WO2024065467A1 - 测量间隔配置方法以及装置、通信设备及存储介质 - Google Patents

测量间隔配置方法以及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2024065467A1
WO2024065467A1 PCT/CN2022/122822 CN2022122822W WO2024065467A1 WO 2024065467 A1 WO2024065467 A1 WO 2024065467A1 CN 2022122822 W CN2022122822 W CN 2022122822W WO 2024065467 A1 WO2024065467 A1 WO 2024065467A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration
measurement interval
configuration information
indicate
Prior art date
Application number
PCT/CN2022/122822
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/122822 priority Critical patent/WO2024065467A1/zh
Publication of WO2024065467A1 publication Critical patent/WO2024065467A1/zh

Links

Images

Definitions

  • the present disclosure relates to, but is not limited to, the field of wireless communication technology, and in particular to a measurement interval configuration method and apparatus, a communication device, and a storage medium.
  • a User Equipment (UE) supporting MUSIM capabilities supports multiple (multiple means two or more) card slots and can be connected to multiple networks at the same time.
  • UE can be divided into single TX/single RX UE, single TX/dual RX UE and dual TX/dual RX UE according to different capabilities.
  • MUSIM UE can support multiple networks simultaneously; for example, MUSIM UE can support two networks simultaneously, one of which is a New Radio (NR) network, and the other is an NR or Long Term Evolution (LTE) network or a 3G network, etc.
  • NR New Radio
  • LTE Long Term Evolution
  • MUSIM UE can support two networks simultaneously, one of which is a New Radio (NR) network, and the other is an NR or Long Term Evolution (LTE) network or a 3G network, etc.
  • NR New Radio
  • LTE Long Term Evolution
  • 3G 3G network
  • MGs measurement gaps
  • the existing technology does not have a clear solution.
  • Embodiments of the present disclosure provide a measurement interval configuration method and apparatus, a communication device, and a storage medium.
  • a measurement interval configuration method is provided, which is performed by a network device and includes:
  • Configuration information is sent to the UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the method comprises:
  • auxiliary information sent by the UE, where the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE expects to configure.
  • the auxiliary information includes:
  • first indication information used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, one first list is used to indicate at least one priority configuration information; and one second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement intervals include: a second type of measurement interval
  • Send configuration information to the UE including:
  • configuration information is sent to the UE.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • sending configuration information to a user equipment includes:
  • An RRC message is sent to the UE, where the RRC message includes configuration information.
  • a measurement interval configuration method is provided, which is performed by a UE and includes:
  • Configuration information sent by a network device is received, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: a priority configuration and/or a measurement opportunity configuration.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the method comprises:
  • the auxiliary information is sent to the network device, where the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE desires to configure.
  • the auxiliary information includes:
  • first indication information used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, one first list is used to indicate at least one priority configuration information; and one second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement interval includes: a second type of measurement interval; wherein the auxiliary information is used for the network device to send configuration information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities for at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • the method comprises at least one of the following:
  • measurement is performed based on the measurement interval with the highest priority
  • measurement is performed based on a measurement interval with a designated priority
  • measurement is performed based on the measurement opportunity configuration of the measurement intervals.
  • receiving configuration information sent by a network device includes:
  • An RRC message sent by a network device is received, wherein the RRC message includes configuration information.
  • a measurement interval configuration device including:
  • the first sending module is configured to send configuration information to the UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the apparatus comprises:
  • the first receiving module is configured to receive auxiliary information sent by the UE, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE expects to configure.
  • the auxiliary information includes:
  • first indication information used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, one first list is used to indicate at least one priority configuration information; and one second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement intervals include: a second type of measurement interval
  • the first sending module is configured to send configuration information to the UE based on the received auxiliary information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • the first sending module is configured to send an RRC message to the UE, wherein the RRC message includes configuration information.
  • a measurement interval configuration device including:
  • the second receiving module is configured to receive configuration information sent by the network device, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the apparatus comprises:
  • the second sending module is configured to send auxiliary information to the network device, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE expects to configure.
  • the auxiliary information includes:
  • first indication information used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, one first list is used to indicate at least one priority configuration information; and one second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement interval includes: a second type of measurement interval; wherein the auxiliary information is used for the network device to send configuration information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • the apparatus includes a processing module configured to perform at least one of the following:
  • measurement is performed based on the measurement interval with the highest priority
  • measurement is performed based on a measurement interval with a designated priority
  • measurement is performed based on the measurement opportunity configuration of the measurement intervals.
  • the second receiving module is configured to receive an RRC message sent by a network device, wherein the RRC message includes the configuration information.
  • a communication device including:
  • a memory for storing processor-executable instructions
  • the processor is configured to: implement the measurement interval configuration method of any embodiment of the present disclosure when running the executable instructions.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the measurement interval configuration method of any embodiment of the present disclosure is implemented.
  • a network device sends configuration information to a UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: a priority configuration and/or a measurement opportunity configuration; in this way, the UE can be aware of the priority configuration and/or the measurement opportunity configuration of at least one configured measurement interval, which is beneficial for the UE to determine a measurement interval for measurement based on the priority configuration and/or the measurement opportunity configuration of the at least one measurement interval when a conflict occurs between measurement intervals, thereby resolving the problem of measurement interval conflicts and/or reducing the probability of measurement interval conflicts.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram showing a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram showing a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram showing a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram showing a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram showing a method for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a device for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device for configuring a measurement interval according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a UE according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: a plurality of user equipments 110 and a plurality of base stations 120.
  • the user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 110 may be an IoT user equipment, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an IoT user equipment, for example, a fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted device.
  • a station STA
  • a subscriber unit a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote user equipment (remote terminal), an access terminal, a user device (user terminal), a user agent, a user device, or a user equipment (user equipment).
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user device 110 may be a vehicle-mounted device, such as a driving computer with wireless communication function, or a wireless user device connected to a driving computer.
  • the user device 110 may be a roadside device, such as a street lamp, a signal lamp, or other roadside device with wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a 4th generation mobile communication (4G) system, also known as a long term evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new air interface system or a 5G NR system. Alternatively, the wireless communication system may be a next generation system of the 5G system.
  • the access network in the 5G system may be called a new generation-radio access network (NG-RAN).
  • NG-RAN new generation-radio access network
  • the base station 120 can be an evolved base station (eNB) adopted in a 4G system.
  • the base station 120 can also be a base station (gNB) adopting a centralized distributed architecture in a 5G system.
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a medium access control (Medium Access Control, MAC) layer protocol stack;
  • the distributed unit is provided with a physical (Physical, PHY) layer protocol stack.
  • the specific implementation method of the base station 120 is not limited in the embodiments of the present disclosure.
  • a wireless connection may be established between the base station 120 and the user equipment 110 via a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection may also be established between the user devices 110.
  • vehicle-to-vehicle (V2V) communication vehicle-to-infrastructure (V2I) communication
  • V2P vehicle-to-pedestrian communication in vehicle-to-everything (V2X) communication.
  • the above-mentioned user equipment can be considered as the terminal equipment of the following embodiments.
  • the wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (MME) in an evolved packet core (EPC).
  • MME mobility management entity
  • EPC evolved packet core
  • the network management device may also be other core network devices, such as a Serving GateWay (SGW), a Public Data Network GateWay (PGW), a Policy and Charging Rules Function (PCRF) or a Home Subscriber Server (HSS), etc.; or the core network device may also be a core network device in 5G; for example, it may be an Access and Mobility Management Function (AMF), a Policy Control Function (PCF) or a Session Management Function (SMF), etc.
  • AMF Access and Mobility Management Function
  • PCF Policy Control Function
  • SMF Session Management Function
  • the embodiments of the present disclosure list multiple implementation methods to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure can be executed separately, or can be executed together with the methods of other embodiments of the embodiments of the present disclosure, or can be executed together with some methods in other related technologies separately or in combination; the embodiments of the present disclosure do not limit this.
  • an embodiment of the present disclosure provides a measurement interval configuration method, which is performed by a network device and includes:
  • Step S21 Send configuration information to the UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the network equipment includes core network equipment or access network equipment.
  • the core network equipment can be a logical node or network element or function that can be flexibly deployed in the core network.
  • the core network equipment can be but not limited to AMF or MME.
  • the access network equipment can be a base station; the base station can be but not limited to a 2G base station, a 3G base station, a 4G base station, a 5G base station or other evolved base stations.
