WO2023173430A1 - 信息传输方法、装置、通信设备和存储介质 - Google Patents

信息传输方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2023173430A1
WO2023173430A1 PCT/CN2022/081793 CN2022081793W WO2023173430A1 WO 2023173430 A1 WO2023173430 A1 WO 2023173430A1 CN 2022081793 W CN2022081793 W CN 2022081793W WO 2023173430 A1 WO2023173430 A1 WO 2023173430A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
sensing
information
cognitive
base station
Prior art date
Application number
PCT/CN2022/081793
Other languages
English (en)
French (fr)
Inventor
刘建宁
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/081793 priority Critical patent/WO2023173430A1/zh
Priority to CN202280000833.0A priority patent/CN117099392A/zh
Publication of WO2023173430A1 publication Critical patent/WO2023173430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to information transmission methods, devices, communication equipment and storage media.
  • mobile communication networks can use communication perception (synaesthesia) integration solutions to integrate the two functions of communication and perception, so that the communication system has both communication and perception functions at the same time. While the wireless channel transmits sensing information, it actively recognizes and analyzes the characteristics of the channel to perceive the physical characteristics of the surrounding environment.
  • a synaesthesia system that implements an integrated synaesthesia solution can include: transmitter: sends sensory information; receiver: receives the sensory information and sends the sensory data to the processor; the sensory information received by the receiver can be reflected by the sensory object of.
  • Processor Processes the sensing data received from the receiver and outputs the sensing results.
  • a processor may include one or more processors, or one or more processing devices.
  • embodiments of the present disclosure provide an information transmission method, device, communication device, and storage medium.
  • an information transmission method is provided, wherein the method is executed by a base station, and the method includes:
  • UE User Equipment
  • the first sensing service request is at least used to request the network to provide sensing services to the UE.
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the requested service parameter information includes at least one of the following:
  • QoS Quality of Service
  • the method further includes one of the following:
  • a second sensing service request is sent to the core network, where the second sensing service request at least includes the requested service parameter information.
  • the sending of sensing service rejection information includes at least one of the following:
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the method further includes:
  • the method further includes:
  • second cognitive service acceptance information is sent to the UE, where the second cognitive service acceptance information is used to indicate that the network supports the cognitive service.
  • the first cognitive service acceptance information is at least used to indicate: the resource configuration parameters for the UE to perform the cognitive service and/or the resource configuration parameters for the base station to perform the cognitive service, wherein , the resource configuration parameters for the UE to perform the sensing service and the resource configuration parameters for the base station to perform the sensing service are determined by the core network based at least on the requested service parameter information;
  • the second cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • an information transmission method is provided, wherein the method is executed by user equipment UE, and the method includes:
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the requested service parameter information includes at least one of the following:
  • the method further includes one of the following:
  • sensing service rejection information wherein the sensing service rejection information is used to indicate that the network does not support the sensing service
  • sensing service acceptance information where the sensing service acceptance information is used to indicate that the network supports the sensing service.
  • the receiving perceived service rejection information includes at least one of the following:
  • Receive third perceived service rejection information sent by the core network wherein the third perceived service rejection information is triggered by the core network based on the second perceived service rejection information sent by the base station.
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • an information transmission device wherein the device includes:
  • the first transceiver module is configured to receive a first cognitive service request from the user equipment UE, where the first cognitive service request is at least used to request the network to provide cognitive services to the UE.
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the requested service parameter information includes at least one of the following:
  • the first transceiver module is further configured to be one of the following:
  • a second sensing service request is sent to the core network, where the second sensing service request at least includes the requested service parameter information.
  • the first transceiver module is specifically configured to be at least one of the following:
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the first transceiver module is further configured to:
  • the first transceiver module is further configured to:
  • second cognitive service acceptance information is sent to the UE, where the second cognitive service acceptance information is used to indicate that the network supports the cognitive service.
  • the first cognitive service acceptance information is at least used to indicate: the resource configuration parameters for the UE to perform the cognitive service and/or the resource configuration parameters for the base station to perform the cognitive service, wherein , the resource configuration parameters for the UE to perform the sensing service and the resource configuration parameters for the base station to perform the sensing service are determined by the core network based at least on the requested service parameter information;
  • the second cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • an information transmission device wherein the device includes:
  • the second transceiver module is configured to send a first cognitive service request to the base station, where the first cognitive service request is at least used to request the network to provide cognitive services to the user equipment UE.
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the requested service parameter information includes at least one of the following:
  • the second transceiver module is further configured to be one of the following:
  • sensing service rejection information wherein the sensing service rejection information is used to indicate that the network does not support the sensing service
  • sensing service acceptance information where the sensing service acceptance information is used to indicate that the network supports the sensing service.
  • the second transceiver module is specifically configured to be at least one of the following:
  • Receive third perceived service rejection information sent by the core network wherein the third perceived service rejection information is triggered by the core network based on the second perceived service rejection information sent by the base station.
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • a communication equipment device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program.
  • the program When the program is executed, the steps of the information transmission method described in the first aspect or the second aspect are performed.
  • a storage medium on which an executable program is stored, wherein when the executable program is executed by a processor, the information transmission method as described in the first aspect or the second aspect is implemented. A step of.
  • Embodiments of the present disclosure provide information transmission methods, devices, communication equipment and storage media.
  • the information transmission method includes: the base station receives a first cognitive service request from the UE, where the first cognitive service request is at least used to request the network to provide cognitive services to the UE.
  • the UE requests the network for the sensing service through the first sensing service request.
