etched more deeply than the unexposed portion UP due to the difference in the infiltration range between the exposed portion EP and the unexposed portion UP.
  • FIG. 7 is a diagram conceptually showing an example of the result of etching the substrate W according to the embodiment.
  • FIGS. 7A to 7C show changes in the photoresist film PR when a substrate W in which TMSDMA is exposed and silicon is infiltrated into the photoresist film PR is etched.
  • FIG. 7A shows the photoresist film PR before etching. In the photoresist film PR, exposed portions EP and unexposed portions UP are provided alternately.
  • the depth to which silicon in the photoresist film PR infiltrates is schematically indicated by a line L1.
  • FIG. 7B shows a state in which the photoresist film PR is etched for 7.5 minutes using an etching gas containing H 2 gas.
  • FIG. 7C shows a state in which the photoresist film PR is etched for 9.5 minutes using an etching gas containing H 2 gas.
  • the unexposed portion UP is etched to the extent of infiltration.
  • the exposed portion EP is etched sufficiently deeper than the unexposed portion UP.
  • the latent image pattern consisting of the exposed portion EP and the unexposed portion UP can be developed by a dry process.
  • scum which is photoresist residue, may remain at the interface with the lower layer. Scum can be removed by reactive ion etching with O2 gas.
  • the substrate W in which the photoresist film PR is infiltrated with silicon is developed by one-step etching using H 2 gas has been described as an example.
  • the substrate W may be developed by two-step etching.
  • first etching and second etching are performed on the substrate W.
  • a first gas capable of etching the photoresist film PR infiltrated with the material is used to perform etching deeper than the depth at which the material infiltrated into the exposed portion EP and shallower than the depth at which the material infiltrated into the unexposed portion UP. Perform etching to depth.
  • an etching gas containing hydrogen-containing gas for example, H2 gas
  • H2 gas hydrogen-containing gas
  • Etching is performed to a depth shallower than the depth at which the material has infiltrated.
  • etching is performed using a second gas that can etch more of the photoresist film PR into which the material is not infiltrated than the photoresist film PR into which the material has infiltrated.
  • etching is performed using an etching gas containing an oxygen-containing gas (for example, O 2 gas).
  • FIG. 8 is a diagram conceptually showing another example of the result of etching the substrate W according to the embodiment.
  • FIGS. 8A to 8C show changes in the photoresist film PR when a substrate W in which TMSDMA is exposed and silicon is infiltrated into the photoresist film PR is etched in two steps.
  • FIG. 8A shows the photoresist film PR before etching. In the photoresist film PR, exposed portions EP and unexposed portions UP are provided alternately.
  • the depth to which silicon in the photoresist film PR infiltrates is schematically indicated by a line L1.
  • FIG. 8B shows a state in which the photoresist film PR is etched for 7.5 minutes using an etching gas containing H 2 gas. Both the exposed portion EP and the unexposed portion UP are etched. Regarding the unexposed portion UP, the infiltrated range where silicon is infiltrated is etched. On the other hand, the exposed portion EP exceeds the infiltration range, so the etching rate becomes faster and is etched deeper than the unexposed portion UP.
  • FIG. 8C shows a state in which the photoresist film PR is etched for 50 seconds using an etching gas containing O 2 gas.
  • the unexposed portion UP where the amount of silicon infiltration is large, a silicon oxide film is formed on the surface layer and functions as an etch stop layer.
  • the exposed portion EP is etched because the amount of silicon infiltration is small (or no silicon is infiltrated) and a silicon oxide film cannot be formed.
  • a high selection ratio occurs between the exposed portion EP and the unexposed portion UP.
  • the patterning method according to the embodiment can expand the etching selectivity between the exposed portion EP and the unexposed portion UP, so that the pattern exposed on the photoresist film PR can be developed by a dry process.
  • the patterning method according to the embodiment can suppress occurrence of pattern defects such as roughness deterioration and pattern collapse in the pattern of the developed photoresist film PR even when the pattern becomes finer.
  • the patterning method includes an infiltration step (steps S12 to S15) and an etching step (step S17).
  • the infiltration step expands the selectivity of the exposed portion EP and the unexposed portion UP in the photoresist film PR of the substrate W, which is provided with a photoresist film PR on the surface of which the exposed portion EP and the unexposed portion UP are formed by exposure. Infiltrate the material.
  • the photoresist film PR that has been subjected to the infiltration process is dry etched. Thereby, in the patterning method, the pattern exposed on the photoresist film PR can be developed by a dry process.
  • the infiltration step exposes the substrate W to a gas containing the material.
  • the patterning method can infiltrate the photoresist film PR with the material.
  • the material is a metal or metalloid element.
  • the metal is aluminum, titanium, or germanium.
  • the semimetal is silicon.
  • the infiltration step the material is infiltrated deeper into the unexposed portion UP than the exposed portion EP. Thereby, the patterning method can increase the selection ratio between the exposed portion EP and the unexposed portion UP.
  • the amount of infiltration of the metal or metalloid into the photoresist film PR is in the range of 4 atomic% to 20 atomic%.
  • the exposed portion EP is etched deeper than the unexposed portion UP.
  • the pattern exposed on the photoresist film PR can be developed by a dry process.
  • the etching process includes a first gas capable of etching the photoresist film PR in which the material has infiltrated to a depth deeper than the depth in which the material has infiltrated into the exposed portion EP and shallower than the depth in which the material has infiltrated into the unexposed portion UP.
