WO2023179120A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2023179120A1
WO2023179120A1 PCT/CN2022/139729 CN2022139729W WO2023179120A1 WO 2023179120 A1 WO2023179120 A1 WO 2023179120A1 CN 2022139729 W CN2022139729 W CN 2022139729W WO 2023179120 A1 WO2023179120 A1 WO 2023179120A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
shape memory
chip
electronic device
plane
Prior art date
Application number
PCT/CN2022/139729
Other languages
English (en)
French (fr)
Other versions
WO2023179120A9 (zh
Inventor
周蒙蒙
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023179120A1 publication Critical patent/WO2023179120A1/zh
Publication of WO2023179120A9 publication Critical patent/WO2023179120A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to an electronic device, and in particular to the field of electronic device heat dissipation technology.
  • Embodiments of the present application provide an electronic device, which includes a chip, a shape memory alloy and a thermal conductive structure; the shape memory alloy is located on the chip, and the thermal conductive structure is located on the side of the shape memory alloy away from the chip; the shape memory alloy includes a first form and a thermal conductive structure. The second form; when the shape memory alloy is in the first form, the shape memory alloy is not in contact with the thermal conductive structure; when the shape memory alloy is in the second form, the shape memory alloy is in contact with the thermal conductive structure.
  • shape memory alloy By placing a shape memory alloy on a chip that easily generates heat. Through the principle of elastic thermal cooling of shape memory alloy, the heat on the chip can be quickly absorbed, causing the heat on the chip to drop rapidly. After the shape memory alloy absorbs heat, it releases the heat through the heat pipe. In this way, the shape memory alloy can quickly absorb heat again. This cycle can quickly reduce the heat of the chip and effectively solve the heat dissipation problem of electronic equipment. In other words, by applying shape memory alloy to the heat dissipation problem of the chip, the excessively high temperature of the core of the chip can be quickly absorbed, quickly cooling the chip, and avoiding the problem of excessive chip temperature and limiting the performance of the chip. High commercial application value.
  • the shape memory alloy changes from a first form to a second form based on the absorbed heat of the chip to contact the thermally conductive structure; when the shape memory alloy contacts the thermally conductive structure, the thermally conductive structure is used to transfer the shape memory The heat absorbed by the alloy is released; when the heat of the shape memory alloy is released, the shape memory alloy returns from the second state to the first state, and the shape memory alloy is used to absorb the heat around the chip. That is, the shape memory alloy absorbs the heat of the chip and then expands to contact the thermal conductive structure and release the heat through the heat pipe; after the heat is released, the shape memory alloy returns to its original shape and absorbs ambient heat to achieve a rapid cooling effect.
  • the deformation space can be left for the shape memory alloy (deformation and expansion under the action of thermal stress), so as to avoid extrusion of the chip below it and the thermal conductive structure above it when the shape memory alloy expands, thus protecting the chip and thermal conductive structure.
  • the orthographic projection of the shape memory alloy on the first plane covers the orthographic projection of the chip on the first plane; wherein, the first plane is perpendicular to the first direction, and the first direction is the chip pointing toward the shape memory alloy. direction. That is, the chip is wrapped with a shape memory alloy, which can quickly absorb the heat from the core of the chip and the heat from the edge.
  • the chip includes a core area and an edge area surrounding the core area; the orthographic projection of the shape memory alloy on the first plane coincides with the orthographic projection of the core area of the chip on the first plane; wherein, the first The plane is perpendicular to the first direction, and the first direction is the direction in which the chip points toward the shape memory alloy. That is, the shape memory alloy is only placed at the core of the chip (where the temperature is higher). That is, the shape memory alloy is placed in a targeted manner to absorb heat from the core of the chip without increasing the cost of the mobile phone.
  • the chip includes a core area and an edge area surrounding the core area;
  • the thermal conductive structure includes a central portion, a connecting portion surrounding the central portion, and a contact portion surrounding the connecting portion; an extension of the central portion
  • the direction is the same as the extending direction of the contact portion;
  • the connecting portion connects the central portion and the contact portion, and the extending direction of the central portion intersects the extending direction of the connecting portion;
  • the orthographic projection of the shape memory alloy on the first plane is The orthographic projection of the core area of the chip on the first plane overlaps;
  • the orthographic projection of the contact portion on the first plane overlaps with the orthographic projection of the edge area of the chip on the first plane; wherein, the first plane is perpendicular to the first plane.
  • a plane in one direction, the first direction is the direction in which the chip points to the shape memory alloy.
  • the shape of the shape memory alloy includes block, sheet, spring, wire, etc. Those skilled in the art can set the shape of the shape memory alloy according to the actual situation.
  • the material of the shape memory alloy includes nickel-manganese-indium alloy or titanium-nickel alloy.
  • the electronic device further includes a thermal pad located between the chip and the shape memory alloy.
  • the setting of the thermal pad can quickly conduct the heat of the chip to the shape memory alloy, which is beneficial to the rapid cooling of the chip.
  • the material of the thermal pad includes a metal material; a side of the thermal pad away from the chip is partially convex to form an annular convex structure; the shape memory alloy is embedded in the Within the annular protrusion structure, heat can be quickly transferred to the shape memory alloy, and the shape memory alloy can also be fixed.
  • the thermal pad includes conductive cloth or conductive rubber, which can quickly transmit heat to the shape memory alloy and can also fix the shape memory alloy.
  • the electronic equipment on the basis that the above-mentioned electronic equipment includes a thermal pad, the electronic equipment also includes a shielding cover, and the shielding cover is arranged around the chip; the shielding cover includes a shielding frame and a shielding cover; the shielding frame is arranged around the chip, The shielding cover is placed on the chip; the shielding cover is reused as a thermal pad. There is no need to set up a separate thermal pad, which is conducive to the thin and light design of electronic equipment.
  • the electronic device further includes a middle frame, the middle frame is located on a side of the thermally conductive structure away from the shape memory alloy; the middle frame is used to support the thermally conductive structure; along the first direction, the middle frame includes a top surface and a bottom surface , the top surface is located on the side of the bottom surface away from the thermal conductive structure; a shape memory alloy is also provided on the bottom surface of the middle frame, and is located between the thermal conductive structure and the middle frame; wherein, the first direction is the direction in which the chip points to the shape memory alloy, which can be further Reduce heat inside electronic devices.
  • the shape memory alloy is also provided on the metal of the middle frame, and there is a second gap between the shape memory alloy on the middle frame and the thermal conductive structure. It can leave a deformation space for the shape memory alloy located on the middle frame (deformation and expansion under the action of thermal stress), so as to avoid extrusion of the thermal conductive structure above and below it and the middle frame when the shape memory alloy expands.
  • the shape memory alloy is also provided on the metal of the middle frame. Along the first direction, the bottom surface of the middle frame is partially recessed to form a first groove. The shape memory alloy provided on the middle frame located in the first groove. It is beneficial to reduce the thickness of electronic equipment.
  • the shape memory alloy is also provided on the metal of the middle frame, and the orthographic projection of the shape memory alloy on the bottom surface on the first plane overlaps with the orthographic projection of the chip on the first plane;
  • the first plane is a plane perpendicular to the first direction. This setting can conduct and output the heat near the chip, preventing heat from accumulating around the chip and causing the chip to become hotter.
  • the shape memory alloy is also provided on the metal of the middle frame, and a heat insulation structure is provided between the shape memory alloy on the bottom surface and the middle frame.
  • the heat insulation structure is used to isolate the temperature of the middle frame to prevent higher temperatures from damaging other structures on the middle frame.