  • the network determines whether the UE can perform sensing services, and the network configures resources for the sensing services. It can meet situations such as deployment of sensing services at the base station granularity. Requests are made before sensing services are performed, which reduces the inconsistency between the UE and the network on whether the UE can perform sensing services and improves the reliability of the UE's sensing services.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Figure 2 is a schematic flow diagram of a registration request according to an exemplary embodiment
  • Figure 3 is a schematic flow chart of an information transmission method according to an exemplary embodiment
  • Figure 4 is a schematic flowchart of another information transmission method according to an exemplary embodiment
  • Figure 5 is a schematic flowchart of yet another information transmission method according to an exemplary embodiment
  • Figure 6 is a schematic flowchart of yet another information transmission method according to an exemplary embodiment
  • Figure 7 is a schematic flowchart of yet another information transmission method according to an exemplary embodiment
  • Figure 8 is a schematic flowchart of yet another information transmission method according to an exemplary embodiment
  • Figure 9 is a block diagram of an information transmission device according to an exemplary embodiment
  • Figure 10 is a block diagram of another information transmission device according to an exemplary embodiment
  • FIG. 11 is a block diagram of an apparatus for information transmission according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • Terminal 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • Terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or "cellular" phone) and a device with The computer of the Internet of Things terminal, for example, can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote terminal
  • user terminal user agent, user device, or user equipment (UE).
  • UE user equipment
  • the terminal 11 may be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless communication device connected to an external on-board computer.
  • the terminal 11 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • MTC system New Generation-Radio Access Network
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection can also be established between terminals 11.
  • V2V vehicle to vehicle, vehicle to vehicle
  • V2I vehicle to infrastructure, vehicle to roadside equipment
  • V2P vehicle to pedestrian, vehicle to person
  • the above-mentioned wireless communication system may also include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • serving gateway Serving GateWay, SGW
  • public data network gateway Public Data Network GateWay, PGW
  • Policy and Charging Rules Policy and Charging Rules
  • PCRF Policy and Charging Rules
  • HSS Home Subscriber Server
  • the execution subjects involved in the embodiments of this disclosure include but are not limited to: mobile phone terminals in cellular mobile communication systems, as well as network-side equipment, such as access network equipment such as base stations, and core networks.
  • the registration request process is used for the UE and the network to negotiate mutual capabilities.
  • the registration request process is shown in Figure 2, including:
  • Step 201 The UE sends a registration request message to the access network (RAN), where the registration request message contains the UE's capabilities, such as UE wireless capabilities, release request indication, etc.
  • the registration request message contains the UE's capabilities, such as UE wireless capabilities, release request indication, etc.
  • Step 202-Step 203 RAN selects AMF and forwards the registration request to AMF
  • Step 204-Step 219 Perform authentication and authorization, UE identity check, etc.
  • Step 2020 Default.
  • Step 2021 The AMF sends a registration reception message to the UE, including which network capabilities the corresponding UE capability network can support. For example, support for paging restrictions, etc.
  • Step 222-Step 225 Confirm network requirements, authenticate and authorize specific network slices, etc.
  • the 3GPP system does not support sensing capabilities, so sensing capabilities cannot be negotiated between the UE and the network.
  • sensing services can be deployed at the gNB level and sensing capabilities can be negotiated between the UE and the core network.
  • the UE moves to an area/base station coverage that does not support sensing services, the UE cannot initiate sensing services.
  • this exemplary embodiment provides an information transmission method that can be performed by a base station of a cellular mobile communication system, including:
  • Step 301 Receive a first cognitive service request from the UE, where the first cognitive service request is at least used to request the network to provide cognitive services to the UE.
  • the UE may be a terminal such as a mobile phone in a cellular mobile communication system.
  • a UE may be a communication device used to receive sensing information.
  • the first UE may also transmit sensing information.
  • the network may include but is not limited to access network, and/or core network, etc.
  • the sensing signal may be a signal used for both data communication and environment sensing in a cellular mobile communication system. During the transmission process, the sensing signal will be interfered with by the surrounding environment, such as reflection, resulting in different changes.
  • the UE senses the surrounding environment based on the received sensing signals.
  • the sensing signal can be a radio frequency signal, including a millimeter wave signal, a terahertz signal, etc. UE can also be used to transmit sensing signals for other communication devices to receive and sense the surrounding environment.
  • the UE may send the first sensing service request during the process of accessing the base station and/or after establishing a connection with the base station.
  • the first sensing service request may include indication information indicating the requested sensing service type, parameters of sensing service requirements, sensing capabilities of the UE and/or an identifier indicating the UE, etc.
  • the first awareness service request may be used to negotiate awareness capabilities with the network.
  • the network may determine whether to accept providing the sensing service to the UE based on the first sensing service request or the like.
  • the network may determine whether to provide the sensing service to the UE based on the first sensing service request, and configure resources for the provided sensing service and so on.
  • the core network may determine whether to provide the sensing service to the UE, and when it is determined to provide the sensing service to the UE, resources for the sensing service may be configured.
  • the UE may send a first cognitive service request to the base station when it is determined that the UE supports the cognitive service and the accessed network also supports the cognitive service.
  • sensing services are deployed at the base station granularity, not all base stations support sensing services, or base stations do not support all types of sensing services; and whether the UE can obtain sensing services also depends on the UE's service authority and the network resource status, etc. Therefore, the UE needs to send a first sensing service request to the network to request the sensing service, and the network determines whether the UE can obtain the sensing service. This reduces the inconsistency between the UE and the network regarding whether the UE can perform sensing services and improves the reliability of the UE's sensing services.
  • the UE requests the network for the sensing service through the first sensing service request.
  • the network determines whether the UE can perform sensing services, and the network configures resources for the sensing services. It can meet situations such as deployment of sensing services at the base station granularity. Requests are made before sensing services are performed, which reduces the inconsistency between the UE and the network on whether the UE can perform sensing services and improves the reliability of the UE's sensing services.
  • the first sensing service request includes at least one of the following:
  • a perceptual service indication which is used to indicate the perceptual service, wherein the perceptual services indicated by different perceptual service indications are different;
  • the aware service indication may be used to indicate to the base station the aware services requested by the UE from the network.
  • the UE may not classify sensing services.
  • One bit is used to indicate that the UE is requesting a sensing service.