  • a second etching is performed using a second gas that can etch more of the photoresist film PR that is not infiltrated with the material than the photoresist film PR that is infiltrated with the material.
  • the first gas is a hydrogen-containing gas (eg, H 2 gas).
  • the second gas is an oxygen-containing gas (eg, O 2 gas).
  • the substrate W includes, for example, a silicon substrate; a glass substrate; a transparent electrode such as ITO; a metal substrate such as gold, silver, copper, palladium, nickel, titanium, aluminum, or tungsten; a plastic substrate; and a substrate made of a composite material thereof. Can be mentioned.
  • Appendix 5 The patterning method according to appendix 4, wherein the metal is aluminum, titanium, or germanium.
  • Appendix 7 The patterning method according to any one of appendices 4 to 6, wherein the amount of infiltration of the metal or the metalloid into the photoresist film is in the range of 4 atomic % to 20 atomic %.
  • the etching step is a step that is capable of etching the photoresist film infiltrated with the material to a depth that is deeper than the depth in which the material infiltrated into the exposed portion and shallower than the depth in which the material infiltrated into the unexposed portion.
  • a second etching is performed using a second gas that can etch more of the photoresist film not infiltrated with the material than the photoresist film infiltrated with the material. Perform the patterning method described in any one of Appendices 1 to 7.
  • the first gas is a hydrogen-containing gas
  • the first gas is H2 gas
  • the patterning method according to appendix 9 or 10 wherein the second gas is O 2 gas.
  • an infiltration treatment unit for infiltrating the photoresist film of a substrate provided with a photoresist film on the surface of which an exposed portion and an unexposed portion are formed by exposure with a material that increases the selectivity between the exposed portion and the unexposed portion; , an etching processing section that dry-etches the photoresist film into which material has been infiltrated by the infiltration processing section;
  • a patterning device having a
  • Patterning device 11 Infiltration processing section 12 Etching processing section EP Exposed section PM Photomask PR Photoresist film UP Unexposed section W Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

パターニング方法は、浸潤工程と、エッチング工程とを含む。浸潤工程は、露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板のフォトレジスト膜に露光部分と未露光部分の選択比を拡大する材料を浸潤させる。エッチング工程は、浸潤工程を行ったフォトレジスト膜をドライエッチングする。

Description

パターニング方法及びパターニング装置
 開示の実施形態は、パターニング方法及びパターニング装置に関する。
 特許文献1は、成膜後のレジストに金属を含有する金属含有ガスを曝露することによりレジストに金属を浸潤させることで、レジストの形成後におけるエッチング耐性を向上させる技術を開示する。
