WO2023178532A1 - 通感业务的处理方法、装置、通信设备及存储介质 - Google Patents

通感业务的处理方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023178532A1
WO2023178532A1 PCT/CN2022/082359 CN2022082359W WO2023178532A1 WO 2023178532 A1 WO2023178532 A1 WO 2023178532A1 CN 2022082359 W CN2022082359 W CN 2022082359W WO 2023178532 A1 WO2023178532 A1 WO 2023178532A1
Authority
WO
WIPO (PCT)
Prior art keywords
synaesthesia
data
mode
transmitting
service
Prior art date
Application number
PCT/CN2022/082359
Other languages
English (en)
French (fr)
Inventor
沈洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/082359 priority Critical patent/WO2023178532A1/zh
Priority to CN202280000861.2A priority patent/CN117296423A/zh
Publication of WO2023178532A1 publication Critical patent/WO2023178532A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to a synaesthesia service processing method, device, communication equipment and storage medium.
  • Wireless synaesthesia technology is designed to obtain information about remote objects and their characteristics without the need for physical contact.
  • synaesthetic data about the object and its surroundings can be used for analysis to obtain meaningful information about the object and its characteristics.
  • synaesthetic data processing may be the process of combining synaesthetic data from at least one source to obtain synaesthetic results such that the uncertainty in the synaesthetic results is lower than that which might occur if these sources were used alone.
  • wireless synaesthesia technology can collaborate with wireless networks. How to achieve collaboration between the two is an issue that needs to be considered.
  • Embodiments of the present disclosure disclose a synaesthesia service processing method, device, communication equipment and storage medium.
  • a method for processing synaesthesia services is provided, wherein the method is executed by a first network element, and the method includes:
  • the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services;
  • the transmission method is a first method of transmitting the synaesthesia data based on the control plane and a user plane-based transmission of the synaesthesia data.
  • determining a transmission method for transmitting synaesthesia data includes:
  • the transmission method for transmitting the synaesthesia data is determined according to predetermined information.
  • the method further includes:
  • a candidate mode for executing the synaesthesia service is determined from the predetermined synaesthesia data processing modes, wherein the predetermined mode includes at least one of the following:
  • the first mode is a terminal-based mode of processing the synaesthesia data
  • the second mode is a mode in which the synaesthesia data is processed based on the base station
  • the third mode is a mode of processing the synaesthesia data based on the network.
  • the predetermined information includes at least one of the following:
  • the method further includes:
  • the method further includes:
  • a second network element is determined, wherein the third mode is to process the synaesthesia based on the network. The pattern of the data.
  • the method further includes:
  • the method further includes:
  • the synaesthesia strategy is sent to the transmitter and/or the receiver.
  • the method further includes:
  • determining that the candidate mode is the third mode determining that the transmission mode is a mode of transmitting the synaesthesia data based on the user plane, and the receiver of the synaesthesia service is a terminal, establishing a PDU session between the terminal and the second network element;
  • a PDU session is established between the base station and the second network element.
  • the method further includes:
  • the method further includes:
  • a method for processing synesthesia services is provided, wherein the method is executed by a third network element, and the method includes:
  • the information requested by the synaesthesia service is used for the first network element to determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of the synaesthesia service;
  • the transmission method is a method determined from a first method of transmitting the synaesthesia data based on a control plane and a second method of transmitting the synaesthesia data based on a user plane.
  • the method further includes:
  • a synaesthesia service processing device wherein the device includes:
  • a determining module configured to determine a transmission method for transmitting the synaesthesia data
  • the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services;
  • the transmission method is a first method of transmitting the synaesthesia data based on the control plane and a user plane-based transmission of the synaesthesia data.
  • a synaesthesia service processing device wherein the device includes:
  • a sending module configured to send synesthesia service request information to the first network element
  • the information requested by the synaesthesia service is used for the first network element to determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of the synaesthesia service;
  • the transmission method is a method determined from a first method of transmitting the synaesthesia data based on a control plane and a second method of transmitting the synaesthesia data based on a user plane.
  • a communication device includes:
  • memory for storing instructions executable by the processor
  • the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instructions.
  • a computer storage medium stores a computer executable program.
  • the executable program is executed by a processor, the method described in any embodiment of the present disclosure is implemented.
  • a transmission method for transmitting synaesthesia data is determined; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is from a control plane to transmit the synaesthesia data.
  • the execution process of synaesthesia business is more efficient and reliable.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Figure 2 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 3 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 4 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 5 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 6 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 7 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 8 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 9 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 10 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 11 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • Figure 12 is a schematic diagram illustrating the processing of a synaesthesia service according to an exemplary embodiment.
  • FIG. 13 is a schematic diagram illustrating an architecture for processing a synaesthesia service according to an exemplary embodiment.
  • Figure 14 is a schematic diagram illustrating an architecture for processing a synaesthesia service according to an exemplary embodiment.
  • Figure 15 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 16 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 17 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 18 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 19 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 20 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 21 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 22 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 23 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 24 is a schematic structural diagram of a synaesthesia service processing device according to an exemplary embodiment.
  • Figure 25 is a schematic structural diagram of a synaesthesia service processing device according to an exemplary embodiment.
  • Figure 26 is a schematic flowchart of a synaesthesia service processing method according to an exemplary embodiment.
  • Figure 27 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Figure 28 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • this article uses the terms “greater than” or “less than” when characterizing the size relationship. However, those skilled in the art can understand that the term “greater than” also encompasses the meaning of “greater than or equal to”, and “less than” also encompasses the meaning of “less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on mobile communication technology.
  • the wireless communication system may include several user equipments 110 and several base stations 120.
  • user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 110 may be an Internet of Things user equipment, such as a sensor device, a mobile phone, and a computer with an Internet of Things user equipment. , for example, it can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • the user equipment 110 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 110 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless user equipment connected to an external on-board computer.
  • the user equipment 110 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new air interface system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 120.
  • a wireless connection may be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End, end-to-end) connection can also be established between user equipments 110 .
  • V2V vehicle to vehicle, vehicle to vehicle
  • V2I vehicle to infrastructure, vehicle to roadside equipment
  • V2P vehicle to pedestrian, vehicle to person
  • the above user equipment can be considered as the terminal equipment of the following embodiments.
  • the above-mentioned wireless communication system may also include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • serving gateway Serving GateWay, SGW
  • public data network gateway Public Data Network GateWay, PGW
  • Policy and Charging Rules Policy and Charging Rules
  • PCRF Policy and Charging Rules
  • HSS Home Subscriber Server
  • the embodiments of the present disclosure enumerate multiple implementations to clearly describe the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided in the embodiments of the present disclosure can be executed alone or in combination with the methods of other embodiments in the embodiments of the present disclosure. They can also be executed alone or in combination. It is then executed together with some methods in other related technologies; the embodiments of the present disclosure do not limit this.
  • radar radio detection and ranging
  • radar is a widely used wireless synaesthesia technology that uses radio waves to determine the distance (range), angle, or instantaneous linear velocity of an object.
  • synaesthesia technologies including non-radiofrequency synaesthesia, which are already used in other fields such as time-of-flight cameras, accelerometers, gyroscopes, and lidar.
  • Integrated synaesthesia and communication in the fifth generation mobile communication technology means that synaesthesia capabilities are provided by this new air interface wireless communication system and infrastructure for communication, and synaesthesia information can come from radio frequency and/or non-radio frequency based of synaesthetes.
  • 5G communication systems providing synaesthesia services or synaesthesia-assisted communication; for example, information related to synaesthesia and communication channels or environments are used to improve the communication services of the 5G system itself, such as communication Sensing information can be used to assist in radio resource management, interference mitigation, beam management, and mobility.
  • 5G-based synaesthesia services can benefit intelligent transportation, aviation, enterprises, smart cities, smart homes, factories, consumer applications and the public sector, etc.
  • Mobile operators can play an important role in providing customers with integrated synaesthesia and communications based on 5G systems, including management and control of 5G-based synaesthesia services.
  • Related technologies illustrate the role that operators can play in enhancing V2X-type services, especially It is for infrastructure-assisted environmental synaesthesia, infrastructure-based remote control driving, high-definition map collection and sharing, and remote control driving support.
  • examples of communication-assisted synesthesia services provided by the 5G system may include:
  • Real-time environment monitoring Use wireless signals to reconstruct the environment map to further improve positioning accuracy and empower environment-related applications, such as realizing a series of real-time monitoring-related applications, including dynamic 3D maps for assisted driving, pedestrian traffic statistics, intrusion detection, and traffic flow Testing etc.
  • Self-driving cars or drones have some common functional requirements. For example, a self-driving car or drone should support detection and avoidance to avoid obstacles. At the same time, self-driving cars or drones should have the ability to monitor path information, such as choosing routes and complying with traffic rules.