  • Awareness services can also be categorical. For example, classification can be based on the business type of the sensing service, the type of sensing object, the transmitter that transmits the sensing signal, etc.
  • the aware service indication may indicate the type of aware service. The sensing services indicated by different sensing service indications are different.
  • the base station After receiving the first sensing service request, the base station can determine the sensing service requested by the UE and determine whether the sensing service is supported.
  • the service parameter information may include parameters of the sensing service requirements of the sensing service requested by the UE, the sensing capability of the UE, and so on.
  • the service parameter information may be used by the core network to determine whether to accept the UE's sensing service request, and/or configure sensing service resources according to the service parameter information.
  • the service parameter information may be NAS information.
  • the service parameter information may be a NAS aware request container.
  • Service parameter information can be transparently transmitted from the base station to the core network.
  • the requested service parameter information includes at least one of the following:
  • QoS Quality of Service
  • Sensing capability information may be used to indicate the UE's sensing capabilities (Sensing Capabilities), such as the UE's ability to receive sensing signals, and/or the UE's ability to transmit sensing signals, etc.
  • Sensing Capabilities such as the UE's ability to receive sensing signals, and/or the UE's ability to transmit sensing signals, etc.
  • the sensing type information may be used to indicate the type of sensing service requested by the UE.
  • the type of sensing service may be classified based on the service type of the sensing service, the type of sensing object, the transmitting end that transmits the sensing signal, the role of the UE in the sensing service, etc.
  • the perceived service quality QoS may include the QoS of the communication data in the sensing service, or the QoS of the sensing accuracy of the sensing object in the sensing service.
  • Perceived objects can be classified based on motion status, such as dynamic objects and static objects. Perceptual objects can be classified based on actual objects, such as cars, buildings, etc.
  • the core network and the like can determine whether to accept the UE's sensing service request, and/or determine the resources required for sensing service based on the service parameter information, and allocate and configure the resources.
  • this exemplary embodiment provides an information transmission method that can be performed by a base station of a cellular mobile communication system.
  • the method further includes one of the following:
  • Step 401a When it is determined that the base station does not support the sensing service, send sensing service rejection information;
  • Step 401b When it is determined that the base station supports the sensing service, send a second sensing service request to the core network, where the second sensing service request at least includes the requested service parameter information.
  • Step 401a and/or step 401b can be implemented separately or in combination with step 301.
  • the base station may determine whether the base station supports the cognitive service based on the cognitive service indication.
  • the base station may also determine that the first aware service request is for requesting the aware service based on the service parameter information of the aware service in the first aware service request.
  • the base station can determine whether to support the sensing service based on its own ability to support the sensing service.
  • the base station can also determine whether to support the UE to perform sensing services based on the authorization status of the UE. For example, the base station may determine whether the UE is allowed to perform sensing services based on the UE identification, such as UE ID, in the first sensing service request.
  • the base station may determine whether the UE is allowed to perform sensing services based on the UE identification, such as UE ID, in the first sensing service request.
  • the base station may determine that the first sensing service request is used to request the sensing service according to the service parameter information indicated by the service indication and/or the sensing service in the first sensing service request, and the base station determines whether to request sensing service according to its own sensing service capability.
  • Support aware services are used to determine that the first sensing service request is used to request the sensing service according to the service parameter information indicated by the service indication and/or the sensing service in the first sensing service request.
  • the base station may send sensing service rejection information.
  • the base station may send perceived service rejection information to the UE and/or the core network. Sensing service rejection information may be used to indicate that the base station does not support sensing services.
  • the sending of sensing service rejection information includes at least one of the following:
  • the base station may use an AS message to send the first perceived service rejection information to the UE. That is, the base station can directly instruct the UE to reject the sensing service.
  • the base station may also use a NAS message to send the first perceived service rejection information to the UE.
  • the base station may also send a second cognitive service rejection message to the core network to indicate that the base station does not support the cognitive service.
  • the second sensing service denial information may be carried by a NAS message.
  • the core network may use a NAS message to send the third sensing service rejection information to the UE, indicating that the network does not support the UE to perform sensing services.
  • the core network may also use the AS message to send the third perceived service rejection information to the UE through the base station.
  • the second perceived service rejection information sent by the base station to the core network may be received by the AMF in the core network. And the AMF sends the third sensing service rejection information to the UE.
  • the second perceived service rejection information may also be received and processed by other network elements in the core network, such as SF, and the third perceived service rejection information may be sent to the UE through the AMF.
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the reasons why the base station or the core network refuses the UE to perform sensing services may include: the base station does not support it, and/or the UE is not authorized to perform sensing services, etc.
  • the perceived service rejection information sent to the UE by the base station or the core network: the first perceived service rejection information or the second perceived service rejection information may carry service rejection information.
  • the perceived service rejection information sent by the base station to the core network may carry service rejection information.
  • the base station may send a second sensing service request to the core network.
  • the second sensing service request may carry service parameter information, which is used for the core network to allocate and configure sensing service resources.
  • the second sensing service request may carry the sensing service capabilities of the base station, so that the core network can configure resources based on the capabilities of the base station.
  • the base station can send service parameter information to the AMF in the core network, and the AMF allocates and configures sensing service resources. Allocation and configuration of sensing service resources can also be performed by other network elements in the core network, such as SF.
  • this exemplary embodiment provides an information transmission method that can be executed by a base station of a cellular mobile communication system.
  • the method further includes:
  • Step 501 Receive the first cognitive service acceptance information sent by the core network based on the second cognitive service request.
  • this exemplary embodiment provides an information transmission method that can be executed by a base station of a cellular mobile communication system.
  • the method further includes:
  • Step 502 Based on the first cognitive service acceptance information, send second cognitive service acceptance information to the UE, where the second cognitive service acceptance information is used to indicate that the network supports the cognitive service.
  • Step 501 and step 502 can be implemented individually or in combination with step 301, step 401a and/or step 401b.
