WO2022178723A1 - 测量间隔的配置方法、装置、通信设备及存储介质 - Google Patents

测量间隔的配置方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022178723A1
WO2022178723A1 PCT/CN2021/077719 CN2021077719W WO2022178723A1 WO 2022178723 A1 WO2022178723 A1 WO 2022178723A1 CN 2021077719 W CN2021077719 W CN 2021077719W WO 2022178723 A1 WO2022178723 A1 WO 2022178723A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
reference signals
reference signal
different
measurement reference
Prior art date
Application number
PCT/CN2021/077719
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/077719 priority Critical patent/WO2022178723A1/zh
Priority to CN202180000555.4A priority patent/CN115244962A/zh
Publication of WO2022178723A1 publication Critical patent/WO2022178723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a configuration method, apparatus, communication device, and storage medium for a measurement interval.
  • the terminal when the terminal communicates with the serving cell, the terminal also needs to measure neighboring cell signals and other signals (for example, positioning reference signals used for terminal positioning).
  • the terminal usually has only one radio frequency module, so the terminal can only use a single radio frequency module in time-sharing to realize the measurement of different reference signals when communicating with the serving cell.
  • the time interval during which the terminal suspends communication with the serving cell to implement the neighbor cell mobility measurement and/or positioning-related measurement, etc. is referred to as a measurement interval.
  • the measurement interval is configured to measure different reference signals
  • measurement failure often occurs, and the measurement time is prolonged, which affects the measurement performance and brings a bad experience to the user.
  • Embodiments of the present disclosure disclose a configuration method, apparatus, communication device, and storage medium for a measurement interval.
  • a method for configuring a measurement interval wherein, applied to a terminal, the method includes:
  • the measurement intervals configured for different types of the measurement reference signals are different.
  • the method further includes:
  • the configuration information of the measurement interval for receiving the measurement reference signal includes:
  • the configuration information sent by the base station according to the request message is received.
  • the method further includes:
  • the different measurement reference signals are measured based on the measurement intervals configured for the different measurement reference signals in response to the measurement intervals configured for the different measurement reference signals not overlapping in time domain position.
  • the time-division measuring different measurement reference signals at the overlapping time domain positions includes:
  • different measurement reference signals are time-divisionally measured according to a preset percentage of measurement opportunities based on the measurement interval.
  • the time-division measuring different measurement reference signals according to a preset percentage of measurement opportunities for performing measurement based on the measurement interval includes:
  • the different measurement reference signals corresponding to the N kinds of the measurement intervals are respectively time-divisionally measured according to the N kinds of the preset percentages;
  • the sum of the N kinds of the preset percentages is 1; the N is a positive integer greater than 1.
  • the method further includes:
  • the N is a positive integer greater than 2.
  • the measurement reference signal includes at least one of the following:
  • the method further includes:
  • the information of the measurement object indicates that the measurement reference signal is the SSB reference signal and/or the CSI-RS.
  • a method for configuring a measurement interval wherein, applied to a base station, the method includes:
  • the configuration information of the measurement interval for sending the measurement reference signal
  • the measurement intervals configured for different types of the measurement reference signals are different.
  • the method further includes:
  • the configuration information of the measurement interval for sending the measurement reference signal includes:
  • the configuration information is sent to the terminal according to the request message.
  • the measurement reference signal includes at least one of the following:
  • the method further includes:
  • the information of the measurement object indicates that the measurement reference signal is the SSB reference signal and/or the CSI-RS.
  • an apparatus for configuring a measurement interval wherein, applied to a terminal, the apparatus includes a receiving module, wherein,
  • the receiving module is configured to: receive configuration information of measurement intervals of measurement reference signals; wherein the measurement intervals configured for different types of measurement reference signals are different.
  • the apparatus further includes: a first sending module; wherein,
  • the first sending module is configured to send a request message for obtaining the configuration information to the base station;
  • the first receiving module is configured to receive the configuration information sent by the base station according to the request message.
  • the apparatus further comprises: a measurement module; wherein,
  • the measurement module is configured to:
  • the different measurement reference signals are measured based on the measurement intervals configured for the different measurement reference signals in response to the measurement intervals configured for the different measurement reference signals not overlapping in time domain position.
  • the measurement module is further configured to:
  • different measurement reference signals are time-divisionally measured according to a preset percentage of measurement opportunities based on the measurement interval.
  • the measurement module is further configured to:
  • the different measurement reference signals corresponding to the N kinds of the measurement intervals are respectively time-divisionally measured according to the N kinds of the preset percentages;
  • the sum of the N kinds of the preset percentages is 1; the N is a positive integer greater than 1.
  • the apparatus further includes: a determining module; wherein,
  • the determining module is further configured to:
  • the N is a positive integer greater than 2.
  • an apparatus for configuring a measurement interval wherein, when applied to a base station, the apparatus includes a second sending module; wherein,
  • the second sending module is configured to: send configuration information of the measurement interval of the measurement reference signal;
  • the measurement intervals configured for different types of the measurement reference signals are different.
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • configuration information of measurement intervals of measurement reference signals is received; wherein, the measurement intervals configured for different types of measurement reference signals are different.
  • the terminal can measure the measurement reference signals of different types at different measurement intervals, compared to only measuring at the same measurement interval
  • the measurement reference signal of different types is measured on the upper side, the timing of measuring the measurement reference signal will be more flexible, and the configured measurement interval can be adapted to the type of the measurement reference signal, and the measurement can be made on the measurement interval in time.
  • the measurement reference signal in this way, can reduce the time delay of measuring the measurement reference signal.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • FIG. 2 is a time diagram illustrating measurement reference signal measurement according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 5a is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 5b is a schematic diagram showing time-division measurement reference signal measurement according to an exemplary embodiment.
  • Fig. 5c is a schematic diagram showing time-division measurement reference signal measurement according to an exemplary embodiment.
  • Fig. 6a is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 6b is a schematic diagram showing the proportion of time-division measurement reference signal measurement according to an exemplary embodiment.
  • Fig. 7a is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • FIG. 7b is a schematic diagram illustrating a measurement interval according to an exemplary embodiment.
  • Fig. 7c is a schematic diagram showing a measurement interval according to an exemplary embodiment.
  • FIG. 7d is a schematic diagram illustrating a measurement interval according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 11 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram of a configuration device for measuring intervals according to an exemplary embodiment.
  • Fig. 14 is a schematic diagram of a configuration device for measuring intervals according to an exemplary embodiment.
  • FIG. 15 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 16 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on a mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones, and computers with IoT user equipment For example, it may be a stationary, portable, pocket-sized, hand-held, computer-built, or vehicle-mounted device.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones, and computers with IoT user equipment
  • it may be a stationary, portable, pocket-sized, hand-held, computer-built, or vehicle-mounted device.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • user terminal user terminal
  • user agent user device
  • user equipment or user equipment.
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME). Alternatively, the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the embodiments of the present disclosure enumerate multiple implementation manners to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure may be executed independently, or may be executed together with the methods of other embodiments in the embodiments of the present disclosure, or may be executed alone or in combination and then executed together with some methods in other related technologies; this is not limited by the embodiments of the present disclosure.
  • a measurement interval mechanism is defined for neighbor cell mobility measurements and/or positioning related measurements.
  • the neighbor cell mobility measurement includes the reference signal measurement performed by the terminal in order to realize cell reselection and/or handover.
  • the positioning-related measurements include measurements of reference signals related to the positioning of the terminal.
  • only one set of measurement interval configurations can be configured for measurement of different reference signals.
  • the terminal may time-division and measure different types of reference signals at the measurement intervals indicated by the same set of measurement interval configurations. For example, if the terminal needs to measure three different types of reference signals, A, B, and C, and the same set of measurement interval configuration is configured for A, B, and C, the terminal can divide the measurement interval indicated by the measurement interval configuration. When measuring A, B and C, a total of 3 reference signals.
  • the reference signal may be one of the following: a synchronization signal block (SSB, Synchronization Signal block) reference signal, a channel state information reference signal (CSI-RS, Channel-State Information reference Signal), and a positioning reference signal (PRS) , Positioning Reference Signal).
  • SSB Synchronization Signal block
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • the configuration values of the offsets of different reference signals need to be aligned, which will affect the flexibility of the network in parameter configuration.
  • the measurement interval can only be correspondingly configured at a fixed time domain position, and the measurement interval at different time domain positions cannot be flexibly configured for different types of reference signals.
  • the measurement of different reference signals sharing a set of measurement interval configuration will cause the time delay of the mobility measurement or the positioning-related measurement to be too long, which will affect the measurement performance. Therefore, different measurement intervals (MG, Measurement Gap) need to be configured for different reference signals.
  • part A shows the time when the SSB reference signal is measured, the corresponding center frequency is f 0 , the offset is offset 0, and the period is 40ms.
  • Part B shows the time when the CSI-RS is measured, the corresponding center frequency is f 1 , the offset is offset 1, and the period is 40ms.
  • Part C shows the time when the positioning reference signal is measured, the corresponding center frequency is f 2 , the offset is offset 2, and the period is 80ms.
  • Part D shows the configured measurement interval for measuring the SSB reference signal, the corresponding center frequency is f 0 , the measurement interval offset is the measurement interval offset 0, and the period is 40ms.
  • Part E shows the configured measurement interval for measuring the CSI-RS, the corresponding center frequency is f 1 , the measurement interval offset is the measurement interval offset 1, and the period is 40ms.
  • Part F shows the configured measurement interval offset for measuring the positioning reference signal, the corresponding center frequency is f 2 , the measurement interval offset is measurement interval offset 2, and the period is 80ms. It should be noted that: Part E, Part F, and Part G are detailed illustrations and descriptions of the measurement interval based on Part A, Part B, and Part C, respectively.
  • a method for configuring a measurement interval is provided in this embodiment, wherein, applied to a terminal, the method includes:
  • Step 31 Receive the configuration information of the measurement interval of the measurement reference signal
  • the measurement intervals configured for different types of measurement reference signals are different.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a Road Side Unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a Road Side Unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • it may be the configuration information of the measurement interval at which the terminal receives the measurement reference signal sent by the base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the measurement reference signal includes at least one of the following:
  • the SSB reference signal and/or CSI-RS may be used for mobility measurement of the terminal's neighbor cells.
  • the positioning reference signal may be a positioning measurement for the terminal.
  • the communication with the serving cell is suspended for mobility measurement and/or positioning measurement. For example, if the terminal needs to perform mobility measurement at time A, the terminal needs to suspend communication with the serving cell at time A to implement mobility measurement.