  • Air pollution monitoring The quality of received wireless signals shows different attenuation characteristics as air humidity, air particle concentration, carrier frequency, etc. change, and can be used for weather or air quality detection.
  • Indoor health care and intrusion detection It can realize respiratory frequency estimation, breathing depth estimation, apnea detection, vital sign monitoring of the elderly and indoor intrusion detection.
  • synaesthesia of wireless communication channels and environments may further improve communication system performance.
  • Some examples of synaesthesia-assisted communication scenarios include:
  • the location and channel environment of the synaesthesia terminal can reduce the beam scanning range and shorten the beam training time
  • the position, speed, motion trajectory and channel environment of the synaesthesia terminal are used for beam prediction to reduce the overhead of beam measurement and the delay of beam tracking;
  • Reflection Physics Information is synaesthetized about the target object.
  • Transmitter A device that emits a radio signal to a target object. It can be a terminal or a base station.
  • Receiver A device that detects synaesthetic information based on reflected signals from radio signals from a target object. It can be a terminal or a base station.
  • Initiator An authorized device that requests or subscribes to synaesthetic information from one or more receivers. It can be a terminal, base station or network function. It is usually a device that collects synaesthetic information and processes it to produce synaesthetic results.
  • the Consumer Consumes the output calculated from the synaesthesia information, for example, it can be a terminal application or a synaesthesia application server.
  • transmitters, receivers, initiators and consumers can be paired or all collocated together. Please refer to Figure 3 to Figure 8. There are 6 combinations of whether a terminal or base station can serve as a transmitter or receiver in integrated synaesthesia and communication services.
  • the synaesthesia mode involved in the present disclosure may include: a terminal transmitting and terminal receiving mode, a base station transmitting and base station receiving mode, or a terminal and base station hybrid transmitting and receiving mode.
  • Synaesthetic fusion is the process of combining synaesthetic data from different sources to arrive at a synaesthetic result such that the uncertainty in the synaesthetic result is lower than would be possible if these sources were used individually.
  • Synaesthetic fusion can also be understood as sensory fusion, perceptual fusion, etc., and is not limited here.
  • Converged functions can be in terminals, base stations, network functions or application servers. Depending on which entity performs the fusion function, there are 4 fusion modes possible:
  • Terminal-based fusion The terminal performs the fusion function, see Figure 10 for details;
  • Base station-based integration The base station performs the integration function, see Figure 11 for details;
  • Application-based convergence The application server performs the convergence function, see Figure 12 again for details.
  • supporting integrated synaesthesia and communications in the network core requires consideration of the following:
  • 1 to 5 are implemented through the control plane function; 6 can be implemented on the control plane or user plane.
  • control plane synaesthesia function SF-C and the user plane synaesthesia function SF-U are introduced into the core network to support integrated synaesthesia and communication.
  • SF-C is the control plane network function and is responsible for processing control plane signaling.
  • SF-U is the user plane entity and is responsible for data collection, aggregation and processing under the control of SF-C. Please refer to Figure 13.
  • the SF-U can be an application server in the data network DN.
  • the SF-U can also be a core network element.
  • NSO is the interface between SF-C and SF-U for controlling data collection, aggregation and processing.
  • SF-C and SF-U can be collocated, in which case NS0 is an internal interface.
  • NS1 is the interface between UPF and SF-U and is used to transmit sensing information between UPF and SF-U.
  • N6s are used for interaction between SF-U and synaesthesia applications in DN.
  • SF-U is only applicable when using network-based sensing.
  • NS0 is not applicable either.
  • SF-C when network-based synesthesia is determined and data collection is determined to be on the user plane, SF-C needs to perform:
  • the SF-C is responsible for determining the synaesthesia information processing mode (i.e., terminal-based synaesthesia, synaesthesia-based base station synaesthesia or web-based synaesthesia).
  • the synaesthesia information processing mode i.e., terminal-based synaesthesia, synaesthesia-based base station synaesthesia or web-based synaesthesia.
  • the SF-C is responsible for determining whether to use the control plane or user-oriented network to transmit synaesthesia information based on terminal, base station or network capabilities and synaesthesia application requirements (such as QoS, including latency and accuracy).
  • this embodiment provides a method for processing synesthesia services, wherein the method is executed by the first network element, and the method includes:
  • Step 151 Determine the transmission method for transmitting synaesthesia data
  • the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is determined from the first method of transmitting synaesthesia data based on the control plane and the second method of transmitting synaesthesia data based on the user plane. The way.
  • the terminals involved in this disclosure may be, but are not limited to, mobile phones, wearable devices, vehicle-mounted terminals, roadside units (RSU, Road Side Unit), smart home terminals, industrial sensing equipment and/or medical equipment, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the base station involved in the present disclosure may be various types of base stations, such as base stations of the third generation mobile communication (3G) network, base stations of the fourth generation mobile communication (4G) network, and base stations of the fifth generation mobile communication (5G) network. base station or other evolved base station.
  • base stations of the third generation mobile communication (3G) network such as base stations of the third generation mobile communication (3G) network, base stations of the fourth generation mobile communication (4G) network, and base stations of the fifth generation mobile communication (5G) network.
  • base station or other evolved base station.
  • the network elements involved in this disclosure may be Access Control And Mobility Management Function (AMF, Access Control And Mobility Management Function), Control Plane Sensing Function (SF-C, Control Plane Sensing Function), Unified Data Management (UDM, Unified Data Management) and Sensing App, etc.
  • AMF Access Control And Mobility Management Function
  • SF-C Control Plane Sensing Function
  • UDM Unified Data Management
  • the network element is not limited to the above examples, and can also be any network element with a synaesthesia function (SF, Sensing Function).
  • SF Sensing Function
  • a network element equipped with SF can be deployed as a communication node alone, or can be deployed uniformly in an existing network element.
  • a network element with SF can be understood as a logical node that can be flexibly deployed in a network, and is not limited here.
  • the first network element may be the control plane synesthesia function SF-C.
  • the predetermined synaesthetic data processing mode may include at least one of the following:
  • the first mode is a terminal-based mode for processing synaesthesia data
  • the second mode is a mode based on base station processing of synaesthesia data
  • the third mode is a mode of processing synaesthesia data based on core network elements
  • the third mode can also be collectively referred to as a mode of processing synaesthesia data based on the network. Fusion of synaesthesia data can also be called synaesthesia data fusion, which is a type of synaesthesia data processing. However, it should be noted that synaesthesia data processing is not limited to synaesthesia data fusion. It can also be used for synaesthesia data fusion in any other scenario. Processing of sensory data.
  • synaesthesia data processing may be: the process of combining synaesthesia data from at least one source to obtain synaesthesia results such that the uncertainty of the synaesthesia results is lower than the uncertainty that may occur when using these sources alone. , and/or, analyze and/or calculate synaesthesia data to derive perceptual results.
  • the transmission method for transmitting synaesthesia data is determined to be the first method for transmitting synaesthesia data based on the control plane. Transmitting synaesthesia data based on the first method.
  • the transmission method for transmitting synaesthesia data is determined to be a second method for transmitting synaesthesia data based on the user plane. Transmitting synaesthesia data based on the second method.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes. Determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a user plane-based transmission method. The method determined in the second method of sensory data. In the process of executing synaesthesia services based on candidate modes, each execution subject transmits synaesthesia data based on a determined transmission method.
  • at least one source can be one or more sources, and "source" can be understood as the provider of synaesthesia data.
  • the provider can be a terminal, a base station, etc., or it can also be a receiver, etc.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes.
  • the transmission method for transmitting synaesthesia data is determined to be the first method for transmitting synaesthesia data based on the control plane.
  • each execution subject transmits synaesthesia data based on the determined first method.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes.
  • the transmission method for transmitting synaesthesia data is determined to be the second method for transmitting synaesthesia data based on the user plane.
  • each execution subject transmits the synaesthesia data based on the determined second method.
  • candidate modes for executing synaesthesia services are determined from predetermined synaesthesia data processing modes. Determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a user plane-based transmission method. The method determined in the second method of sensory data. In the process of executing synaesthesia services based on candidate modes, each execution subject transmits synaesthesia data based on a determined transmission method.
  • the predetermined information includes at least one of the following:
  • Capabilities and/or current status information of the terminal, base station or core network includes current load information of the terminal, base station or core network;
  • synaesthesia service request information sent by the synaesthesia application server may be received.
  • a transmission method for transmitting synaesthesia data is determined; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and the method determined in the second method of transmitting synaesthesia data based on the user plane.
  • the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • the second network element may be a user plane synaesthesia function. It is determined that the second network element can be an SF-C and a SF-U is selected.
  • predetermined synaesthetic patterns, transmitters and/or receivers are determined.
  • candidate modes for executing synaesthesia services are determined from predetermined synaesthesia data processing modes.
  • the method determined in the second method of sensory data.
  • the second network element is determined, wherein the third mode is a mode of processing synaesthesia data based on the network.