  • the core network can send the first sensing service acceptance information to the base station, instructing the core network to allow the UE to perform sensing services.
  • the first sensing service acceptance information may be sent by the AMF in the core network, or the first sensing service acceptance information may be sent by other network elements in the core network, such as SF, through the AMF.
  • the base station may send the second cognitive service acceptance information to the UE to instruct the network to allow the UE to perform cognitive services.
  • the first cognitive service acceptance information is at least used to indicate: the resource configuration parameters for the UE to perform the cognitive service and/or the resource configuration parameters for the base station to perform the cognitive service, wherein , the resource configuration parameters for the UE to perform the sensing service and the resource configuration parameters for the base station to perform the sensing service are determined by the core network based at least on the requested service parameter information;
  • the second cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • the resource configuration parameters of the base station and UE may be determined by the AMF, or may be determined by other network elements in the core network such as SF.
  • the second sensing service acceptance information may also include resource configuration parameters configured by the base station for the UE to perform sensing services.
  • this exemplary embodiment provides an information transmission method that can be executed by a UE in a cellular mobile communication system, including:
  • Step 601 Send a first cognitive service request to the base station, where the first cognitive service request is at least used to request the network to provide cognitive services to the UE.
  • the UE may be a terminal such as a mobile phone in a cellular mobile communication system.
  • a UE may be a communication device used to receive sensing information.
  • the first UE may also transmit sensing information.
  • the network may include but is not limited to access network, and/or core network, etc.
  • the sensing signal may be a signal used for both data communication and environment sensing in a cellular mobile communication system. During the transmission process, the sensing signal will be interfered with by the surrounding environment, such as reflection, resulting in different changes.
  • the UE senses the surrounding environment based on the received sensing signals.
  • the sensing signal can be a radio frequency signal, including a millimeter wave signal, a terahertz signal, etc. UE can also be used to transmit sensing signals for other communication devices to receive and sense the surrounding environment.
  • the UE may send the first sensing service request during the process of accessing the base station and/or after establishing a connection with the base station.
  • the first sensing service request may include indication information indicating the requested sensing service type, parameters of sensing service requirements, sensing capabilities of the UE and/or an identifier indicating the UE, etc.
  • the first awareness service request may be used to negotiate awareness capabilities with the network.
  • the network may determine whether to accept providing the sensing service to the UE based on the first sensing service request or the like.
  • the network may determine whether to provide the sensing service to the UE based on the first sensing service request, and configure resources for the provided sensing service and so on.
  • the core network may determine whether to provide the sensing service to the UE, and when it is determined to provide the sensing service to the UE, resources for the sensing service may be configured.
  • the UE may send a first cognitive service request to the base station when it is determined that the UE supports the cognitive service and the accessed network also supports the cognitive service.
  • sensing services are deployed at the base station granularity, not all base stations support sensing services, or base stations do not support all types of sensing services; and whether the UE can obtain sensing services also depends on the UE's service authority and the network resource status, etc. Therefore, the UE needs to send a first sensing service request to the network to request the sensing service, and the network determines whether the UE can obtain the sensing service. This reduces the inconsistency between the UE and the network regarding whether the UE can perform sensing services and improves the reliability of the UE's sensing services.
  • the UE requests the network for the sensing service through the first sensing service request.
  • the network determines whether the UE can perform sensing services, and the network configures resources for the sensing services. It can meet situations such as deployment of sensing services at the base station granularity. Requests are made before sensing services are performed, which reduces the inconsistency between the UE and the network on whether the UE can perform sensing services and improves the reliability of the UE's sensing services.
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the aware service indication may be used to indicate to the base station the aware services requested by the UE from the network.
  • the UE may not classify sensing services.
  • One bit is used to indicate that the UE is requesting a sensing service.
  • Awareness services can also be categorical. For example, classification can be based on the business type of the sensing service, the type of sensing object, the transmitter that transmits the sensing signal, etc.
  • the aware service indication may indicate the type of aware service. The sensing services indicated by different sensing service indications are different.
  • the base station After receiving the first sensing service request, the base station can determine the sensing service requested by the UE and determine whether the sensing service is supported.
  • the service parameter information may include parameters of the sensing service requirements of the sensing service requested by the UE, the sensing capability of the UE, and so on.
  • the service parameter information may be used by the core network to determine whether to accept the UE's sensing service request, and/or configure sensing service resources according to the service parameter information.
  • the service parameter information may be NAS information.
  • the service parameter information may be a NAS aware request container.
  • Service parameter information can be transparently transmitted from the base station to the core network.
  • the requested service parameter information includes at least one of the following:
  • Sensing capability information may be used to indicate the UE's sensing capabilities (Sensing Capabilities), such as the UE's ability to receive sensing signals, and/or the UE's ability to transmit sensing signals, etc.
  • Sensing Capabilities such as the UE's ability to receive sensing signals, and/or the UE's ability to transmit sensing signals, etc.
  • the sensing type information may be used to indicate the type of sensing service requested by the UE.
  • the type of sensing service may be classified based on the service type of the sensing service, the type of sensing object, the transmitting end that transmits the sensing signal, the role of the UE in the sensing service, etc.
  • the perceived service quality QoS may include the QoS of the communication data in the sensing service, or the QoS of the sensing accuracy of the sensing object in the sensing service.
  • Perceived objects can be classified based on motion status, such as dynamic objects and static objects. Perceptual objects can be classified based on actual objects, such as cars, buildings, etc.
  • the core network and the like can determine whether to accept the UE's sensing service request, and/or determine the resources required for sensing service based on the service parameter information, and allocate and configure the resources.
  • this exemplary embodiment provides an information transmission method that can be performed by a base station of a cellular mobile communication system.
  • the method further includes one of the following:
  • Step 701a Receive sensing service rejection information, where the sensing service rejection information is used to indicate that the network does not support the sensing service;
  • Step 701b Receive sensing service acceptance information, where the sensing service acceptance information is used to indicate that the network supports the sensing service.