  • the chip includes a system-on-a-chip and/or a power management chip and other chips.
  • Figure 1 is a schematic diagram of an application scenario of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the disassembled structure of an electronic device provided by an embodiment of the present application.
  • Figure 3 is a cross-sectional view along the BB’ direction of Figure 1;
  • Figure 4 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 5 is a schematic diagram of phase transformation of a shape memory alloy provided by an embodiment of the present application.
  • Figure 6 is a process diagram of the deformation of a shape memory alloy provided by an embodiment of the present application.
  • Figure 7 is a schematic top structural view of a shape memory alloy and SOC provided by an embodiment of the present application.
  • Figure 8 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 9 is a schematic top structural view of a heat pipe and a shape memory alloy provided by an embodiment of the present application.
  • Figure 10 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 11 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 12 is a schematic top view of another shape memory alloy and SOC provided by the embodiment of the present application.
  • Figure 13 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 14 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 15 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 16 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 17 is a schematic structural diagram of a middle frame provided by an embodiment of the present application.
  • Figure 18 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 19 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 20 is another cross-sectional view along the BB’ direction of Figure 1;
  • Figure 21 is another cross-sectional view along the BB' direction of Figure 1.
  • 10-display 20-back shell; 30-middle frame; 40-PCB; 50-battery; 60-shape memory alloy; 70-thermal conductive structure; 80-thermal pad; 90-shielding cover; 100-mobile phone; 600- thermally insulated structures;
  • 31-accommodating cavity 301-top surface; 302-bottom surface; 303-appearance surface; 311-cavity bottom; 312-cavity wall; 313-first groove;
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Embodiments of the present application provide an electronic device.
  • the electronic device provided by the embodiment of the present application may be a mobile phone, a computer, a tablet computer, a personal digital assistant (PDA), a vehicle-mounted computer, a television, an air conditioner, or a smart wearable device. , smart home devices and other electronic devices containing chips.
  • PDA personal digital assistant
  • the embodiments of the present application do not specifically limit the specific form of the above-mentioned electronic equipment.
  • the electronic device is a mobile phone as an example.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are used to define the positional relationship of each structure in the mobile phone.
  • the X-axis direction is the width direction of the mobile phone
  • the Y-axis direction is the length direction of the mobile phone
  • the Z-axis direction (also called the first direction) is the thickness direction of the mobile phone.
  • a mobile phone 100 includes a display screen 10 , a rear case 20 and a middle frame 30 .
  • the back case 20 and the display screen 10 are arranged oppositely, and the middle frame 30 is located between the back case 20 and the display screen 10 .
  • the display screen 10 includes, for example, a liquid crystal display (Liquid Crystal Display, LCD) screen, an organic light emitting diode (OLED) display screen, or an LED display screen.
  • the LED display screen includes, for example, a Micro-LED display screen, a Mini-LED display screen, etc. LED display screen, etc.
  • the embodiment of the present application does not limit the type of the display screen 10 .
  • the material of the back shell 20 may include, for example, opaque materials such as plastic, plain leather, and fiberglass; it may also include light-transmitting materials such as glass.
  • the embodiment of the present application does not limit the material of the rear case 20 .
  • the middle frame 30 includes a top surface 301 and a bottom surface 302 that are oppositely arranged, and also includes an appearance surface 303 connecting the top surface 301 and the bottom surface 302 .
  • the appearance surface 303 is, for example, located outside the mobile phone 100 .
  • the middle frame 30 also includes a receiving cavity 31 , and a portion of the bottom surface 302 is recessed along the Z-axis direction to form the receiving cavity 31 .
  • the receiving cavity 31 includes a cavity bottom 311 and an annular cavity wall 312 .
  • Structures such as printed circuit boards (PCBs, PCB) 40 and batteries 50 are provided in the accommodation cavity 31 .
  • PCBs, PCB printed circuit boards
  • a system on chip (SOC) 41, a power management IC (PMIC) 42, a memory chip and a radio frequency chip (not shown in the figure) are provided on the side of the PCB 40 away from the back shell 20. out) and other structures.
  • the mobile phone 100 also includes a shape memory alloy 60 located on the side of the chip away from the PCB 40.
  • the mobile phone 100 further includes a thermal conductive structure 70 disposed between the shape memory alloy 60 and the middle frame 30 .
  • the thermal conductive structure 70 is, for example, a heat pipe.
  • the heat pipe is attached to the middle frame 30 through a first adhesive layer (not shown in the figure), where the first adhesive layer is, for example, thermally conductive gel.
  • the first adhesive layer is, for example, thermally conductive gel.
  • the orthographic projection of the heat pipe on the plane formed by the X-axis and the Y-axis overlaps with the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis.
  • the orthographic projection of the heat pipe on the plane formed by the X-axis and the Y-axis covers the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis; or, as shown in Figure 4, the heat pipe
  • the orthographic projection on the plane formed by the X-axis and the Y-axis partially overlaps with the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis.
  • the shape memory alloy 60 is in the first form. At this time, the shape memory alloy 60 is not in contact with the thermal conductive structure. 70 (for example, a heat pipe) is in contact, and the shape memory alloy 60 is in an austenite state (parent phase state). SOC 41 generates heat when working, and SOC 41 generates heat. Referring to Figure 5(2) and Figure 6(1), the shape memory alloy 60 is in contact with the SOC 41, the shape memory alloy 60 quickly absorbs the heat generated by the SOC 41, and the temperature inside the shape memory alloy 60 increases, such as at this time The temperature is the second temperature T2.
  • T1 normal temperature
  • the shape memory alloy 60 when the temperature of the shape memory alloy 60 rises to the third temperature T3 (first phase transformation temperature), the shape memory alloy 60 undergoes thermal stress transformation from Austrian
  • the martensite phase transforms from the martensitic phase to the martensitic phase, and the shape memory alloy 60 deforms and expands under the action of thermal stress and comes into contact with the heat pipe.
  • the shape memory alloy 60 is in the second state, that is, when the shape memory alloy 60 is in contact with the heat pipe.
  • the form is the second form.
  • the shape memory alloy 60 transfers heat to the heat pipe, and the heat pipe dissipates heat to the heat dissipation area of the mobile phone.
  • the shape memory alloy 60 transfers heat to the heat pipe, so the temperature of the shape memory alloy 60 decreases, for example, to the second temperature T2.
  • the internal temperature of shape memory alloy 60 decreases and the thermal stress is released at the same time.
  • T1 second phase transformation temperature
  • the shape memory alloy 60 releases thermal stress, and the shape memory alloy 60 It returns to its original shape, that is, from the second form to the first form, and an inverse martensitic elastic phase transformation occurs during this process (transformation from martensite phase to austenite phase). At this time, it can also absorb the internal environment of the mobile phone. of heat to achieve rapid cooling effect.
  • the shape memory alloy 60 is provided on a chip that easily generates heat (such as SOC 41, power management chip 42, etc.).
  • a chip that easily generates heat (such as SOC 41, power management chip 42, etc.).
  • the heat on the chip can be quickly absorbed, causing the heat on the chip to drop rapidly.
  • the shape memory alloy 60 absorbs heat, it releases the heat through the heat pipe. In this way, the shape memory alloy 60 can quickly absorb heat again. This cycle can quickly reduce the heat of the chip and effectively solve the heat dissipation problem of electronic equipment.
  • the excessively high temperature of the core of the chip can be quickly absorbed, quickly cooling the chip, and avoiding the problem of excessive chip temperature and limiting the performance of the chip.