  • synaesthesia patterns transmitters and/or receivers.
  • synaesthesia data from different sources may be synaesthesia data obtained by different receivers.
  • the receivers may be terminals and/or base stations, etc.
  • the synaesthesia policy indicates candidate modes and modes of transmission.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes. Determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a user plane-based transmission method. The method determined in the second method of sensory data. In response to determining that the candidate mode is the third mode and that the transmission mode is a mode of transmitting synaesthesia data based on the user plane, the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • the transmission method is a method of transmitting synaesthesia data based on the user plane, and that the receiver of the synaesthesia service is a terminal, a PDU session is established between the terminal and the second network element. Data transmission in the synaesthesia service process is performed based on the PDU session.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes. Determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a user plane-based transmission method. The method determined in the second method of sensory data. In response to determining that the candidate mode is the third mode and that the transmission mode is a mode of transmitting synaesthesia data based on the user plane, the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • a PDU session is established between the base station and the second network element. Data transmission in the synaesthesia service process is performed based on the PDU session.
  • candidate modes for performing synaesthesia services are determined from predetermined synaesthesia data processing modes. Determine a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a user plane-based transmission method. The method determined in the second method of sensory data. In the process of executing synaesthesia services based on candidate modes, each execution subject transmits synaesthesia data based on a determined transmission method. Receive information on the results of your synaesthesia business. Send result information to the synesthesia application server.
  • a transmission method for transmitting synaesthesia data is determined; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; and the transmission method is from a first source of synaesthesia data transmitted based on the control plane. method and the method determined in the second method of transmitting synaesthesia data based on the user plane. In this way, it can be clarified whether the transmission mode of synaesthesia data is the first mode or the second mode, and each execution subject that performs synaesthesia services can execute synaesthesia services based on whether the transmission mode is the first mode or the second mode. Compared with the inability to Determining the specific transmission method makes the execution of synaesthesia services more efficient and reliable.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by the first network element, and the method includes:
  • Step 161 Determine a transmission method for transmitting synaesthesia data based on predetermined information.
  • the predetermined information includes capability information of the terminal, the base station and/or the network.
  • the transmission method for transmitting synaesthesia data can be determined to be the first method or the second method according to the capabilities indicated by the capability information of the terminal, base station and/or network. For example, if the network capability does not support the control plane to transmit a large amount of data, then the transmission method of transmitting the synaesthesia data may be determined to be the second method of transmitting the synaesthesia data through the user plane; or if the network capability supports the control plane to transmit a large amount of data, Then it can be determined that the transmission method of transmitting synaesthesia data is the first method of transmitting synaesthesia data through the control plane.
  • the transmission method can be determined based on the quality of service QoS of the control plane and user plane. For example, if the QoS when transmitting a large amount of data through the control plane is lower than the QoS when transmitting a large amount of data through the user plane, the second method may be used to transmit the synaesthesia data. Alternatively, if the QoS when transmitting a large amount of data through the control plane is higher than the QoS when transmitting a large amount of data through the user plane, the synaesthesia data may be transmitted in the first manner.
  • the predetermined information includes information on synaesthesia application requirements.
  • the transmission method of transmitting the synaesthesia data can be determined as the first method or the second method based on the requirement parameters indicated by the information on the synaesthesia application requirements.
  • the required parameter is a delay parameter.
  • the synaesthesia data may be transmitted in the first manner.
  • the synaesthesia data may be transmitted in a second manner.
  • the required parameter is a delay parameter.
  • the synaesthesia data can be transmitted in the first manner.
  • the synaesthesia data may be transmitted in the second manner.
  • the first way or the second way can be used to transmit the synaesthesia data.
  • the requirement parameter is an accuracy parameter.
  • the synaesthetic data may be transmitted in a second manner.
  • the synaesthetic data may be transmitted in the first manner.
  • the required parameter is a delay parameter.
  • the second way may be used to transmit the synaesthesia data.
  • the synaesthesia data may be transmitted in the first manner.
  • the first way or the second way can be used to transmit the synaesthesia data.
  • this embodiment provides a method for processing synesthesia services, wherein the method is executed by the first network element, and the method includes:
  • Step 171 Based on predetermined information, determine candidate modes for executing synaesthesia services from predetermined synaesthesia data processing modes, where the predetermined synaesthesia data processing modes include at least one of the following:
  • the first mode is a terminal-based mode for processing synaesthesia data
  • the second mode is a mode based on base station processing of synaesthesia data
  • the third mode is a mode for processing synaesthesia data based on the network.
  • the predetermined information includes at least one of the following:
  • information about the terminal's capabilities and/or current status is stored in the UDM as part of the terminal's subscription data.
  • information about the terminal's capabilities and/or current status is stored in the AMF as terminal context.
  • the first network element may obtain information about the terminal's capabilities and current status from UDM or AMF.
  • the terminal's service authorization information and/or the user's consent information are stored in the UDM as part of the terminal's subscription data.
  • the capabilities of the base station can be obtained from the AMF.
  • the AMF obtains the capabilities of the base station during the N2 node layer process.
  • the first network element pre-configures the capabilities of the core network element.
  • the predetermined terminal in response to the terminal's service authorization information indicating that the predetermined terminal is authorized to perform the synaesthesia service, it is determined that the predetermined terminal can serve as an execution subject for performing the synaesthesia service; and a candidate mode for processing synaesthesia data from different sources is determined to be the first A mode, wherein the terminal that performs the synesthesia service based on the first mode is the predetermined terminal.
  • the predetermined base station in response to the service authorization information of the base station indicating that the predetermined base station is authorized to perform the synaesthesia service, it is determined that the predetermined base station can serve as an execution subject for performing the synaesthesia service; and the candidate mode for processing synaesthesia data from different sources is determined to be the first Two modes, wherein the base station that performs synesthesia services based on the second mode is the predetermined base station.
  • the user consent information indicates that the predetermined terminal is permitted to serve as a transmitter and/or receiver, determines that the predetermined base station is capable of serving as a transmitter and/or receiver; determines candidate modes for processing synaesthesia data from different sources, wherein , the transmitter and/or receiver corresponding to the candidate mode is the predetermined terminal.
  • the terminal's capabilities and/or the current load information indicate that the predetermined terminal's capabilities can perform synaesthesia services, determine that the predetermined terminal can serve as an execution subject for performing synaesthesia services, and determine candidates for processing synaesthesia data from different sources.
  • the mode is a first mode, wherein the terminal that performs the synesthesia service based on the first mode is the predetermined terminal.
  • the terminal's capabilities and/or the current load information indicate that the load of the predetermined terminal can perform the synaesthesia service, and it is determined that the predetermined terminal can be used as the execution subject to perform the synaesthesia service; the candidate mode for processing synaesthesia data from different sources is determined to be the first mode, wherein the terminal that performs the synesthesia service based on the first mode is the predetermined terminal.
  • the capability of the base station and/or the current load information indicates that the capability of the predetermined base station can perform synaesthesia services, determines that the predetermined base station can serve as an execution subject for performing synaesthesia services, and determines candidates for processing synaesthesia data from different sources.
  • the mode is the second mode, wherein the base station that performs the synesthesia service based on the second mode is the predetermined base station.
  • the capacity of the base station and/or the current load information indicates that the load of the predetermined base station can perform the synaesthesia service, and it is determined that the predetermined base station can be used as the execution subject to perform the synaesthesia service; the candidate mode for processing synaesthesia data from different sources is determined to be the second mode, wherein the base station that performs synesthesia services based on the first mode is the predetermined base station.
  • the capability of the core network element and/or the current load information indicates that the capability of the predetermined core network element can perform the synaesthesia service, and it is determined that the predetermined core network element can be used as the execution subject to perform the synaesthesia service; determine A candidate mode for processing synaesthesia data from different sources is the third mode, in which the core network element that performs synaesthesia services based on the third mode is the predetermined core network element.
  • the capability of the core network element and/or the current load information indicate that the load of the scheduled core network element can perform the synaesthesia service, confirming that the scheduled core network element can be the execution subject for executing the synaesthesia service; determine that the load of the predetermined core network element can be used as the execution subject to perform the synaesthesia service; determine that the load of the predetermined core network element can be executed.
  • the candidate mode of the synaesthesia data is the third mode, in which the core network element that performs the synaesthesia service based on the first mode is the predetermined core network element.
  • the information requested by the synaesthesia service is a multi-element synaesthesia information request.
  • the multiple synaesthesia information request indicates that the predetermined terminal can perform synaesthesia services, and it is determined that the predetermined terminal can be used as an execution subject to perform synaesthesia services; it is determined that the candidate mode for processing synaesthesia data from different sources is the first mode, wherein execution based on the first mode
  • the terminal for the synaesthesia service is the scheduled terminal.
  • the information requested by the synaesthesia service is a multi-element synaesthesia information request.