  • Step 701a and/or step 701b can be implemented separately or in combination with step 601.
  • the base station may determine whether the base station supports the cognitive service based on the cognitive service indication.
  • the base station may also determine that the first aware service request is for requesting the aware service based on the service parameter information of the aware service in the first aware service request.
  • the base station can determine whether to support the sensing service based on its own ability to support the sensing service.
  • the base station can also determine whether to support the UE to perform sensing services based on the authorization status of the UE. For example, the base station may determine whether the UE is allowed to perform sensing services based on the UE identification, such as UE ID, in the first sensing service request.
  • the base station may determine whether the UE is allowed to perform sensing services based on the UE identification, such as UE ID, in the first sensing service request.
  • the base station may determine that the first sensing service request is used to request the sensing service according to the service parameter information indicated by the service indication and/or the sensing service in the first sensing service request, and the base station determines whether to request sensing service according to its own sensing service capability.
  • Support aware services are used to determine that the first sensing service request is used to request the sensing service according to the service parameter information indicated by the service indication and/or the sensing service in the first sensing service request.
  • the base station may send sensing service rejection information.
  • the base station may send perceived service rejection information to the UE and/or the core network.
  • Sensing service rejection information may also be sent by the core network.
  • the core network may determine whether to allow the UE to perform sensing services based on base station capabilities and/or whether the UE is authorized to perform sensing services. If not, send sensing service rejection information to the UE.
  • the receiving perceived service rejection information includes at least one of the following:
  • Receive third perceived service rejection information sent by the core network wherein the third perceived service rejection information is triggered by the core network based on the second perceived service rejection information sent by the base station.
  • the base station may use an AS message to send the first perceived service rejection information to the UE. That is, the base station can directly instruct the UE to reject the sensing service.
  • the base station may also use a NAS message to send the first perceived service rejection information to the UE.
  • the base station may also send a second cognitive service rejection message to the core network to indicate that the base station does not support the cognitive service.
  • the second sensing service denial information may be carried by a NAS message.
  • the core network may use a NAS message to send the third sensing service rejection information to the UE, indicating that the network does not support the UE to perform sensing services.
  • the core network may also use the AS message to send the third perceived service rejection information to the UE through the base station.
  • the second perceived service rejection information sent by the base station to the core network may be received by the AMF in the core network. And the AMF sends the third sensing service rejection information to the UE.
  • the second perceived service rejection information may also be received and processed by other network elements in the core network, such as SF, and the third perceived service rejection information may be sent to the UE through the AMF.
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the reasons why the base station or the core network refuses the UE to perform sensing services may include: the base station does not support it, and/or the UE is not authorized to perform sensing services, etc.
  • the perceived service rejection information sent by the base station to the core network may carry service rejection information.
  • the base station may send a second sensing service request to the core network.
  • the second sensing service request may carry service parameter information, which is used for the core network to allocate and configure sensing service resources.
  • the second sensing service request may carry the sensing service capabilities of the base station, so that the core network can configure resources based on the capabilities of the base station.
  • the base station can send service parameter information to the AMF in the core network, and the AMF allocates and configures sensing service resources. Allocation and configuration of sensing service resources can also be performed by other network elements in the core network, such as SF.
  • the base station receives the first cognitive service acceptance information sent by the core network based on the second cognitive service request.
  • the base station sends second sensing service acceptance information to the UE based on the first sensing service acceptance information, where the second sensing service acceptance information is used to indicate that the network supports the sensing service. Serve.
  • the core network can send the first sensing service acceptance information to the base station, instructing the core network to allow the UE to perform sensing services.
  • the first sensing service acceptance information may be sent by the AMF in the core network, or the first sensing service acceptance information may be sent by other network elements in the core network, such as SF, through the AMF.
  • the base station may send the second cognitive service acceptance information to the UE to instruct the network to allow the UE to perform cognitive services.
  • the cognitive service acceptance information (i.e., the above-mentioned second cognitive service acceptance information) is at least used to indicate: the resource configuration parameters for the UE to perform the cognitive service.
  • the resource configuration parameters of the base station and UE may be determined by the AMF, or may be determined by other network elements in the core network such as SF.
  • the second sensing service acceptance information may also include resource configuration parameters configured by the base station for the UE to perform sensing services.
  • the specific steps for the UE and the core network to exchange sensing capabilities with each other include:
  • Step 801 The UE sends a sensing service request to the base station (such as gNB, etc.).
  • the sensing service request includes: UE ID, sensing service indication (Sensing Service indication), and service parameter information of the sensing service (such as NAS sensing request container, NAS sensing request container Can include: sensing capability information, sensing type information, perceived service quality QoS, sensing object information)
  • Step 802 The base station determines whether it supports sensing service. When receiving a sensing service request, the base station determines that the UE requests sensing services according to the sensing service indication or by detecting whether there is a NAS sensing request container.
  • Step 803a When the base station supports the sensing service, the base station forwards the sensing service request to the AMF.
  • the cognitive service request may carry the cognitive service capability of the base station.
  • Step 803b When the base station does not support the sensing service, the base station rejects the sensing service request and indicates the reason for the rejection.
  • the base station when the base station does not support the sensing service, the base station will send a NAS message (service request) to the AMF to indicate that the sensing service is not supported.
  • the AMF sends a NAS message to the UE to reject the service request.
  • Step 804 When receiving the cognitive service request from the base station, the AMF triggers the allocation and configuration of cognitive service resources from the network to the gNB and the UE.
  • Step 805 The AMF sends a sensing service acceptance message to the base station and the UE, carrying the sensing service related parameters of the gNB/UE.
  • An embodiment of the present invention also provides an information transmission device, as shown in Figure 9, applied in a base station of cellular mobile wireless communication, wherein the device 100 includes:
  • the first transceiver module 110 is configured to receive a first cognitive service request from the user equipment UE, where the first cognitive service request is at least used to request the network to provide cognitive services to the UE.