特開2020-38929号公報
 本開示は、フォトレジスト膜に露光したパターンをドライプロセスにより現像することを可能にする技術を提供する。
 本開示の一態様によるパターニング方法は、浸潤工程と、エッチング工程とを含む。浸潤工程は、露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板のフォトレジスト膜に露光部分と未露光部分の選択比を拡大する材料を浸潤させる。エッチング工程は、浸潤工程を行ったフォトレジスト膜をドライエッチングする。
 本開示によれば、フォトレジスト膜に露光したパターンをドライプロセスにより現像できる。
図1は、実施形態に係る基板処理の全体的な流れの一例を概略的に示す図である。 図2は、実施形態に係るパターニング装置の構成の一例を示すブロック図である。 図3は、実施形態に係るパターニング方法の処理の流れの一例を示す図である。 図4は、実施形態に係る基板の一例を概念的に示す図である。 図5は、実施形態に係るフォトレジスト膜に含有されるシリコンのプロファイルの一例を示す図である。 図6は、実施形態に係るフォトレジスト膜のドライエッチングのプロファイルの一例を示す図である。 図7は、実施形態に係る基板をエッチングした結果の一例を概念的に示す図である。 図8は、実施形態に係る基板をエッチングした結果の他の一例を概念的に示す図である。 図9は、従来のリソグラフィ工程を含む基板処理の全体的な流れの一例を概略的に示す図である。
 以下、図面を参照して本願の開示するパターニング方法及びパターニング装置の実施形態について詳細に説明する。なお、本実施形態により、開示するパターニング方法及びパターニング装置が限定されるものではない。
 近年、半導体集積回路(LSI)の高集積化及び高性能化に伴って、基板の表面に形成されるパターンが微細化されている。基板には、リソグラフィ工程によりパターンが形成される。図9は、従来のリソグラフィ工程を含む基板処理の全体的な流れの一例を概略的に示す図である。図9に示す基板処理では、(1)~(8)の処理を基板Wに実施する。基板Wは、例えば、シリコンウエハなどのシリコン基板である。基板W上には、パターンを形成する対象膜が形成されている。(1)表面処理で、基板Wの洗浄など所定の前処理を行う。(2)スピンコートでは、基板Wにフォトレジスト液を塗布して基板Wを回転させて、基板Wにフォトレジスト膜PRを形成する。(3)プリベークでは、基板Wを加熱し、フォトレジスト膜PRに含まれる溶媒を蒸発させる。(4)露光では、パターンが形成されたフォトマスクPMを介して紫外光などの光を照射し、露光された露光部分EPと露光されていない未露光部分UPからなるパターンの潜像をフォトレジスト膜PRに形成する。ここで、フォトレジスト膜PRには、現像で露光部分EPが残るネガ型と、現像で未露光部分UPが残るポジ型がある。ネガ型の場合は、フォトレジスト膜PRに残す部分を透過としたフォトマスクPMで露光を行う。ポジ型の場合は、フォトレジスト膜PRに残す部分を非透過としたフォトマスクPMで露光を行う。(5)PEB(Post Exposure Bake)では、加熱により反応を促進する。(6)現像+リンスでは、現像液などの溶媒でフォトレジスト膜PRの潜像を現像し、現像で使用した溶媒を洗い流す。図9では、ポジ型の現像を行った場合を示しており、未露光部分UPが残り、露光部分EPが溶けて無くなっている。この(1)~(6)の処理がリソグラフィ工程に対応する。リソグラフィ工程により、フォトレジスト膜PRにパターンが現像される。(7)エッチングでは、フォトレジスト膜PRをマスクとしてエッチングを行い、基板Wを加工する。(8)レジスト剥離では、フォトレジスト膜PRを剥離させて除去する。これにより、基板Wにパターンが形成される。
 ところで、パターンが微細化されると、フォトレジスト膜PRに露光したパターンを(6)現像+リンスのようにウェットプロセスにより現像した場合、フォトレジスト膜PRの膨張によるラフネス悪化や、表面張力によるパターン倒れなどのパターン不良の発生が懸念される。一方、ドライプロセスによる現像であれば上記問題は発生しない。しかし、ドライプロセスによる現像では、露光部分EPと未露光部分UPのエッチングレートの差が小さく、フォトレジスト膜PRに露光したパターンの現像が困難であった。そこで、フォトレジスト膜PRに露光したパターンをドライプロセスにより現像することを可能にする技術が期待されている。
(実施形態)
 実施形態に係るパターニング方法について説明する。最初に、実施形態に係るリソグラフィ工程を含む基板処理の全体的な流れの一例を説明する。図1は、実施形態に係る基板処理の全体的な流れの一例を概略的に示す図である。図1には、実施形態に係るパターニング方法の処理を含んだ基板処理が示されている。実施形態に係る基板処理は、図9に示した従来の基板処理の(6)現像+リンスの工程が、(6)浸潤と(7)エッチングの工程に変更されている。図1に示す基板処理では、(1)~(9)の処理を実施する。図1の(1)~(5)、(8)、(9)の処理は、図9の(1)~(5)、(7)、(8)の処理と同様であるため、説明を省略する。
 基板Wのフォトレジスト膜PRには、(4)露光により、露光された露光部分EPと露光されていない未露光部分UPからなるパターンの潜像が形成されている。フォトレジスト膜PRは、例えば、感光性樹脂を主成分とする有機膜等である。このようなフォトレジスト膜PRとしては、例えば、KrFフォトレジストやEUVフォトレジストが挙げられる。
 (6)浸潤では、基板Wのフォトレジスト膜PRに露光部分EPと未露光部分UPの選択比を拡大する材料を浸潤させる。浸潤深度の差、すなわちフォトレジスト膜PRの変性度合いの差によってエッチングレート差が生じる。例えば、(6)浸潤では、露光部分EPと未露光部分UPの選択比を拡大する材料を含有するガスを基板Wに暴露し、フォトレジスト膜PRに材料を浸潤させる。露光部分EPと未露光部分UPでは浸潤深度が異なるため、浸潤深度の差が生じる箇所からエッチングレートに差が生じ、パターンの現像が可能である。また、露光部分EPと未露光部分UPで浸潤量が異なる場合でもパターンが現像可能である。これはいずれかの部分にしか材料が反応しないことを含める。浸潤量が異なると、エッチング開始時点からエッチングートに差が生じ、パターンを形成する。