  • the terminal in response to the terminal establishing a Radio Resource Control (RRC, Radio Resource Control) connection with the base station, the terminal receives configuration information of the measurement interval of the measurement reference signal.
  • RRC Radio Resource Control
  • the terminal receives an RRC message carrying configuration information of the measurement interval of the measurement reference signal.
  • the terminal receives a random access message that carries configuration information of the measurement interval of the measurement reference signal.
  • the random access message may be a random access message in a 2-step random access or a 4-step random access process.
  • the terminal receives a system message carrying configuration information of the measurement interval of the measurement reference signal.
  • carrying the configuration information in the RRC message, the random access message or the system message can improve the signaling compatibility of the RRC message, the random access message or the system message.
  • the configuration information of the measurement interval of the measurement reference signal may be periodically received. In this way, the measurement interval configured to the terminal can be updated in time.
  • the terminal sends a request message to the base station for acquiring configuration information of the measurement interval of the measurement reference signal; the terminal receives the configuration information sent by the base station according to the request message.
  • the measurement reference signal is a positioning reference signal for positioning measurements.
  • the terminal sends a request message to the base station for acquiring the configuration information of the measurement interval of the positioning reference signal; the terminal receives the configuration information sent by the base station according to the request message.
  • the request message may be a location measurement information (LocationMeasurementInfo) request message.
  • the terminal receives configuration information actively sent by the base station.
  • the measurement reference signal is a mobility measurement SSB reference signal.
  • the terminal receives the configuration information of the measurement interval of the SSB reference signal actively sent by the base station.
  • the base station sends information indicating a measurement object (MO, Measurement Object) of the measurement reference signal to the terminal in advance.
  • MO Measurement Object
  • the base station in response to the measurement being a mobility measurement, sends information of the measurement object to the terminal.
  • the information of the measurement object indicates that the measurement reference signal measured by the terminal is the SSB reference signal and/or the CSI-RS.
  • the terminal performs mobility measurement based on the SSB reference signal and/or the CSI-RS.
  • the base station may carry the information of the measurement object based on measurement configuration signaling (MeasConfig).
  • the measurement reference signal when the terminal communicates with the serving cell, the time interval during which the terminal suspends communication with the serving cell to implement the neighbor cell mobility measurement and positioning-related measurement is called a measurement interval.
  • the measurement reference signal when the measurement is a neighbor cell mobility measurement, the measurement reference signal may be an SSB reference signal and/or a CSI-RS; when the measurement is a positioning-related measurement, the measurement reference signal may be a positioning reference signal.
  • the configuration information of the measurement interval may indicate the offset of the measurement interval, the repetition period of the measurement interval, and/or the length of the measurement interval.
  • the repetition period of the measurement interval is determined according to the required delay of the neighbor cell mobility measurement.
  • the repetition period of the measurement interval is less than the period threshold; in response to the required delay of the neighbor cell mobility measurement being greater than the delay threshold, it is determined that the measurement interval The repetition period of the interval is greater than the period threshold.
  • the repetition period of the measurement interval is determined according to the required delay of the positioning measurement.
  • in response to the required delay of the positioning measurement being less than the delay threshold it is determined that the repetition period of the measurement interval is less than the period threshold; in response to the required delay of the positioning measurement being greater than the delay threshold, it is determined that the repetition period of the measurement interval is greater than the period threshold.
  • the smaller the repetition period of the measurement interval the faster the terminal can obtain the measurement result, and therefore, the smaller the measurement delay.
  • the length of the measurement interval is determined according to the required accuracy of the neighbor cell mobility measurement.
  • the measurement interval in response to the required accuracy rate of the neighbor cell mobility measurement being less than the accuracy rate threshold value, it is determined that the length of the measurement interval is less than the length threshold value; in response to the neighbor cell mobility measurement requirement accuracy rate being greater than the accuracy rate threshold value, the measurement interval is determined The length of is greater than the length threshold.
  • the length of the measurement interval is determined according to the required accuracy of the positioning measurement.
  • the length of the measurement interval is determined to be less than the length threshold in response to the required accuracy of the positioning measurement being less than the accuracy threshold; and in response to the required accuracy of the positioning measurement being greater than the accuracy threshold, the length of the measurement interval is determined to be greater than the length threshold.
  • the signal strength of the reference signal is continuously obtained within a time length corresponding to the length of the measurement interval, and then the signal strength obtained within the time length may be averaged, and the average value may be used as the final measurement result.
  • the configuration information of the measurement interval carries the configuration of measurement intervals of multiple different types of measurement reference signals.
  • the measurement reference signals may include: SSB reference signals, CSI-RS, and positioning reference signals.
  • the measurement intervals configured for different types of measurement reference signals are different.
  • the measurement interval of the SSB reference signal is the first measurement interval
  • the measurement interval of the CSI-RS is the second measurement interval
  • the measurement interval of the positioning reference signal is the third measurement interval.
  • the measurement intervals of different measurement reference signals may not coincide with each other in time domain positions. In this way, the measurement reference signals may be measured at the time domain positions of the measurement intervals corresponding to the measurement reference signals.
  • the measurement intervals of different measurement reference signals do not overlap each other in time domain positions, the measurements between different measurement reference signals will not affect each other.
  • the measurement intervals of different measurement reference signals may completely or partially overlap in time domain positions.
  • different measurement reference signals may be time-divisionally measured at the overlapping positions in response to the measurement intervals of the different measurement reference signals fully or partially overlapping in the time domain positions.
  • different measurement reference signals can share overlapping time domain positions, and measurements between different measurement reference signals will not affect each other.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain positions of A and B may completely or partially overlap
  • the overlapping part may is C
  • the terminal can time-division and measure the SSB reference signal and CSI-RS on C.
  • the measurement intervals of some of the different measurement reference signals overlap in time domain position.
  • different measurement reference signals include SSB reference signals, CSI-RS, and positioning reference signals, and the measurement intervals of some reference signals overlap in time domain positions. It may be that the measurement intervals of SSB reference signals and CSI-RS overlap in time domain positions, However, the positioning reference signal and the SSB reference signal do not overlap in time domain position and the positioning reference signal and CSI-RS do not overlap in time domain position.
  • the measurement intervals of some measurement reference signals in different measurement reference signals may overlap in time domain positions by at least two overlaps.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain position indicated by the measurement interval of the positioning reference signal is C
  • a and B may be Coincidence
  • C coincides with A. It is also possible that A, B and C all overlap each other.
  • the configuration information of the measurement interval of the measurement reference signal is received; wherein, the measurement interval configured for different types of the measurement reference signal is different.
  • the measurement intervals configured for different types of measurement reference signals are different, different types of measurement reference signals can be measured at different measurement intervals, compared to only measuring different types of measurement reference signals at the same measurement interval, The timing of measuring the reference signal is more flexible, and the configured measurement interval can be adapted to the type of the measurement reference signal, and the measurement of the measurement reference signal can be performed on the measurement interval in time. In this way, the delay in measuring the measurement reference signal can be reduced.
  • a method for configuring a measurement interval is provided in this embodiment, wherein, applied to a terminal, the method includes:
  • Step 41 sending a request message for obtaining configuration information to the base station
  • Step 42 Receive the configuration information sent by the base station according to the request message.
  • a request message for acquiring configuration information is sent to the base station; and the configuration information sent by the base station according to the request message is received.
  • a request message for obtaining configuration information is sent to the base station in response to the terminal needing to perform mobility measurement.
  • the configuration information sent by the base station according to the request message is received.
  • a request message for acquiring configuration information is sent to the base station.
  • the configuration information sent by the base station according to the request message is received.
  • a request message for obtaining configuration information is sent to the base station.
  • an RRC message carrying configuration information sent by the base station according to the request message is received.
  • the RRC message carrying the configuration information sent by the base station according to the request message may be periodically received.
  • the terminal sends a request message for acquiring the measurement interval of the positioning reference signal to the base station, and the terminal receives the configuration information sent by the base station according to the request message.
  • the request message may be a LocationMeasurementInfo request message.
  • this embodiment provides a method for configuring a measurement interval, wherein, applied to a terminal, the method includes:
  • Step 51 In response to the measurement intervals configured for different measurement reference signals overlapping in the time domain positions, time-division and measuring different measurement reference signals at the overlapping time domain positions;
  • the different measurement reference signals are measured based on the measurement intervals configured for the measurement reference signals in response to the measurement intervals configured for the different measurement reference signals not overlapping in time domain locations.
  • the measurement intervals configured for different measurement reference signals may not overlap with each other in time domain positions.
  • the measurement reference signals may be measured at the time domain positions of the measurement intervals corresponding to the measurement reference signals.
  • the measurement intervals of different measurement reference signals do not overlap each other in time domain positions, the measurements between different measurement reference signals will not affect each other.
  • the measurement intervals configured for different measurement reference signals may completely or partially overlap in time domain positions.
  • different measurement reference signals may be time-divisionally measured at the overlapping positions in response to the measurement intervals configured for the different measurement reference signals fully or partially overlapping in the time domain positions.
  • different measurement reference signals can share overlapping time domain positions, and measurements between different measurement reference signals will not affect each other.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain positions of A and B may completely or partially overlap
  • the overlapping part may is C
  • the terminal can time-division and measure the SSB reference signal and CSI-RS on C.
  • the measurement intervals of some of the different measurement reference signals overlap in time domain position.
  • different measurement reference signals include SSB reference signals, CSI-RS, and positioning reference signals, and the measurement intervals of some reference signals overlap in time domain positions.
  • the measurement intervals of SSB reference signals and CSI-RS may overlap in time domain positions, However, the positioning reference signal and the SSB reference signal do not overlap in time domain position and the positioning reference signal and CSI-RS do not overlap in time domain position.
  • the time-divisional measurement of different measurement reference signals may be the measurement of the measurement reference signals in a continuous manner at overlapping time domain locations. That is, after the measurement of a certain measurement reference signal is completed, another measurement reference signal is measured.
  • different measurement reference signals include an SSB reference signal and a CSI-RS, the time domain position indicated by the measurement interval of the SSB reference signal is A, and the time domain position indicated by the measurement interval of the CSI-RS is B, wherein A and B are at time If the position of the domain overlaps, and the overlapped part is C, the terminal can measure the SSB reference signal and the CSI-RS in time-division on C. Referring to FIG.