  • the multiple synaesthesia information request indicates that the predetermined application server can execute the synaesthesia service, and determines that the predetermined application server can serve as the execution subject for executing the synaesthesia service; it is determined that the candidate mode for processing synaesthesia data from different sources is the third mode, wherein based on the third mode
  • the application server that executes the synaesthesia service is the predetermined application server.
  • the information requested by the synaesthesia service is a direct indication of the service request.
  • the direct instruction of the business request indicates that the predetermined subject can perform the synaesthesia service, and it is determined that the predetermined subject can be used as the execution subject to perform the synaesthesia service; it is determined that the candidate mode for processing synaesthesia data from different sources is the mode determined based on the predetermined subject, wherein, based on The execution subject of the synaesthesia business in this mode is the scheduled execution subject.
  • the information requested by the synaesthesia service is a high QoS synaesthesia result request.
  • the predetermined subject can be used as the execution subject to execute the synaesthesia service; it is determined that the candidate mode for processing synaesthesia data from different sources is determined according to the predetermined execution subject mode, wherein the execution subject that executes the synaesthesia service based on the mode is the predetermined execution subject.
  • the information requested by the synaesthesia service is business mode preference information.
  • candidate modes for processing synaesthesia data from different sources are determined.
  • the candidate mode is a predetermined business mode.
  • the information requested by the synaesthesia service is information about a preconfigured service mode allowed by the operator.
  • Candidate modes for processing synaesthesia data from different sources are determined according to the predetermined business mode indicated by the preconfigured operator-allowed business mode information.
  • the candidate mode is a predetermined business mode.
  • candidate modes for processing synaesthetic data from different sources are determined from predetermined synaesthetic data processing modes.
  • each execution subject transmits synaesthesia data based on a determined transmission method.
  • this embodiment provides a method for processing synesthesia services, wherein the method is executed by the first network element, and the method includes:
  • Step 181 Receive the synaesthesia service request information sent by the synaesthesia application server.
  • the synaesthesia service request information sent by the synaesthesia application server is received.
  • a candidate mode for executing the synaesthesia service is determined from the predetermined synaesthesia data processing modes based on the information requested by the synaesthesia service.
  • each execution subject transmits synaesthesia data based on a determined transmission method.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by the first network element, and the method includes:
  • Step 191 In response to determining that the candidate mode is the third mode and that the transmission mode is a mode of transmitting synaesthesia data based on the user plane, determine the second network element, where the third mode is a mode of processing synaesthesia data based on the network.
  • a transmission method for transmitting synaesthesia data is determined; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and the method determined in the second method of transmitting synaesthesia data based on the user plane.
  • the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • the second network element may be a user plane synaesthesia function. It is determined that the second network element can be an SF-C and a SF-U is selected.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by the first network element, and the method includes:
  • Step 201 Generate a synaesthesia policy for the transmitter and/or receiver, where the synaesthesia policy is used to perform synaesthesia services;
  • Step 202 Send the synaesthesia strategy to the transmitter and/or receiver.
  • candidate modes for processing synaesthetic data from different sources are determined from predetermined synaesthetic data processing modes.
  • the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • synaesthesia policy for the transmitter and/or the receiver, where the synaesthesia policy is used to perform synaesthesia services; send the synaesthesia policy to the transmitter and/or the receiver.
  • synaesthesia data from different sources may be synaesthesia data obtained by different receivers.
  • the receivers may be terminals and/or base stations, etc.
  • the synaesthesia policy indicates candidate modes and modes of transmission.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by the first network element, and the method includes:
  • Step 211 In response to determining that the candidate mode is the third mode, that the transmission method is a method of transmitting synaesthesia data based on the user plane, and that the receiver of the synaesthesia service is a terminal, establish a PDU session between the terminal and the second network element; or , in response to determining that the candidate mode is the third mode, that the transmission mode is a mode of transmitting synaesthesia data based on the user plane, and that the receiver of the synaesthesia service is the base station, a PDU session is established between the base station and the second network element.
  • candidate modes for processing synaesthetic data from different sources are determined from predetermined synaesthetic data processing modes.
  • the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • the transmission method is a method of transmitting synaesthesia data based on the user plane, and that the receiver of the synaesthesia service is a terminal, a PDU session is established between the terminal and the second network element. Data transmission in the synaesthesia service process is performed based on the PDU session.
  • candidate modes for processing synaesthetic data from different sources are determined from predetermined synaesthetic data processing modes.
  • the second network element is determined, where the third mode is a mode of processing synaesthesia data based on the network.
  • a PDU session is established between the base station and the second network element. Data transmission in the synaesthesia service process is performed based on the PDU session.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by the first network element, and the method includes:
  • Step 221 Receive the result information of the synaesthesia service
  • Step 222 Send the result information of the synaesthesia service to the synaesthesia application server.
  • candidate modes for processing synaesthetic data from different sources are determined from predetermined synaesthetic data processing modes.
  • each execution subject transmits synaesthesia data based on a determined transmission method.
  • this embodiment provides a method for processing synesthesia services, where the method is executed by a third network element, and the method includes:
  • Step 231 Send synesthesia service request information to the first network element
  • the information requested by the synaesthesia service is used for the first network element to determine the transmission mode for transmitting the synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of the synaesthesia service; the transmission mode is from a control-based
  • the method is determined among the first method of transmitting synaesthetic data on the user plane and the second method of transmitting synaesthetic data on the user plane.
  • the third network element is a synaesthesia application server.
  • the synaesthesia application server sends synaesthesia service request information to the first network element.
  • the first network element determines candidate modes for processing synaesthesia data from different sources from predetermined synaesthesia data processing modes.
  • the first network element determines a transmission method for transmitting synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is a first method of transmitting synaesthesia data based on the control plane and a method based on The method determined in the second method of transmitting synaesthesia data on the user plane.
  • each execution subject transmits synaesthesia data based on a determined transmission method.
  • the first network element receives the result information of the synaesthesia service.
  • the first network element sends synaesthesia service result information to the synaesthesia application server.
  • the synaesthesia application server receives the result information of the synaesthesia service.
  • this embodiment provides a synaesthesia service processing device, wherein the device includes:
  • the determining module 241, the determining module, is configured to determine a transmission method for transmitting the synaesthesia data
  • the synaesthesia data is data from at least one source transmitted during the execution of synaesthesia services; the transmission method is determined from the first method of transmitting synaesthesia data based on the control plane and the second method of transmitting synaesthesia data based on the user plane. The way.
  • an embodiment of the present disclosure provides a synaesthesia service processing device, wherein the device includes:
  • the sending module 251 is configured to send synesthesia service request information to the first network element
  • the information requested by the synaesthesia service is used for the first network element to determine the transmission mode for transmitting the synaesthesia data; wherein the synaesthesia data is data from at least one source transmitted during the execution of the synaesthesia service; the transmission mode is from a control-based
  • the method is determined among the first method of transmitting synaesthetic data on the user plane and the second method of transmitting synaesthetic data on the user plane.
  • Step 261 The synaesthesia application server sends synaesthesia service request information to the SF-C.
  • the synaesthesia service request may be sent by the synaesthesia application server to the SF-C through NEF. It should be noted that the synesthesia application server will also receive response information.
  • Step 262 SF-C determines the synaesthetic fusion mode (corresponding to the candidate mode) and selects a transmitter and a receiver for the synaesthetic fusion service.
  • Step 263 SF-C determines the synaesthesia fusion mode and whether to transmit the synaesthesia information through the control plane or the use plane according to the capabilities of the UE, gNB or network and synaesthesia application requirements (such as QoS, including delay and accuracy).
  • Step 264 When the network-based synaesthesia fusion mode is determined and the synaesthesia information is transmitted through the user plane, SF-C selects SF-U.
  • Step 265 The SF-C generates a synaesthesia policy for the transmitter and receiver, and provides the synaesthesia policy to the UE and/or gNB selected in step 252.
  • Step 266 After the network-based synaesthesia fusion mode is determined, the sensing information is transmitted through the user plane in step 253, and gNB is selected as the receiver in step 252 to establish a PDU session between gNB and SF-U.
  • Step 267 When the network-based synaesthesia fusion mode is determined, in step 253, the sensing information is transmitted through the user plane, and in step 252, the UE is selected as the receiver, and a PDU session is established between the UE and the SF-U.
  • Step 268 Perform synaesthetic fusion, and notify SF-C of the synaesthetic fusion result.
  • Step 269 SF-C sends the synaesthetic fusion result to the synaesthetic application server. Synaesthetic fusion results can be sent to the synaesthetic application server via NEF.
  • An embodiment of the present disclosure provides a communication device.
  • the communication device includes:
  • Memory used to store instructions executable by the processor
  • the processor is configured to: when executing executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize information stored on the communication device after the communication device is powered off.
  • the processor can be connected to the memory through a bus, etc., and is used to read the executable program stored in the memory.