  • the first gap P1 is set between the shape memory alloy 60 and the heat pipe to leave a deformation space for the shape memory alloy 60 (deformation and expansion under the action of thermal stress), and to prevent the shape memory alloy 60 from damaging the SOC below when it expands. 41 and the heat pipe above it cause extrusion, protecting SOC 41 and the heat pipe.
  • the embodiment of the present application does not limit the height of the first gap P1.
  • Those skilled in the art can calculate the height of the first gap P1 based on the heat generated when the chip is working and based on the chip.
  • the heat generated during operation, the deformation amount of shape memory alloy 60, etc. can be set as long as it does not cause squeezing of SOC 41 and can still be in contact with the heat pipe.
  • the embodiment of the present application does not limit the material of the shape memory alloy 60 .
  • the material of the shape memory alloy 60 includes, for example, nickel-manganese-indium alloy or titanium-nickel alloy.
  • the proportional relationship (alloy ratio) of each alloy can be based on actual conditions such as the heat generated when the chip is working (the heat may affect the performance of the chip). The selection is made according to the situation, which is not limited in the embodiments of this application.
  • the embodiment of the present application does not limit the position of the shape memory alloy 60 on the chip, as long as the heat of the chip can be quickly absorbed.
  • the SOC 41 includes a core area 411 and an edge area 412 surrounding the central area 411.
  • the heat in the core area 411 is greater than that in the edge area 412 .
  • the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis coincides with the orthographic projection of the core region 411 on the plane formed by the X-axis and the Y-axis.
  • the shape memory alloy 60 is only provided at the core position of the chip (higher temperature), that is, the shape memory alloy 60 is provided in a targeted manner to absorb the heat from the core position of the chip without increasing the cost of the mobile phone. .
  • the core position of the chip includes but is not limited to the center position.
  • the embodiments of this application are all explained by taking the core position of the chip at the center as an example.
  • the SOC 41 includes a core area 411 and an edge area 412 surrounding the core area 411.
  • the heat in the core area 411 is greater than that in the edge area 412 .
  • the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis coincides with the orthographic projection of the core region 411 on the plane formed by the X-axis and the Y-axis.
  • the heat pipe includes a central portion 71, a connecting portion 72 surrounding the central portion 71, and a contact portion 73 surrounding the connecting portion.
  • the central portion 71 is connected to the middle frame through a first adhesive layer.
  • the contact portion 73 is in contact with the edge area 412 of the chip, and the connection portion 72 connects the center portion 71 and the contact portion 73 . That is to say, the shape memory alloy 60 is set at the core of the chip (higher temperature), and the heat of the chip is quickly absorbed through the shape memory alloy 60, and a heat pipe is set at the edge of the chip, and the heat around the chip is absorbed through the heat pipe ( Heat is absorbed below the temperature of the core area).
  • the orthographic projection of the shape memory alloy 60 on the plane formed by the X-axis and the Y-axis covers the orthographic projection of the SOC 41 on the plane formed by the X-axis and the Y-axis.
  • This setting can quickly absorb the heat from the core of SOC 41 and the heat from the edges.
  • the embodiment of the present application does not limit the shape of the shape memory alloy 60, and those skilled in the art can set it according to actual conditions.
  • the shape of the shape memory alloy 60 may include, for example, a block shape (as shown in FIG. 3 ), a sheet shape (as shown in FIG. 11 ), a wire shape (as shown in FIG. 12 ), or a spring shape (as shown in FIG. 13 ). (display) etc.
  • a thermal pad 80 is also provided between the SOC 41 and the shape memory alloy 60.
  • the heat of the SOC 41 is quickly conducted to the shape memory alloy 60 through the thermal pad 80, which is beneficial to the rapid cooling of the SOC 41.
  • the embodiment of the present application does not limit the type of the thermal pad 80 , as long as the heat of the chip can be quickly conducted to the shape memory alloy 60 .
  • the thermal pad 80 includes a metal material, such as copper foil. Copper foil has excellent thermal conductivity and has electromagnetic shielding and antistatic effects.
  • the thermal pad 80 may include, for example, self-adhesive copper foil, double conductive copper foil, single conductive copper foil, etc.
  • an annular protruding structure 81 is formed on the thermal pad 80 , and the annular protruding structure 81 is integrally formed with the thermal pad 80 .
  • the shape memory alloy 60 is embedded in the annular protrusion structure 81 to fix the shape memory alloy 60 through the annular protrusion structure 81 .
  • the shape memory alloy 60 is heated and expands in the X-axis direction and/or the Y-axis direction, it can form an interference fit with the annular protruding structure 81 , so that the shape memory alloy 60 can be more firmly fixed on the thermal pad 80 .
  • a second adhesive layer 82 may also be provided between the thermal pad 80 and the shape memory alloy 60 .
  • the shape memory alloy 60 is fixed on the thermal pad 80 through the second adhesive layer 82 .
  • the embodiment of the present application does not limit the material of the second adhesive layer 82 , as long as the shape memory alloy 60 can be fixed on the thermal pad 80 without affecting the heat transmission.
  • the second adhesive layer 82 may include back glue or the like.
  • the thermal pad 80 includes conductive cloth or conductive rubber.
  • the conductive cloth material is on polyester fiber.
  • the nickel is then plated with a highly conductive copper layer, and the copper layer is electroplated with an anti-oxidation machine.
  • Anti-corrosion nickel metal, the combination of copper and nickel provides excellent electrical conductivity and good electromagnetic shielding effect, the shielding range is 100K-3GHz.
  • Conductive rubber is made by evenly distributing conductive particles such as glass silver plating, aluminum silver plating, and silver in silicone rubber. The conductive particles are brought into contact through pressure to achieve good conductive properties. Its main function is sealing and electromagnetic shielding. Products can be molded or extruded, and are available in sheet or other die-cut shapes. Shielding performance is up to 120dB (10GHz).
  • the shape memory alloy 60 can be bonded to the SOC 41 without setting a separate adhesive layer, and at the same time, the heat of the SOC 41 can be quickly conducted to the shape memory alloy 60.
  • the thermal pad 80 as a metal material and an annular protruding structure 81 formed on the thermal pad 80 to fix the shape memory alloy 60 through the annular protruding structure 81.
  • the mobile phone 100 also includes a shielding cover 90.
  • the shielding cover 90 is disposed on the PCB board and forms a shielding space together with the PCB 40. SOC 41 is contained within this shielded space. The SOC 41 is electromagnetically shielded by the shielding cover 90 .
  • the shielding cover 90 includes a shielding frame 91 and a shielding cover 92.
  • the shielding frame 91 is arranged around the SOC 41, and the shielding cover 92 is arranged on a side of the shielding frame 91 away from the PCB board 40.
  • the material of the shielding cover 90 includes, for example, a metal material, such as copper foil.
  • the shielding cover 92 is reused as the thermal pad 80 . That is to say, by utilizing the good thermal conductivity and electromagnetic shielding performance of copper foil, the shielding cover 92 can be used as a part of the shielding cover 91 to electromagnetic shield the SOC 41; and can also quickly conduct the heat of the SOC 41 to the shape memory alloy. 60. In this way, there is no need to provide a separate thermal pad 80 . It is conducive to the thin and light design of the mobile phone 100.
  • At least part of the cavity bottom 311 of the accommodation cavity 31 is also provided with shape memory alloy 60 . 18 , along the Z-axis direction, there is a second gap P2 between the shape memory alloy 60 provided on the cavity bottom 311 and the heat pipe.
  • the heat can be transferred to the heat pipe through the shape memory alloy 60 provided on the cavity bottom 311 .