  • the SSB is measured at the first time domain position part of C
  • the CSI-RS is measured at the second time domain position part of C after the SSB reference signal measurement is completed.
  • the first time domain location part and the second time domain location part are separated by a dotted line.
  • the time-divisional measurement of different reference signals may be to measure the reference signals in an intermittent manner at overlapping time-domain locations.
  • different measurement reference signals include SSB reference signal and CSI-RS, which may be at overlapping time domain positions, first measure the SSB reference signal, then measure the CSI-RS, then test the SSB reference signal, and then measure the CSI-RS ...and so on.
  • SSB may be measured at the first time domain location portion of C
  • CSI-RS may be measured at the second time domain location portion
  • SSB may be measured at the third time domain location portion
  • the fourth time domain location part measures CSI-RS
  • the fifth time domain location part measures SSB... and so on.
  • different measurement reference signals have measurement priorities of different measurement orders. For example, if the measurement priority of the SSB reference signal is different from that of the CSI-RS, and the measurement priority of the SSB reference signal is lower than the measurement priority of the CSI-RS, the SSB reference signal is measured prior to the CSI-RS.
  • this embodiment provides a method for configuring a measurement interval, wherein, applied to a terminal, the method includes:
  • Step 61 At the overlapping time domain positions, time-divisionally measure different measurement reference signals according to a preset percentage of measurement opportunities for performing measurement based on the measurement interval.
  • a preset percentage of measurement opportunities to perform measurements based on the measurement interval is preconfigured.
  • the overlapping time domain positions correspond to a period, and the preset percentage of measurement opportunities may be a proportion corresponding to the period.
  • the ratios of the measurement interval configured for the SSB reference signal and the measurement interval configured for the CSI-RS are the first ratio and the second ratio, respectively. In this way, the terminal can time-divisionally measure the SSB reference signal and the CSI-RS based on the first ratio and the second ratio in the time period corresponding to the overlapping time domain positions.
  • the SSB reference signal is first measured according to the first ratio, and after the SSB reference signal measurement is completed, the CSI-RS is measured according to the second ratio.
  • a certain measurement reference signal is measured in an intermittent manner, and the proportion of the time period corresponding to the time period corresponding to the overlapping time domain positions when a certain reference signal is measured in an intermittent manner is given by The proportion of this measurement reference signal configuration.
  • the different measurement reference signals include SSB reference signals and CSI-RS
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • a and B partially overlap in the time domain position, and the overlapped part is C
  • the terminal can measure the SSB reference signal and CSI-RS on C in time division.
  • the SSB can be measured at the first time domain position part of C at the overlapping time domain position C, and the proportion of the first time domain position part in the overlapping time domain position is the ratio x;
  • the two time-domain location parts measure CSI-RS, and the proportion of the second time-domain location part in the overlapping time-domain locations is a proportion y; where the sum of x and y is 1.
  • the proportion of the measurement reference signal is determined according to the required accuracy of the measurement result of the measurement reference signal.
  • the proportion of the measurement reference signal in response to the required accuracy of the measurement result of the measurement reference signal being less than the accuracy threshold, it is determined that the proportion of the measurement reference signal is less than the proportion threshold; in response to the required accuracy of the measurement result of the measurement reference signal is greater than the accuracy Threshold, it is determined that the proportion of the measurement reference signal is greater than the proportion threshold.
  • this embodiment provides a method for configuring a measurement interval, wherein, applied to a terminal, the method includes:
  • Step 71 In response to the coincidence of any N measurement intervals of different measurement reference signals in the time domain position, the different measurement reference signals corresponding to the N measurement intervals are time-divisionally measured according to the N preset percentages; wherein, the N preset percentages The sum is 1; N is a positive integer greater than 1.
  • the coincidence of any N measurement intervals of different measurement reference signals in time domain positions may be at least two-by-two coincidence of the N measurement intervals.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain position indicated by the measurement interval of the positioning reference signal is C
  • a and B may be Coincidence
  • C coincides with A.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain position indicated by the measurement interval of the positioning reference signal is C
  • the first measurement interval is used for the measurement of the SSB reference signal; the second measurement interval is used for the measurement of the CSI-RS; and the third measurement interval is used for the measurement of the positioning signal.
  • the first measurement interval and the second measurement interval overlap in time domain positions, and at the overlapping time domain positions, the SSB reference signal is measured according to the first preset percentage, and the SSB reference signal is measured according to the second preset percentage.
  • Set the percentage to measure CSI-RS may be performed in time-division according to a corresponding preset percentage. For example, if the preset percentage corresponding to the SSB reference signal is X%, the preset percentage corresponding to the CSI-RS may be (1-X)%.
  • the first measurement interval, the second measurement interval, and the third measurement interval overlap each other in time domain positions, and at the overlapping time domain positions, the SSB is measured according to a first preset percentage
  • the CSI-RS is measured according to the second preset percentage
  • the positioning reference signal is measured according to the third preset percentage.
  • the measurement of the SSB reference signal, the CSI-RS and the positioning reference signal may be time-divisionally performed according to a corresponding preset percentage.
  • the preset percentage corresponding to the SSB reference signal is X%
  • the preset percentage corresponding to the CSI-RS can be is Y%
  • the preset percentage corresponding to the positioning reference signal may be (1-X-Y)%.
  • this embodiment provides a method for configuring a measurement interval, which is applied to a terminal, and the method includes:
  • Step 81 In response to the coincidence between the N measurement intervals of any N kinds of measurement reference signals of different measurement reference signals at least two-by-two, determine that any N kinds of measurement intervals of different measurement reference signals overlap in the time domain position; wherein, N is A positive integer greater than 2.
  • the N measurement intervals of any N kinds of measurement reference signals of different measurement reference signals coincide with each other.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain position indicated by the measurement interval of the positioning reference signal is C
  • a and B may be Coincidence
  • B coincides with C
  • C coincides with A.
  • the measurement interval of the SSB reference signal corresponds to the first measurement interval
  • the measurement interval of the CSI-RS corresponds to the second measurement interval
  • the measurement interval of the positioning reference signal corresponds to the third measurement interval.
  • the N measurement intervals of any N measurement reference signals of different measurement reference signals coincide with each other. For example, if the time domain position indicated by the measurement interval of the SSB reference signal is A, the time domain position indicated by the measurement interval of the CSI-RS is B, and the time domain position indicated by the measurement interval of the positioning reference signal is C, it can be A, B and C coincide with each other.
  • this embodiment provides a method for configuring a measurement interval, which is applied to a terminal, and the method includes:
  • Step 91 Receive the information of the measurement object sent by the base station
  • the information of the measurement object indicates that the measurement reference signal is an SSB reference signal and/or a CSI-RS.
  • the measurement is a mobility measurement
  • the base station sends information of the measurement object to the terminal, and the information of the measurement object indicates that the measurement reference signal measured by the terminal is an SSB reference signal and/or a CSI-RS.
  • the terminal is based on the SSB reference signal.
  • the base station may send the information of the measurement object based on measurement configuration signaling (MeasConfig).
  • this embodiment provides a method for configuring a measurement interval, which is applied to a base station, and the method includes:
  • Step 101 sending configuration information of the measurement interval of the measurement reference signal
  • the measurement intervals configured for different types of measurement reference signals are different.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the base station may send configuration information of the measurement interval of the measurement reference signal to the terminal.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a Road Side Unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a Road Side Unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the measurement reference signal includes at least one of the following:
  • the SSB reference signal and/or CSI-RS may be used for mobility measurement of the terminal's neighbor cells.
  • the positioning reference signal may be a positioning measurement for the terminal.
  • the communication with the serving cell is suspended for mobility measurement and/or positioning measurement. For example, if the terminal needs to perform mobility measurement at time A, the terminal needs to suspend communication with the serving cell at time A to implement mobility measurement.
  • the base station in response to the terminal establishing a Radio Resource Control (RRC, Radio Resource Control) connection with the base station, the base station sends configuration information of the measurement interval for measuring the reference signal to the terminal.
  • RRC Radio Resource Control
  • the base station sends an RRC message carrying configuration information of the measurement interval of the measurement reference signal to the terminal.
  • the base station sends a random access message carrying configuration information of the measurement interval of the measurement reference signal to the terminal.
  • the random access message may be a random access message in a 2-step random access or a 4-step random access process.
  • the base station sends a system message carrying configuration information of the measurement interval of the measurement reference signal to the terminal.
  • carrying the configuration information in the RRC message, the random access message or the system message can improve the signaling compatibility of the RRC message, the random access message or the system message.
  • the configuration information of the measurement interval of the measurement reference signal may be periodically sent. In this way, the measurement interval configured to the terminal can be updated in time.
  • the terminal sends a request message to the base station for acquiring configuration information of the measurement interval of the measurement reference signal; the terminal receives the configuration information sent by the base station according to the request message.
  • the measurement reference signal is a positioning reference signal for positioning measurements.
  • the terminal sends a request message to the base station for acquiring the configuration information of the measurement interval of the positioning reference signal; the terminal receives the configuration information sent by the base station according to the request message.
  • the request message may be a location measurement information (LocationMeasurementInfo) request message.
  • the terminal receives configuration information actively sent by the base station.
  • the measurement reference signal is a mobility measurement SSB reference signal.
  • the terminal receives the configuration information of the measurement interval of the SSB reference signal actively sent by the base station.
  • the base station sends information indicating the measurement object of the measurement reference signal to the terminal in advance.
  • the base station in response to the measurement being a mobility measurement, sends information of the measurement object to the terminal.
  • the information of the measurement object indicates that the measurement reference signal measured by the terminal is the SSB reference signal and/or the CSI-RS.
  • the terminal performs mobility measurement based on the SSB reference signal and/or the CSI-RS.
  • the base station may carry the information of the measurement object based on measurement configuration signaling (MeasConfig).
  • the measurement reference signal when the terminal communicates with the serving cell, the time interval during which the terminal suspends communication with the serving cell to implement the neighbor cell mobility measurement and positioning-related measurement is called a measurement interval.
  • the measurement reference signal when the measurement is a neighbor cell mobility measurement, the measurement reference signal may be an SSB reference signal and/or a CSI-RS; when the measurement is a positioning-related measurement, the measurement reference signal may be a positioning reference signal.
  • the configuration information of the measurement interval may indicate the offset of the measurement interval, the repetition period of the measurement interval, and/or the length of the measurement interval.
  • the repetition period of the measurement interval is determined according to the required delay of the neighbor cell mobility measurement.