  • An embodiment of the present disclosure also provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • one embodiment of the present disclosure provides a structure of a terminal.
  • the terminal 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communications component 816.
  • Processing component 802 generally controls the overall operations of terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to various components of terminal 800.
  • Power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800.
  • Multimedia component 808 includes a screen that provides an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when terminal 800 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the terminal 800 orientation or acceleration/deceleration and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows the structure of a base station.
  • the base station 900 may be provided as a network side device.
  • base station 900 includes a processing component 922, which further includes one or more processors, and memory resources represented by memory 932 for storing instructions, such as application programs, executable by processing component 922.
  • Applications stored in memory 932 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods applied to the base station.
  • Base station 900 may also include a power supply component 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input/output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种通感业务的处理方法,其中,所述方法由第一网元执行,所述方法包括:确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。

Description

通感业务的处理方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种通感业务的处理方法、装置、通信设备及存储介质。
背景技术
无线通感技术旨在无需物理接触的情况下获取有关远程对象及其特征的信息。如此,可以利用对象及其周围的通感数据进行分析,获得针对有关对象及其特征的有意义的信息。示例性地,通感数据处理可以是组合来自至少一个来源的通感数据以获得通感结果的过程,使得通感结果的不确定性低于单独使用这些源时可能出现的不确定性。
相关技术中,无线通感技术可以与无线网络进行协同,如何实现二者的协同是需要考虑的问题。
发明内容
本公开实施例公开了一种通感业务的处理方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种通感业务的处理方法,其中,所述方法由第一网元执行,所述方法包括:
确定传输通感数据的传输方式;
其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
在一个实施例中,所述确定传输通感数据的传输方式,包括:
根据预定信息,确定传输所述通感数据的所述传输方式。
在一个实施例中,所述方法还包括:
基于所述预定信息,从预定通感数据处理模式中确定出执行通感业务的候选模式,其中,所述预定模式包括以下至少之一:
第一模式,为基于终端处理所述通感数据的模式;
第二模式,为基于基站处理所述通感数据的模式;
以及,第三模式,为基于网络处理所述通感数据的模式。
在一个实施例中,所述预定信息,包括以下至少之一:
终端或者基站的业务授权的信息;
用户同意的信息;
终端、基站或者核心网的能力和/或当前状况的信息;
通感业务请求的信息;
预配置的运营商允许的通感数据处理模式的信息。
在一个实施例中,所述方法还包括:
接收通感应用服务器发送的所述通感业务请求的信息。
在一个实施例中,所述方法还包括:
响应于确定所述候选模式为第三模式且确定传输方式为基于用户面传输所述通感数据的方式,确定第二网元,其中,所述第三模式,为基于网络处理所述通感数据的模式。
在一个实施例中,所述方法还包括:
确定预定通感模式、发射器和/或接收器。
在一个实施例中,所述方法还包括:
生成所述发射器和/或所述接收器的通感策略,其中,所述通感策略用于执行通感业务;
向所述发射器和/或所述接收器发送所述通感策略。
在一个实施例中,所述方法还包括:
响应于确定所述候选模式为第三模式、确定传输方式为基于用户面传输所述通感数据的方式且通感业务的接收器为终端,在终端和第二网元之间建立PDU会话;
或者,
响应于确定所述候选模式为第三模式、确定传输方式为基于用户面传输所述通感数据的方式且通感业务的接收器为基站,在基站和第二网元之间建立PDU会话。
在一个实施例中,所述方法还包括:
接收通感业务的结果信息。
在一个实施例中,所述方法还包括:
向通感应用服务器发送所述通感业务的结果信息。
根据本公开实施例的第二方面,提供一种通感业务的处理方法,其中,所述方法由第三网元执行,所述方法包括:
向第一网元发送通感业务请求的信息;
其中,所述通感业务请求的信息用于供所述第一网元确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
在一个实施例中,所述方法还包括:
接收通感业务的结果信息。
根据本公开实施例的第三方面,提供一种通感业务的处理装置,其中,所述装置包括:
确定模块,被配置为确定传输通感数据的传输方式;
其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
根据本公开实施例的第四方面,提供一种通感业务的处理装置,其中,所述装置包括:
发送模块,被配置为向第一网元发送通感业务请求的信息;
其中,所述通感业务请求的信息用于供所述第一网元确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。如此,可以明确传输通感数据的传输方式为第一方式还是第二方式,执行通感业务的各个执行主体就可以基于所述传输方式为第一方式还是第二方式执行通感业务,相较于不能确定具体传输方式的情况,使得通感业务的执行过程更加高效且可靠。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种通感业务的处理的示意图。
图3是根据一示例性实施例示出的一种通感业务的处理的示意图。
图4是根据一示例性实施例示出的一种通感业务的处理的示意图。
图5是根据一示例性实施例示出的一种通感业务的处理的示意图。
图6是根据一示例性实施例示出的一种通感业务的处理的示意图。
图7是根据一示例性实施例示出的一种通感业务的处理的示意图。
图8是根据一示例性实施例示出的一种通感业务的处理的示意图。
图9是根据一示例性实施例示出的一种通感业务的处理的示意图。
图10是根据一示例性实施例示出的一种通感业务的处理的示意图。
图11是根据一示例性实施例示出的一种通感业务的处理的示意图。
图12是根据一示例性实施例示出的一种通感业务的处理的示意图。
图13是根据一示例性实施例示出的一种通感业务的处理的架构的示意图。
图14是根据一示例性实施例示出的一种通感业务的处理的架构的示意图。
图15是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图16是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图17是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图18是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图19是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图20是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图21是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图22是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图23是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图24是根据一示例性实施例示出的一种通感业务的处理装置的结构示意图。
图25是根据一示例性实施例示出的一种通感业务的处理装置的结构示意图。
图26是根据一示例性实施例示出的一种通感业务的处理方法的流程示意图。
图27是根据一示例性实施例示出的一种终端的结构示意图。
图28是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、 用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对相关技术中的应用场景进行说明:
在一个实施例中,雷达(无线电探测和测距)是一种广泛使用的无线通感技术,它利用无线电波来确定物体的距离(范围)、角度或瞬时线速度。还有其他通感技术,包括非射频通感器,这些技术已用于其他领域,例如飞行时间相机、加速度计、陀螺仪和激光雷达。
第五代移动通信技术(5G)中的集成通感和通信意味着通感能力由用于通信的该新空口无线通信系统和基础设施提供,并且通感信息可以来自基于射频和/或非射频的通感器。一般来说,可能涉及通信辅助通感的场景,例如5G通信系统提供通感服务或通感辅助通信;例如通感与通信信道或环境相关的信息用于改善5G系统本身的通信服务,例如通感信息可用于辅助无线电资源管理、干扰缓解、波束管理和移动性等。
在多个细分市场和垂直领域,基于5G的通感服务可以使智能交通、航空、企业、智慧城市、智能家居、工厂、消费应用和公共部门等受益
移动运营商可以在向客户提供基于5G系统的集成通感和通信方面发挥重要作用,包括基于5G的通感业务的管控相关技术举例说明了运营商在增强V2X类型服务方面可以发挥的作用,特别是对于基础设施辅助环境通感、基于基础设施的遥控驾驶、高清地图采集与分享和遥控驾驶支持。
在一些实施例中,5G系统提供通信辅助通感服务的示例可以包括:
环境实时监控:利用无线信号重构环境地图,进一步提高定位精度,赋能环境相关应用,例如实现一系列实时监控相关应用,包括用于辅助驾驶的动态3D地图、行人流量统计、入侵检测、流量检测等。
自动驾驶汽车或者无人机:自动驾驶汽车或者无人机应用有一些共同的功能要求。例如,自动驾驶汽车或者无人机应支持检测和避免以避开障碍物。同时,自动驾驶汽车或者无人机应具备监控路径信息的能力,如选择路线,遵守交通规则。
空气污染监测:接收到的无线信号质量随着空气湿度、空气颗粒物浓度、载波频率等的变化表现出不同的衰减特性,可用于天气或空气质量检测。
室内保健和入侵检测:可实现呼吸频率估计、呼吸深度估计、呼吸暂停检测、老年人生命体征监测和室内入侵检测。
在一些实施例中,无线通信信道和环境的通感可以进一步提高通信系统的性能。通感辅助通信场景的一些示例包括:
通感终端的位置和信道环境,缩小波束扫描范围,缩短波束训练时间;
通感终端的位置、速度、运动轨迹和信道环境进行波束预测,减少波束测量的开销和波束跟踪的延迟;
通感终端的属性和信道环境,以提高信道估计的性能。