 このようにフォトレジスト膜PRの露光部分EPと未露光部分UPの選択比を拡大する材料としては、金属、半金属の元素が挙げられる。金属としては、例えば、アルミニウム(Al)、チタン(Ti)、ゲルマニウム(Ge)が挙げられる。半金属としては、シリコン(Si)が挙げられる。例えば、フォトレジストにシリコンを浸潤させる場合、浸潤に用いる材料としては、N-(トリメチルシリル)ジメチルアミン(TMSDMA)や、ビス(トリメチルシリル)アミン(HMDS)、ヘキサクロロシラン(HCD)などが有力な候補として挙げられる。また、フォトレジストにアルミニウムを浸潤させる場合、浸潤に用いる材料としては、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)などが挙げられる。また、フォトレジストにチタンを浸潤させる場合、浸潤に用いる材料としては、TDMATやTiClなどが挙げられる。浸潤させる材料は、気化、バブリング、もしくはスキミングで蒸気としてフォトレジスト膜PRに暴露することで、フォトレジスト膜PR内に浸潤していく。
 (7)エッチング工程では、材料が浸潤したフォトレジスト膜PRをドライエッチングする。フォトレジスト膜PRは、(6)浸潤を行ったことにより、露光部分EPと未露光部分UPの選択比が拡大しており、エッチングを行った場合に露光部分EPが未露光部分UPよりも深くエッチングされる。(7)エッチング工程では、エッチング時間を適切に制御することにより、フォトレジスト膜PRの露光部分EPをエッチングで除去し、未露光部分UPを残すことができる。但し、フォトレジスト膜PRや浸潤に用いる材料の組み合わせによっては、露光部分EPと未露光部分UPにおいて除去される部分と残す部分が逆の場合もあり得る。
 図1に示す基板処理では、(6)浸潤、及び(7)エッチング工程により、フォトレジスト膜PRのパターニングを行う。(6)浸潤、及び(7)エッチング工程は、本開示のパターニング方法の処理に対応する。
 [パターニング装置の構成]
 次に、(6)浸潤、及び(7)エッチング工程の処理を実施するパターニング装置の一例を説明する。図2は、実施形態に係るパターニング装置1の構成の一例を示すブロック図である。本実施形態に係るパターニング装置1は、浸潤処理部11と、エッチング処理部12とを有する。
 浸潤処理部11は、(6)浸潤の処理を実現するユニットである。浸潤処理部11は、フォトレジスト膜PRに露光部分EPと未露光部分UPが形成された基板Wが載置される反応室、基板Wを加熱する加熱装置、反応室内に金属含有ガス等の気体を供給する供給装置、反応室内を排気する排気装置等を利用して構成され得る。
 エッチング処理部12は、(7)エッチング工程の処理を実現するユニットである。エッチング処理部12は、例えば、ドライエッチング装置等を利用して構成され得る。例えば、エッチング処理部12は、エッチングガスを用いた反応性イオンエッチングを行う。エッチングガスとしては、水素含有ガスが挙げられる。例えば、水素(H)ガスが挙げられる。
 なお、パターニング装置1は、浸潤処理部11及びエッチング処理部12が1つのユニットとして構成されていなくてもよい。
 [パターニング方法]
 次に、実施形態に係るパターニング方法の処理の流れを説明する。以下では、フォトレジスト膜PRの露光部分EPと未露光部分UPの選択比を拡大する材料として、アルミニウム、チタン、ゲルマニウムなどの金属又はシリコンなどの半金属を浸潤させる場合を例に説明する。図3は、実施形態に係るパターニング方法の処理の流れの一例を示す図である。図3には、(6)浸潤、及び(7)エッチング工程の処理の詳細が示されている。パターニング方法の処理を実施する前に、例えば、図1の(1)~(5)の処理が行われた基板Wが、浸潤処理部11に搬送され、反応室内に載置される。実施形態に係るパターニング装置1は、図3に示した処理を実施する。
 浸潤処理部11は、反応室内の減圧を行って反応室内を減圧状態とする(ステップS10)。また、浸潤処理部11は、反応室内に載置された基板Wを加熱し、基板Wの温度を浸潤に適した所定温度まで昇温する(ステップS11)。
 浸潤処理部11は、露光部分EPと未露光部分UPの選択比を拡大する材料を含有するガスを所定条件下でフォトレジスト膜PRに曝露する。例えば、浸潤処理部11は、金属又は半金属を含有するガスを所定条件下でフォトレジスト膜PRに曝露する(ステップS12)。以下では、金属又は半金属を含有するガスを「金属含有ガス」と称する。
 その後、浸潤処理部11は、N等の不活性ガスを用いて反応室内から金属含有ガスをパージする(ステップS13)。その後、浸潤処理部11は、所定条件下で水蒸気をフォトレジスト膜PRに曝露する(S14)。その後、浸潤処理部11は、N等の不活性ガスを用いて反応室内から水蒸気をパージする(ステップS15)。上記のステップS12~ステップS15の処理は、複数回繰り返し実施してもよい。
 パターニング装置1は、浸潤処理部11から基板Wを取り出し、エッチング処理部12に搬送する(ステップS16)。なお、浸潤処理部11及びエッチング処理部12が1つのユニットとして構成されている場合、ステップS16は、不要となる。
 エッチング処理部12は、基板Wのフォトレジスト膜PRをエッチングする(ステップS17)。例えば、エッチング処理部12は、Hガスによる反応性イオンエッチングにより、フォトレジスト膜PRをドライエッチングする。エッチング時間を適切に制御することにより、フォトレジスト膜PRの露光部分EPを除去し、未露光部分UPを残すことができる。
 「基板Wの温度」とは、フォトレジスト膜PRを含む基板Wの少なくとも一部の温度であり、フォトレジスト膜PRの表面温度であってもよい。「所定温度」は、室温~200℃の範囲内にあることが好ましい。「室温」とは、外部から加熱及び冷却されていない自然状態における温度であり、例えば、1℃~40℃の範囲から選択される温度(例えば25℃)である。基板Wの温度が室温より低い場合には、フォトレジスト膜PRに金属を浸潤させるための(例えば、求核置換反応を起こさせるための)活性化障壁を超える十分なエネルギーを得ることができない場合が多い。基板Wの温度の上限として例示した200℃は、フォトレジスト膜PRの転移温度より十分に高い温度である。