  • the repetition period of the measurement interval is less than the period threshold; in response to the required delay of the neighbor cell mobility measurement being greater than the delay threshold, it is determined that the measurement interval The repetition period of the interval is greater than the period threshold.
  • the repetition period of the measurement interval is determined according to the required delay of the positioning measurement.
  • in response to the required delay of the positioning measurement being less than the delay threshold it is determined that the repetition period of the measurement interval is less than the period threshold; in response to the required delay of the positioning measurement being greater than the delay threshold, it is determined that the repetition period of the measurement interval is greater than the period threshold.
  • the smaller the repetition period of the measurement interval the faster the terminal can obtain the measurement result, and therefore, the smaller the measurement delay.
  • the length of the measurement interval is determined according to the required accuracy of the neighbor cell mobility measurement.
  • the measurement interval in response to the required accuracy rate of the neighbor cell mobility measurement being less than the accuracy rate threshold value, it is determined that the length of the measurement interval is less than the length threshold value; in response to the neighbor cell mobility measurement requirement accuracy rate being greater than the accuracy rate threshold value, the measurement interval is determined is greater than the length threshold.
  • the length of the measurement interval is determined according to the required accuracy of the positioning measurement.
  • the length of the measurement interval is determined to be less than the length threshold in response to the required accuracy of the positioning measurement being less than the accuracy threshold; and in response to the required accuracy of the positioning measurement being greater than the accuracy threshold, the length of the measurement interval is determined to be greater than the length threshold.
  • the signal strength of the reference signal is continuously obtained within a time length corresponding to the length of the measurement interval, and then the signal strength obtained within the time length may be averaged, and the average value may be used as the final measurement result.
  • the configuration information of the measurement interval carries the configuration of measurement intervals of multiple different types of measurement reference signals.
  • the measurement reference signals may include: SSB reference signals, CSI-RS, and positioning reference signals.
  • the measurement intervals configured for different types of measurement reference signals are different.
  • the measurement interval of the SSB reference signal is the first measurement interval
  • the measurement interval of the CSI-RS is the second measurement interval
  • the measurement interval of the positioning reference signal is the third measurement interval.
  • the measurement intervals of different measurement reference signals may not coincide with each other in time domain positions. In this way, the measurement reference signals may be measured at the time domain positions of the measurement intervals corresponding to the measurement reference signals.
  • the measurement intervals of different measurement reference signals do not overlap each other in time domain positions, the measurements between different measurement reference signals will not affect each other.
  • the measurement intervals of different measurement reference signals may completely or partially overlap in time domain positions.
  • different measurement reference signals may be time-divisionally measured at the overlapping positions in response to the measurement intervals of the different measurement reference signals fully or partially overlapping in the time domain positions.
  • different measurement reference signals can share overlapping time domain positions, and measurements between different measurement reference signals will not affect each other.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain positions of A and B may completely or partially overlap
  • the overlapping part may is C
  • the terminal can time-division and measure the SSB reference signal and CSI-RS on C.
  • the measurement intervals of some of the different measurement reference signals overlap in time domain position.
  • different measurement reference signals include SSB reference signals, CSI-RS, and positioning reference signals, and the measurement intervals of some reference signals overlap in time domain positions. It may be that the measurement intervals of SSB reference signals and CSI-RS overlap in time domain positions, However, the positioning reference signal and the SSB reference signal do not overlap in time domain position and the positioning reference signal and CSI-RS do not overlap in time domain position.
  • the measurement intervals of some measurement reference signals in different measurement reference signals may overlap in time domain positions by at least two-by-two.
  • the time domain position indicated by the measurement interval of the SSB reference signal is A
  • the time domain position indicated by the measurement interval of the CSI-RS is B
  • the time domain position indicated by the measurement interval of the positioning reference signal is C
  • a and B may be Coincidence
  • C coincides with A. It is also possible that A, B and C all overlap each other.
  • the measurement intervals configured for different types of measurement reference signals are different, different types of measurement reference signals can be measured at different measurement intervals, compared to only measuring different types at the same measurement interval
  • the measurement reference signal is more flexible, and the configured measurement interval can be adapted to the type of the measurement reference signal, and the measurement reference signal can be measured at the measurement interval in time. In this way, the measurement reference signal can be reduced. delay.
  • this embodiment provides a method for configuring a measurement interval, which is applied to a base station, and the method includes:
  • Step 111 Receive a request message for obtaining configuration information sent by the terminal;
  • Step 112 Send configuration information to the terminal according to the request message.
  • a request message for acquiring configuration information is sent to the base station; the base station sends the configuration information sent according to the request message to the terminal.
  • a request message for obtaining configuration information is sent to the base station in response to the terminal needing to perform mobility measurement.
  • the base station sends the configuration information sent according to the request message to the terminal
  • a request message for acquiring configuration information is sent to the base station.
  • the base station sends the configuration information sent according to the request message to the terminal
  • a request message for obtaining configuration information is sent to the base station.
  • an RRC message carrying configuration information sent by the base station according to the request message is received.
  • the RRC message carrying the configuration information sent by the base station according to the request message may be periodically received.
  • the terminal sends a request message for acquiring the measurement interval for measuring the positioning reference signal to the base station, and the terminal receives the configuration information sent by the base station according to the request message.
  • the request message may be a LocationMeasurementInfo request message.
  • this embodiment provides a method for configuring a measurement interval, which is applied to a base station, and the method includes:
  • Step 121 Send the information of the measurement object to the terminal;
  • the information of the measurement object indicates that the measurement reference signal is an SSB reference signal and/or a CSI-RS.
  • the measurement is a mobility measurement
  • the base station sends information of the measurement object to the terminal, and the information of the measurement object indicates that the measurement reference signal measured by the terminal is an SSB reference signal and/or a CSI-RS.
  • the terminal is based on the SSB reference signal.
  • the base station may send the information of the measurement object based on measurement configuration signaling (MeasConfig).
  • an embodiment of the present disclosure provides an apparatus for configuring a measurement interval, wherein, when applied to a terminal, the apparatus includes a receiving module 131 , wherein,
  • the receiving module 131 is configured to: receive the configuration information of the measurement interval of the measurement reference signal, wherein the measurement interval configured for different types of the measurement reference signal is different.
  • the apparatus further includes: a first sending module 132; wherein,
  • the first sending module 132 is configured to send a request message for obtaining the configuration information to the base station;
  • the first receiving module 131 is configured to receive the configuration information sent by the base station according to the request message.
  • the apparatus further includes: a measurement module 133; wherein,
  • the measurement module 133 is configured to:
  • the different measurement reference signals are measured based on the measurement intervals configured for the different measurement reference signals in response to the measurement intervals configured for the different measurement reference signals not overlapping in time domain position.
  • the measurement module 133 is further configured to:
  • different measurement reference signals are time-divisionally measured according to a preset percentage of measurement opportunities based on the measurement interval.
  • the measurement module 133 is further configured to:
  • the different measurement reference signals corresponding to the N kinds of the measurement intervals are respectively time-divisionally measured according to the N kinds of the preset percentages;
  • the sum of the N kinds of the preset percentages is 1; the N is a positive integer greater than 1.
  • the apparatus further includes: a determining module 134; wherein,
  • the determining module 134 is further configured to:
  • the N is a positive integer greater than 2.
  • an embodiment of the present disclosure provides an apparatus for configuring a measurement interval, wherein, when applied to a base station, the apparatus includes a second sending module 141; wherein,
  • the second sending module 141 is configured to: send the configuration information of the measurement interval of the measurement reference signal;
  • the measurement intervals configured for different types of measurement reference signals are different.
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • this embodiment provides a terminal 800 , which may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 806 provides power to various components of terminal 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800 .