在一个实施例中,请参见图2,通感系统中有不同的角色:
反射物理:信息被通感的目标物体。
发射器:将无线电信号发射到目标物体的设备。它可以是终端或者基站。
接收器:根据来自目标物体的无线电信号的反射信号来检测通感信息的设备。它可以是终端或基站。
发起者:向一个或多个接收器请求或订阅通感信息的授权设备。它可以是终端、基站或网络功能。 它通常是收集通感信息并对其进行处理以产生通感结果的设备。
消费者:消费从通感信息计算的输出,例如,可以是终端应用程序,也可以是通感应用程序服务器。
需要说明的是,发射器、接收器、发起者和消费者可以成对或全部并置在一起。请参见图3至图8,终端或基站在集成通感和通信业务中是否可以作为发射器或接收器,有6种组合。
需要说明的是,本公开涉及的通感模式可以包括:终端发射终端接收、基站发射基站接收或者终端和基站混合收发的模式。
通感融合是组合来自不同来源的通感数据以得出通感结果的过程,使得通感结果的不确定性低于单独使用这些源时可能出现的不确定性。通感融合也可以理解为传感融合和感知融合等,在此不做限定。
请参见图9,是整体融合架构,其中融合功能从多个接收器收集通感信息。
融合功能可以在终端、基站、网络功能或应用服务器中。根据哪个实体执行融合功能,可以有4种融合模式:
基于终端的融合:终端执行融合功能,具体请参见图10;
基于基站的融合:基站执行融合功能,具体请参见图11;
基于网络功能的融合:网络功能执行融合功能,具体请参见图12;
基于应用的融合:应用服务器执行融合功能,具体请再次参见图12。
在一个实施例中,支持网络核心网中的集成通感和通信需要考虑以下方面:
1、使用许可频率的运营商控制通感;
2、执行通感的网络协助和协调;
3、通感模式的确定;
4、发现和选择发射器和接收器;
5、服务暴露或者服务触发;
6、通感信息在网络侧聚合和处理时的数据收集(例如需要融合时);
其中,1至5通过控制面功能实现;6可以在控制面或用户面实现。
在一个实施例中,控制面通感功能SF-C和用户面通感功能SF-U被引入核心网以支持集成通感和通信。SF-C是控制面网络功能,负责处理控制面信令,SF-U是用户面实体,在SF-C的控制下负责数据收集、聚合和处理。请参见图13,SF-U可以是数据网DN中的应用服务器,请参见图14,SF-U也可以是核心网网元。
在一个实施例中,NS0是SF-C和SF-U之间的接口,用于控制数据收集、聚合和处理。SF-C和SF-U可以并置,在这种情况下NS0是一个内部接口。NS1是UPF和SF-U之间的接口,用于在UPF和SF-U之间传输传感信息。N6s用于SF-U与DN中的通感应用程序之间的交互。
在一个实施例中,SF-U仅适用于使用基于网络的传感时。SF-U不适用时,NS0也不适用。
在一个实施例中,当确定基于网络的通感,并且确定数据收集是在用户平面上时,SF-C需要执行:
1、SF-U选择;
2、在gNB和SF-U之间建立PDU会话。
在一个实施例中,SF-C负责根据终端、基站或者网络能力和通感应用需求(例如,服务质量QoS, 包括延迟和准确性)确定通感信息处理模式(即基于终端的通感、基于基站的通感或基于网络的通感)。
在一个实施例中,SF-C负责根据终端、基站或网络能力和通感应用要求(例如QoS,包括延迟和准确性),确定是使用控制面还是用户面向网络传输通感信息。
如图15所示,本实施例中提供一种通感业务的处理方法,其中,该方法由第一网元执行,该方法包括:
步骤151、确定传输通感数据的传输方式;
其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些实施例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
本公开中涉及的网元可以是接入和移动性管理功能实体(AMF,Access Control And Mobility Management Function)、控制面通感功能(SF-C,Control Plane Sensing Function)、统一数据管理(UDM,Unified Data Management)和通感应用(Sensing App)等。需要说明的是,网元并不限于上述例举,也可以是任一具备通感通感功能(SF,Sensing Function)的网元。在本公开的一些实施方式中,具备SF的网元可以单独作为一个通信节点部署,也可以统一部署在已有网元内。总之,可以将具备SF的网元理解为一个网络中可以灵活部署的逻辑节点,在此不做限定。
在一个实施例中,第一网元可以是控制面通感功能SF-C。
在一个实施例中,预定通感数据处理模式可以包括以下至少之一:
第一模式,为基于终端处理通感数据的模式;
第二模式,为基于基站处理通感数据的模式;
第三模式,为基于核心网网元处理通感数据的模式;
或者,为基于应用服务器处理通感数据的模式。这里,上述模式还可以根据接收器和/或发射器的不同进行进一步细分,在此不做限定。
需要说明的是,第三模式也可以统称为基于网络处理通感数据的模式。融合通感数据也可以被称为通感数据融合,为通感数据处理的一种,但需要说明的是,通感数据处理并不限于通感数据融合,还可以是其他任意场景下针对通感数据的处理。
需要说明的是,通感数据处理可以是:组合来自至少一个来源的通感数据以获得通感结果的过程,使得通感结果的不确定性低于单独使用这些源时可能出现的不确定性,和/或,对通感数据进行分析和/或计算以得出感知结果。
在一个实施例中,确定传输通感数据的传输方式为基于控制面传输通感数据的第一方式。基于第一方式传输通感数据。
在一个实施例中,确定传输通感数据的传输方式为从基于用户面传输通感数据的第二方式。基于第二方式传输通感数据。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的传输方式传输通感数据。这里,至少一个来源可以是一个或者多个来源,“来源”可以理解为通感数据的提供端,提供端可以是终端或基站等,也可以是接收器等。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式为基于控制面传输通感数据的第一方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的第一方式传输通感数据。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式为基于用户面传输通感数据的第二方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的第二方式传输通感数据。
在一个实施例中,基于预定信息,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的传输方式传输通感数据。
在一个实施例中,预定信息,包括以下至少之一:
终端或者基站的业务授权的信息;
用户同意的信息;
终端、基站或者核心网的能力和/或当前状况的信息;这里,当前状况的信息包括终端、基站或者核心网的当前的负载信息;
通感业务请求的信息;
预配置的运营商允许的通感数据处理模式的信息。
需要说明的是,可以是接收通感应用服务器发送的通感业务请求的信息。
在一个实施例中,确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。其中,第二网元可以是用户面通感功能。确定第二网元可以是SF-C选择一个SF-U。
在一个实施例中,确定预定通感模式、发射器和/或接收器。示例性地,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传 输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。确定预定通感模式、发射器和/或接收器。生成发射器和/或接收器的通感策略,其中,通感策略用于执行通感业务;向发射器和/或接收器发送通感策略。需要说明的是,不同来源的通感数据可以是不同接收器获取到的通感数据,这里,接收器可以是终端和/或基站等。
在一个实施例中,通感策略指示候选模式和传输方式。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为终端,在终端和第二网元之间建立PDU会话。基于该PDU会话执行通感业务过程中的数据传输。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为基站,在基站和第二网元之间建立PDU会话。基于该PDU会话执行通感业务过程中的数据传输。
在一个实施例中,从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的传输方式传输通感数据。接收通感业务的结果信息。向通感应用服务器发送结果信息。
在本公开实施例中,确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。如此,可以明确传输通感数据的传输方式为第一方式还是第二方式,执行通感业务的各个执行主体就可以基于传输方式为第一方式还是第二方式执行通感业务,相较于不能确定具体传输方式的情况,使得通感业务的执行过程更加高效且可靠。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图16所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤161、根据预定信息,确定传输通感数据的传输方式。
在一个实施例中,预定信息包括终端、基站和/或网络的能力信息。可以根据终端、基站和/或网络 的能力信息指示的能力,确定传输通感数据的传输方式为第一方式还是第二方式。示例性地,网络的能力不支持控制面传输大量数据,则可以确定传输通感数据的传输方式为通过用户面传输通感数据的第二方式;或者,网络的能力支持控制面传输大量数据,则可以确定传输通感数据的传输方式为通过控制面传输通感数据的第一方式。
需要说明的是,如果网络的能力支持控制面和用户面都支持传输大量数据,可以是根据控制面和用户面的服务质量QoS确定传输方式。示例性地,如果通过控制面传输大量数据时的QoS低于通过用户面传输大量时的QoS,则可以采用第二方式传输通感数据。或者,如果通过控制面传输大量数据时的QoS高于通过用户面传输大量时的QoS,则可以采用第一方式传输通感数据。
在一个实施例中,预定信息包括通感应用需求的信息。可以通感应用需求的信息指示的要求参数,确定传输通感数据的传输方式为第一方式还是第二方式。
在一个实施例中,要求参数为时延参数。响应于通过控制面传输通感数据的时延小于通过用户面传输通感数据的时延,则可以采用第一方式传输通感数据。或者,响应于通过控制面传输通感数据的时延大于通过用户面传输通感数据的时延,则可以采用第二方式传输通感数据。
在一个实施例中,要求参数为时延参数。响应于要求的时延小于通过用户面传输通感数据的时延且大于通过控制面传输通感数据的时延,则可以采用第一方式传输通感数据。或者,响应于要求的时延大于通过用户面传输通感数据的时延且小于通过控制面传输通感数据的时延,则可以采用第二方式传输通感数据。或者,响应于要求的时延大于通过用户面传输通感数据的时延且大于通过控制面传输通感数据的时延,则可以采用第一方式或者第二方式传输通感数据。
在一个实施例中,要求参数为准确度参数。响应于通过控制面传输通感数据的准确度小于通过用户面传输通感数据的准确度,则可以采用第二方式传输通感数据。或者,响应于通过控制面传输通感数据的准确度大于通过用户面传输通感数据的准确度,则可以采用第一方式传输通感数据。
在一个实施例中,要求参数为时延参数。响应于要求的准确度小于通过用户面传输通感数据的准确度且大于通过控制面传输通感数据的准确度,则可以采用第二方式传输通感数据。或者,响应于要求的准确度大于通过用户面传输通感数据的准确度且小于通过控制面传输通感数据的准确度,则可以采用第一方式传输通感数据。或者,响应于要求的准确度大于通过用户面传输通感数据的准确度且大于通过控制面传输通感数据的准确度,则可以采用第一方式或者第二方式传输通感数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图17所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤171、基于预定信息,从预定通感数据处理模式中确定出执行通感业务的候选模式,其中,预定通感数据处理模式包括以下至少之一:
第一模式,为基于终端处理通感数据的模式;
第二模式,为基于基站处理通感数据的模式;
以及,第三模式,为基于网络处理通感数据的模式。
在一个实施例中,预定信息包括以下至少之一:
终端或者基站的业务授权的信息;
用户同意的信息;
终端、基站或者核心网的能力和/或当前状况的信息;
通感业务请求的信息;
预配置的运营商允许的通感数据处理模式的信息。
在一个实施例中,终端的能力和/或当前状况的信息作为终端订阅数据的一部分存储在UDM中。
在一个实施例中,终端的能力和/或当前状况的信息作为终端上下文存储在AMF中。