  • the core network device sending the configuration information to the UE may be: the core network device sends the configuration information to the base station, and the base station sends the configuration information to the UE.
  • UE can be various mobile terminals or fixed terminals.
  • the UE can be, but is not limited to, a mobile phone, a computer, a server, a wearable device, a vehicle terminal, a road side unit (RSU), a game control platform or a multimedia device.
  • RSU road side unit
  • the UE includes at least two user identification modules, and one user identification module can be used to support a connection to a network.
  • the user identification module can be, but is not limited to, a SIM card or an eSIM card, etc.
  • the UE can support a first network and a second network at the same time; wherein the first network is a first NR network, and the second network is a second NR network or an LTE network.
  • the UE when the UE is a single-transmit single-receive UE or a single-transmit dual-receive UE, if the UE supports at least two networks; the UE cannot maintain RRC connections of two or more networks at the same time, and the UE can only maintain RRC connection of one network.
  • the UE supports a first network and a second network, the UE is in an RRC connected state in the first network, and the UE is in an RRC non-connected state in the second network; here, the RRC non-connected state includes an RRC idle state or an RRC inactive state.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the network device sends configuration information to the UE, where the configuration information is used to indicate a priority of at least one measurement interval configured for the UE and/or to indicate a measurement opportunity for performing measurement in at least one measurement interval configured for the UE.
  • the configuration information is further used to indicate the measurement interval configured for the UE.
  • the network device sends the configuration information to the UE, and the configuration information is used to indicate that the first measurement interval, the second measurement interval, and the third measurement interval are configured for the UE.
  • the probability of measurement interval conflict can be reduced by indicating the measurement opportunity of the measurement interval.
  • the measurement opportunity is a measurement probability.
  • the measurement probability may be a percentage or a ratio; for example, the measurement probability of performing a measurement in the first measurement interval configured by the UE is 20% or 0.2, etc., and/or the measurement probability of performing a measurement in the second measurement interval configured by the UE is 30% or 0.3, etc.
  • the measurement probability of performing a certain measurement or a specified measurement in the first measurement interval configured by the UE is 40% or 0.4, etc.
  • the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • the predetermined value may be 1 or 100%.
  • the UE configures 4 measurement intervals, and the probabilities of the 4 measurement intervals for the same measurement are 10%, 20%, 30% and 40%, respectively.
  • the same measurement may be any measurement or a specified measurement performed by the UE.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the UE supports the first network and the second network; if the UE maintains an RRC connection in the first network, the configuration information indicates a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • a measurement interval may be one or more interval measurements; in the embodiment of the present disclosure, a plurality may be two or more.
  • the measurement interval configured by the first network for the UE may be: a measurement interval used for first network measurement and/or a measurement interval used for second network measurement.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type of measurement interval is a measurement interval used for second network measurement.
  • the second network may be one or more networks.
  • the first type of measurement interval may be, but is not limited to, a measurement interval of R15, a measurement interval of R16, a measurement interval of R17, a measurement interval of R18, a measurement interval of R19 and/or a measurement interval of R20, etc.
  • the first type of measurement interval may be, but is not limited to, a measurement interval for measurement purposes such as non-terrestrial network (NTN) measurement and/or positioning measurement.
  • NTN non-terrestrial network
  • the second type of measurement interval may be but is not limited to a MUSIM measurement interval; for example, the second type of measurement interval may be but is not limited to a measurement interval of R18, a measurement interval of R19 and/or a measurement interval of R20, etc.
  • the configuration information is used to indicate: an R15 measurement interval, an R16 measurement interval, and an R17 measurement interval configured by the first network for the UE for first network measurement, and a MUSIM measurement interval for second network measurement.
  • the MUSIM measurement interval can be a periodic measurement interval or an aperiodic measurement interval.
  • the probability of conflict between measurement intervals used for the first network measurement configuration by the UE under the first network connection and/or the probability of conflict between measurement intervals used for the second network measurement configuration can be reduced.
  • a network device sends configuration information to a UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: a priority configuration and/or a measurement opportunity configuration; in this way, the UE can be aware of the priority configuration and/or the measurement opportunity configuration of at least one configured measurement interval, which is beneficial for the UE to determine a measurement interval for measurement based on the priority configuration and/or the measurement opportunity configuration of the at least one measurement interval when a conflict occurs between measurement intervals, thereby resolving the problem of measurement interval conflicts and/or reducing the probability of measurement interval conflicts.
  • sending configuration information to the user equipment in step S21 includes: sending an RRC message to the UE, wherein the RRC message includes the configuration information.
  • An embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a network device and includes: sending an RRC message to a UE, wherein the RRC message includes configuration information.
  • the RRC message may be one of the following: an RRC setup complete message, an RRC reestablishment complete message, an RRC configuration message, and an RRC reconfiguration message.
  • the RRC message may also be other RRC messages, or the RRC message may also be replaced by other achievable messages.
  • an RRC message including configuration information can be sent to a UE through a network device, so that two functions (such as the RRC connection function of the RRC message itself and the measurement interval predetermined configuration notified to the UE) can be performed through one RRC message; thus, the signaling utilization rate can be improved and the signaling overhead can be reduced.
  • an embodiment of the present disclosure provides a measurement configuration processing method, which is executed by a network device and includes:
  • Step S31 receiving auxiliary information sent by the UE, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE desires to configure.
  • the measurement interval is the measurement interval in the above embodiments; and the predetermined configuration is the predetermined configuration in the above embodiments.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the auxiliary information may be used to indicate: the priority of at least one measurement interval that the UE desires to configure and/or a measurement opportunity for performing measurement based on the measurement interval.
  • the measurement opportunity may be a measurement probability.
  • auxiliary information sent by the UE can be received by the network device to know the priority and/or measurement opportunity of the measurement interval preferred by the UE.
  • the auxiliary information includes: first indication information, used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval.
  • a network device receives auxiliary information reported by a UE; the auxiliary information includes first indication information, and the first indication information indicates that: the priority of a first measurement interval that the UE expects to configure is a first priority and/or the measurement opportunity configured for the first measurement interval is a first percentage, and the priority of a second measurement interval that the UE expects to configure is a second priority and/or the measurement opportunity configured for the second measurement interval is a second percentage.
  • the auxiliary information includes: second indication information for indicating at least one first list and/or at least one second list; wherein a first list is used to indicate at least one priority configuration information; and a second list is used to indicate at least one measurement opportunity configuration information.
  • each priority configuration information in the first list respectively indicates the priority of each measurement interval in the third list
  • each measurement opportunity configuration information in the second list respectively indicates the measurement opportunity of each measurement interval in the third list
  • the third list is a list indicating at least one measurement interval included in the auxiliary information.
  • the measurement intervals configured by the UE are by default the first measurement interval, the second measurement interval, and the third measurement interval.
  • the network device receives auxiliary information reported by the UE; the auxiliary information includes second indication information, and the second indication information is used to indicate a first list and a second list; wherein the first list includes priority configuration information of a first priority, a second priority, and a third priority, and the second list includes measurement opportunity configuration information of a first percentage, a second percentage, and a third percentage.
  • the network device defaults the priority of the first measurement interval configured for the UE to the first priority and the measurement opportunity of the first measurement interval to the first percentage, the priority of the second measurement interval configured for the UE to the second priority and the measurement opportunity of the second measurement interval to the second percentage, and the priority of the third measurement interval configured for the UE to the third priority and the measurement opportunity of the third measurement interval to the third percentage.
  • a network device receives auxiliary information reported by a UE; the auxiliary information includes third indication information and second indication information; wherein the third indication information is used to indicate a third list, and the third list is used to indicate a first measurement interval, a second measurement interval, and a third measurement interval configured by the UE; the second indication information is used to indicate a first list and a second list; wherein the first list includes priority configuration information of a first priority, a third priority, and a second priority, and the second list includes measurement opportunity configuration information of a first percentage, a third percentage, and a second percentage.
  • the priority of the first measurement interval configured by the network device for the UE is the first priority and the measurement opportunity of the first measurement interval is the first percentage
  • the priority of the second measurement interval configured for the UE is the third priority and the measurement opportunity of the second measurement interval is the third percentage
  • the priority of the third measurement interval configured for the UE is the second priority and the measurement opportunity of the third measurement interval is the second percentage.
  • the first indication information, the second indication information and the third indication information may all be indicated by one or more bits.