  • Multimedia component 808 includes screens that provide an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the terminal 800 is in an operating mode, such as a calling mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the terminal 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

一种测量间隔的配置方法,应用于终端,方法包括:接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的测量参考信号配置的测量间隔不同。

Description

测量间隔的配置方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种测量间隔的配置方法、装置、通信设备及存储介质。
背景技术
在移动通信技术中,终端在与服务小区通信时,终端还需要测量邻小区信号和其他信号(例如,进行终端定位时使用的定位参考信号)。但是,终端往往只有一个射频模块,因此,终端在与服务小区进行通信时只能分时使用单个射频模块以实现不同参考信号的测量。这里,终端暂停与服务小区通信以实现邻小区移动性测量和/或定位相关测量等的时间间隔称为测量间隔。
相关技术中,在配置测量间隔进行不同的参考信号的测量时,经常会出现测量失败的情况,且测量时延长,影响测量性能,给用户带来不好的体验。
发明内容
本公开实施例公开了一种测量间隔的配置方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种测量间隔的配置方法,其中,应用于终端,所述方法,包括:
接收测量参考信号的测量间隔的配置信息;
其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
在一个实施例中,所述方法,还包括:
向基站发送获取所述配置信息的请求消息;
所述接收测量参考信号的测量间隔的配置信息,包括:
接收所述基站根据所述请求消息发送的所述配置信息。
在一个实施例中,所述方法,还包括:
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上重叠,在重叠的所述时域位置上分时测量不同所述测量参考信号;
或者,
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上不重叠,基于针对所述测量参考信号配置的测量间隔测量不同所述测量参考信号。
在一个实施例中,所述在重叠的所述时域位置上分时测量不同所述测量参考信号,包括:
在重叠的所述时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号。
在一个实施例中,所述按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号,包括:
响应于不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合,分别按照N种所述预设百分比分时测量所述N种所述测量间隔对应的不同测量参考信号;
其中,所述N种所述预设百分比的和为1;所述N为大于1的正整数。
在一个实施例中,所述方法,还包括:
响应于不同所述测量参考信号的任意N种所述测量参考信号的N种所述测量间隔至少两两之间重合,确定不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合;
其中,所述N为大于2的正整数。
在一个实施例中,所述测量参考信号,包括以下至少之一:
同步信号块SSB参考信号;
信道状态参考信号CSI-RS;
定位参考信号。
在一个实施例中,所述方法,还包括:
接收基站发送的测量对象的信息;
其中,所述测量对象的信息,指示所述测量参考信号为所述SSB参考信号和/或所述CSI-RS。
根据本公开实施例的第二方面,提供一种测量间隔的配置方法,其中,应用于基站,所述方法,包括:
发送测量参考信号的测量间隔的配置信息;
其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
在一个实施例中,所述方法,还包括:
接收终端发送的获取所述配置信息的请求消息;
所述发送测量参考信号的测量间隔的配置信息,包括:
根据所述请求消息向所述终端发送所述配置信息。
在一个实施例中,所述测量参考信号,包括以下至少之一:
同步信号块SSB参考信号;
信道状态参考信号CSI-RS;
定位参考信号。
在一个实施例中,所述方法,还包括:
向终端发送测量对象的信息;
其中,所述测量对象的信息,指示所述测量参考信号为所述SSB参考信号和/或所述CSI-RS。
根据本公开实施例的第三方面,提供一种测量间隔的配置装置,其中,应用于终端,所述装置,包括接收模块,其中,
所述接收模块,被配置为:接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
在一个实施例中,所述装置,还包括:第一发送模块;其中,
所述第一发送模块,被配置为向基站发送获取所述配置信息的请求消息;
所述第一接收模块,被配置为接收所述基站根据所述请求消息发送的所述配置信息。
在一个实施例中,所述装置,还包括:测量模块;其中,
所述测量模块,被配置为:
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上重叠,在重叠的所述时域位置上分时测量不同所述测量参考信号;
或者,
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上不重叠,基于针对所述测量参考信号配置的测量间隔测量不同所述测量参考信号。
在一个实施例中,所述测量模块,还被配置为:
在重叠的所述时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号。
在一个实施例中,所述测量模块,还被配置为:
响应于不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合,分别按照N种所述预设百分比分时测量所述N种所述测量间隔对应的不同测量参考信号;
其中,所述N种所述预设百分比的和为1;所述N为大于1的正整数。
在一个实施例中,所述装置,还包括:确定模块;其中,
所述确定模块,还被配置为:
响应于不同所述测量参考信号的任意N种所述测量参考信号的N种所述测量间隔至少两两之间重合,确定不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合;
其中,所述N为大于2的正整数。
根据本公开实施例的第四方面,提供一种测量间隔的配置装置,其中,应用于基站,所述装置包括第二发送模块;其中,
所述第二发送模块,被配置为:发送测量参考信号的测量间隔的配置信息;
其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。这里,由于针对不同类型的所述测量参考信号配置的所述测量间隔不同,终端可以在不同的所述测量间隔上测量不同类型的所述测量参考信号,相较于只能在同一个测量间 隔上测量不同类型的所述测量参考信号,测量所述测量参考信号的时机会更加灵活,且配置的所述测量间隔可以适应于所述测量参考信号的类型,能够及时在所述测量间隔上测量所述测量参考信号,如此,可以减少测量所述测量参考信号的时延。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的进行测量参考信号测量的时间示意图。
图3是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图4是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图5a是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图5b是根据一示例性实施例示出的分时进行测量参考信号测量的示意图。
[根据细则91更正 30.03.2021] 
图5c是根据一示例性实施例示出的分时进行测量参考信号测量的示意图。
图6a是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图6b是根据一示例性实施例示出的分时进行测量参考信号测量的占比的示意图。
图7a是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图7b是根据一示例性实施例示出的测量间隔的示意图。
图7c是根据一示例性实施例示出的测量间隔的示意图。
图7d是根据一示例性实施例示出的测量间隔的示意图。
图8是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图9是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图10是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图11是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图12是根据一示例性实施例示出的一种测量间隔的配置方法的流程示意图。
图13是根据一示例性实施例示出的一种测量间隔的配置装置的示意图。
图14是根据一示例性实施例示出的一种测量间隔的配置装置的示意图。
图15是根据一示例性实施例示出的一种终端的结构示意图。
图16是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清 楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网 络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
为了更好地理解本公开任一个实施例所描述的技术方案,首先,对测量参考信号的测量相关场景进行说明:
在一个实施例中,定义了测量间隔机制以用于邻小区移动性测量和/或定位相关测量。这里,邻小区移动性测量包括终端为了实现小区重选和/或切换进行的参考信号的测量。定位相关测量包括与终端的定位相关的参考信号的测量。
在一个实施例中,在同一频率范围(FR,Frequence Range)下,只能配置一套测量间隔配置用于不同的参考信号的测量。
在一个实施例中,在同一FR下,终端可以在同一套测量间隔配置指示的测量间隔上分时测量不同种类的参考信号。例如,终端需要测量A、B和C共3种不同种类的参考信号,且针对A、B和C配置了相同的一套测量间隔配置,则终端可以在该测量间隔配置指示的测量间隔上分时测量A、B和C共3种参考信号。
在一个实施例中,参考信号可以是如下之一:同步信号块(SSB,Synchronization Signal block)参考信号、信道状态信息参考信号(CSI-RS,Channel-State Information reference Signal)和定位参考信号(PRS,Positioning Reference Signal)。
这里,在同一频率范围下,不同参考信号的偏移量的配置值需要对齐,这会影响网络进行参数配置时的灵活度。例如,只能将测量间隔对应配置在固定的时域位置上,不能灵活地针对不同类型的参考信 号配置处于不同时域位置的测量间隔。另外,不同参考信号的测量共享一套测量间隔配置会造成移动性测量或者定位相关测量的时延过长,影响测量性能。因此,需要针对不同的参考信号配置不同的测量间隔(MG,Measurement Gap)。
在一个实施例中,请参见图2,A部分示出了对SSB参考信号进行测量的时间,对应的中心频率为f 0,偏移量为偏移量0,周期为40ms。B部分示出了对CSI-RS进行测量的时间,对应的中心频率为f 1,偏移量为偏移量1,周期为40ms。C部分示出了对定位参考信号进行测量的时间,对应的中心频率为f 2,偏移量为偏移量2,周期为80ms。D部分示出了配置的对SSB参考信号进行测量的测量间隔,对应的中心频率为f 0,测量间隔偏移量为测量间隔偏移量0,周期为40ms。E部分示出了配置的对CSI-RS进行测量的测量间隔,对应的中心频率为f 1,测量间隔偏移量为测量间隔偏移量1,周期为40ms。F部分示出了配置的对定位参考信号进行测量的测量间隔偏移量,对应的中心频率为f 2,测量间隔偏移量为测量间隔偏移量2,周期为80ms。需要说明的是:E部分、F部分和G部分是分别在A部分、B部分和C部分的基础上对测量间隔进行的详细示意和说明。
如图3所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤31、接收测量参考信号的测量间隔的配置信息;
其中,针对不同类型的测量参考信号配置的测量间隔不同。
这里,该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,可以是终端接收基站发送的测量参考信号的测量间隔的配置信息。
该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,测量参考信号,包括以下至少之一:
SSB参考信号;
CSI-RS;
定位参考信号。
这里,SSB参考信号和/或CSI-RS可以是用于终端的邻小区的移动性测量。定位参考信号可以是用于终端的定位测量。
在一个实施例中,当终端与服务小区进行通信时,会暂停与服务小区进行通信以实现移动性测量和/或定位测量。例如,在A时刻终端需要进行移动性测量,则终端在A时刻需要暂停与服务小区进行通信以实现移动性测量。
在一个实施例中,响应于终端与基站建立无线资源控制(RRC,Radio Resource Control)连接,终端接收测量参考信号的测量间隔的配置信息。
在一个实施例中,终端接收携带测量参考信号的测量间隔的配置信息的RRC消息。
在一个实施例中,终端接收携带测量参考信号的测量间隔的配置信息的随机接入消息。这里,该随 机接入消息可以是2步随机接入或者4步随机接入过程中的随机接入消息。
在一个实施例中,终端接收携带测量参考信号的测量间隔的配置信息的系统消息。