 金属含有ガスを曝露する際の「所定条件」には、基板Wの温度、ガス流量、曝露時間、及び圧力が含まれる。フォトレジスト膜PRへの金属、半金属の浸潤量は、基板Wの温度が高いほど増加し、基板Wの温度が低いほど低下する。また、浸潤量は、金属含有ガスのガス流量が多いほど増加し、ガス流量が少ないほど低下する。また、浸潤量は、金属含有ガスのフォトレジスト膜PRへの曝露時間が長いほど増加し、曝露時間が短いほど低下する。また、浸潤量は、反応室内の圧力が高いほど増加し、圧力が低いほど低下する。
 ステップS14、ステップS15の処理は、必須ではない。しかし、金属含有ガスの曝露後に水蒸気を曝露することにより、浸潤を促進させることができる。水蒸気を曝露する際の「所定条件」には、基板Wの温度、ガス流量、曝露時間、及び圧力が含まれる。水蒸気による浸潤促進効果は、基板Wの温度が高いほど増加し、基板Wの温度が低いほど低下する。また、浸潤促進効果は、水蒸気のガス流量が多いほど増加し、ガス流量が少ないほど低下する。また、浸潤促進効果は、水蒸気のフォトレジスト膜PRへの曝露時間が長いほど増加し、曝露時間が短いほど低下する。また、浸潤促進効果は、反応室内の圧力が高いほど増加し、圧力が低いほど低下する。
 水蒸気の曝露時における条件(基板Wの温度、ガス流量、曝露時間、圧力等)は、金属含有ガスの曝露時における条件と同一であってもよいし、金属含有ガスの曝露時における条件とは異なるように設定されてもよい。
 フォトレジスト膜PRへの金属又は半金属の浸潤量は、4atomic%~20atomic%の範囲内にあることが好ましい。浸潤量が4atomic%より低いと、フォトレジスト膜PRのエッチング耐性を増加させる効果が実質的に認められない場合が多い。浸潤量が20atomic%より高いと、フォトレジスト膜PRが本来有する有機特性(例えば、アルカリ性溶液に対する溶解性等)が損なわれ、フォトレジスト膜PRの剥離性が低下し、(9)レジスト剥離の処理においてフォトレジスト膜PRをエッチングの対象膜から剥離することが困難となる。
 浸潤量の制御は、金属含有ガスの曝露時における条件、水蒸気の曝露時における条件、及びステップS12~ステップS15の処理を繰り返す回数を調整することにより実現することができる。例えば、金属含有ガスの曝露時における圧力は、0.05Torr~760Torrの範囲内にあることが好ましい。圧力が0.05Torrより低いと、浸潤量が4atomic%に満たない可能性があり、圧力が760Torrより高いと、浸潤量が20atomic%を超える可能性がある。
 図4は、実施形態に係る基板Wの一例を概念的に示す図である。図4には、TMSDMAを暴露してフォトレジスト膜PRにシリコンを浸潤させた基板Wが示されている。基板Wは、フォトレジスト膜PRが形成されている。フォトレジスト膜PRには、露光部分EPと未露光部分UPが交互に設けられている。図4には、フォトレジスト膜PRのシリコンが浸潤した深さを線L1で概略的に示している。線L1に示すように、シリコンは、露光部分EPよりも未露光部分UPに深く浸潤している。
 図5は、実施形態に係るフォトレジスト膜PRに含有されるシリコンのプロファイルの一例を示す図である。図5には、露光部分EPと未露光部分UP別に、フォトレジスト膜PRの表面からの深さに対するシリコンの含有割合が示されている。例えば、深さ0~150nm付近では、露光部分EPよりも未露光部分UPの方がシリコンの含有割合が若干多くなっている。また、深さ150~250nm付近では、露光部分EPよりも未露光部分UPの方がシリコンの含有割合が明らかに多くなっている。このことから、露光部分EPよりも未露光部分UPの方が、シリコンが深く浸潤している。このように、未露光部分UPと露光部分EPでは、シリコンの浸潤深度が異なる。
 図6は、実施形態に係るフォトレジスト膜PRのドライエッチングのプロファイルの一例を示す図である。図6には、フォトレジスト膜PRをドライエッチングした場合のエッチング時間に対するフォトレジスト膜PRの残り膜厚がプロファイルとして示されている。図6には、シリコンが浸潤したフォトレジスト膜PRの露光部分EPのプロファイルが線L11に示され、未露光部分UPのプロファイルが線L12に示されている。また、図6には、比較例として、シリコンが浸潤していない状態のフォトレジスト膜PRの露光部分EPのプロファイルが線L13に示され、未露光部分UPのプロファイルが線L14に示されている。
 線L13、L14に示すように、シリコンが浸潤していないフォトレジスト膜PRは、線L11、L12に示したシリコンが浸潤したフォトレジスト膜PRに比べて、短いエッチング時間で深くエッチングされており、エッチングレートが高い。
 フォトレジスト膜PRは、シリコンが浸潤することでエッチング耐性が増加する。このため、線L11、L12に示したように、シリコンが浸潤したフォトレジスト膜PRの露光部分EP及び未露光部分UPは、線L13、L14と比較してエッチングレートが低くなっている。また、露光部分EPは、線L11に示すように、途中でエッチングレートが増加する。これは、露光部分EPは、図4の線L1及び図5に示したように、シリコンが浸潤した浸潤範囲が未露光部分UPよりも浅く、浸潤範囲ではエッチングレートが低くなっているが、浸潤範囲よりも深くなると、線L13、L14と同程度のエッチングレートに変化するためである。一方、未露光部分UPでは、線L12に示すように、シリコンの浸潤している浸潤範囲が深いため、エッチングレートが低いままである。
 この結果、シリコンが浸潤したフォトレジスト膜PRでは、露光部分EPと未露光部分UPでの浸潤範囲の違いにより、露光部分EPが未露光部分UPよりも深くエッチングされる。