  • the auxiliary information is used to indicate a measurement interval that the UE desires to configure.
  • the predetermined configuration of the measurement interval that the UE prefers to configure may be indicated in the auxiliary information in a variety of ways, thereby being adaptable to more application scenarios.
  • the measurement intervals include: a second type of measurement interval
  • the sending of configuration information to the UE in step S31 includes: sending the configuration information to the UE based on the received auxiliary information.
  • the embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a network device and includes:
  • auxiliary information sent by the UE, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE desires to configure;
  • configuration information is sent to the UE, where the configuration information is used to indicate a predetermined configuration of a measurement interval configured by the UE.
  • the network device of the first network may not be able to accurately determine the measurement interval used for the second network measurement and the priority of the measurement interval used for the second network measurement and/or the measurement opportunity for measurement; in this way, the network device can accurately determine the priority configuration and/or measurement opportunity configuration of the measurement interval configured for the UE based on the auxiliary information reported by the UE, and send the corresponding configuration information.
  • the following method based on measurement interval configuration is performed by the UE, which is similar to the description of the measurement interval configuration method performed by the network device mentioned above; and, for technical details not disclosed in the embodiment of the measurement interval configuration method performed by the UE device, please refer to the description of the example of the measurement interval configuration method performed by the network device, and no detailed description is given here.
  • an embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a UE and includes:
  • Step S41 receiving configuration information sent by a network device, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the UE and the network device may be the UE and the network device in the above embodiments, respectively.
  • the configuration information may be the configuration information in the above embodiments; the measurement interval may be the measurement interval in the above embodiments; and the predetermined configuration may be the predetermined configuration in the above embodiments.
  • the UE includes at least two user identification modules, and one user identification module can be used to support a connection to a network.
  • the user identification module can be, but is not limited to, a SIM card or an eSIM card.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • the first type measurement interval and the second type measurement interval may be a first type measurement interval and a second type measurement interval, respectively.
  • the first type of measurement interval may be, but is not limited to, a measurement interval of R15, a measurement interval of R16, a measurement interval of R17, a measurement interval of R18, a measurement interval of R19 and/or a measurement interval of R20, etc.
  • the second type of measurement interval may be but is not limited to a MUSIM measurement interval; for example, the second type of measurement interval may be but is not limited to a measurement interval of R18, a measurement interval of R19 and/or a measurement interval of R20, etc.
  • the UE can be aware of the priority configuration and/or measurement opportunity configuration of at least one configured measurement interval, which is beneficial for the UE to determine the measurement interval for measurement based on the priority configuration and/or measurement opportunity configuration of the at least one measurement interval when a conflict occurs between measurement intervals, thereby solving the problem of measurement interval conflict and/or reducing the probability of measurement interval conflict.
  • receiving configuration information sent by a network device in step S41 includes: receiving an RRC message sent by the network device, wherein the RRC message includes the configuration information.
  • An embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a UE and includes: receiving an RRC message sent by a network device, wherein the RRC message includes configuration information.
  • the RRC message may be the RRC message in the above embodiments.
  • an embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a UE and includes:
  • Step S51 Send auxiliary information to a network device, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE expects to configure.
  • the auxiliary information may be the auxiliary information in the above embodiments; the first indication information and the second indication information may be the first indication information and the second indication information in the above embodiments, respectively.
  • the auxiliary information includes:
  • first indication information used to indicate priority configuration information and/or measurement opportunity configuration information of at least one measurement interval
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, a first list is used to indicate at least one priority configuration information; and a second list is used to indicate at least one measurement opportunity configuration information.
  • each priority configuration information in the first list respectively indicates the priority of each measurement interval in the third list
  • each measurement opportunity configuration information in the second list respectively indicates the measurement opportunity of each measurement interval in the third list
  • the third list is a list indicating at least one measurement interval included in the auxiliary information.
  • the auxiliary information is used to indicate a measurement interval that the UE desires to configure.
  • the auxiliary information may be sent by the UE to the network device to inform the network device of the predetermined configuration of the measurement interval that the UE prefers to configure.
  • the measurement interval includes: a second type of measurement interval; wherein the auxiliary information is used for the network device to send configuration information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • an embodiment of the present disclosure provides a measurement interval configuration method, which is executed by a UE and includes:
  • Step S61 based on a conflict between at least two measurement intervals, measurement is performed based on the measurement interval with the highest priority; and/or measurement is performed based on the measurement opportunity configuration of the measurement interval; and/or based on a conflict between at least two measurement intervals, measurement is performed based on the measurement interval of a specified priority; and/or based on a conflict between at least two measurement intervals and at least two measurement intervals having the same priority, measurement is performed based on the measurement opportunity configuration of the measurement interval.
  • the designated priority may be the second highest priority or any one of the top priorities.
  • the network device configures three measurement intervals for the UE, and the three measurement intervals are respectively a first measurement interval, a second measurement interval, and a third measurement interval.
  • the UE receives configuration information sent by the network device, and the configuration information indicates that the priorities of the first measurement interval, the second measurement interval, and the third measurement interval are respectively the second priority, the first priority, and the third priority; wherein the priority of the first priority is higher than the second priority, and the priority of the second priority is higher than the third priority. If the first measurement interval, the second measurement interval, and the third measurement interval conflict, the UE can determine the measurement interval with the highest priority, that is, perform measurement based on the second measurement interval.
  • the network device configures three measurement intervals for the UE, the three measurement intervals being a first measurement interval, a second measurement interval, and a third measurement interval.
  • the UE receives configuration information sent by the network device, and the configuration information indicates that the measurement opportunities of the first measurement interval, the second measurement interval, and the third measurement interval for the first measurement are 30%, 20%, and 50%, respectively.
  • the UE performs measurement based on the configured measurement interval based on the measurement interval sharing configuration. For example, measurement can be performed based on the third measurement interval here.
  • the network device configures three measurement intervals for the UE, and the three measurement intervals are respectively the first measurement interval, the second measurement interval, and the third measurement interval.
  • the UE receives configuration information sent by the network device, and the configuration information indicates that the priorities of the first measurement interval, the second measurement interval, and the third measurement interval are respectively the first priority, the first priority, and the second priority, and the configuration information indicates that the measurement opportunities of the first measurement interval and the second measurement interval are respectively 75% and 25%; wherein the priority order of the first priority is higher than the second priority.
  • the UE can determine that the measurement can be performed based on the measurement interval with the highest measurement opportunity, that is, determine to perform the measurement based on the first measurement interval.
  • the UE when a measurement interval conflict occurs in the UE, the UE can determine, based on the configuration information sent by the network device received by the UE, that the UE selects an appropriate measurement interval for measurement according to the priority configuration and/or measurement opportunity configuration of the measurement interval configured for the UE as indicated in the configuration information; thus, the occurrence of measurement interval conflicts can be reduced.
  • the present disclosure provides a measurement configuration processing method, which is performed by a communication device, wherein the communication device includes a UE and a network device; the measurement configuration processing method includes the following steps:
  • Step S71 The UE sends auxiliary information to the network device, where the auxiliary information is used to indicate a predetermined configuration of the second type measurement interval that the UE expects to configure;
  • the second type of measurement interval is used for the measurement interval of the second network; the second type of measurement interval may be a MUSIM measurement interval.
  • the UE sends auxiliary information to the network device; the auxiliary information includes first indication information, and the first indication information indicates a priority configuration and/or a measurement opportunity configuration of at least one MUSIM measurement interval (MUSIM gap).
  • MUSIM gap MUSIM measurement interval
  • the UE sends auxiliary information to the network device;
  • the auxiliary information includes second indication information, and the second indication information indicates at least one first list and/or at least one second list; wherein one first list is used to indicate at least one priority configuration information; and one second list is used to indicate at least one measurement opportunity configuration information.
  • This embodiment is the auxiliary information reporting of mode B.