如此,将配置信息携带在RRC消息、随机接入消息或者系统消息中,可以提升RRC消息、随机接入消息或者系统消息的信令兼容性。
在一个实施例中,可以是周期性地接收测量参考信号的测量间隔的配置信息。如此,可以及时对配置给终端的测量间隔进行更新。
在一个实施例中,终端向基站发送获取测量参考信号的测量间隔的配置信息的请求消息;终端接收基站根据请求消息发送的配置信息。
在一个实施例中,测量参考信号为定位测量的定位参考信号。终端向基站发送获取定位参考信号的测量间隔的配置信息的请求消息;终端接收基站根据请求消息发送的配置信息。这里,该请求消息可以是定位测量信息(LocationMeasurementInfo)请求消息。
在一个实施例中,终端接收基站主动发送的配置信息。
在一个实施例中,测量参考信号为移动性测量的SSB参考信号。终端接收基站主动发送的SSB参考信号的测量间隔的配置信息。
在一个实施例中,基站预先向终端发送指示测量参考信号的测量对象(MO,Measurement Object)的信息。
在一个实施例中,响应于测量为移动性测量,基站向终端发送测量对象的信息。其中,测量对象的信息指示终端测量的测量参考信号为SSB参考信号和/或CSI-RS,此时,终端基于SSB参考信号和/或CSI-RS进行移动性测量。这里,基站可以是基于测量配置信令(MeasConfig)携带测量对象的信息。
在一个实施例中,当终端与服务小区进行通信时,终端暂停与服务小区通信以实现邻小区移动性测量和定位相关测量等的时间间隔称为测量间隔。这里,当测量为邻小区移动性测量时,测量参考信号可以为SSB参考信号和/或CSI-RS;当测量为定位相关测量时,测量参考信号可以为定位参考信号。
在一个实施例中,测量间隔的配置信息可以指示测量间隔的偏移量、测量间隔的重复周期和/或测量间隔的长度。
在一个实施例中,根据邻小区移动性测量的要求时延确定测量间隔的重复周期。
在一个实施例中,响应于邻小区移动性测量的要求时延小于时延阈值,确定测量间隔的重复周期小于周期阈值;响应于邻小区移动性测量的要求时延大于时延阈值,确定测量间隔的重复周期大于周期阈值。
在一个实施例中,根据定位测量的要求时延确定测量间隔的重复周期。
在一个实施例中,响应于定位测量的要求时延小于时延阈值,确定测量间隔的重复周期小于周期阈值;响应于定位测量的要求时延大于时延阈值,确定测量间隔的重复周期大于周期阈值。
这里,需要说明的是,测量间隔的重复周期越小,终端能够更快地获得测量结果,因此,测量时延会更小。
在一个实施例中,根据邻小区移动性测量的要求准确率确定测量间隔的长度。
在一个实施例中,响应于邻小区移动性测量的要求准确率小于准确率阈值,确定测量间隔的长度小 于长度阈值;响应于邻小区移动性测量的要求准确率大于准确率阈值,确定测量间隔的长度大于长度阈值。
在一个实施例中,根据定位测量的要求准确率确定测量间隔的长度。
在一个实施例中,响应于定位测量的要求准确率小于准确率阈值,确定测量间隔的长度小于长度阈值;响应于定位测量的要求准确率大于准确率阈值,确定测量间隔的长度大于长度阈值。
这里,需要说明的是,测量间隔的长度越长,测量结果会更准确。在一实施例中,在测量间隔的长度对应的时间长度内不断获取参考信号的信号强度,然后,可以将该时间长度内获得的信号强度求平均值,将该平均值作为最终的测量结果。这里,测量间隔的长度对应的时间长度越长,该平均值会越准确。
在一个实施例中,测量间隔的配置信息携带了配置的多种不同类型测量参考信号的测量间隔配置。这里,测量参考信号可以包括:SSB参考信号、CSI-RS和定位参考信号。其中,针对不同种类的测量参考信号配置的测量间隔不同。例如,SSB参考信号的测量间隔为第一测量间隔;CSI-RS的测量间隔为第二测量间隔;定位参考信号的测量间隔为第三测量间隔。
在一个实施例中,不同测量参考信号的测量间隔在时域位置上可以不相互重合,如此,可以在测量参考信号对应的测量间隔的时域位置上测量该测量参考信号。这里,由于不同测量参考信号的测量间隔在时域位置上不相互重合,因此,不同测量参考信号之间的测量不会相互影响。
在一个实施例中,不同测量参考信号的测量间隔在时域位置上可以全部或者部分重合。
在一个实施例中,响应于不同测量参考信号的测量间隔在时域位置上全部或者部分重合,可以在重叠的位置上分时测量不同的测量参考信号。如此,不同测量参考信号可以实现共享重叠的时域位置,且不同测量参考信号之间的测量不会相互影响。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,其中,A和B在时域位置上可以全部重合或者部分重合,且重合部分为C,则终端可以在C上分时测量SSB参考信号和CSI-RS。
在一个实施例中,不同测量参考信号中的部分测量参考信号的测量间隔在时域位置上重叠。例如,不同测量参考信号包括SSB参考信号、CSI-RS和定位参考信号,部分参考信号的测量间隔在时域位置上重叠可以是SSB参考信号和CSI-RS的测量间隔在时域位置上重叠,但是,定位参考信号与SSB参考信号在时域位置上不重叠且定位参考信号与CSI-RS在时域位置上不重叠。
在一个实施例中,不同测量参考信号中的部分测量参考信号的测量间隔在时域位置上重叠可以是至少两两之间重叠。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A与B重合,B与C重合,C与A重合。也可以是A、B和C均相互重叠。
在本公开实施例中,接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的测量参考信号配置的测量间隔不同。这里,由于针对不同类型的测量参考信号配置的测量间隔不同,可以在不同的测量间隔上测量不同类型的测量参考信号,相较于只能在同一个测量间隔上测量不同类型的测量参考信号,测量参考信号的时机会更加灵活,且配置的测量间隔可以适应于测量参考信号的类型,能够及时在测量间隔上进行测量参考信号的测量,如此,可以减少测量该测量参考信号的时延。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以 与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图4所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤41、向基站发送获取配置信息的请求消息;
步骤42、接收基站根据请求消息发送的配置信息。
在一个实施例中,响应于终端需要进行测量参考信号的测量,向基站发送获取配置信息的请求消息;接收基站根据请求消息发送的配置信息。
在一个实施例中,响应于终端需要进行移动性测量,向基站发送获取配置信息的请求消息。接收基站根据请求消息发送的配置信息。
在一个实施例中,响应于终端需要进行定位测量,向基站发送获取配置信息的请求消息。接收基站根据请求消息发送的配置信息。
在一个实施例中,响应于终端与基站之间建立RRC连接,向基站发送获取配置信息的请求消息。
在一个实施例中,接收基站根据请求消息发送的携带配置信息的RRC消息。这里,可以是周期性地接收基站根据请求消息发送的携带配置信息的RRC消息。
在一个实施例中,终端向基站发送获取定位参考信号的测量间隔的请求消息,终端接收基站根据该请求消息发送的配置信息。这里,该请求消息可以是LocationMeasurementInfo请求消息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5a所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤51、响应于针对不同测量参考信号配置的测量间隔在时域位置上重叠,在重叠的时域位置上分时测量不同测量参考信号;
或者,
响应于针对不同测量参考信号配置的测量间隔在时域位置上不重叠,基于针对测量参考信号配置的测量间隔测量不同测量参考信号。
在一个实施例中,针对不同测量参考信号配置的测量间隔在时域位置上可以不相互重合,如此,可以在测量参考信号对应的测量间隔的时域位置上测量该测量参考信号。这里,由于不同测量参考信号的测量间隔在时域位置上不相互重合,因此,不同测量参考信号之间的测量不会相互影响。
在一个实施例中,针对不同测量参考信号配置的测量间隔在时域位置上可以全部或者部分重合。
在一个实施例中,响应于针对不同测量参考信号配置的测量间隔在时域位置上全部或者部分重合,可以在重叠的位置上分时测量不同的测量参考信号。如此,不同测量参考信号可以实现共享重叠的时域位置,且不同测量参考信号之间的测量不会相互影响。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,其中,A和B在时域位置上可以全部重合或者部分重合,且重合部分为C,则终端可以在C上分时测量SSB参考信号和CSI-RS。
在一个实施例中,不同测量参考信号中的部分测量参考信号的测量间隔在时域位置上重叠。例如, 不同测量参考信号包括SSB参考信号、CSI-RS和定位参考信号,部分参考信号的测量间隔在时域位置上重叠可以是SSB参考信号和CSI-RS的测量间隔在时域位置上重叠,但是,定位参考信号与SSB参考信号在时域位置上不重叠且定位参考信号与CSI-RS在时域位置上不重叠。
在一个实施例中,分时测量不同测量参考信号可以是在重叠的时域位置上采用连续方式进行测量参考信号的测量。即:在某个测量参考信号测量完成后,再测量另外一个测量参考信号。例如,不同测量参考信号包括SSB参考信号和CSI-RS,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,其中,A和B在时域位置上部分重合,且重合部分为C,则终端可以在C上分时测量SSB参考信号和CSI-RS。请参见图5b,可以是在重叠的时域位置C上,在C的第一时域位置部分测量SSB,在SSB参考信号测量完成后再在C的第二时域位置部分测量CSI-RS。其中,第一时域位置部分和第二时域位置部分通过虚线分开。
在一个实施例中,分时测量不同参考信号可以是在重叠的时域位置上采用间断方式进行测量参考信号的测量。例如,不同测量参考信号包括SSB参考信号和CSI-RS,可以是在重叠的时域位置上,先测量SSB参考信号,再测量CSI-RS,然后又测试SSB参考信号,然后再测量CSI-RS......以此类推。请参见图5c,可以在重叠的时域位置C上,在C的第一时域位置部分测量SSB,在第二时域位置部分测量CSI-RS,在第三时域位置部分测量SSB,在第四时域位置部分测量CSI-RS,在第五时域位置部分测量SSB……,依此类推。
在一个实施例中,不同的测量参考信号具有不同的测量顺序的测量优先级。例如,SSB参考信号的测量优先级与CSI-RS的测量优先级不同,且SSB参考信号的测量优先级低于CSI-RS的测量优先级,则SSB参考信号优先于CSI-RS进行测量。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6a所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤61、在重叠的时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同测量参考信号。
在一个实施例中,预先配置基于测量间隔执行测量的测量机会的预设百分比。这里,重叠的时域位置对应一个时段,测量机会的预设百分比可以是对应该时段的占比。例如,针对SSB参考信号配置的测量间隔和CSI-RS配置的测量间隔的占比分别为第一占比和第二占比。如此,终端可以在重叠的时域位置对应的时段上基于第一占比和第二占比分时测量SSB参考信号和CSI-RS。
在一个实施例中,在重叠的时域位置上,先按照第一占比测量SSB参考信号,在SSB参考信号测量完成后,再按照第二占比测量CSI-RS。
在一个实施例中,在重叠的时域位置上,采用间断方式测量某个测量参考信号,且采用间断方式测量某个参考信号的时间相对重叠的时域位置对应的时间段的占比为给该测量参考信号配置的占比。
在一个实施例中,不同测量参考信号包括SSB参考信号和CSI-RS,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,其中,A和B在时域位置上部分重合,且 重合部分为C,则终端可以在C上分时测量SSB参考信号和CSI-RS。请参见图6b,可以在重叠的时域位置C上,在C的第一时域位置部分测量SSB,第一时域位置部分在重叠的时域位置上的占比为占比x;在第二时域位置部分测量CSI-RS,第二时域位置部分在重叠的时域位置上的占比为占比y;其中,x和y的和为1。
在一个实施例中,根据测量参考信号的测量结果的要求准确度,确定测量参考信号的占比。
在一个实施例中,响应于测量参考信号的测量结果的要求准确度小于准确度阈值,确定测量参考信号的占比小于占比阈值;响应于测量参考信号的测量结果的要求准确度大于准确度阈值,确定测量参考信号的占比大于占比阈值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7a所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤71、响应于不同测量参考信号的任意N种测量间隔在时域位置上重合,分别按照N种预设百分比分时测量N种测量间隔对应的不同测量参考信号;其中,N种预设百分比的和为1;N为大于1的正整数。
在一个实施例中,不同测量参考信号的任意N种测量间隔在时域位置上重合可以是N种测量间隔至少两两之间重合。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A与B重合,B与C重合,C与A重合。又例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A、B和C任意两者之间均相互重合。
在一个实施例中,请参见图7b,第一测量间隔用于SSB参考信号的测量;第二测量间隔用于CSI-RS的测量;第三测量间隔用于定位信号的测量。
在一个实施例中,请参见图7c,第一测量间隔和第二测量间隔在时域位置上重合,在重叠的时域位置上,按照第一预设百分比测量SSB参考信号,按照第二预设百分比测量CSI-RS。这里,SSB参考信号和CSI-RS的测量可以是按照对应的预设百分比分时进行的。例如,SSB参考信号对应的预设百分比为X%,则CSI-RS对应的预设百分比可以是(1-X)%。