  • the specific transfer principle is similar to the principle when the shape memory alloy 60 is provided on the chip. For details, please refer to the above explanation and will not be repeated here.
  • the embodiment of the present application does not limit the position of the shape memory alloy 60 on the cavity bottom 311. Those skilled in the art can set the position of the shape memory alloy 60 according to actual needs.
  • the orthographic projection of the shape memory alloy 60 provided on the cavity bottom 31 on the plane composed of the X-axis and the Y-axis is the same as the orthographic projection of the SOC 41 on the plane composed of the X-axis and the Y-axis. Orthographic projection overlap.
  • the orthographic projection of the shape memory alloy 60 provided on the cavity bottom 31 on the plane composed of the X-axis and the Y-axis is located within the orthographic projection of the SOC 41 on the plane composed of the X-axis and the Y-axis; or
  • the orthographic projection of the shape memory alloy 60 provided on the cavity bottom 311 on the plane composed of the X-axis and the Y-axis partially overlaps with the orthographic projection of the SOC 41 on the plane composed of the X-axis and the Y-axis. That is, the shape memory alloy 60 is located near SOC 41.
  • This setting can conduct and output the heat near the chip, preventing heat from accumulating around the chip and causing the chip to become hotter.
  • the accommodation cavity 31 further includes a first groove 313 .
  • the first groove 313 is recessed from the cavity bottom 311 along the Z-axis direction.
  • the shape memory alloy 60 provided on the cavity bottom 31 is located in the first groove 313 .
  • the middle frame 30 supports most structures in the mobile phone 100 , that is, most structures are in contact with the middle frame 30 . If the shape memory alloy 60 is provided on the middle frame 30 , the heat absorbed by it may be conducted to the middle frame 30 , affecting the structure of the middle frame 30 . Therefore, in order to prevent the heat absorbed by the shape memory alloy 60 from being transmitted to the middle frame 30 , referring to FIG. 21 , a heat insulation structure 600 is also provided between the middle frame 30 and the shape memory alloy 60 . The heat insulation structure 600 is used to isolate the temperature of the middle frame 30 to prevent higher temperatures from damaging other structures on the middle frame 30 .
  • the embodiment of the present application does not limit the material of the heat insulation structure 600 , as long as it can prevent the heat absorbed by the shape memory alloy 60 from being transmitted to the middle frame 30 .
  • the material of the thermal insulation structure 600 may be a material capable of isolating high temperatures, such as aerogel.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请实施例提供了一种电子设备,涉及散热技术领域,可以快速降低芯片的热量,有效解决电子设备的散热问题。该电子设备包括芯片、形状记忆合金和导热结构;形状记忆合金位于芯片上,导热结构位于形状记忆合金背离芯片的一侧;形状记忆合金包括第一形态和第二形态;形状记忆合金处于第一形态时,形状记忆合金不与导热结构接触;形状记忆合金处于第二形态时,形状记忆合金与导热结构接触。

Description

电子设备
本申请要求于2022年03月22日提交中国国家知识产权局、申请号为202210281307.8、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到一种电子设备,尤其涉及电子设备散热技术领域。
背景技术
随着手机、平板电脑等电子设备的性能越来越强,其内部芯片的功耗和发热量也越来越高。如果芯片的热量不能及时地扩散出去,将会导致芯片的核心温度过高,出现降频等现象,限制了芯片性能的发挥。
为了解决电子设备的散热问题,通常会在电子设备中设置一些真空均热板(Vaper Chamber,VC)、热管(Heat Pipe,HP)等散热结构。
然而,对于功耗较大的使用场景中,现有的散热结构仍然难以解决电子设备的散热问题。
发明内容
本申请实施例提供一种电子设备,该电子设备包括芯片、形状记忆合金以及导热结构;形状记忆合金位于芯片上,导热结构位于形状记忆合金背离芯片的一侧;形状记忆合金包括第一形态和第二形态;形状记忆合金处于第一形态时,形状记忆合金不与导热结构接触;形状记忆合金处于第二形态时,形状记忆合金与导热结构接触。