  • auxiliary reporting of method A and method B may be as follows:
  • Step S72 the network device sends an RRC message to the UE according to the auxiliary information reported by the UE; the RRC message includes configuration information, and the configuration information is used to indicate a predetermined configuration of the second type of measurement interval configured for the UE; the predetermined configuration includes a priority configuration and a measurement opportunity configuration;
  • the priority of MUSIM gap and/or the sharing configuration of measurement opportunities of MUSIM gap are as follows:
  • Step S73 the network device sends an RRC message to the UE, where the RRC message includes configuration information; the configuration information is used to indicate the priority configuration and/or measurement opportunity configuration of the first type of measurement interval (R15 MG and R16 MG);
  • the priorities of R15 MG and R16 MG and/or the sharing configuration of the measurement opportunities of R15 MG and R16 MG are as follows:
  • Step S74 the network device sends an RRC message to the UE, where the RRC message includes configuration information; the configuration information is used to indicate the first type of measurement interval (R17 MG) or measurement opportunity configuration;
  • the sharing configuration of the measurement opportunity of R17 MG is as follows:
  • the measurement opportunities of the measurement intervals in the above steps S72, S73 and S74 are percentages; and the sum of the percentages of the measurement opportunities of the measurement intervals for the same measurement is 1.
  • Step S75 After receiving the configuration information indicating the predetermined configuration of the MUSIM gap and the R15 MG, R16 MG and R17 MG, the UE determines the priority and/or measurement opportunity of the measurement intervals; if at least two of the measurement intervals conflict, measurement is performed based on the measurement interval with the highest priority among the measurement intervals, or if the measurement intervals are the same, measurement is performed based on the measurement interval with the highest measurement opportunity, and measurement of other measurement intervals with priorities or measurement opportunities is abandoned.
  • an embodiment of the present disclosure provides a measurement interval configuration device, including:
  • the first sending module 51 is configured to send configuration information to the UE, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the measurement interval configuration device in the embodiment of the present disclosure is a network device.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • An embodiment of the present disclosure provides a measurement interval configuration device, including: a first receiving module, configured to receive auxiliary information sent by a UE, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that the UE expects to configure.
  • the auxiliary information includes: first indication information for indicating priority configuration information and/or measurement opportunity configuration information of at least one measurement interval;
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, a first list is used to indicate at least one priority configuration information; and a second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement interval includes: a second type measurement interval.
  • An embodiment of the present disclosure provides a measurement interval configuration device, including: a first sending module 51, configured to send configuration information to a UE based on received auxiliary information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • An embodiment of the present disclosure provides a measurement interval configuration device, including: a first sending module 51, configured to send an RRC message to a UE, wherein the RRC message includes configuration information.
  • an embodiment of the present disclosure provides a measurement interval configuration device, including:
  • the second receiving module 61 is configured to receive configuration information sent by the network device, wherein the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the UE; wherein the predetermined configuration includes: priority configuration and/or measurement opportunity configuration.
  • the configuration information includes at least one of the following:
  • Priority configuration information used to indicate the priority of the measurement interval
  • the measurement opportunity configuration information is used to indicate a measurement opportunity for performing measurement based on a measurement interval.
  • the configuration information is used to indicate a predetermined configuration of at least one measurement interval configured by the first network for the UE.
  • the measurement interval includes at least one of the following:
  • a first type of measurement interval where the first type of measurement interval is a measurement interval used for first network measurement
  • the second type measurement interval is a measurement interval used for second network measurement.
  • An embodiment of the present disclosure provides a measurement interval configuration device, including: a second sending module, configured to send auxiliary information to a network device, wherein the auxiliary information is used to indicate a predetermined configuration of a measurement interval that a UE expects to configure.
  • the auxiliary information includes: first indication information for indicating priority configuration information and/or measurement opportunity configuration information of at least one measurement interval;
  • the second indication information is used to indicate at least one first list and/or at least one second list; wherein, a first list is used to indicate at least one priority configuration information; and a second list is used to indicate at least one measurement opportunity configuration information.
  • the measurement interval includes: a second type of measurement interval; wherein the auxiliary information is used for the network device to send configuration information.
  • the measurement opportunities are measurement probabilities; the sum of the measurement probabilities of at least one measurement interval for the same measurement is less than or equal to a predetermined value.
  • the embodiment of the present disclosure provides a measurement interval configuration device, including: a processing module, the processing module is configured to perform at least one of the following:
  • measurement is performed based on the measurement interval with the highest priority
  • measurement is performed based on a measurement interval with a designated priority
  • measurement is performed based on the measurement opportunity configuration of the measurement intervals.
  • An embodiment of the present disclosure provides a measurement interval configuration device, including: a second receiving module 61, configured to receive an RRC message sent by a network device, wherein the RRC message includes the configuration information.
  • the present disclosure provides a communication device, including:
  • a memory for storing processor-executable instructions
  • the processor is configured to: implement the measurement interval configuration method of any embodiment of the present disclosure when running the executable instructions.
  • the communication device may include but is not limited to at least one of: UE and/or network device.
  • the network device includes a base station or a core network device.
  • the processor may include various types of storage media, which are non-temporary computer storage media that can continue to memorize information stored thereon after the user device loses power.
  • the processor may be connected to the memory via a bus or the like, and may be used to read an executable program stored in the memory, for example, at least one of the methods shown in FIG. 2 to FIG. 6 .
  • the embodiment of the present disclosure further provides a computer storage medium storing a computer executable program, and when the executable program is executed by a processor, the measurement interval configuration method of any embodiment of the present disclosure is implemented, for example, at least one of the methods shown in Figures 2 to 6.
  • Fig. 9 is a block diagram of a user device 800 according to an exemplary embodiment.
  • the user device 800 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the user device 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
  • the processing component 802 generally controls the overall operation of the user device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations on the user device 800. Examples of such data include instructions for any application or method operating on the user device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 806 provides power to the various components of the user device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the user device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the user device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the user device 800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the user device 800 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 804 or sent via the communication component 816.
  • the audio component 810 also includes a speaker for outputting audio signals.
  • I/O interface 812 provides an interface between processing component 802 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 814 includes one or more sensors for providing various aspects of status assessment for the user device 800.
  • the sensor assembly 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the user device 800, and the sensor assembly 814 can also detect the position change of the user device 800 or a component of the user device 800, the presence or absence of contact between the user and the user device 800, the orientation or acceleration/deceleration of the user device 800, and the temperature change of the user device 800.
  • the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the user device 800 and other devices.
  • the user device 800 can access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the user device 800 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 804 including instructions, and the instructions can be executed by the processor 820 of the user device 800 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • an embodiment of the present disclosure illustrates a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as an application.
  • the application stored in the memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any method of the aforementioned method applied to the base station.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input/output (I/O) interface 958.
  • the base station 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, FreeBSD TM or the like.