在一个实施例中,请参见图7d,第一测量间隔、第二测量间隔和第三测量间隔在时域位置上两两重合,在重叠的时域位置上,按照第一预设百分比测量SSB参考信号,按照第二预设百分比测量CSI-RS,按照第三预设百分比测量定位参考信号。这里,SSB参考信号、CSI-RS和定位参考信号的测量可以是按照对应的预设百分比分时进行的。例如。当SSB参考信号、CSI-RS和定位参考信号的测量间隔在时域位置上两两重合或者三者测量时,SSB参考信号对应的预设百分比为X%,CSI-RS对应的预设百分比可以是Y%,定位参考信号对应的预设百分比可以是(1-X-Y)%。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤81、响应于不同测量参考信号的任意N种测量参考信号的N种测量间隔至少两两之间重合,确定不同测量参考信号的任意N种测量间隔在时域位置上重合;其中,N为大于2的正整数。
在一个实施例中,不同测量参考信号的任意N种测量参考信号的N种测量间隔两两之间重合。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A与B重合,B与C重合,C与A重合。请再次参见图7d,这里,SSB参考信号的测量间隔对应第一测量间隔,CSI-RS的测量间隔对应第二测量间隔,定位参考信号的测量间隔对应第三测量间隔。
在一个实施例中,不同测量参考信号的任意N种测量参考信号的N种测量间隔相互重合。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A、B和C相互重合。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,本实施例中提供一种测量间隔的配置方法,其中,应用于终端,该方法,包括:
步骤91、接收基站发送的测量对象的信息;
其中,测量对象的信息,指示测量参考信号为SSB参考信号和/或CSI-RS。
在一个实施例中,测量为移动性测量,基站向终端发送测量对象的信息,测量对象的信息指示终端测量的测量参考信号为SSB参考信号和/或CSI-RS,此时,终端基于SSB参考信号和/或CSI-RS进行移动性测量。这里,基站可以是基于测量配置信令(MeasConfig)发送测量对象的信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图10所示,本实施例中提供一种测量间隔的配置方法,其中,应用于基站,该方法,包括:
步骤101、发送测量参考信号的测量间隔的配置信息;
其中,针对不同类型的测量参考信号配置的测量间隔不同。
该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,可以是基站向终端发送测量参考信号的测量间隔的配置信息。
这里,该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,测量参考信号,包括以下至少之一:
SSB参考信号;
CSI-RS;
定位参考信号。
这里,SSB参考信号和/或CSI-RS可以是用于终端的邻小区的移动性测量。定位参考信号可以是用于终端的定位测量。
在一个实施例中,当终端与服务小区进行通信时,会暂停与服务小区进行通信以实现移动性测量和/或定位测量。例如,在A时刻终端需要进行移动性测量,则终端在A时刻需要暂停与服务小区进行通信以实现移动性测量。
在一个实施例中,响应于终端与基站建立无线资源控制(RRC,Radio Resource Control)连接,基站向终端发送测量参考信号的测量间隔的配置信息。
在一个实施例中,基站向终端发送携带测量参考信号的测量间隔的配置信息的RRC消息。
在一个实施例中,基站向终端发送携带测量参考信号的测量间隔的配置信息的随机接入消息。这里,该随机接入消息可以是2步随机接入或者4步随机接入过程中的随机接入消息。
在一个实施例中,基站向终端发送携带测量参考信号的测量间隔的配置信息的系统消息。
如此,将配置信息携带在RRC消息、随机接入消息或者系统消息中,可以提升RRC消息、随机接入消息或者系统消息的信令兼容性。
在一个实施例中,可以是周期性地发送测量参考信号的测量间隔的配置信息。如此,可以及时对配置给终端的测量间隔进行更新。
在一个实施例中,终端向基站发送获取测量参考信号的测量间隔的配置信息的请求消息;终端接收基站根据请求消息发送的配置信息。
在一个实施例中,测量参考信号为定位测量的定位参考信号。终端向基站发送获取定位参考信号的测量间隔的配置信息的请求消息;终端接收基站根据请求消息发送的配置信息。这里,该请求消息可以是定位测量信息(LocationMeasurementInfo)请求消息。
在一个实施例中,终端接收基站主动发送的配置信息。
在一个实施例中,测量参考信号为移动性测量的SSB参考信号。终端接收基站主动发送的SSB参考信号的测量间隔的配置信息。
在一个实施例中,基站预先向终端发送指示测量参考信号的测量对象的信息。
在一个实施例中,响应于测量为移动性测量,基站向终端发送测量对象的信息。其中,测量对象的信息指示终端测量的测量参考信号为SSB参考信号和/或CSI-RS,此时,终端基于SSB参考信号和/或CSI-RS进行移动性测量。这里,基站可以是基于测量配置信令(MeasConfig)携带测量对象的信息。
在一个实施例中,当终端与服务小区进行通信时,终端暂停与服务小区通信以实现邻小区移动性测量和定位相关测量等的时间间隔称为测量间隔。这里,当测量为邻小区移动性测量时,测量参考信号可以为SSB参考信号和/或CSI-RS;当测量为定位相关测量时,测量参考信号可以为定位参考信号。
在一个实施例中,测量间隔的配置信息可以指示测量间隔的偏移量、测量间隔的重复周期和/或测量间隔的长度。
在一个实施例中,根据邻小区移动性测量的要求时延确定测量间隔的重复周期。
在一个实施例中,响应于邻小区移动性测量的要求时延小于时延阈值,确定测量间隔的重复周期小 于周期阈值;响应于邻小区移动性测量的要求时延大于时延阈值,确定测量间隔的重复周期大于周期阈值。
在一个实施例中,根据定位测量的要求时延确定测量间隔的重复周期。
在一个实施例中,响应于定位测量的要求时延小于时延阈值,确定测量间隔的重复周期小于周期阈值;响应于定位测量的要求时延大于时延阈值,确定测量间隔的重复周期大于周期阈值。
这里,需要说明的是,测量间隔的重复周期越小,终端能够更快地获得测量结果,因此,测量时延会更小。
在一个实施例中,根据邻小区移动性测量的要求准确率确定测量间隔的长度。
在一个实施例中,响应于邻小区移动性测量的要求准确率小于准确率阈值,确定测量间隔的长度小于长度阈值;响应于邻小区移动性测量的要求准确率大于准确率阈值,确定测量间隔的长度大于长度阈值。
在一个实施例中,根据定位测量的要求准确率确定测量间隔的长度。
在一个实施例中,响应于定位测量的要求准确率小于准确率阈值,确定测量间隔的长度小于长度阈值;响应于定位测量的要求准确率大于准确率阈值,确定测量间隔的长度大于长度阈值。
这里,需要说明的是,测量间隔的长度越长,测量结果会更准确。在一实施例中,在测量间隔的长度对应的时间长度内不断获取参考信号的信号强度,然后,可以将该时间长度内获得的信号强度求平均值,将该平均值作为最终的测量结果。这里,测量间隔的长度对应的时间长度越长,该平均值会越准确。
在一个实施例中,测量间隔的配置信息携带了配置的多种不同类型测量参考信号的测量间隔配置。这里,测量参考信号可以包括:SSB参考信号、CSI-RS和定位参考信号。其中,针对不同种类的测量参考信号配置的测量间隔不同。例如,SSB参考信号的测量间隔为第一测量间隔;CSI-RS的测量间隔为第二测量间隔;定位参考信号的测量间隔为第三测量间隔。
在一个实施例中,不同测量参考信号的测量间隔在时域位置上可以不相互重合,如此,可以在测量参考信号对应的测量间隔的时域位置上测量该测量参考信号。这里,由于不同测量参考信号的测量间隔在时域位置上不相互重合,因此,不同测量参考信号之间的测量不会相互影响。
在一个实施例中,不同测量参考信号的测量间隔在时域位置上可以全部或者部分重合。
在一个实施例中,响应于不同测量参考信号的测量间隔在时域位置上全部或者部分重合,可以在重叠的位置上分时测量不同的测量参考信号。如此,不同测量参考信号可以实现共享重叠的时域位置,且不同测量参考信号之间的测量不会相互影响。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,其中,A和B在时域位置上可以全部重合或者部分重合,且重合部分为C,则终端可以在C上分时测量SSB参考信号和CSI-RS。
在一个实施例中,不同测量参考信号中的部分测量参考信号的测量间隔在时域位置上重叠。例如,不同测量参考信号包括SSB参考信号、CSI-RS和定位参考信号,部分参考信号的测量间隔在时域位置上重叠可以是SSB参考信号和CSI-RS的测量间隔在时域位置上重叠,但是,定位参考信号与SSB参考信号在时域位置上不重叠且定位参考信号与CSI-RS在时域位置上不重叠。
在一个实施例中,不同测量参考信号中的部分测量参考信号的测量间隔在时域位置上重叠可以是至 少两两之间重叠。例如,SSB参考信号的测量间隔指示的时域位置为A,CSI-RS的测量间隔指示的时域位置为B,定位参考信号的测量间隔指示的时域位置为C,则可以是A与B重合,B与C重合,C与A重合。也可以是A、B和C均相互重叠。
在本公开实施例中,由于针对不同类型的测量参考信号配置的测量间隔不同,可以在不同的测量间隔上测量不同类型的测量参考信号,相较于只能在同一个测量间隔上测量不同类型的测量参考信号,测量参考信号的时机会更加灵活,且配置的测量间隔可以适应于测量参考信号的类型,能够及时在测量间隔上进行测量参考信号的测量,如此,可以减少测量该测量参考信号的时延。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图11所示,本实施例中提供一种测量间隔的配置方法,其中,应用于基站,该方法,包括:
步骤111、接收终端发送的获取配置信息的请求消息;
步骤112、根据请求消息向终端发送配置信息。
在一个实施例中,响应于终端需要进行测量参考信号的测量,向基站发送获取配置信息的请求消息;基站向终端发送根据请求消息发送的配置信息。
在一个实施例中,响应于终端需要进行移动性测量,向基站发送获取配置信息的请求消息。基站向终端发送根据请求消息发送的配置信息
在一个实施例中,响应于终端需要进行定位测量,向基站发送获取配置信息的请求消息。基站向终端发送根据请求消息发送的配置信息
在一个实施例中,响应于终端与基站之间建立RRC连接,向基站发送获取配置信息的请求消息。
在一个实施例中,接收基站根据请求消息发送的携带配置信息的RRC消息。这里,可以是周期性地接收基站根据请求消息发送的携带配置信息的RRC消息。
在一个实施例中,终端向基站发送获取测量定位参考信号的测量间隔的请求消息,终端接收基站根据该请求消息发送的配置信息。这里,该请求消息可以是LocationMeasurementInfo请求消息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图12所示,本实施例中提供一种测量间隔的配置方法,其中,应用于基站,该方法,包括:
步骤121、向终端发送测量对象的信息;
其中,测量对象的信息,指示测量参考信号为SSB参考信号和/或CSI-RS。
在一个实施例中,测量为移动性测量,基站向终端发送测量对象的信息,测量对象的信息指示终端测量的测量参考信号为SSB参考信号和/或CSI-RS,此时,终端基于SSB参考信号和/或CSI-RS进行移动性测量。这里,基站可以是基于测量配置信令(MeasConfig)发送测量对象的信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图13所示,本公开实施例中提供一种测量间隔的配置装置,其中,应用于终端,该装置,包括接收模块131,其中,
接收模块131,被配置为:接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的测量参考信号配置的测量间隔不同。
在一个实施例中,所述装置,还包括:第一发送模块132;其中,
所述第一发送模块132,被配置为向基站发送获取所述配置信息的请求消息;
所述第一接收模块131,被配置为接收所述基站根据所述请求消息发送的所述配置信息。
在一个实施例中,所述装置,还包括:测量模块133;其中,
所述测量模块133,被配置为:
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上重叠,在重叠的所述时域位置上分时测量不同所述测量参考信号;
或者,
响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上不重叠,基于针对所述测量参考信号配置的测量间隔测量不同所述测量参考信号。
在一个实施例中,所述测量模块133,还被配置为:
在重叠的所述时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号。
在一个实施例中,所述测量模块133,还被配置为:
响应于不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合,分别按照N种所述预设百分比分时测量所述N种所述测量间隔对应的不同测量参考信号;
其中,所述N种所述预设百分比的和为1;所述N为大于1的正整数。
在一个实施例中,所述装置,还包括:确定模块134;其中,
所述确定模块134,还被配置为:
响应于不同所述测量参考信号的任意N种所述测量参考信号的N种所述测量间隔至少两两之间重合,确定不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合;
其中,所述N为大于2的正整数。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图14所示,本公开实施例中提供一种测量间隔的配置装置,其中,应用于基站,装置包括第二发送模块141;其中,
第二发送模块141,被配置为:发送测量参考信号的测量间隔的配置信息;
其中,针对不同类型的测量参考信号配置的测量间隔不同。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了 详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图15所示,本公开一个实施例提供一种终端的结构。