 図7は、実施形態に係る基板Wをエッチングした結果の一例を概念的に示す図である。図7(A)~(C)には、TMSDMAを暴露してフォトレジスト膜PRにシリコンを浸潤させた基板Wをエッチングした際のフォトレジスト膜PRの変化が示されている。図7(A)は、エッチング前のフォトレジスト膜PRを示している。フォトレジスト膜PRには、露光部分EPと未露光部分UPが交互に設けられている。図7(A)~(C)には、フォトレジスト膜PRのシリコンが浸潤した深さを線L1で概略的に示している。図7(B)は、Hガスを含んだエッチングガスを用いてフォトレジスト膜PRを7.5分間エッチングした状態を示している。未露光部分UPについては、シリコンが浸潤している浸潤範囲がエッチングされている。一方、露光部分EPについては、浸潤範囲を超えたことでエッチングレートが速くなり、未露光部分UPよりも深くエッチングされている。図7(C)は、Hガスを含んだエッチングガスを用いてフォトレジスト膜PRを9.5分間エッチングした状態を示している。未露光部分UPでは、浸潤範囲程度までエッチングされている。一方、露光部分EPでは、未露光部分UPよりも十分に深くエッチングされている。エッチング時間を適切に制御することにより、フォトレジスト膜PRの露光部分EPを除去し、未露光部分UPを残すことができる。これにより、露光部分EPと未露光部分UPからなる潜像のパターンをドライプロセスにより現像できる。フォトレジスト膜PRは、下層との界面にフォトレジストの残滓であるスカムが残る場合がある。スカムは、Oガスによる反応性イオンエッチングによって除去できる。
 なお、上記実施形態では、フォトレジスト膜PRにシリコンを浸潤させた基板WをHガスによる1段階のエッチングで現像する場合を例に説明した。しかしこれに限定されるものではない。例えば、基板Wを2段階のエッチングで現像してもよい。例えば、基板Wに対して第1エッチングと第2エッチングを実施する。第1エッチングでは、材料が浸潤したフォトレジスト膜PRをエッチング可能な第1ガスを用いて、露光部分EPに材料が浸潤した深さよりも深く、未露光部分UPに材料が浸潤した深さよりも浅い深さまで、エッチングを行う。例えば、シリコンが浸潤したフォトレジスト膜PRの場合、水素含有ガス(例えば、Hガス)を含んだエッチングガスを用いて、露光部分EPに材料が浸潤した深さよりも深く、未露光部分UPに材料が浸潤した深さよりも浅い深さまで、エッチングを行う。第2エッチングでは、第1エッチングの後、材料が浸潤したフォトレジスト膜PRよりも材料が浸潤していないフォトレジスト膜PRを多くエッチング可能な第2ガスを用いて、エッチングを行う。例えば、シリコンが浸潤したフォトレジスト膜PRの場合、酸素含有ガス(例えば、Oガス)を含んだエッチングガスを用いて、エッチングを行う。
 図8は、実施形態に係る基板Wをエッチングした結果の他の一例を概念的に示す図である。図8(A)~(C)には、TMSDMAを暴露してフォトレジスト膜PRにシリコンを浸潤させた基板Wを2段階でエッチングした際のフォトレジスト膜PRの変化が示されている。図8(A)は、エッチング前のフォトレジスト膜PRを示している。フォトレジスト膜PRには、露光部分EPと未露光部分UPが交互に設けられている。図8(A)~(C)には、フォトレジスト膜PRのシリコンが浸潤した深さを線L1で概略的に示している。図8(B)は、Hガスを含んだエッチングガスを用いてフォトレジスト膜PRを7.5分間エッチングした状態を示している。露光部分EP、未露光部分UPは、共にエッチングされる。未露光部分UPについては、シリコンが浸潤している浸潤範囲がエッチングされている。一方、露光部分EPについては、浸潤範囲を超えたことでエッチングレートが速くなり、未露光部分UPよりも深くエッチングされている。この図8(B)の段階で、次に、Oガスを含んだエッチングガスを用いてフォトレジスト膜PRのエッチングを行う。図8(C)は、Oガスを含んだエッチングガスを用いてフォトレジスト膜PRを50秒間エッチングした状態を示している。シリコンの浸潤量の多い未露光部分UPでは、シリコン酸化膜が表層に形成され、エッチストップ層として機能する。露光部分EPは、シリコンの浸潤量が少なく(もしくは、シリコンが浸潤しておらず)シリコン酸化膜を形成できないので、エッチングされる。この結果、露光部分EPと未露光部分UPで高い選択比が生じる。エッチング時間を適切に制御することにより、フォトレジスト膜PRの露光部分EPを除去し、未露光部分UPを残すことができる。これにより、露光部分EPと未露光部分UPからなる潜像のパターンをドライプロセスにより現像できる。
 このように、実施形態に係るパターニング方法は、露光部分EPと未露光部分UPのエッチング選択比を拡大できるため、フォトレジスト膜PRに露光したパターンをドライプロセスにより現像できる。これにより、実施形態に係るパターニング方法は、パターンが微細化した場合でも、現像したフォトレジスト膜PRのパターンにラフネス悪化やパターン倒れなどのパターン不良が発生することを抑制できる。
[効果]
 このように、実施形態に係るパターニング方法は、浸潤工程(ステップS12~S15)と、エッチング工程(ステップS17)とを含む。浸潤工程は、露光により露光部分EPと未露光部分UPが形成されたフォトレジスト膜PRが表面に設けられた基板Wのフォトレジスト膜PRに露光部分EPと未露光部分UPの選択比を拡大する材料を浸潤させる。エッチング工程は、浸潤工程を行ったフォトレジスト膜PRをドライエッチングする。これにより、パターニング方法は、フォトレジスト膜PRに露光したパターンをドライプロセスにより現像できる。
 また、浸潤工程は、基板Wに材料を含有するガスを暴露する。これにより、パターニング方法は、フォトレジスト膜PRに材料を浸潤させることができる。
 また、材料は、金属又は半金属の元素とする。金属は、アルミニウム、チタン、ゲルマニウムの何れかとする。半金属は、シリコンとする。浸潤工程は、露光部分EPよりも未露光部分UPに深く材料を浸潤させる。これにより、パターニング方法は、露光部分EPと未露光部分UPの選択比を拡大させることができる。
 また、フォトレジスト膜PRへの金属又は半金属の浸潤量は、4atomic%~20atomic%の範囲とする。これにより、パターニング方法は、フォトレジスト膜PRのエッチング耐性を増加させつつ、フォトレジスト膜PRの剥離性の低下を抑制できる。