Abstract

本公开实施例提供一种测量间隔配置方法以及装置、通信设备及存储介质;测量间隔配置方法,由网络设备执行,包括:向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。

Description

测量间隔配置方法以及装置、通信设备及存储介质 技术领域
本公开涉及但不限于无线通信技术领域,尤其涉及一种测量间隔配置方法以及装置、通信设备及存储介质。
背景技术
在多通用用户标识模块(Multi-Universal Subscriber Identity Module,MUSIM)通信场景中,支持MUSIM能力的用户设备(User Equipment,UE)支持多个(多个是指两个或两个以上)卡槽,可同时连接至多个网络。UE根据能力不同可以分为单发单收(single TX/single RX)UE、单发双收(single TX/dual RX)UE以及双发双收(dual TX/dual RX)UE。
在相关技术中,MUSIM UE可同时支持多个网络;例如,MUSIM UE可同时支持两个网络,其中一个网络为新空口(New Radio,NR)网络,另一个网络为NR或者长期演进(Long Term Evolution,LTE)网络或者3G网络等。对于单发单收UE或者单发双手UE,由于只有一个接收天线(TX)的能力,UE不能同时保持两个或两个以上的无线资源控制(Radio Resource Control,RRC)连接;因此对于该场景,UE在一个网络处于RRC连接态,其它网络处于RRC非连接态。
而对于MUSIM通信场景,会给UE配置多个测量间隔(Measurement Gap,MG),该多个测量间隔冲突碰撞时现有技术并没有明确的解决办法。
发明内容
本公开实施例提供一种测量间隔配置方法以及装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种测量间隔配置方法,其中,由网络设备执行,包括:
向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
在一些实施例中,方法包括:
接收UE发送的辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:
第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,
第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔;
向UE发送配置信息,包括:
基于接收的辅助信息,向UE发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
在一些实施例中,向用户设备发送配置信息,包括:
向UE发送RRC消息,其中,RRC消息包括配置信息。
根据本公开实施例的第二方面,提供一种测量间隔配置方法,由UE执行,包括:
接收网络设备发送的配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
在一些实施例中,方法包括:
向网络设备发送辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:
第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,
第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔;其中,辅助信息用于供网络设备发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小 于或等于预定值。
在一些实施例中,方法包括以下至少之一:
基于至少两个测量间隔发生冲突,基于优先级最高测量间隔进行测量;
基于测量间隔的测量机会配置进行测量;
基于至少两个测量间隔发生冲突,基于指定优先级的测量间隔进行测量;
基于至少两个测量间隔发生冲突且至少两个测量间隔的优先级相同,基于测量间隔的测量机会配置进行测量。
在一些实施例中,接收网络设备发送的配置信息,包括:
接收网络设备发送的RRC消息,其中,RRC消息包括配置信息。
根据本公开实施例的第三方面,提供一种测量间隔配置装置,包括:
第一发送模块,被配置为向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
在一些实施例中,装置包括:
第一接收模块,被配置为接收UE发送的辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:
第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,
第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔;
第一发送模块,被配置为基于接收的辅助信息,向UE发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
在一些实施例中,第一发送模块,被配置为向UE发送RRC消息,其中,RRC消息包括配置信息。
根据本公开实施例的第四方面,提供一种测量间隔配置装置,包括:
第二接收模块,被配置为接收网络设备发送的配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
在一些实施例中,装置包括:
第二发送模块,被配置为向网络设备发送辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:
第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,
第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔;其中,辅助信息用于供网络设备发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
在一些实施例中,装置包括处理模块,处理模块被配置为执行以下至少之一:
基于至少两个测量间隔发生冲突,基于优先级最高测量间隔进行测量;
基于测量间隔的测量机会配置进行测量;
基于至少两个测量间隔发生冲突,基于指定优先级的测量间隔进行测量;
基于至少两个测量间隔发生冲突且至少两个测量间隔的优先级相同,基于测量间隔的测量机会配置进行测量。
在一些实施例中,第二接收模块,被配置为接收网络设备发送的RRC消息,其中,RRC消息包括所述配置信息。
根据本公开实施例的第五方面,提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的测量间隔配置方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,计算机存储介质存储有计算机可执 行程序,可执行程序被处理器执行时实现本公开任意实施例的测量间隔配置方法。
本公开实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,网络设备向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置;如此可以使得UE知晓配置的至少一个测量间隔的优先级配置和/或测量机会配置,有利于UE在测量间隔之间发出冲突时,基于该至少一个测量间隔的优先级配置和/或测量机会配置确定进行测量的测量间隔,从而解决测量间隔发生冲突的问题和/或降低测量间隔发生冲突的概率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种测量间隔配置方法的示意图。
图3是根据一示例性实施例示出的一种测量间隔配置方法的示意图。
图4是根据一示例性实施例示出的一种测量间隔配置方法的示意图。
图5是根据一示例性实施例示出的一种测量间隔配置方法的示意图。
图6是根据一示例性实施例示出的一种测量间隔配置方法的示意图。
图7是根据一示例性实施例示出的一种测量间隔配置装置的框图。
图8是根据一示例性实施例示出的一种测量间隔配置装置的框图。
图9是根据一示例性实施例示出的一种UE的框图。
图10是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施 例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体接入控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的车对车(vehicle to vehicle,V2V)通信、车对路边设备(vehicle  to Infrastructure,V2I)通信和车对人(vehicle to pedestrian,V2P)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等;或者核心网设备也可以是是5G中的核心网设备;比如可以是接入和移动性管理功能(Access and Mobility Management Function,AMF)、策略控制功能(Policy Control Function,PCF)或者会话管理功能(Session Management Function,SMF)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
如图2所示,本公开实施例提供一种测量间隔配置方法,由网络设备执行,包括:
步骤S21:向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
这里,网络设备包括核心网设备或者接入网设备。核心网设备可以是核心网络中能灵活部署的逻辑节点或者网元或者功能。例如,核心网设备可以是但不限于是AMF或者MME等。接入网设备可以是基站;该基站可以是但不限于是2G基站、3G基站、4G基站、5G基站或者其它演进型基站。
若网络设备为核心网设备,核心网设备向UE发送配置信息可以是:核心网设备向基站发送配置信息,基站将配置信息发送给UE。
这里,UE可以是各种移动终端或固定终端。例如,该UE可以是但不限于是手机、计算机、服务器、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、游戏控制平台或多媒体设备等。
在一个实施例中,UE包括至少两个用户识别模块,一个用户识别模块可用于支持一个网络的连连接。该用户识别模块可以是但不限于是SIM卡或者eSIM卡等。示例性的,UE可以为同时支持第一网络和第二网络;其中,第一网络为第一NR网络,第二网络为第二NR网络或者LTE网络。
这里,UE为单发单收UE或者单发双收UE时,若UE支持至少两个网络;则UE不能同时保持两个或者两个以上网络的RRC连接,UE只能保持一个网络的RRC连接。例如UE支持第一网络和第二网络,UE在第一网络处于RRC连接态,UE在第二网络处于RRC非连接态;这里,RRC非 连接态包括RRC空闲态或者RRC非激活态。
在一个实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
示例性的,网络设备向UE发送配置信息,配置信息用于指示为UE配置的至少一个测量间隔的优先级,和/或用于指示为UE配置的至少一个测量间隔进行测量的测量机会。
在另一个实施例中,配置信息,还用于指示为UE配置的测量间隔。例如,网络设备给UE发送配置信息,配置信息用于指示为UE配置第一测量间隔、第二测量间隔以及第三测量间隔。