参照图15所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压 力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图15所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存 储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种测量间隔的配置方法,其中,应用于终端,所述方法,包括:
    接收测量参考信号的测量间隔的配置信息;
    其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
  2. 根据权利要求1所述的方法,其中,所述方法,还包括:
    向基站发送获取所述配置信息的请求消息;
    所述接收测量参考信号的测量间隔的配置信息,包括:
    接收所述基站根据所述请求消息发送的所述配置信息。
  3. 根据权利要求1所述的方法,其中,所述方法,还包括:
    响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上重叠,在重叠的所述时域位置上分时测量不同所述测量参考信号;
    或者,
    响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上不重叠,基于针对所述测量参考信号配置的测量间隔测量不同所述测量参考信号。
  4. 根据权利要求3所述的方法,其中,所述在重叠的所述时域位置上分时测量不同所述测量参考信号,包括:
    在重叠的所述时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号。
  5. 根据权利要求4所述的方法,其中,所述按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号,包括:
    响应于不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合,分别按照N种所述预设百分比分时测量所述N种所述测量间隔对应的不同测量参考信号;
    其中,所述N种所述预设百分比的和为1;所述N为大于1的正整数。
  6. 根据权利要求5所述的方法,其中,所述方法,还包括:
    响应于不同所述测量参考信号的任意N种所述测量参考信号的N种所述测量间隔至少两两之间重合,确定不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合;
    其中,所述N为大于2的正整数。
  7. 根据权利要求1所述的方法,其中,所述测量参考信号,包括以下至少之一:
    同步信号块SSB参考信号;
    信道状态参考信号CSI-RS;
    定位参考信号。
  8. 根据权利要求7所述的方法,其中,所述方法,还包括:
    接收基站发送的测量对象的信息;
    其中,所述测量对象的信息,指示所述测量参考信号为所述SSB参考信号和/或所述CSI-RS。
  9. 一种测量间隔的配置方法,其中,应用于基站,所述方法,包括:
    发送测量参考信号的测量间隔的配置信息;
    其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
  10. 根据权利要求9所述的方法,其中,所述方法,还包括:
    接收终端发送的获取所述配置信息的请求消息;
    所述发送测量参考信号的测量间隔的配置信息,包括:
    根据所述请求消息向所述终端发送所述配置信息。
  11. 根据权利要求9所述的方法,其中,所述测量参考信号,包括以下至少之一:
    同步信号块SSB参考信号;
    信道状态参考信号CSI-RS;
    定位参考信号。
  12. 根据权利要求11所述的方法,其中,所述方法,还包括:
    向终端发送测量对象的信息;
    其中,所述测量对象的信息,指示所述测量参考信号为所述SSB参考信号和/或所述CSI-RS。
  13. 一种测量间隔的配置装置,其中,应用于终端,所述装置,包括接收模块,其中,
    所述接收模块,被配置为:接收测量参考信号的测量间隔的配置信息;其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
  14. 根据权利要求13所述的装置,其中,所述装置,还包括:第一发送模块;其中,
    所述第一发送模块,被配置为向基站发送获取所述配置信息的请求消息;
    所述第一接收模块,被配置为接收所述基站根据所述请求消息发送的所述配置信息。
  15. 根据权利要求13所述的装置,其中,所述装置,还包括:测量模块;其中,
    所述测量模块,被配置为:
    响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上重叠,在重叠的所述时域位置上分时测量不同所述测量参考信号;
    或者,
    响应于针对不同所述测量参考信号配置的所述测量间隔在时域位置上不重叠,基于针对所述测量参考信号配置的测量间隔测量不同所述测量参考信号。
  16. 根据权利要求15所述的装置,其中,所述测量模块,还被配置为:
    在重叠的所述时域位置上,按照基于测量间隔执行测量的测量机会的预设百分比分时测量不同所述测量参考信号。
  17. 根据权利要求16所述的装置,其中,所述测量模块,还被配置为:
    响应于不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合,分别按照N种所述预设百分比分时测量所述N种所述测量间隔对应的不同测量参考信号;
    其中,所述N种所述预设百分比的和为1;所述N为大于1的正整数。
  18. 根据权利要求17所述的装置,其中,所述装置,还包括:确定模块;其中,
    所述确定模块,还被配置为:
    响应于不同所述测量参考信号的任意N种所述测量参考信号的N种所述测量间隔至少两两之间重合,确定不同所述测量参考信号的任意N种所述测量间隔在时域位置上重合;
    其中,所述N为大于2的正整数。
  19. 一种测量间隔的配置装置,其中,应用于基站,所述装置包括第二发送模块;其中,
    所述第二发送模块,被配置为:发送测量参考信号的测量间隔的配置信息;
    其中,针对不同类型的所述测量参考信号配置的所述测量间隔不同。
  20. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至8或权利要求9至权利要求12任一项提供的方法。
  21. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至8或权利要求9至权利要求12任一项提供的方法。
PCT/CN2021/077719 2021-02-24 2021-02-24 测量间隔的配置方法、装置、通信设备及存储介质 WO2022178723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/077719 WO2022178723A1 (zh) 2021-02-24 2021-02-24 测量间隔的配置方法、装置、通信设备及存储介质
CN202180000555.4A CN115244962A (zh) 2021-02-24 2021-02-24 测量间隔的配置方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077719 WO2022178723A1 (zh) 2021-02-24 2021-02-24 测量间隔的配置方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022178723A1 true WO2022178723A1 (zh) 2022-09-01

Family

ID=83048611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077719 WO2022178723A1 (zh) 2021-02-24 2021-02-24 测量间隔的配置方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115244962A (zh)
WO (1) WO2022178723A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065467A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 测量间隔配置方法以及装置、通信设备及存储介质
WO2024077559A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 感知测量建立方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391983A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
CN110557976A (zh) * 2018-03-30 2019-12-10 联发科技股份有限公司 无线通信系统的基于间隔的小区测量
WO2020034193A1 (en) * 2018-08-17 2020-02-20 Nokia Shanghai Bell Co., Ltd. Measurement gap management for ssb and csi-rs based rrm measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391983A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
CN110557976A (zh) * 2018-03-30 2019-12-10 联发科技股份有限公司 无线通信系统的基于间隔的小区测量
WO2020034193A1 (en) * 2018-08-17 2020-02-20 Nokia Shanghai Bell Co., Ltd. Measurement gap management for ssb and csi-rs based rrm measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: ""Discussion on Gap Configuration for CSI-RS Measurement"", 3GPP TSG-RAN WG2 MEETING #103, R2-1812753, 10 August 2018 (2018-08-10), XP051522347 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065467A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 测量间隔配置方法以及装置、通信设备及存储介质
WO2024077559A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 感知测量建立方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115244962A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2022016431A1 (zh) 切换小区的方法、装置、通信设备及存储介质
US20240007248A1 (en) Method for information transmission and method for parameter determination, communication device, and non-transitory computer-readable storage medium
US20220191728A1 (en) Measurement processing method and apparatus
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
WO2022141095A1 (zh) 辅助ue的选择方法、装置及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
WO2022188073A1 (zh) 测量参考信号的方法、装置、通信设备及存储介质
WO2023108428A1 (zh) 收发ncd-ssb的配置信息的方法、装置、通信设备及存储介质
WO2023178488A1 (zh) 测量方法、装置、通信设备及存储介质
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2024020757A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023108431A1 (zh) 执行预定操作的方法、装置、通信设备及存储介质
WO2022222145A1 (zh) 终端能力信息的上报方法、装置、通信设备及存储介质
WO2023130442A1 (zh) 测量方法、装置、通信设备及存储介质
WO2022205385A1 (zh) 测量间隔处理方法、装置、通信设备及存储介质
WO2022183452A1 (zh) 波束恢复的方法、装置、通信设备及存储介质
WO2024031391A1 (zh) 测距或侧行链路定位方法、装置、通信设备及存储介质
WO2023065080A1 (zh) 测距能力开放的方法、装置、通信设备及存储介质
WO2022110195A1 (zh) 测量数据处理方法、装置、通信设备和存储介质
WO2023272513A1 (zh) 定位测量的方法、装置、通信设备及存储介质
WO2022227100A1 (zh) 系统消息的处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927167

Country of ref document: EP

Kind code of ref document: A1