  • the first sensing service request includes at least one of the following:
  • a perceptual service indication which is used to indicate the perceptual service, wherein the perceptual services indicated by different perceptual service indications are different;
  • the requested service parameter information includes at least one of the following:
  • the first transceiver module 110 is further configured to be one of the following:
  • a second sensing service request is sent to the core network, where the second sensing service request at least includes the requested service parameter information.
  • the first transceiver module 110 is specifically configured to be at least one of the following:
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the first transceiver module 110 is further configured to:
  • the first transceiver module 110 is further configured to:
  • second cognitive service acceptance information is sent to the UE, where the second cognitive service acceptance information is used to indicate that the network supports the cognitive service.
  • the first cognitive service acceptance information is at least used to indicate: the resource configuration parameters for the UE to perform the cognitive service and/or the resource configuration parameters for the base station to perform the cognitive service, wherein , the resource configuration parameters for the UE to perform the sensing service and the resource configuration parameters for the base station to perform the sensing service are determined by the core network based at least on the requested service parameter information;
  • the second cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • An embodiment of the present invention also provides an information transmission device, as shown in Figure 10, applied to UE in cellular mobile wireless communications, wherein the device 200 includes:
  • the second transceiver module 210 is configured to send a first cognitive service request to the base station, where the first cognitive service request is at least used to request the network to provide cognitive services to the user equipment UE.
  • the first sensing service request includes at least one of the following:
  • Perceptual service indication used to indicate the perceptual service
  • the requested service parameter information includes at least one of the following:
  • the second transceiver module 210 is also configured as one of the following:
  • sensing service rejection information wherein the sensing service rejection information is used to indicate that the network does not support the sensing service
  • sensing service acceptance information where the sensing service acceptance information is used to indicate that the network supports the sensing service.
  • the second transceiver module 210 is specifically configured to be at least one of the following:
  • Receive third perceived service rejection information sent by the core network wherein the third perceived service rejection information is triggered by the core network based on the second perceived service rejection information sent by the base station.
  • the service rejection information includes: indication information indicating the reason for the rejection.
  • the cognitive service acceptance information is at least used to indicate: resource configuration parameters for the UE to perform the cognitive service.
  • the first transceiver module 110 and the second transceiver module 210 may be configured by one or more central processing units (CPU, Central Processing Unit), graphics processors (GPU, Graphics Processing Unit), baseband processors, etc. (BP, Baseband Processor), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Logic Device Programmable gate array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components are implemented for executing the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband Processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • Figure 11 is a block diagram of a device 3000 for information transmission according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and Communication Component 3016.
  • Processing component 3002 generally controls the overall operations of device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operations at device 3000. Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 3004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 3006 provides power to the various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000 .