通过在容易发热的芯片上设置形状记忆合金。通过形状记忆合金弹热制冷原理,可以将芯片上的热量快速的吸收,使得芯片上的热量快速下降。形状记忆合金吸收热量之后通过热管将热量释放,这样,形状记忆合金可以再次进行热量的快速吸收,如此循环,快速降低芯片的热量,有效解决电子设备的散热问题。也就是说,通过将形状记忆合金应用到芯片的散热问题上,可以将芯片的核心过高的温度快速的吸收,快速使得芯片制冷,避免芯片温度过高,限制芯片性能发挥的问题,具有较高的商业应用价值。
在一些可能实现的方式中,形状记忆合金基于吸收的芯片的热量由第一形态变为第二形态,以与导热结构接触;当形状记忆合金与导热结构接触时,导热结构用于将形状记忆合金吸收的热量释放;当形状记忆合金的热量释放后,形状记忆合金由第二形态恢复为第一形态,形状记忆合金用于吸收芯片周围的热量。即形状记忆合金吸收芯片的热量后变膨胀,以与导热结构接触,并通过热管将热量释放;热量释放后形状记忆合金恢复原来形态,并吸收环境热量,达到快速制冷效果。
在一些可能实现的方式中,沿第一方向,形状记忆合金和导热结构之间具有第一间隙;其中,第一方向为芯片指向形状记忆合金的方向。这样,可以为形状记忆合金留出变形空间(在热应力的作用下变形膨胀),避免形状记忆合金膨胀时,对其下方的芯片以及其上方的导热结构造成挤压,保护芯片和导热结构。
在一些可能实现的方式中,形状记忆合金在第一平面上的正投影覆盖芯片在第一平面上的正投影;其中,第一平面垂直于第一方向,第一方向为芯片指向形状记忆合金的方向。即通过形状记忆合金将芯片进行包裹,可以快速的将芯片核心的热量以及边缘的热量快速的吸收。
在一些可能实现的方式中,芯片包括核心区域和环绕核心区域的边缘区域;形状记忆合金在第一平面上的正投影与芯片的核心区域在第一平面上的正投影重合;其中,第一平面垂直于第一方向,第一方向为芯片指向形状记忆合金的方向。即,仅在芯片的核心位置(温度较高)设置形状记忆合金,亦即,针对性的设置形状记忆合金,将芯片的核心位置的热量吸收掉的同时,还不会增加手机的成本。
在一些可能实现的方式中,芯片包括核心区域和环绕核心区域的边缘区域;导热结构包括中心分部、环绕中心分部的连接分部以及环绕连接分部的接触分部;中心分部的延伸方向与接触分部的延伸方向相同;连接分部连接中心分部和接触分部,且中心分部的延伸方向与连接分部的延伸方向相交;形状记忆合金在第一平面上的正投影与芯片的核心区域在第一平面上的正投影重合;接触分部在第一平面上的正投影与芯片的边缘区域在第一平面上的正投影交叠;其中,第一平面为垂直于第一方向的平面,第一方向为芯片指向形状记忆合金的方向。
在一些可能实现的方式中,形状记忆合金的形状包括块状、片状、弹簧状或者丝状等,本领域技术人员可以根据实际情况进行设置形状记忆合金的形状。
在一些可能实现的方式中,形状记忆合金的材料包括镍锰铟合金或钛镍合金等。
在一些可能实现的方式中,电子设备还包括导热垫,导热垫位于芯片和形状记忆合金之间。导热垫的设置可以将芯片的热量快速的传导至形状记忆合金,有利于芯片的快速降温。
在一些可能实现的方式中,在上述电子设备包括导热垫的基础上,导热垫的材料包括金属材料;导热垫背离芯片的一侧局部凸起形成环形凸起结构;形状记忆合金嵌于所述环形凸起结构内,即可将热量快速的传输至形状记忆合金,同时还可以将形状记忆合金进行固定。
在一些可能实现的方式中,在上述电子设备包括导热垫的基础上,导热垫包括导电布或导电橡胶,即可将热量快速的传输至形状记忆合金,同时还可以将形状记忆合金进行固定。
在一些可能实现的方式中,在上述电子设备包括导热垫的基础上,电子设备还包括屏蔽罩,屏蔽罩罩设于芯片的四周;屏蔽罩包括屏蔽框和屏蔽盖;屏蔽框环绕芯片设置,屏蔽盖盖于芯片上;屏蔽盖复用为导热垫。无需单独设置导热垫,有利于电子设备的轻薄化设计。
在一些可能实现的方式中,电子设备还包括中框,中框位于导热结构背离形状记忆合金的一侧;中框用于对导热结构进行支撑;沿第一方向,中框包括顶面和底面,顶面位于底面背离导热结构的一侧;中框的底面上也设置有形状记忆合金,且位于导热结构和中框之间;其中,第一方向为芯片指向形状记忆合金的方向,可以进一步降低电子设备内部的热量。
在一些可能实现的方式中,在上述中框也设置有形状记忆合金的金属上,位于中框上的形状记忆合金与导热结构之间具有第二间隙。可以为位于中框上的形状记忆合金留出变形空间(在热应力的作用下变形膨胀),避免形状记忆合金膨胀时,对其上下方的导热结构以及中框造成挤压。
在一些可能实现的方式中,在上述中框也设置有形状记忆合金的金属上,沿第一方向,中框的底面局部凹陷,以形成第一凹槽,设置于中框上的形状记忆合金位于第一凹槽内。有利于减小电子设备的厚度。
在一些可能实现的方式中,在上述中框也设置有形状记忆合金的金属上,位于底面上的形状记忆合金在第一平面上的正投影与芯片在第一平面上的正投影交叠;其中,第一平面为垂直于第一方向的平面。这样设置可以将芯片附近的热量传导输出,避免热量在芯片的四周聚集导致芯片的热量较高。
在一些可能实现的方式中,在上述中框也设置有形状记忆合金的金属上,位于底面上的形状记忆合金与中框之间设置有隔热结构。通过隔热结构对中框进行温度的隔离,防止较高的温度损伤中框上的其他结构。
在一些可能实现的方式中,芯片包括系统级芯片和/或电源管理芯片等芯片。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电子设备的应用场景示意图;
图2为本申请实施例提供的一种电子设备的拆分结构示意图;
图3为图1沿BB’方向的一种截面图;
图4为图1沿BB’方向的又一种截面图;
图5为本申请实施例提供的一种形状记忆合金发生相变的原理图;
图6为本申请实施例提供的一种形状记忆合金发生形变的过程图;
图7为本申请实施例提供的一种形状记忆合金和SOC的俯视结构示意图;
图8为图1沿BB’方向的又一种截面图;
图9为本申请实施例提供的一种热管和形状记忆合金的俯视结构示意图;
图10为图1沿BB’方向的又一种截面图;
图11为图1沿BB’方向的又一种截面图;
图12为本申请实施例提供的又一种形状记忆合金和SOC的俯视结构示意图;
图13为图1沿BB’方向的又一种截面图;
图14为图1沿BB’方向的又一种截面图;
图15为图1沿BB’方向的又一种截面图;
图16为图1沿BB’方向的又一种截面图;
图17为本申请实施例提供的一种中框的结构示意图;
图18为图1沿BB’方向的又一种截面图;
图19为图1沿BB’方向的又一种截面图;
图20为图1沿BB’方向的又一种截面图;
图21为图1沿BB’方向的又一种截面图。
附图标记:
10-显示屏;20-后壳;30-中框;40-PCB;50-电池;60-形状记忆合金;70-导热结构;80-导热垫;90-屏蔽罩;100-手机;600-隔热结构;
31-容纳腔体;301-顶面;302-底面;303-外观面;311-腔底;312-腔壁;313-第一凹槽;
41-SOC;42-PMIC;411-中心区域;412-边缘区域;
71-中心分部;72-连接分部;73-接触分部;
81-环形凸起结构;82-第二粘合层;
91-屏蔽框;92-屏蔽盖。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例提供一种电子设备,本申请实施例提供的电子设备可以是手机、电脑、平板电脑、个人数字助理(personal digital assistant,简称PDA)、车载电脑、电视、空调、智能穿戴式设备、智能家居设备等包含芯片的电子设备。本申请实施例对上述电子设备的具体形式不作特殊限定。如图1所示,以下为了方便说明,以电子设备是手机为例进行说明。
需要说明的是,为了便于清楚描述后续各结构特征及结构特征的位置关系,以X轴方向、Y轴方向及Z轴方向来规定手机内各结构的位置关系。其中,X轴方向为手机的宽度方向,Y轴方向为手机的长度方向,Z轴方向(也称第一方向)为手机的厚度方向。
参见图1,手机100包括显示屏10、后壳20和中框30。沿Z轴方向,后壳20和显示屏10相对设置,中框30位于后壳20和显示屏10之间。
显示屏10例如包括液晶显示(Liquid Crystal Display,LCD)屏、有机发光二极管(Organic Light Emitting Diode,OLED)显示屏或LED显示屏等,其中,LED显示屏例如包括Micro-LED显示屏、Mini-LED显示屏等。本申请实施例对显示屏10的类型不进行限定。
后壳20的材料例如可以包括塑料、素皮、玻璃纤维等不透光材料;也可以包括玻璃等透光材料。本申请实施例对后壳20的材料不进行限定。
参见图2,沿Z轴方向,中框30包括相对设置的顶面301和底面302,还包括连接顶面301和底面302的外观面303,外观面303例如位于手机100的外侧。