 また、エッチング工程は、未露光部分UPよりも露光部分EPを深くエッチングを行う。これにより、パターニング方法は、フォトレジスト膜PRに露光したパターンをドライプロセスにより現像できる。
 また、エッチング工程は、露光部分EPに材料が浸潤した深さよりも深く、未露光部分UPに材料が浸潤した深さよりも浅い深さまで、材料が浸潤したフォトレジスト膜PRをエッチング可能な第1ガスを用いて第1エッチングを行った後、材料が浸潤したフォトレジスト膜PRよりも材料が浸潤していないフォトレジスト膜PRを多くエッチング可能な第2ガスを用いて第2エッチングを行う。第1ガスは、水素含有ガス(例えば、Hガス)とする。第2ガスは、酸素含有ガス(例えば、Oガス)とする。これにより、パターニング方法は、露光部分EPと未露光部分UPの選択比をより高くしてエッチングすることができる。
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。
 例えば、上記の実施形態では、基板Wをシリコン基板とする場合を例に説明したが、これに限定されるものではない。基板Wは、例えば、シリコン基板;ガラス基板;ITOなどの透明電極;金、銀、銅、パラジウム、ニッケル、チタン、アルミニウム、タングステン等の金属基板;プラスチック基板;及びこれらの複合材料からなる基板が挙げられる。
 なお、以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)
 露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板の前記フォトレジスト膜に前記露光部分と前記未露光部分の選択比を拡大する材料を浸潤させる浸潤工程と、
 前記浸潤工程を行った前記フォトレジスト膜をドライエッチングするエッチング工程と、
 を含む、パターニング方法。
(付記2)
 前記浸潤工程は、前記基板に前記材料を含有するガスを暴露する
 付記1に記載のパターニング方法。
(付記3)
 前記浸潤工程は、前記露光部分よりも前記未露光部分に深く前記材料を浸潤させる
 付記1又は2に記載のパターニング方法。
(付記4)
 前記材料は、金属又は半金属の元素である
 付記1~3の何れか1つに記載のパターニング方法。
(付記5)
 前記金属は、アルミニウム、チタン、ゲルマニウムの何れかである
 付記4に記載のパターニング方法。
(付記6)
 前記半金属は、シリコンである
 付記4に記載のパターニング方法。
(付記7)
 前記フォトレジスト膜への前記金属又は前記半金属の浸潤量は、4atomic%~20atomic%の範囲である
 付記4~6の何れか1つに記載のパターニング方法。
(付記8)
 前記エッチング工程は、前記未露光部分よりも前記露光部分を深くエッチングを行う
 付記1~7の何れか1つに記載のパターニング方法。
(付記9)
 前記エッチング工程は、前記露光部分に前記材料が浸潤した深さよりも深く、前記未露光部分に前記材料が浸潤した深さよりも浅い深さまで、前記材料が浸潤した前記フォトレジスト膜をエッチング可能な第1ガスを用いて第1エッチングを行った後、前記材料が浸潤した前記フォトレジスト膜よりも前記材料が浸潤していない前記フォトレジスト膜を多くエッチング可能な第2ガスを用いて第2エッチングを行う
 付記1~7の何れか1つに記載のパターニング方法。
(付記10)
 前記第1ガスは、水素含有ガスであり、
 前記第2ガスは、酸素含有ガスである
 付記9に記載のパターニング方法。
(付記11)
 前記第1ガスは、Hガスであり、
 前記第2ガスは、Oガスである
 付記9又は10に記載のパターニング方法。
(付記12)
 露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板の前記フォトレジスト膜に前記露光部分と前記未露光部分の選択比を拡大する材料を浸潤させる浸潤処理部と、
 前記浸潤処理部により材料の浸潤を行った前記フォトレジスト膜をドライエッチングするエッチング処理部と、
 を有するパターニング装置。
1 パターニング装置
11 浸潤処理部
12 エッチング処理部
EP 露光部分
PM フォトマスク
PR フォトレジスト膜
UP 未露光部分
W 基板

Claims (12)

  1.  露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板の前記フォトレジスト膜に前記露光部分と前記未露光部分の選択比を拡大する材料を浸潤させる浸潤工程と、
     前記浸潤工程を行った前記フォトレジスト膜をドライエッチングするエッチング工程と、
     を含む、パターニング方法。
  2.  前記浸潤工程は、前記基板に前記材料を含有するガスを暴露する
     請求項1に記載のパターニング方法。
  3.  前記浸潤工程は、前記露光部分よりも前記未露光部分に深く前記材料を浸潤させる
     請求項1に記載のパターニング方法。
  4.  前記材料は、金属又は半金属の元素である
     請求項1に記載のパターニング方法。
  5.  前記金属は、アルミニウム、チタン、ゲルマニウムの何れかである
     請求項4に記載のパターニング方法。
  6.  前記半金属は、シリコンである
     請求項4に記載のパターニング方法。
  7.  前記フォトレジスト膜への前記金属又は前記半金属の浸潤量は、4atomic%~20atomic%の範囲である
     請求項4に記載のパターニング方法。
  8.  前記エッチング工程は、前記未露光部分よりも前記露光部分を深くエッチングを行う
     請求項1に記載のパターニング方法。
  9.  前記エッチング工程は、前記露光部分に前記材料が浸潤した深さよりも深く、前記未露光部分に前記材料が浸潤した深さよりも浅い深さまで、前記材料が浸潤した前記フォトレジスト膜をエッチング可能な第1ガスを用いて第1エッチングを行った後、前記材料が浸潤した前記フォトレジスト膜よりも前記材料が浸潤していない前記フォトレジスト膜を多くエッチング可能な第2ガスを用いて第2エッチングを行う
     請求項1に記載のパターニング方法。
  10.  前記第1ガスは、水素含有ガスであり、
     前記第2ガスは、酸素含有ガスである
     請求項9に記載のパターニング方法。