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 3008 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 3004 or sent via communications component 3016 .
  • audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 3014 includes one or more sensors for providing various aspects of status assessment for device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative positioning of components, such as the display and keypad of the device 3000, the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000, the user The presence or absence of contact with device 3000, device 3000 orientation or acceleration/deceleration, and temperature changes of device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 3016 is configured to facilitate wired or wireless communication between apparatus 3000 and other devices.
  • Device 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 3016 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Abstract

本公开实施例是关于信息传输方法、装置、通信设备和存储介质,基站接收来自用户设备(UE)的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。

Description

信息传输方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及信息传输方法、装置、通信设备和存储介质。
背景技术
蜂窝移动通信技术中,移动通信网络可以采用通信感知(通感)一体化方案将通信和感知两个功能融合在一起,使得通信系统同时具有通信和感知两个功能。在无线信道传输感知信息的同时通过主动认知并分析信道的特性,从而去感知周围环境的物理特征。
例如,实现通感一体化方案的通感系统可以包括:发射者:发送感知信息;接收者:接收感知信息,则将感知数据发送给处理者;接收者接收的感知信息可以是经过感知对象反射的。处理者:处理从接收者处接收到的感知数据并输出感知结果。处理者可包括一个或多个处理器,或者一个或多个处理装置。
发明内容
有鉴于此,本公开实施例提供了一种信息传输方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种信息传输方法,其中,被基站执行,所述方法包括:
接收来自用户设备(UE,User Equipment)的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量(QoS,Quality of Service);
感知对象信息。
在一个实施例中,所述方法还包括以下之一:
当确定所述基站不支持所述感知服务时,发送感知服务拒绝信息;
当确定所述基站支持所述感知服务时,向核心网发送第二感知服务请求,其中,所述第二感知服务请求至少包括所述请求服务参数信息。
在一个实施例中,所述发送感知服务拒绝信息,包括以下至少之一:
向所述UE发送第一感知服务拒绝信息,其中,所述第一感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
向所述核心网发送第二感知服务拒绝信息,其中,所述第二感知服务拒绝信息,用于指示所述网络不支持所述感知服务。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
在一个实施例中,所述方法还包括:
接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息。
在一个实施例中,所述方法还包括:
基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
在一个实施例中,所述第一感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数、和/或所述基站进行所述感知服务的资源配置参数,其中,所述UE进行所述感知服务的资源配置参数、和所述基站进行所述感知服务的资源配置参数,是核心网至少基于所述请求服务参数信息确定的;
所述第二感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
根据本公开实施例的第二方面,提供一种信息传输方法,其中,被用户设备UE执行,所述方法包括:
向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
在一个实施例中,所述方法还包括以下之一:
接收感知服务拒绝信息,其中,所述感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
接收感知服务接受信息,其中,所述感知服务接受信息,用于指示所述所述网络支持所述感知服务。
在一个实施例中,所述接收感知服务拒绝信息,包括至少以下之一:
接收所述基站发送的第一感知服务拒绝信息;
接收核心网发送的第三感知服务拒绝信息,其中,所述第三感知服务拒绝信息是所述核心网基于基站发送的第二感知服务拒绝信息触发的。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
在一个实施例中,所述感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
根据本公开实施例的第三方面,提供一种信息传输装置,其中,所述装置包括:
第一收发模块,配置为接收来自用户设备UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
在一个实施例中,所述第一收发模块,还配置为以下之一:
当确定基站不支持所述感知服务时,发送感知服务拒绝信息;
当确定所述基站支持所述感知服务时,向核心网发送第二感知服务请求,其中,所述第二感知服务请求至少包括所述请求服务参数信息。
在一个实施例中,所述第一收发模块,具体配置为以下至少之一:
向所述UE发送第一感知服务拒绝信息,其中,所述第一感知服务拒绝 信息,用于指示所述网络不支持所述感知服务;
向所述核心网发送第二感知服务拒绝信息,其中,所述第二感知服务拒绝信息,用于指示所述网络不支持所述感知服务。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
在一个实施例中,所述第一收发模块,还配置为:
接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息。
在一个实施例中,所述第一收发模块,还配置为:
基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
在一个实施例中,所述第一感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数、和/或所述基站进行所述感知服务的资源配置参数,其中,所述UE进行所述感知服务的资源配置参数、和所述基站进行所述感知服务的资源配置参数,是核心网至少基于所述请求服务参数信息确定的;
所述第二感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
根据本公开实施例的第四方面,提供一种信息传输装置,其中,所述装置包括:
第二收发模块,配置为向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向用户设备UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
在一个实施例中,所述第二收发模块,还配置为以下之一:
接收感知服务拒绝信息,其中,所述感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
接收感知服务接受信息,其中,所述感知服务接受信息,用于指示所述所述网络支持所述感知服务。
在一个实施例中,所述第二收发模块,具体配置为以下至少之一:
接收所述基站发送的第一感知服务拒绝信息;或
接收核心网发送的第三感知服务拒绝信息,其中,所述第三感知服务拒绝信息是所述核心网基于基站发送的第二感知服务拒绝信息触发的。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
在一个实施例中,所述感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
根据本公开实施例的第五方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述信息传输方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面或第二方 面所述信息传输方法的步骤。