中框30还包括容纳腔体31,底面302的部分区域沿Z轴方向凹陷形成该容纳腔体31,其中,容纳腔体31包括腔底311和环形的腔壁312。容纳腔体31中设置有印刷电路板(Printed circuit boards,PCB)40和电池50等结构。沿Z轴方向,PCB 40背离后壳20的一侧设置有系统级芯片(system on chip,SOC)41、电源管理芯片(power management IC,PMIC)42、存储芯片和射频芯片(图中未示出)等结构。
为了解决芯片散热的问题,结合图3,手机100还包括位于芯片背离PCB 40一侧的形状记忆合金60。
此处需要说明的是,本申请实施例均以芯片为SOC 41,且在SOC 41进行相应的结构设计以解决芯片散热问题为例进行的说明。
继续参见图3,手机100还包括导热结构70,导热结构70设置于形状记忆合金60与中框30之间。导热结构70例如为热管。热管通过第一粘合层(图中未示出)贴合在中框30上,其中,第一粘合层例如为导热凝胶。沿Z轴方向,形状记忆合金60与热管之间具有第一间隙P1。热管在X轴和Y轴组成的平面上的正投影与形状记忆合金60在X轴和Y轴组成的平面上的正投影交叠。例如,如图3所示,热管在X轴和Y轴组成的平面上的正投影覆盖形状记忆合金60在X轴和Y轴组成的平面上的正投影;或者,如图4所示,热管在X轴和Y轴组成的平面上的正投影与形状记忆合金60在X轴和Y轴组成的平面上的正投影部分交叠。
具体的,参见图5(1)和参见图6(1),常温(例如小于或等于第一温度T1)下,形状记忆合金60处于第一形态,此时,形状记忆合金60不与导热结构70(例如为热管)接触,且形状记忆合金60为奥氏体状态(母相状态)。SOC 41工作时发热,SOC 41发热产生热量。参见图5(2)和参见图6(1),形状记忆合金60与SOC 41接触,形状记忆合金60快速吸收SOC 41产生的热量,且形状记忆合金60内部的温度升高,例如此时的温度为第二温度T2。参见图5(3)和参见图6(2),当形状记忆合金60的温度升高到第三温度T3(第一相变温度)时,形状记忆合金60在热应力的作用下发生由奥氏体相向马氏体相的转变,且形状记忆合金60在热应力的作用下变形膨胀,与热管接触,此时,形状记忆合金60处于第二形态,即形状记忆合金60与热管接触时的形态为第二形态。当形状记忆合金60与热管接触时,形状记忆合金60将热量向热管传递,热管向手机的散热区散热。参见图5(4)和参见图6(2),形状记忆合金60在该过程中由于向热管传递热量,所以形状记忆合金60的温度降低,例如降到第二温度T2。形状记忆合金60内部温度下降的同时热应力释放。参见图5(1)和图6(1),当形状记忆合金60的温度下降至第一温度T1(第二相变温度)以下时,形状记忆合金60由于热应力的释放,形状记忆合金60恢复到原来形状,即由第二形态变为第一形态,且该过程中发生逆马氏体弹性相变(由马氏体相向奥氏体相的转变),此时还可以吸收手机内部环境的热量,达到快速制冷的效果。
需要的说明的是,对于热管向手机的散热区散热的过程、原理以及热管的结构可参照已有技术实施例中的技术方案,本申请实施例不再赘述。
本申请实施例中,通过在容易发热的芯片(例如SOC 41、电源管理芯片42等)上设置形状记忆合金60。通过形状记忆合金60弹热制冷原理,可以将芯片上的热量快速的吸收,使得芯片上的热量快速下降。形状记忆合金60吸收热量之后通过热管将热量释放,这样,形状记忆合金60可以再次进行热量的快速吸收,如此循环,快速降低芯片的热量,有效解决电子设备的散热问题。也就是说,通过将形状记忆合金60应用到芯片的散热问题上,可以将芯片的核心过高的温度快速的吸收,快速使得芯片制冷,避免芯片温度过高,限制芯片性能发挥的问题,具有较高的商业应用价值。此外,通过形 状记忆合金60与热管之间设置第一间隙P1,以为形状记忆合金60留出变形空间(在热应力的作用下变形膨胀),避免形状记忆合金60膨胀时,对其下方的SOC 41以及其上方的热管造成挤压,保护SOC 41和热管。
需要说明的是,沿Z轴方向,对于第一间隙P1的高度,本申请实施例对第一间隙P1的高度不做限定,本领域技术人员可以根据芯片工作时产生的热量,以及,基于芯片工作时产生的热量,形状记忆合金60的变形量等情况进行设置,只要不会对SOC 41造成挤压,同时还可以与热管接触即可。
对于形状记忆合金60的材料,本申请实施例对形状记忆合金60的材料不进行限定。示例性的,形状记忆合金60的材料例如包括镍锰铟合金或钛镍合金。当形状记忆合金60的材料为镍锰铟合金或钛镍合金时,各合金的比例关系(合金配比)可以根据芯片工作时产生的热量(该热量可能会对芯片的性能造成影响)等实际情况进行选择,本申请实施例对此不作限定。
对于形状记忆合金60位于芯片的位置,本申请实施例对形状记忆合金60位于芯片的位置不进行限定,只要可以将芯片的热量快速的吸收掉即可。
一种可能的实现方式中,参见图3和图7,SOC 41包括核心区域411和环绕中心区域411的边缘区域412。核心区域411的热量大于边缘区域412。形状记忆合金60在X轴和Y轴组成的平面上的正投影与核心区域411在X轴和Y轴组成的平面上的正投影重合。
即,仅在芯片的核心位置(温度较高)设置形状记忆合金60,亦即,针对性的设置形状记忆合金60,将芯片的核心位置的热量吸收掉的同时,还不会增加手机的成本。
需要说明的是,芯片的核心位置包括但不限于中心位置。本申请实施例均以芯片的核心位置位于中心位置为例进行的说明。
又一种可能的实现方式中,参见图8和图9,SOC 41包括核心区域411和环绕核心区域411的边缘区域412。核心区域411的热量大于边缘区域412。形状记忆合金60在X轴和Y轴组成的平面上的正投影与核心区域411在X轴和Y轴组成的平面上的正投影重合。热管包括中心分部71、环绕中心分部71的连接分部72以及环绕连接分部的接触分部73。中心分部71通过第一粘合层与中框连接。接触分部73与芯片的边缘区域412接触,连接分部72将中心分部71和接触分部73连接。也就是说,在芯片的核心位置(温度较高)设置形状记忆合金60,通过形状记忆合金60将芯片的热量快速的吸收,且在芯片的边缘区域设置热管,通过热管将芯片四周的热量(热量低于核心区域的温度)吸收。
再一种可能的实现方式中,参见图10,形状记忆合金60在X轴和Y轴组成的平面上的正投影覆盖SOC 41在X轴和Y轴组成的平面上的正投影。这样设置,可以快速的将SOC 41核心的热量以及边缘的热量快速的吸收。
需要说明的是,下述实施例均以在SOC 41的核心位置设置形状记忆合金60为例进行的说明。
对于形状记忆合金60的形状,本申请实施例对形状记忆合金60的形状不作限定,本领域技术人员可以根据实际情况进行设置。示例性的,形状记忆合金60的形状例如 可以包括块状(如图3所示)、片状(如图11所示)、丝状(如图12所示)或弹簧状(如图13所示)等。当形状记忆合金60的形状为弹簧状时,由于弹簧状具有一定的形变空间,所以可以进一步避免形状记忆合金60受热膨胀时损坏导热结构70等。
此外,为了将芯片的热量快速的传输至形状记忆合金60。参见图14,SOC 41和形状记忆合金60之间还设置有导热垫80。通过导热垫80将SOC 41的热量快速的传导至形状记忆合金60,有利于SOC 41的快速降温。
对于导热垫80的类型,本申请实施例对导热垫80的类型不进行限定,只要可以将芯片的热量快速的传导至形状记忆合金60即可。
一种可能的实现方式中,导热垫80包括金属材料,例如为铜箔,铜箔具有优良的导热性能,且具有电磁屏蔽和抗静电等的效果。当导热垫80为铜箔时,例如可以包括自粘铜箔、双导铜箔、单导铜箔等。
在此情况下,为了将形状记忆合金60设置于导热垫80上,继续参见图14,导热垫80上形成有环形凸起结构81,该环形凸起结构81与导热垫80一体成型。形状记忆合金60嵌于环形凸起结构81内,以通过环形凸起结构81对形状记忆合金60进行固定。当形状记忆合金60受热,且在X轴方向和/或Y轴方向膨胀时,可以与环形凸起结构81形成过盈配合,这样,可以将形状记忆合金60更加牢固的固定于导热垫80上。
当然,将形状记忆合金60设置于导热垫80上的方式并不限于此。参见图15,还可以在导热垫80和形状记忆合金60之间设置第二粘合层82。通过第二粘合层82将形状记忆合金60固定于导热垫80上。本申请实施例对第二粘合层82的材料不进行限定,只要可以将形状记忆合金60固定于导热垫80上,同时还不会影响热量的传输即可。示例性的,第二粘合层82例如可以包括背胶等。