在一个实施例中,第一网元可以从UDM或者AMF中获取终端的能力和当前状况的信息。
在一个实施例中,终端的业务授权的信息和/或用户同意的信息作为终端的订阅数据的一部分存储在UDM中。
在一个实施例中,基站的能力可以从AMF中获取。在一个实施例中,AMF在N2节点层过程中获得基站的能力。
在一个实施例中,第一网元预配置核心网网元的能力。
在一个实施例中,响应于终端的业务授权的信息指示预定终端被授权执行通感业务,确定预定终端能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第一模式,其中,基于第一模式执行通感业务的终端为该预定终端。
在一个实施例中,响应于基站的业务授权的信息指示预定基站被授权执行通感业务,确定预定基站能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第二模式,其中,基于第二模式执行通感业务的基站为该预定基站。
在一个实施例中,用户同意的信息指示预定终端被准许作为发射器和/或接收器,确定预定基站能够作为发射器和/或接收器;确定处理不同来源的通感数据的候选模式,其中,候选模式对应的发射器和/或接收器为预定终端。
在一个实施例中,终端的能力和/或当前负载的信息指示预定终端的能力能够执行通感业务,确定预定终端能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第一模式,其中,基于第一模式执行通感业务的终端为该预定终端。或者,终端的能力和/或当前负载的信息指示预定终端的负载能够执行通感业务,确定预定终端能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第一模式,其中,基于第一模式执行通感业务的终端为该预定终端。
在一个实施例中,基站的能力和/或当前负载的信息指示预定基站的能力能够执行通感业务,确定预定基站能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第二模式,其中,基于第二模式执行通感业务的基站为该预定基站。或者,基站的能力和/或当前负载的信息指示预定基站的负载能够执行通感业务,确定预定基站能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第二模式,其中,基于第一模式执行通感业务的基站为该预定基站。
在一个实施例中,核心网网元的能力和/或当前负载的信息指示预定核心网网元的能力能够执行通感业务,确定预定核心网网元能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选 模式为第三模式,其中,基于第三模式执行通感业务的核心网网元为该预定核心网网元。或者,核心网网元的能力和/或当前负载的信息指示预定核心网网元的负载能够执行通感业务,确定预定核心网网元能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第三模式,其中,基于第一模式执行通感业务的核心网网元为该预定核心网网元。
在一个实施例中,通感业务请求的信息为多元通感信息请求。多元通感信息请求指示预定终端能够执行通感业务,确定预定终端能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第一模式,其中,基于第一模式执行通感业务的终端为该预定终端。
在一个实施例中,通感业务请求的信息为多元通感信息请求。多元通感信息请求指示预定应用服务器能够执行通感业务,确定预定应用服务器能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为第三模式,其中,基于第三模式执行通感业务的应用服务器为该预定应用服务器。
在一个实施例中,通感业务请求的信息为业务请求直接指示。业务请求直接指示指示了预定主体能够执行通感业务,确定预定主体能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为基于该预定主体确定的模式,其中,基于该模式执行通感业务的执行主体为该预定执行主体。
在一个实施例中,通感业务请求的信息为高QoS通感结果请求。根据该高QoS通感结果请求指示的请求QoS通感结果的要求,确定预定主体能够作为执行通感业务的执行主体;确定处理不同来源的通感数据的候选模式为根据该预定执行主体确定的模式,其中,基于该模式执行通感业务的执行主体为该预定执行主体。
在一个实施例中,通感业务请求的信息为业务模式偏好信息。根据该业务模式偏好信息指示的预定业务模式,确定处理不同来源的通感数据的候选模式。示例性地,候选模式即为预定业务模式。
在一个实施例中,通感业务请求的信息为预配置的运营商允许的业务模式的信息。根据该预配置的运营商允许的业务模式的信息指示的预定业务模式,确定处理不同来源的通感数据的候选模式。示例性地,候选模式即为预定业务模式。
在一个实施例中,从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的传输方式传输通感数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图18所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤181、接收通感应用服务器发送的通感业务请求的信息。
在一个实施例中,接收通感应用服务器发送的通感业务请求的信息。基于通感业务请求的信息从预定通感数据处理模式中确定出执行通感业务的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的不同来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执 行主体基于确定的传输方式传输通感数据。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图19所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤191、响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。
在一个实施例中,确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。其中,第二网元可以是用户面通感功能。确定第二网元可以是SF-C选择一个SF-U。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图20所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤201、生成发射器和/或接收器的通感策略,其中,通感策略用于执行通感业务;
步骤202、向发射器和/或接收器发送通感策略。
在一个实施例中,从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。确定预定通感模式、发射器和/或接收器。生成发射器和/或接收器的通感策略,其中,通感策略用于执行通感业务;向发射器和/或接收器发送通感策略。需要说明的是,不同来源的通感数据可以是不同接收器获取到的通感数据,这里,接收器可以是终端和/或基站等。
在一个实施例中,通感策略指示候选模式和传输方式。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图21所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤211、响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为终端,在终端和第二网元之间建立PDU会话;或者,响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为基站,在基站和第二网元之间建立PDU会话。
在一个实施例中,从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的不同来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为终端,在终端和第二网元之间建立PDU会话。基于该PDU会话执行通感业务过程中的数据传输。
在一个实施例中,从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。响应于确定候选模式为第三模式且确定传输方式为基于用户面传输通感数据的方式,确定第二网元,其中,第三模式,为基于网络处理通感数据的模式。响应于确定候选模式为第三模式、确定传输方式为基于用户面传输通感数据的方式且通感业务的接收器为基站,在基站和第二网元之间建立PDU会话。基于该PDU会话执行通感业务过程中的数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图22所示,本实施例中提供一种通感业务的处理方法,其中,方法由第一网元执行,方法包括:
步骤221、接收通感业务的结果信息;
步骤222、向通感应用服务器发送通感业务的结果信息。
在一个实施例中,从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的不同来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务的过程中,各个执行主体基于确定的传输方式传输通感数据。接收通感业务的结果信息。向通感应用服务器发送通感业务的结果信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图23所示,本实施例中提供一种通感业务的处理方法,其中,方法由第三网元执行,方法包括:
步骤231、向第一网元发送通感业务请求的信息;
其中,通感业务请求的信息用于供第一网元确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。
在一个实施例中,第三网元为通感应用服务器。通感应用服务器向第一网元发送通感业务请求的信息。第一网元从预定通感数据处理模式中确定出处理不同来源的通感数据的候选模式。第一网元确定传 输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。在基于候选模式执行通感业务过程中,各个执行主体基于确定的传输方式传输通感数据。第一网元接收通感业务的结果信息。第一网元向通感应用服务器发送通感业务的结果信息。通感应用服务器接收该通感业务的结果信息。
如图24所示,本实施例中提供一种通感业务的处理装置,其中,装置包括:
确定模块241,确定模块,被配置为确定传输通感数据的传输方式;
其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图25所示,本公开实施例中提供一种通感业务的处理装置,其中,装置包括:
发送模块251,被配置为向第一网元发送通感业务请求的信息;
其中,通感业务请求的信息用于供第一网元确定传输通感数据的传输方式;其中,通感数据为执行通感业务过程中传输的至少一个来源的数据;传输方式为从基于控制面传输通感数据的第一方式和基于用户面传输通感数据的第二方式中确定出的方式。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了更好地理解本公开实施例,以下通过一个示例性实施例对本公开技术方案进行进一步说明:
示例1
请参见图26,提供一种通感业务的处理方法,包括:
步骤261、通感应用服务器向SF-C发送通感业务请求信息。通感业务请求可以是通感应用服务器通过NEF发送给SF-C的。需要说明的是,通感应用服务器还会收到响应信息。
步骤262、SF-C确定通感融合模式(对应候选模式)并为通感融合业务选择发射器和接收器。
步骤263、SF-C根据UE、gNB或者网络的能力和通感应用需求(例如QoS,包括延迟和准确度)确定通感融合模式以及是通过控制平面还是使用平面传输通感信息。
步骤264、当基于网络的通感融合模式被确定并且通感信息通过用户面传输时,SF-C选择SF-U。
步骤265、SF-C为发送器和接收器生成通感策略,并将通感策略提供给在步骤252中选择的UE和/或gNB。
步骤266、当基于网络的通感融合模式确定后,在步骤253中通过用户面传输感知信息,并在步骤252中选择gNB作为接收器,在gNB和SF-U之间建立PDU会话。
步骤267、当确定了基于网络的通感融合模式时,在步骤253中通过用户面传输感知信息,并且在步骤252中选择UE作为接收器,在UE和SF-U之间建立PDU会话。
步骤268、执行通感融合,并将通感融合结果通知给SF-C。
步骤269、SF-C将通感融合结果发送给通感应用服务器。通感融合结果可以通过NEF发送到通感应用服务器。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图27所示,本公开一个实施例提供一种终端的结构。