  11.  前記第1ガスは、Hガスであり、
     前記第2ガスは、Oガスである
     請求項9に記載のパターニング方法。
  12.  露光により露光部分と未露光部分が形成されたフォトレジスト膜が表面に設けられた基板の前記フォトレジスト膜に前記露光部分と前記未露光部分の選択比を拡大する材料を浸潤させる浸潤処理部と、
     前記浸潤処理部により材料の浸潤を行った前記フォトレジスト膜をドライエッチングするエッチング処理部と、
     を有するパターニング装置。
PCT/JP2023/009518 2022-03-25 2023-03-13 パターニング方法及びパターニング装置 WO2023182028A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049226A JP2023142358A (ja) 2022-03-25 2022-03-25 パターニング方法及びパターニング装置
JP2022-049226 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182028A1 true WO2023182028A1 (ja) 2023-09-28

Family

ID=88101425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009518 WO2023182028A1 (ja) 2022-03-25 2023-03-13 パターニング方法及びパターニング装置

Country Status (3)

Country Link
JP (1) JP2023142358A (ja)
TW (1) TW202401512A (ja)
WO (1) WO2023182028A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172922A (ja) * 1997-06-26 1999-03-16 Matsushita Electric Ind Co Ltd パターン形成方法
JP2014175358A (ja) * 2013-03-06 2014-09-22 Tokyo Electron Ltd 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172922A (ja) * 1997-06-26 1999-03-16 Matsushita Electric Ind Co Ltd パターン形成方法
JP2014175358A (ja) * 2013-03-06 2014-09-22 Tokyo Electron Ltd 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム

Also Published As

Publication number Publication date
JP2023142358A (ja) 2023-10-05
TW202401512A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
TWI387998B (zh) 微影方法
JP5290204B2 (ja) 微細パターンマスクおよびその製造方法、ならびにそれを用いた微細パターンの形成方法
US11437238B2 (en) Patterning scheme to improve EUV resist and hard mask selectivity
US20060281320A1 (en) Method for forming an anti-etching shielding layer of resist patterns in semiconductor fabrication
JP2001230186A5 (ja)
JP5516931B2 (ja) レジストパターン形成方法
JP3506248B2 (ja) 微小構造の製造方法
JP2000091318A (ja) 半導体装置の製造方法
KR100769405B1 (ko) 패턴 형성 방법
CN108231548B (zh) 半导体装置的制作方法
TW548711B (en) Plasma enhanced method for increasing silicon-containing photoresist selectivity
WO2023182028A1 (ja) パターニング方法及びパターニング装置
JP2008153373A (ja) 半導体装置の製造方法
US6465360B2 (en) Method for fabricating an ultra small opening
JP2004134720A (ja) ドライリソグラフィ法およびこれを用いたゲートパターン形成方法
JP2008066467A (ja) パターン形成方法
US6541387B1 (en) Process for implementation of a hardmask
US8389402B2 (en) Method for via formation in a semiconductor device
US6902870B1 (en) Patterning of dielectric with added layers of materials aside from photoresist for enhanced pattern transfer
JP2005114973A (ja) 微細レジストパターンの形成方法
KR100272517B1 (ko) 반도체 소자의 마스크 제조 방법
KR100401517B1 (ko) 반도체 제조용 노광 마스크의 제조방법
JP2006186020A (ja) 半導体装置の製造方法
JPH05142788A (ja) レジストパターンの形成方法
KR20020017795A (ko) 반도체 소자의 미세 패턴 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774625

Country of ref document: EP

Kind code of ref document: A1