又一种可能的实现方式中,导热垫80包括导电布或导电橡胶。其中,导电布材料是在聚酯纤维上,先化学沉积或金属物理转移金属镍到聚酯纤维上,在镍上再镀上高导电性的铜层,在铜层上再电镀上防氧化机防腐蚀的镍金属,铜和镍结合提供了极佳的导电性和良好的电磁屏蔽效果,屏蔽范围在100K-3GHz。导电橡胶是将玻璃镀银、铝镀银、银等导电颗粒均匀分布在硅橡胶中,通过压力使导电颗粒接触,达到良好的导电性能。其主要作用是密封和电磁屏蔽。产品可以模压或挤出成形,有片装或其他的冲切形状可供选择。屏蔽性能高达120dB(10GHz)。
当导热垫80包括导电布或导电橡胶时,既可以将形状记忆合金60粘合在SOC 41,无需单独设置粘合层,同时还可以将SOC 41的热量快速的传导至形状记忆合金60。
需要说明的是,下述实施例均以导热垫80为金属材料,且导热垫80上形成有环形凸起结构81,通过环形凸起结构81对形状记忆合金60进行固定为例进行的说明。
此外,参见图16,手机100还包括屏蔽罩90,屏蔽罩90设置于PCB板上,并与PCB 40共同形成屏蔽空间。SOC 41收容于该屏蔽空间内。通过屏蔽罩90对SOC 41进行电磁屏蔽。
屏蔽罩90包括屏蔽框91和屏蔽盖92,屏蔽框91环绕SOC 41设置,屏蔽盖92设置于屏蔽框91背离PCB板40的一侧。
屏蔽罩90的材料例如包括金属材料,例如为铜箔。此时,屏蔽盖92复用为导热垫80。也就是说,利用铜箔良好的导热性能以及电磁屏蔽性能,屏蔽盖92既可以作为屏蔽罩91的一部分,对SOC 41进行电磁屏蔽;且还可以将SOC 41的热量快速的传导至形状记忆合金60。这样一来,无需单独设置导热垫80。有利于手机100的轻薄化设计。
此外,为了进一步降低手机内部的热量。参见图17,容纳腔体31的腔底311的至少部分区域也设置有形状记忆合金60。结合图18,沿Z轴方向,腔底311上设置的形状记忆合金60与热管之间具有第二间隙P2。当手机100由于芯片以及电池等结构导致其内部的热量较高时,可以通过腔底311上设置的形状记忆合金60将热量传递至热管。具体的传递原理与芯片上设置形状记忆合金60时的原理相似,具体可以参照上述解释,此处不再赘述。
也就是说,通过在芯片上以及中框30上分别设置形状记忆合金60,不仅可以将芯片产生的热量传输出去,同时还可以将芯片周围的热量传输出去,这样,使得芯片发热量以及能耗明显降低。
需要说明的是,本申请实施例对腔底311上的形状记忆合金60的位置不进行限定,本领域技术人员可以根据实际需要设置该形状记忆合金60的位置。
一种可能实现的方式中,继续参见图18,腔底31上设置的形状记忆合金60在X轴和Y轴组成的平面上的正投影与SOC 41在X轴和Y轴组成的平面上的正投影交叠。例如,如图18所示,腔底31上设置的形状记忆合金60在X轴和Y轴组成的平面上的正投影位于SOC 41在X轴和Y轴组成的平面上的正投影内;或者,如图19所示,腔底311上设置的形状记忆合金60在X轴和Y轴组成的平面上的正投影与SOC 41在X轴和Y轴组成的平面上的正投影部分交叠。即该形状记忆合金60位于SOC 41的附近。
这样设置可以将芯片附近的热量传导输出,避免热量在芯片的四周聚集导致芯片的热量较高。
为了减小手机100在Z轴方向的厚度,参见图20,容纳腔体31还包括第一凹槽313。第一凹槽313自腔底311沿Z轴方向凹陷。腔底31上设置的形状记忆合金60位于第一凹槽313内。
考虑到,中框30对手机100内的大部分结构进行支撑,即大部分结构与中框30有接触。如果在中框30上设置形状记忆合金60,其吸收的热量可能传导到中框30上,对中框30上的结构造成影响。因此,为了避免形状记忆合金60吸收的热量传输至中框30上,参见图21,中框30和形状记忆合金60之间还设置隔热结构600。通过隔热结构600对中框30进行温度的隔离,防止较高的温度损伤中框30上的其他结构。
对于隔热结构600的材料,本申请实施例对隔热结构600的材料不进行限定,只要可以防止形状记忆合金60吸收的热量传输至中框30上即可。示例性的,隔热结构600的材料例如可以为气凝胶等具有隔离高温的材料。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前 述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (18)

  1. 一种电子设备,其特征在于,包括:芯片、形状记忆合金和导热结构;
    所述形状记忆合金位于所述芯片上,所述导热结构位于所述形状记忆合金背离所述芯片的一侧;
    所述形状记忆合金包括第一形态和第二形态;
    所述形状记忆合金处于第一形态时,所述形状记忆合金不与导热结构接触;
    所述形状记忆合金处于第二形态时,所述形状记忆合金与导热结构接触。
  2. 根据权利要求1所述的电子设备,其特征在于,所述形状记忆合金基于吸收的所述芯片的热量由所述第一形态变为所述第二形态,以与所述导热结构接触;
    当所述形状记忆合金与所述导热结构接触时,所述导热结构用于将所述形状记忆合金吸收的热量释放;
    当所述形状记忆合金的热量释放后,所述形状记忆合金由所述第二形态恢复为所述第一形态,所述形状记忆合金用于吸收所述芯片周围的热量。
  3. 根据权利要求1所述的电子设备,其特征在于,沿第一方向,所述形状记忆合金和所述导热结构之间具有第一间隙;
    其中,所述第一方向为所述芯片指向所述形状记忆合金的方向。
  4. 根据权利要求1所述的电子设备,其特征在于,所述形状记忆合金在第一平面上的正投影覆盖所述芯片在所述第一平面上的正投影;
    其中,所述第一平面垂直于第一方向,所述第一方向为所述芯片指向所述形状记忆合金的方向。
  5. 根据权利要求1所述的电子设备,其特征在于,所述芯片包括核心区域和环绕所述核心区域的边缘区域;
    所述形状记忆合金在第一平面上的正投影与所述芯片的核心区域在所述第一平面上的正投影重合;
    其中,所述第一平面垂直于第一方向,所述第一方向为所述芯片指向所述形状记忆合金的方向。
  6. 根据权利要求1所述的电子设备,其特征在于,所述芯片包括核心区域和环绕所述核心区域的边缘区域;
    所述导热结构包括中心分部、环绕所述中心分部的连接分部以及环绕所述连接分部的接触分部;所述中心分部的延伸方向与所述接触分部的延伸方向相同;所述连接分部连接所述中心分部和所述接触分部,且所述中心分部的延伸方向与所述连接分部的延伸方向相交;
    所述形状记忆合金在第一平面上的正投影与所述芯片的核心区域在所述第一平面上的正投影重合;所述接触分部在第一平面上的正投影与所述芯片的边缘区域在所述第一平面上的正投影交叠;
    其中,所述第一平面为垂直于第一方向的平面,所述第一方向为所述芯片指向所述形状记忆合金的方向。
  7. 根据权利要求1-6任一项所述的电子设备,其特征在于,所述形状记忆合金的形状包括块状、片状、弹簧状或者丝状。
  8. 根据权利要求1-6任一项所述的电子设备,其特征在于,所述形状记忆合金的材料包括镍锰铟合金或钛镍合金。
  9. 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括导热垫,所述导热垫位于所述芯片和所述形状记忆合金之间。
  10. 根据权利要求9所述的电子设备,其特征在于,所述导热垫的材料包括金属材料;
    所述导热垫背离所述芯片的一侧局部凸起形成环形凸起结构;
    所述形状记忆合金嵌于所述环形凸起结构内。
  11. 根据权利要求9所述的电子设备,其特征在于,所述导热垫包括导电布或导电橡胶。
  12. 根据权利要求9所述的电子设备,其特征在于,所述电子设备还包括屏蔽罩,所述屏蔽罩罩设于所述芯片的四周;所述屏蔽罩包括屏蔽框和屏蔽盖;所述屏蔽框环绕所述芯片设置,所述屏蔽盖盖于所述芯片上;
    所述屏蔽盖复用为所述导热垫。
  13. 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括中框,所述中框位于所述导热结构背离所述形状记忆合金的一侧;
    所述中框用于对所述导热结构进行支撑;
    沿第一方向,所述中框包括顶面和底面,所述顶面位于所述底面背离所述导热结构的一侧;
    所述中框的底面上也设置有形状记忆合金,且位于所述导热结构和所述中框之间;
    其中,所述第一方向为所述芯片指向所述形状记忆合金的方向。
  14. 根据权利要求13所述的电子设备,其特征在于,位于所述中框上的所述形状记忆合金与所述导热结构之间具有第二间隙。
  15. 根据权利要求13所述的电子设备,其特征在于,沿所述第一方向,所述中框的底面局部凹陷,以形成第一凹槽,设置于所述中框上的所述形状记忆合金位于所述第一凹槽内。