参照图27所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图27,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图28所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图28,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序 可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种通感业务的处理方法,其中,所述方法由第一网元执行,所述方法包括:
    确定传输通感数据的传输方式;
    其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
  2. 根据权利要求1所述的方法,其中,所述确定传输通感数据的传输方式,包括:
    根据预定信息,确定传输所述通感数据的所述传输方式。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    基于所述预定信息,从预定通感数据处理模式中确定出执行通感业务的候选模式,其中,所述预定通感数据处理模式包括以下至少之一:
    第一模式,为基于终端处理所述通感数据的模式;
    第二模式,为基于基站处理所述通感数据的模式;
    以及,第三模式,为基于网络处理所述通感数据的模式。
  4. 根据权利要求2和3任一所述的方法,其中,所述预定信息,包括以下至少之一:
    终端或者基站的业务授权的信息;
    用户同意的信息;
    终端、基站或者核心网的能力和/或当前状况的信息;
    通感业务请求的信息;
    预配置的运营商允许的通感数据处理模式的信息。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    接收通感应用服务器发送的所述通感业务请求的信息。
  6. 根据权利要求3所述的方法,其中,所述方法还包括:
    响应于确定所述候选模式为第三模式且确定传输方式为基于用户面传输所述通感数据的方式,确定第二网元,其中,所述第三模式,为基于网络处理的模式。
  7. 根据权利要求3所述的方法,其中,所述方法还包括:
    确定预定通感模式、发射器和/或接收器。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    生成所述发射器和/或所述接收器的通感策略,其中,所述通感策略用于执行通感业务;
    向所述发射器和/或所述接收器发送所述通感策略。
  9. 根据权利要求3所述的方法,其中,所述方法还包括:
    响应于确定所述候选模式为第三模式、确定传输方式为基于用户面传输所述通感数据的方式且通感业务的接收器为终端,在终端和第二网元之间建立PDU会话;
    或者,
    响应于确定所述候选模式为第三模式、确定传输方式为基于用户面传输所述通感数据的方式且通感业务的接收器为基站,在基站和第二网元之间建立PDU会话。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收通感业务的结果信息。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    向通感应用服务器发送所述通感业务的结果信息。
  12. 一种通感业务的处理方法,其中,所述方法由第三网元执行,所述方法包括:
    向第一网元发送通感业务请求的信息;
    其中,所述通感业务请求的信息用于供所述第一网元确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    接收通感业务的结果信息。
  14. 一种通感业务的处理装置,其中,所述装置包括:
    确定模块,被配置为确定传输通感数据的传输方式;
    其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
  15. 一种通感业务的处理装置,其中,所述装置包括:
    发送模块,被配置为向第一网元发送通感业务请求的信息;
    其中,所述通感业务请求的信息用于供所述第一网元确定传输通感数据的传输方式;其中,所述通感数据为执行通感业务过程中传输的至少一个来源的数据;所述传输方式为从基于控制面传输所述通感数据的第一方式和基于用户面传输所述通感数据的第二方式中确定出的方式。
  16. 一种通信设备,其中,包括:
    存储器;
    处理器,与所述存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,并能够实现权利要求1至11或者12至13任一项所述的方法。
  17. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至11或者12至13任一项所述的方法。
PCT/CN2022/082359 2022-03-22 2022-03-22 通感业务的处理方法、装置、通信设备及存储介质 WO2023178532A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/082359 WO2023178532A1 (zh) 2022-03-22 2022-03-22 通感业务的处理方法、装置、通信设备及存储介质
CN202280000861.2A CN117296423A (zh) 2022-03-22 2022-03-22 通感业务的处理方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082359 WO2023178532A1 (zh) 2022-03-22 2022-03-22 通感业务的处理方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023178532A1 true WO2023178532A1 (zh) 2023-09-28

Family

ID=88099636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082359 WO2023178532A1 (zh) 2022-03-22 2022-03-22 通感业务的处理方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN117296423A (zh)
WO (1) WO2023178532A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104680805A (zh) * 2013-11-26 2015-06-03 西安大昱光电科技有限公司 一种联网式车路协同系统
CN106100800A (zh) * 2016-08-22 2016-11-09 广东工业大学 一种基于lte的物联网数据传输方式的切换方法
WO2021194590A1 (en) * 2020-03-25 2021-09-30 Intel Corporation Dynamic contextual road occupancy map perception for vulnerable road user safety in intelligent transportation systems
CN113923614A (zh) * 2021-11-15 2022-01-11 中国联合网络通信集团有限公司 数据传输方法、接入网设备、控制面网元和用户面网元
CN113923788A (zh) * 2021-11-15 2022-01-11 中国联合网络通信集团有限公司 数据传输方法、用户面网元和控制面网元
CN114070895A (zh) * 2021-11-15 2022-02-18 中国联合网络通信集团有限公司 数据传输方法、控制面网元和用户面网元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104680805A (zh) * 2013-11-26 2015-06-03 西安大昱光电科技有限公司 一种联网式车路协同系统
CN106100800A (zh) * 2016-08-22 2016-11-09 广东工业大学 一种基于lte的物联网数据传输方式的切换方法
WO2021194590A1 (en) * 2020-03-25 2021-09-30 Intel Corporation Dynamic contextual road occupancy map perception for vulnerable road user safety in intelligent transportation systems
CN113923614A (zh) * 2021-11-15 2022-01-11 中国联合网络通信集团有限公司 数据传输方法、接入网设备、控制面网元和用户面网元
CN113923788A (zh) * 2021-11-15 2022-01-11 中国联合网络通信集团有限公司 数据传输方法、用户面网元和控制面网元
CN114070895A (zh) * 2021-11-15 2022-02-18 中国联合网络通信集团有限公司 数据传输方法、控制面网元和用户面网元

Also Published As

Publication number Publication date
CN117296423A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2023245576A1 (zh) Ai模型确定方法、装置、通信设备及存储介质
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
WO2022141095A1 (zh) 辅助ue的选择方法、装置及存储介质
WO2023206457A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2023178532A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2023178533A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2024011413A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2024065125A1 (zh) 感知实现方法、装置、通信设备及存储介质
WO2023216210A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2023236157A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2024021097A1 (zh) 信道状态信息的测量方法、装置、通信设备及存储介质
WO2023056649A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023056648A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023184119A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024098348A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023065090A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023039896A1 (zh) 无线传感方法及装置、通信设备及存储介质
WO2023216116A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024016349A1 (zh) 提供感知服务的方法、装置、通信设备及存储介质
WO2023272513A1 (zh) 定位测量的方法、装置、通信设备及存储介质
WO2023150979A1 (zh) 上报感知数据的方法、装置、通信设备及存储介质
WO2023173430A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023150978A1 (zh) 感知数据传输方法、装置、通信设备和存储介质
WO2024044916A1 (zh) 上报bsr的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000861.2

Country of ref document: CN