如此,在本公开实施例中,可以通过测量间隔的优先级的指示,确定出至少两个测量间隔发生冲突时,优先选择哪个测量间隔进行测量,从而解决测量间隔发生冲突的问题。和/或,可以通过测量间隔进行测量的测量机会的指示,以降低测量间隔发生冲突的概率。
在一个实施例中,测量机会为测量概率。该测量概率可以是百分比或者比值;例如,UE配置的第一测量间隔进行测量的测量概率为20%或者0.2等,和/或UE配置的第二测量间隔进行测量的测量概率为30%或者0.3等。又如,UE配置的第一测量间隔进行某次测量或者指定测量的测量概率为40%或者0.4等。
在一个实施例中,对于同一个测量的至少一个测量间隔的所述测量概率之和小于或等于预定值。该预定值可以是1或者100%。例如,UE配置4个测量间隔,该4个测量间隔针对同一测量的概率分别为10%、20%、30%以及40%。这里,该同一测量可以是UE进行测量中任意一次测量或者指定测量。
在一个实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。示例性的,UE支持第一网络和第二网络;若UE在第一网络保持RRC连接,配置信息指示第一网络为UE配置的至少一个测量间隔的预定配置。这里,一个测量间隔可以是一个或多个间隔测量;在本公开实施例中,多个可以是两个或两个以上。
这里,第一网络为UE配置的测量间隔可以是:用于第一网络测量的测量间隔和/或用于第二网络测量的测量间隔。
在一个实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
这里,第二网络可以是一个或多个网络。
这里,第一类测量间隔可以是但不限于是R15的测量间隔、R16的测量间隔、R17的测量间隔、R18的测量间隔、R19的测量间隔和/或R20的测量间隔等。第一类测量间隔可以是但不限于是用于非地面网络(Non-Terrestrial Network,NTN)测量和/或定位测量等测量目的测量间隔。
这里,第二类测量间隔可以是但不限于是MUSIM测量间隔;例如第二类测量间隔可以是但不限于是R18的测量间隔、R19的测量间隔和/或R20的测量间隔等。
示例性的,配置信息用于指示:第一网络为UE配置的用于第一网络测量的一个R15的测量间隔的、一个R16的测量间隔和R17的测量间隔,以及用于第二网络测量的一个MUSIM测量间隔。这里,MUSIM测量间隔可以是周期性的测量间隔或者非周期性的测量间隔。
如此,可以降低UE在第一网络连接下用于第一网络测量配置的测量间隔之间发生冲突的概率和/或用于第二网络测量配置的测量间隔之间发生冲突的概率。
在本公开实施例中,网络设备向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置;如此可以使得UE知晓配置的至少一个测量间隔的优先级配置和/或测量机会配置,有利于UE在测量间隔之间发出冲突时,基于该至少一个测量间隔的优先级配置和/或测量机会配置确定进行测量的测量间隔,从而解决测量间隔发生冲突的问题和/或降低测量间隔发生冲突的概率。
在一个实施例中,步骤S21中向用户设备发送配置信息,包括:向UE发送RRC消息,其中,RRC消息包括配置信息。
本公开实施例提供一种测量间隔配置方法,由网络设备执行,包括:向UE发送RRC消息,其中,RRC消息包括配置信息。
在一个实施例中,RRC消息可以为以下的一种:RRC建立完成消息、RRC重建完成消息、RRC配置消息及RRC重配置消息。当然,RRC消息也可以是其它RRC消息,或者RRC消息也可以是由其它可实现消息替换。
如此,在本公开实施例中,可以通过网络设备向UE发送包括配置信息的RRC消息,从而可以通过一个RRC消息执行两个功能(例如RRC消息本身的RRC连接功能以及通知UE配置的测量间隔预定配置);如此可以提高信令利用率以及降低信令的开销。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本公开实施例提供一种测量配置处理方法,由网络设备执行,包括:
步骤S31:接收UE发送的辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在本公开的一些实施例中,测量间隔为上述实施例中测量间隔;预定配置为上述实施例中预定配置。
示例性的,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
示例性的,预定配置,包括:优先级配置和/或测量机会配置。
示例性的,辅助信息可以用于指示:UE期望配置的至少一个测量间隔的优先级和/或基于测量间隔进行测量的测量机会。这里,测量机会可以是测量概率。
如此,在本公开实施例中,可以通过网络设备接收UE发送的辅助信息,以知晓UE偏好配置的 测量间隔的优先级和/或测量机会。
在一个实施例中,辅助信息包括:第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息。
示例性的,网络设备接收UE上报的辅助信息;辅助信息包括第一指示信息,第一指示信息指示:UE期望配置的第一测量间隔的优先级为第一优先级和/或第一测量间隔配置的测量机会为第一百分比,UE期望配置的第二测量间隔的优先级为第二优先级和/或第二测量间隔配置的测量机会为第二百分比。
在一个实施例中,辅助信息包括:第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
这里,第一列表中各优先级配置信息分别指示第三列表中各测量间隔的优先级,和/或,第二列表中各测量机会配置信息分别指示第三列表中各测量间隔的测量机会;第三列表中为辅助信息中包括的指示至少一个测量间隔的列表。
示例性的,UE配置的测量间隔默认为第一测量间隔、第二测量间隔以及第三测量间隔。网络设备接收UE上报的辅助信息;辅助信息包括第二指示信息,第二指示信息用于指示一个第一列表和一个第二列表;其中,第一列表包括第一优先级、第二优先级以及第三优先级的优先级配置信息,第二列表包括第一百分比、第二百分比以及第三百分比的测量机会配置信息。此时,网络设备默认为UE配置的第一测量间隔的优先级为第一优先级和第一测量间隔的测量机会为第一百分比,为UE配置的第二测量间隔的优先级为第二优先级和第二测量间隔的测量机会为第二百分比,以及为UE配置的第三测量间隔的优先级为第三优先级和第三测量间隔的测量机会为第三百分比。
示例性的,网络设备接收UE上报的辅助信息;辅助信息包括第三指示信息及第二指示信息;其中,第三指示信息用于指示第三列表,第三列表用于指示UE配置的第一测量间隔、第二测量间隔以及第三测量间隔;第二指示信息用于指示一个第一列表和一个第二列表;其中,第一列表包括第一优先级、第三优先级以及第二优先级的优先级配置信息,第二列表包括第一百分比、第三百分比以及第二百分比的测量机会配置信息。此时,网络设备为UE配置的第一测量间隔的优先级为第一优先级和第一测量间隔的测量机会为第一百分比,为UE配置的第二测量间隔的优先级为第三优先级和第二测量间隔的测量机会为第三百分比,以及为UE配置的第三测量间隔的优先级为第二优先级和第三测量间隔的测量机会为第二百分比。
这里,第一指示信息、第二指示信息以及第三指示信息均可以是由一个或多个比特指示。
在一个实施例中,辅助信息,用于指示UE期望配置的测量间隔。
如此,在本公开实施例中,可以在辅助信息中通过多种方式指示UE偏好配置的测量间隔的预定配置,从而可以适应更多的应用场景。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
在一些实施例中,测量间隔包括:第二类测量间隔;
步骤S31中向UE发送配置信息,包括:基于接收的辅助信息,向UE发送配置信息。
本公开实施例提供一种测量间隔配置方法,由网络设备执行,包括:
接收UE发送的辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置;
基于辅助信息,向UE发送配置信息,其中,配置信息用于指示UE配置的测量间隔的预定配置。
在本公开实施例中,对于第二类测量间隔,即用于第二网络测量的测量间隔,在UE处于第一网络的RRC连接态时,第一网络的网络设备可能无法准确确定用于第二网络测量的测量间隔和用于第二网络测量的测量间隔的优先级和/或进行测量的测量机会;如此网络设备可以基于UE上报的辅助信息准确确定为UE配置的测量间隔的优先级配置和/或测量机会配置,并发送相应的配置信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
以下一种基于测量间隔配置方法,是由UE执行的,与上述由网络设备执行的测量间隔配置方法的描述是类似的;且,对于UE设备执行的测量间隔配置方法实施例中未披露的技术细节,请参照由网络设备执行的测量间隔配置方法示例的描述,在此不做详细描述说明。
如图4所示,本公开实施例提供一种测量间隔配置方法,由UE执行,包括:
步骤S41:接收网络设备发送的配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在本公开的一些实施例中,UE、网络设备分别可以为上述实施例中UE、网络设备。配置信息可以为上述实施例中配置信息;测量间隔可以为上述实施例中测量间隔;预定配置可以为上述实施例中预定配置。
示例性的,UE包括至少两个用户识别模块,一个用户识别模块可用于支持一个网络的连连接。该用户识别模块可以是但不限于是SIM卡或者eSIM卡等。
示例性的,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
示例性的,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
示例性的,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
在本公开的一些实施例中,第一类测量间隔、第二类测量间隔分别可以是第一类测量间隔、第二类测量间隔。
示例性的,第一类测量间隔可以是但不限于是R15的测量间隔、R16的测量间隔、R17的测量间隔、R18的测量间隔、R19的测量间隔和/或R20的测量间隔等。
示例性的,第二类测量间隔可以是但不限于是MUSIM测量间隔;例如第二类测量间隔可以是但不限于是R18的测量间隔、R19的测量间隔和/或R20的测量间隔等。
如此,在本公开实施例中,UE可以知晓配置的至少一个测量间隔的优先级配置和/或测量机会配置,有利于UE在测量间隔之间发出冲突时,基于该至少一个测量间隔的优先级配置和/或测量机会配置确定进行测量的测量间隔,从而解决测量间隔发生冲突的问题和/或降低测量间隔发生冲突的概率。
在一些实施例中,步骤S41中接收网络设备发送的配置信息,包括:接收网络设备发送的RRC消息,其中,RRC消息包括配置信息。
本公开实施例提供一种测量间隔配置方法,由UE执行,包括:接收网络设备发送的RRC消息,其中,RRC消息包括配置信息。
在本公开的一些实施例中,RRC消息可以为上述实施例中RRC消息。
如图5所示,本公开实施例提供一种测量间隔配置方法,由UE执行,包括:
步骤S51:向网络设备发送辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在本公开的一些实施例中,辅助信息可以为上述实施例中辅助信息;第一指示信息、第二指示信息分别可以为上述实施例中第一指示信息、第二指示信息。
示例性的,辅助信息包括:
第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
这里,第一列表中各优先级配置信息分别指示第三列表中各测量间隔的优先级,和/或,第二列表中各测量机会配置信息分别指示第三列表中各测量间隔的测量机会;第三列表中为辅助信息中包括的指示至少一个测量间隔的列表。
示例性的,辅助信息,用于指示UE期望配置的测量间隔。
如此,可以通过UE向网络设备发送辅助信息,以告知网络设备UE偏好配置的测量间隔的预定配置。
在一个实施例中,测量间隔包括:第二类测量间隔;其中,辅助信息用于供网络设备发送配置信息。
在一个实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
以上实施方式,具体可以参见网络设备侧的表述,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本公开实施例提供一种测量间隔配置方法,由UE执行,包括:
步骤S61:基于至少两个测量间隔发生冲突,基于优先级最高测量间隔进行测量;和/或基于测量间隔的测量机会配置进行测量;和/或基于至少两个测量间隔发生冲突,基于指定优先级的测量间隔进行测量;和/或基于至少两个测量间隔发生冲突且至少两个测量间隔的优先级相同,基于测量间隔的测量机会配置进行测量。
这里,指定优先级可以是次高优先级或者排名在前的几个优先级中任意一个优先级等。
示例性的,网络设备给UE配置三个测量间隔,该三个测量间隔分别为第一测量间隔、第二测量间隔以及第三测量间隔。UE接收到网络设备发送的配置信息,配置信息指示第一测量间隔、第二测量间隔以及第三测量间隔的优先级分别为第二优先级、第一优先级以及第三优先级;其中,第一优先级的优先顺序高于第二优先级,第二优先级的优先顺序高于第三优先级。若第一测量间隔、第二测量间隔及第三测量间隔发生冲突,则UE可以确定优先级最高测量间隔,即基于第二测量间隔进行测量。
示例性的,网络设备给UE配置三个测量间隔,该三个测量间隔分别为第一测量间隔、第二测量间隔以及第三测量间隔。UE接收到网络设备发送的配置信息,配置信息指示第一测量间隔、第二测量间隔以及第三测量间隔对第一测量的测量机会分别为30%、20%以及50%。UE基于测量间隔共享配置执行基于所配置的测量间隔的测量。例如,这里可以基于第三测量间隔执行测量。
示例性的,网络设备给UE配置三个测量间隔,该三个测量间隔分别为第一测量间隔、第二测量间隔以及第三测量间隔。UE接收网络设备发送的配置信息,配置信息指示第一测量间隔、第二测量间隔以及第三测量间隔的优先级分别为第一优先级、第一优先级以及第二优先级,以及配置信息指示第一测量间隔和第二测量间隔的测量机会分别为75%和25%;其中,第一优先级的优先级顺序高于第二优先级。若第一测量间隔与第二测量间隔发生冲突;该第一测量间隔与第二测量间隔的优先级相同,均为第一优先级;UE可以确定进行测量可以基于测量机会最高的测量间隔进行测量,即确定基于第一测量间隔进行测量。
如此,在本公开实施例中,UE在测量间隔发生冲突时,可以基于UE接收到网络设备发送的配置信息,根据配置信息指示的为UE配置的测间隔的优先级配置和/或测量机会配置,确定UE选择合适的测量间隔进行测量;如此可以减少测量间隔发生冲突的情况出现。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了进一步解释本公开任意实施例,以下提供几个具体实施例。
本公开实施例提供一种测量配置处理方法,由通信设备执行,通信设备包括UE和网络设备;测量配置处理方法包括以下步骤:
步骤S71:UE向网络设备发送辅助信息,其中,辅助信息用于指示UE期望配置的第二类测量间隔的预定配置;
这里,第二类测量间隔用于第二网络的测量间隔;该第二类测量间隔可以为MUSIM测量间隔。
在一个可选实施例中,UE向网络设备发送辅助信息;辅助信息包括第一指示信息,第一指示信息指示至少一个MUSIM测量间隔(MUSIM gap)的优先级配置和/或测量机会配置。该实施例为方式A的辅助信息上报。
在另一个可选实施例中,UE向网络设备发送辅助信息;辅助信息包括第二指示信息,第二指示信息指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。该实施例为方式B的辅助信息上报。
示例性的,方式A和方式B的辅助上报可以如下所示:
Figure PCTCN2022122822-appb-000001
步骤S72:网络设备根据UE上报的辅助信息,向UE发送RRC消息;RRC消息包括配置信息,配置信息用于指示为UE配置的第二类测量间隔的预定配置;预定配置包括优先级配置及测量机会配置;
示例性的,MUSIM gap的优先级和/或MUSIM gap的侧量机会的共享配置如下所示:
Figure PCTCN2022122822-appb-000002
Figure PCTCN2022122822-appb-000003
步骤S73:网络设备向UE发送RRC消息,RRC消息包括配置信息;配置信息用于指示第一类测量间隔(R15 MG和R16 MG)的优先级配置和/或测量机会配置;
示例性的,R15 MG和R16 MG的优先级和/或R15 MG和R16 MG的测量机会的共享配置如下所示:
Figure PCTCN2022122822-appb-000004
步骤S74:网络设备向UE发送RRC消息,RRC消息包括配置信息;配置信息用于指示第一类测量间隔(R17 MG)的或测量机会配置;
示例性的,R17 MG的测量机会的共享配置如下所示:
Figure PCTCN2022122822-appb-000005
在一个可选实施例中,上述步骤S72、步骤S73以及步骤S74中测量间隔的测量机会为百分比;对于同一个测量各测量间隔的测量机会的百分比之和为1。
步骤S75:UE接收到指示MUSIM gap和R15 MG、R16 MG以及R17 MG的预定配置的配置信息后,确定该些测量间隔的优先级和/或测量机会;若该些测量间隔中至少两个测量间隔发生冲突,则基于该些测量间隔中优先级最高的测量间隔进行测量或者该些测量间隔相同时基于测量机会最高的测量间隔进行测量,且放弃其它的优先级或者测量机会的测量间隔的测量。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7所示,本公开实施例提供一种测量间隔配置装置,包括:
第一发送模块51,被配置为向UE发送配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
本公开实施例的测量间隔配置装置为网络设备。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
本公开实施例提供一种测量间隔配置装置,包括:第一接收模块,被配置为接收UE发送的辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔。
本公开实施例提供一种测量间隔配置装置,包括:第一发送模块51,被配置为基于接收的辅助信息,向UE发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
本公开实施例提供一种测量间隔配置装置,包括:第一发送模块51,被配置为向UE发送RRC消息,其中,RRC消息包括配置信息。
如图8所示,本公开实施例提供一种测量间隔配置装置,包括:
第二接收模块61,被配置为接收网络设备发送的配置信息,其中,配置信息用于指示UE配置的至少一个测量间隔的预定配置;其中,预定配置包括:优先级配置和/或测量机会配置。
在一些实施例中,配置信息包括以下至少之一:
优先级配置信息,用于指示测量间隔的优先级;
测量机会配置信息,用于指示基于测量间隔进行测量的测量机会。
在一些实施例中,配置信息用于指示第一网络为UE配置的至少一个测量间隔的预定配置。
在一些实施例中,测量间隔,包括以下至少之一:
第一类测量间隔,第一类测量间隔为用于第一网络测量的测量间隔;
第二类测量间隔,第二类测量间隔为用于第二网络测量的测量间隔。
本公开实施例提供一种测量间隔配置装置,包括:第二发送模块,被配置为向网络设备发送辅助信息,其中,辅助信息用于指示UE期望配置的测量间隔的预定配置。
在一些实施例中,辅助信息包括:第一指示信息,用于指示至少一个测量间隔的优先级配置信息和/或测量机会配置信息;
或者,第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个第一列表用于指示至少一个优先级配置信息;一个第二列表用于指示至少一个测量机会配置信息。
在一些实施例中,测量间隔包括:第二类测量间隔;其中,辅助信息用于供网络设备发送配置信息。
在一些实施例中,测量机会为测量概率;对于同一测量的至少一个测量间隔的测量概率之和小于或等于预定值。
本公开实施例提供一种测量间隔配置装置,包括:处理模块,处理模块被配置为执行以下至少之一:
基于至少两个测量间隔发生冲突,基于优先级最高测量间隔进行测量;
基于测量间隔的测量机会配置进行测量;
基于至少两个测量间隔发生冲突,基于指定优先级的测量间隔进行测量;
基于至少两个测量间隔发生冲突且至少两个测量间隔的优先级相同,基于测量间隔的测量机会配置进行测量。
本公开实施例提供一种测量间隔配置装置,包括:第二接收模块61,被配置为接收网络设备发送的RRC消息,其中,RRC消息包括所述配置信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的测量间隔配置方法。
在一个实施例中,通信设备可以包括但不限于至少之一:UE和/或网络设备。网络设备包括基站或者核心网设备。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图6所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的测量间隔配置方法。例如,如图2至图6所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法 的实施例中进行了详细描述,此处将不做详细阐述说明。
图9是根据一示例性实施例示出的一种用户设备800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘, 点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图10所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图10,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施 例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种测量间隔配置方法,其中,由网络设备执行,包括:
    向用户设备UE发送配置信息,其中,所述配置信息用于指示所述UE配置的至少一个测量间隔的预定配置;其中,所述预定配置包括:优先级配置和/或测量机会配置。
  2. 根据权利要求1所述的方法,其中,所述配置信息包括以下至少之一:
    优先级配置信息,用于指示所述测量间隔的优先级;
    测量机会配置信息,用于指示基于所述测量间隔进行测量的测量机会。
  3. 根据权利要求1或2所述的方法,其中,所述配置信息用于指示第一网络为UE配置的至少一个所述测量间隔的所述预定配置。
  4. 根据权利要求1至3任一项所述的方法,其中,所述测量间隔,包括以下至少之一:
    第一类测量间隔,所述第一类测量间隔为用于第一网络测量的测量间隔;
    第二类测量间隔,所述第二类测量间隔为用于第二网络测量的测量间隔。
  5. 根据权利要求1至4任一项所述的方法,其中,所述方法包括:
    接收所述UE发送的辅助信息,其中,所述辅助信息用于指示所述UE期望配置的所述测量间隔的所述预定配置。
  6. 根据权利要求5所述的方法,其中,所述辅助信息包括:
    第一指示信息,用于指示至少一个所述测量间隔的所述优先级配置信息和/或所述测量机会配置信息;
    或者,
    第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个所述第一列表用于指示至少一个所述优先级配置信息;所述一个所述第二列表用于指示至少一个所述测量机会配置信息。
  7. 根据权利要求5所述的方法,其中,所述测量间隔包括:第二类测量间隔;
    所述向用户设备UE发送配置信息,包括:
    基于接收的所述辅助信息,向所述UE发送所述配置信息。
  8. 根据权利要求1至7任一项所述的方法,其中,所述测量机会为测量概率;对于同一测量的至少一个所述测量间隔的所述测量概率之和小于或等于预定值。
  9. 根据权利要求1至7任一项所述的方法,其中,所述向用户设备发送配置信息,包括:
    向所述UE发送无线资源控制RRC消息,其中,所述RRC消息包括所述配置信息。
  10. 一种测量间隔配置方法,其中,由用户设备UE执行,包括:
    接收网络设备发送的配置信息,其中,所述配置信息用于指示所述UE配置的至少一个测量间隔的预定配置;其中,所述预定配置包括:优先级配置和/或测量机会配置。
  11. 根据权利要求10所述的方法,其中,所述配置信息包括以下至少之一:
    优先级配置信息,用于指示所述测量间隔的优先级;
    测量机会配置信息,用于指示基于所述测量间隔进行测量的测量机会。
  12. 根据权利要求10或11所述的方法,其中,所述配置信息用于指示第一网络为UE配置的至少一个所述测量间隔的所述预定配置。
  13. 根据权利要求10至12任一项所述的方法,其中,所述测量间隔,包括以下至少之一:
    第一类测量间隔,所述第一类测量间隔为用于第一网络测量的测量间隔;
    第二类测量间隔,所述第二类测量间隔为用于第二网络测量的测量间隔。
  14. 根据权利要求10至13任一项所述的方法,其中,所述方法包括:
    向所述网络设备发送辅助信息,其中,所述辅助信息用于指示所述UE期望配置的所述测量间隔的所述预定配置。
  15. 根据权利要求14所述的方法,其中,所述辅助信息包括:
    第一指示信息,用于指示至少一个所述测量间隔的所述优先级配置信息和/或所述测量机会配置信息;
    或者,
    第二指示信息,用于指示至少一个第一列表和/或至少一个第二列表;其中,一个所述第一列表用于指示至少一个所述优先级配置信息;所述一个所述第二列表用于指示至少一个所述测量机会配置信息。
  16. 根据权利要求15所述的方法,其中,所述测量间隔包括:第二类测量间隔;其中,所述辅助信息用于供所述网络设备发送所述配置信息。
  17. 根据权利要求10至16任一项所述的方法,其中,所述测量机会为测量概率;对于同一测量的至少一个所述测量间隔的所述测量概率之和小于或等于预定值。
  18. 根据权利要求10至16所述的方法,其中,所述方法包括以下至少之一:
    基于至少两个所述测量间隔发生冲突,基于优先级最高所述测量间隔进行测量;
    基于所述测量间隔的测量机会配置进行测量;
    基于至少两个所述测量间隔发生冲突,基于指定优先级的所述测量间隔进行测量;
    基于至少两个所述测量间隔发生冲突且至少两个所述测量间隔的优先级相同,基于所述测量间隔的测量机会配置进行测量。
  19. 根据权利要求10至18任一项所述的方法,其中,所述接收网络设备发送的配置信息,包括:
    接收网络设备发送的无线资源控制RRC消息,其中,所述RRC消息包括所述配置信息。
  20. 一种测量间隔配置装置,其中,包括:
    第一发送模块,被配置为向用户设备UE发送配置信息,其中,所述配置信息用于指示所述UE配置的至少一个测量间隔的预定配置;其中,所述预定配置包括:优先级配置和/或测量机会配置。
  21. 一种测量间隔配置装置,其中,包括:
    第二接收模块,被配置为接收网络设备发送的配置信息,其中,所述配置信息用于指示所述UE 配置的至少一个测量间隔的预定配置;其中,所述预定配置包括:优先级配置和/或测量机会配置。
  22. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至9、或者权利要求10至19任一项所述的测量间隔配置方法。
  23. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至9、或者权利要求10至19任一项所述的测量间隔配置方法。
PCT/CN2022/122822 2022-09-29 2022-09-29 测量间隔配置方法以及装置、通信设备及存储介质 WO2024065467A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122822 WO2024065467A1 (zh) 2022-09-29 2022-09-29 测量间隔配置方法以及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122822 WO2024065467A1 (zh) 2022-09-29 2022-09-29 测量间隔配置方法以及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024065467A1 true WO2024065467A1 (zh) 2024-04-04

Family

ID=90475370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122822 WO2024065467A1 (zh) 2022-09-29 2022-09-29 测量间隔配置方法以及装置、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024065467A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572879A (zh) * 2019-10-29 2019-12-13 展讯通信(上海)有限公司 资源控制方法、装置及存储介质
CN111385836A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种信息配置和数据传输的方法及设备
CN113924797A (zh) * 2019-06-14 2022-01-11 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端
WO2022178723A1 (zh) * 2021-02-24 2022-09-01 北京小米移动软件有限公司 测量间隔的配置方法、装置、通信设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385836A (zh) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 一种信息配置和数据传输的方法及设备
CN113924797A (zh) * 2019-06-14 2022-01-11 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端
CN110572879A (zh) * 2019-10-29 2019-12-13 展讯通信(上海)有限公司 资源控制方法、装置及存储介质
WO2022178723A1 (zh) * 2021-02-24 2022-09-01 北京小米移动软件有限公司 测量间隔的配置方法、装置、通信设备及存储介质

Similar Documents

Publication Publication Date Title
WO2021159492A1 (zh) 接入控制方法、装置、通信设备及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021179130A1 (zh) 通信处理方法及装置
US20230123352A1 (en) Information processing methods, user equipment, and base station
US20240007248A1 (en) Method for information transmission and method for parameter determination, communication device, and non-transitory computer-readable storage medium
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2023065255A1 (zh) 小区重选方法、装置、通信设备及存储介质
WO2023060490A1 (zh) 能力信息的上报方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2024065467A1 (zh) 测量间隔配置方法以及装置、通信设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
WO2023151055A1 (zh) 发送配置信息的方法、装置、通信设备及存储介质
WO2023123433A1 (zh) 终端的功率配置方法、装置、通信设备及存储介质
EP4319258A1 (en) Measurement gap pre-configuration processing method and apparatus, communication device, and storage medium
US20230396399A1 (en) Information transmission method, communication device and storage medium
WO2023206090A1 (zh) QoS信息处理方法、装置、通信设备及存储介质
WO2024000124A1 (zh) 寻呼协商方法、装置、通信设备及存储介质
WO2024031382A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2024036632A1 (zh) Bsr增强调度方法以及装置、通信设备及存储介质
WO2023164796A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023155111A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024065498A1 (zh) 层一l1的移动性测量方法、装置、通信设备及存储介质
WO2023137677A1 (zh) 切换bwp的方法、装置、通信设备及存储介质
WO2022266855A1 (zh) 分组寻呼的方法、装置、通信设备及存储介质