  16. 根据权利要求13所述的电子设备,其特征在于,位于所述底面上的所述形状记忆合金在第一平面上的正投影与所述芯片在所述第一平面上的正投影交叠;
    其中,所述第一平面为垂直于所述第一方向的平面。
  17. 根据权利要求13所述的电子设备,其特征在于,位于所述底面上的所述形状记忆合金与所述中框之间设置有隔热结构。
  18. 根据权利要求1所述的电子设备,其特征在于,所述芯片包括系统级芯片和/或电源管理芯片。
PCT/CN2022/139729 2022-03-22 2022-12-16 电子设备 WO2023179120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210281307.8 2022-03-22
CN202210281307.8A CN114710927B (zh) 2022-03-22 2022-03-22 电子设备

Publications (2)

Publication Number Publication Date
WO2023179120A1 true WO2023179120A1 (zh) 2023-09-28
WO2023179120A9 WO2023179120A9 (zh) 2023-11-16

Family

ID=82168543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139729 WO2023179120A1 (zh) 2022-03-22 2022-12-16 电子设备

Country Status (2)

Country Link
CN (1) CN114710927B (zh)
WO (1) WO2023179120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117500149A (zh) * 2023-12-27 2024-02-02 荣耀终端有限公司 一种均热板、电路板组件及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710927B (zh) * 2022-03-22 2023-06-09 荣耀终端有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383988A (zh) * 2013-07-29 2013-11-06 昆山龙腾光电有限公司 发光二极管光源及发光二极管光源模组
CN106572617A (zh) * 2016-10-31 2017-04-19 上海斐讯数据通信技术有限公司 一种电子设备的散热装置
CN206353918U (zh) * 2016-12-22 2017-07-25 海能达通信股份有限公司 电子装置及其屏蔽盖散热装置
CN207820447U (zh) * 2018-02-09 2018-09-04 苏州天脉导热科技股份有限公司 单向散热模组
CN114710927A (zh) * 2022-03-22 2022-07-05 荣耀终端有限公司 电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304772B (zh) * 2015-06-09 2019-02-05 联想(北京)有限公司 散热装置、电子设备及热控方法
CN108323111A (zh) * 2018-02-09 2018-07-24 苏州天脉导热科技股份有限公司 单向散热模组
CN108870791A (zh) * 2018-04-26 2018-11-23 浙江大学 一种采用形状记忆合金的接触式冷却系统
KR20210073824A (ko) * 2019-12-11 2021-06-21 엘에스일렉트릭(주) 형상기억합금을 이용한 열 조정장치 및 이를 구비한 전력전자시스템과, 그 형상기억합금 구조체
US11019751B2 (en) * 2020-03-27 2021-05-25 Intel Corporation Activate loading mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383988A (zh) * 2013-07-29 2013-11-06 昆山龙腾光电有限公司 发光二极管光源及发光二极管光源模组
CN106572617A (zh) * 2016-10-31 2017-04-19 上海斐讯数据通信技术有限公司 一种电子设备的散热装置
CN206353918U (zh) * 2016-12-22 2017-07-25 海能达通信股份有限公司 电子装置及其屏蔽盖散热装置
CN207820447U (zh) * 2018-02-09 2018-09-04 苏州天脉导热科技股份有限公司 单向散热模组
CN114710927A (zh) * 2022-03-22 2022-07-05 荣耀终端有限公司 电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117500149A (zh) * 2023-12-27 2024-02-02 荣耀终端有限公司 一种均热板、电路板组件及电子设备
CN117500149B (zh) * 2023-12-27 2024-04-26 荣耀终端有限公司 一种均热板、电路板组件及电子设备

Also Published As

Publication number Publication date
CN114710927B (zh) 2023-06-09
CN114710927A (zh) 2022-07-05
WO2023179120A9 (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2023179120A9 (zh) 电子设备
JP6714685B2 (ja) ヒートシンクとしてリストバンドを使用することによるウェアラブルデバイスのための熱に関する解決策
US9625215B2 (en) Electronic device and heat dissipation plate
JP6172331B2 (ja) 電子機器の製造方法
US7623349B2 (en) Thermal management apparatus and method for a circuit substrate
CN105828571A (zh) 一种电子设备芯片的屏蔽散热结构及电子设备
JP2018531441A6 (ja) ヒートシンクとしてリストバンドを使用することによるウェアラブルデバイスのための熱に関する解決策
US20240081026A1 (en) Terminal device
US20120318484A1 (en) Heat-dissipation structure and display unit
WO2017067219A1 (zh) 一种移动终端的散热装置和移动终端
CN108513515B (zh) 壳体组件以及电子装置
US20160266622A1 (en) Mobile Terminal Heat Dissipation Apparatus and Shielding Cover Frame
CN112804851A (zh) 一种电子设备
CN108770296B (zh) 壳体组件以及电子装置
CN106413335B (zh) 移动电子装置的散热缓冲屏蔽复合结构
CN210130059U (zh) 散热装置及电子设备
CN108617159B (zh) 壳体组件以及电子装置
CN209676570U (zh) 屏蔽散热结构及显示装置
CN206506813U (zh) 电子装置
TW201706768A (zh) 行動電子裝置之散熱緩衝導電複合成型結構(四)
CN108667991B (zh) 壳体组件以及电子装置
CN215934955U (zh) 一种相机
WO2023098503A1 (zh) 一种屏蔽结构、封装体、板级架构、散热器及电子设备
CN220554132U (zh) 电路板组件和电子设备
CN113903871B (zh) 显示装置及显示终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933169

Country of ref document: EP

Kind code of ref document: A1