本公开实施例提供的信息传输方法、装置、通信设备和存储介质。信息传输方法包括:基站接收来自UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。如此,UE通过第一感知服务请求向网络请求感知服务。由网络确定UE是否能够进行感知服务,并由网络配置感知服务的资源。可以满足感知服务以基站为粒度进行部署等情况,在进行感知服务前进行请求,减少UE和网络对UE是否能进行感知服务认定的不一致,提高UE进行感知服务的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种注册请求流程示意图;
图3是根据一示例性实施例示出的一种信息传输方法的流程示意图;
图4是根据一示例性实施例示出的另一种信息传输方法的流程示意图;
图5是根据一示例性实施例示出的又一种信息传输方法的流程示意图;
图6是根据一示例性实施例示出的再一种信息传输方法的流程示意图;
图7是根据一示例性实施例示出的再一种信息传输方法的流程示意图;
图8是根据一示例性实施例示出的再一种信息传输方法的流程示意图;
图9是根据一示例性实施例示出的一种信息传输装置的框图;
图10是根据一示例性实施例示出的另一种信息传输装置的框图;
图11是根据一示例性实施例示出的一种用于信息传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、 订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线 空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:蜂窝移动通信系统中的手机终端,以及网络侧设备,如基站等接入网设备,以及核心网等。
相关技术中,注册请求流程用于UE与网络协商相互之间的能力。注册请求流程如图2所示,包括:
步骤201:UE向接入网(RAN)发送注册请求消息,其中,册请求消息包含UE的能力,例如UE无线能力、释放请求指示等。
步骤202-步骤203:RAN选择AMF并将注册请求转发给AMF
步骤204-步骤219:进行认证和授权、UE身份检查等。
步骤2020:缺省。
步骤2021、AMF向UE发送注册接收消息,包括对应UE能力网络可以支持哪些网络能力。例如,支持分页限制等。
步骤222-步骤225:进行网络要求的确认、网络特定切片的认证和授权等。
相关技术中,3GPP系统不支持感知能力,因此无法在UE和网络之间协商感知能力。其次,在感知服务的部署中,可以按gNB级别部署感知服务,并在UE和核心网之间协商感知能力。但是当UE移动到不支持感知服务的区域/基站覆盖范围时时,UE无法发起感知服务。
如何,UE如何发起感知服务,实现与网络之间的感知能力协商,进而提供感知服务,是亟待解决的问题。
如图3所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,包括:
步骤301:接收来自UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
UE可以是蜂窝移动通信系统中的手机等终端。UE可以用于接收感知信息的通信设备。第一UE也可以发射感知信息。
网络可以包括但不限于接入网、和/或核心网等。
感知信号可以是蜂窝移动通信系统中,同时用于数据通信和环境感知的信号。感知信号在传输过程中会到周围环境干扰,例如反射等从而产生不同的变化。UE根据接收到的感知信号对周围环境实现感应。感知信号可以是射频信号,包括毫米波信号、或太赫兹信号等。UE也可以应用于发射感知信号,供其他通信设备接收并对周围环境实现感应。
UE可以在接入基站的过程中、和/或与基站建立连接后发送第一感知服务请求。
第一感知服务请求可以包含用于指示所请求的感知服务类型的指示信息、感知服务需求的参数、以及UE的感知能力和/或指示UE的标识等。第一感知服务请求可以用于与网络进行感知能力的协商。网络可以基于第一感知服务请求等确定是否接受对UE提供感知服务。
网络可以基于第一感知服务请求确定是否向UE提供感知服务,以及向提供的的感知服务等配置资源等。
例如,可以由核心网确定是否向UE提供感知服务,当确定向UE提供感知服务时,为配置感知服务的资源。
在一个实施例中,UE可以在确定UE支持感知服务,并且接入的网络也支持感知服务时,向基站发送第一感知服务请求。
由于感知服务是以基站为粒度进行部署的,并非所有的基站都支持感知服务,或者,基站并非能支持所有类型的感知服务;并且UE是否能得到感知服务还取决于UE的服务权限、以及网络的资源状况等。因此,UE需要发送第一感知服务请求向网络请求感知服务,由网络确定UE是否能够得到感知服务。减少UE和网络对UE是否能进行感知服务认定的不一致,提高UE进行感知服务的可靠性。
如此,UE通过第一感知服务请求向网络请求感知服务。由网络确定UE是否能够进行感知服务,并由网络配置感知服务的资源。可以满足感知服务以基站为粒度进行部署等情况,在进行感知服务前进行请求,减少UE和网络对UE是否能进行感知服务认定的不一致,提高UE进行感知服务的可靠性。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务,其中,不同所述感知服务指示所指示的所述感知服务不同;
所述感知服务的请求服务参数信息。
感知服务指示可以用于向基站指示UE向网络请求的感知服务。
UE可以不对感知服务进行分类。用一个比特位指示UE请求的是感知服务。
感知服务也可以是分类的。例如,可以基于感知服务的业务类型、感知对象的类型、发射感知信号的发射端等进行分类。感知服务指示可以指示感知服务的类型。不同所述感知服务指示所指示的所述感知服务不同。
基站接收到第一感知服务请求后,可以确定UE请求的感知服务,并确定是否支持感知服务。
服务参数信息可以包括UE请求的感知服务的感知服务需求的参数、以及UE的感知能力等。服务参数信息可以用于供核心网确定是否接受UE的感知服务请求,和/或根据服务参数信息配置感知服务的资源等。
服务参数信息可以是NAS信息。例如服务参数信息可以是NAS感知请求容器。服务参数信息可以由基站透传给核心网。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量(QoS,Quality of Service);
感知对象信息。
感知能力信息可以用于指示UE的感知能力(Sensing Capabilities),如UE接收感知信号的能力,和/或UE发射感知信号的能力等。
感知类型信息可以用于指示UE请求的感知服务的类型。感知服务的类型可以是基于感知服务的业务类型、感知对象的类型、发射感知信号的发射端、UE在感知服务中的角色等进行分类的。
感知服务质量QoS可以包括在感知服务中通信数据的QoS,也可以包括感知服务中对感知对象感知精度等的QOS。
感知对象可以是基于运动状态分类的,如动态对象和静态对象等。感知对象可以是基于实际物体分类的,如车、建筑物等。
基于服务参数信息核心网等可以确定是否接受UE的感知服务请求,和/或基于服务参数信息确定进行感知服务所需要的资源,并对资源进行分配和配置。
如图4所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,所述方法还包括以下之一:
步骤401a:当确定所述基站不支持所述感知服务时,发送感知服务拒绝信息;
步骤401b:当确定所述基站支持所述感知服务时,向核心网发送第二感知服务请求,其中,所述第二感知服务请求至少包括所述请求服务参数信息。
步骤401a和/或步骤401b可以单独实施,也可以结合步骤301实施。
基站可以基于感知服务指示确定基站是否支持感知服务。
基站也可以基于第一感知服务请求中的感知服务的服务参数信息,确定第一感知服务请求是用于请求感知服务的。基站可以根据自身对感知服务的支持能力确定是否支持感知服务。
基站还可以根据UE的授权情况确定是否支持UE进行感知服务。例如,基站可以根据第一感知服务请求中的UE标识,如UE ID确定UE是否被允许进行感知服务。
实施例性的,基站可以根据服务指示所指示和/或第一感知服务请求中的感知服务的服务参数信息,确定第一感知服务请求用于请求感知服务,基站根据自身感知服务能力,确定是否支持感知服务。
如果基站不支持感知服务指示所指示的感知服务时,可以发送感知服务拒绝信息。基站可以向UE和/或核心网发送感知服务拒绝信息。感知服 务拒绝信息可以用于指示基站不支持感知服务。
在一个实施例中,所述发送感知服务拒绝信息,包括以下至少之一:
向所述UE发送第一感知服务拒绝信息,其中,所述第一感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
向所述核心网发送第二感知服务拒绝信息,其中,所述第二感知服务拒绝信息,用于指示所述网络不支持所述感知服务。
示例性的,基站可以采用AS消息向UE发送第一感知服务拒绝信息。即基站可以直接向UE指示拒绝感知服务。基站也可以采用NAS消息向UE发送第一感知服务拒绝信息。
当基站不支持第一感知服务请求所请求的感知服务时,基站还可以向核心网发送第二感知服务拒绝信息,指示基站不支持感知服务。例如,第二感知服务拒绝信息可以由NAS消息承载。
核心网接收到第二感知服务拒绝信息后,可以采用NAS消息向UE发送第三感知服务拒绝信息,指示网络不支持UE进行感知服务。核心网也可以通过基站采用AS消息向UE发送第三感知服务拒绝信息。
这里,基站向核心网发送的第二感知服务拒绝信息可以由核心网中的AMF接收。并由AMF向UE发送第三感知服务拒绝信息。第二感知服务拒绝信息也可以由核心网中的其他网元如SF接收处理,并通过AMF向UE发送第三感知服务拒绝信息。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
基站或核心网拒绝UE进行感知服务的原因可以包括:基站不支持、和/或UE未被授权进行感知服务等。在基站或核心网发送给UE的感知服务拒绝信息:第一感知服务拒绝信息,或第二感知服务拒绝信息均可以携带有服务拒绝信息。
在基站发送给核心网的感知服务拒绝信息:第二感知服务拒绝信息,或可以携带有服务拒绝信息。
如果基站支持感知服务指示所指示的感知服务时,可以向核心网发送第二感知服务请求。
第二感知服务请求中可以携带有服务参数信息,用于供核心网进行感知服务资源的分配和配置。
第二感知服务请求中可以携带基站的感知服务能力,供核心网基于基站的能力进行资源配置。
基站可以向核心网中的AMF发送服务参数信息,由AMF进行感知服务资源的分配和配置。也可以由核心网中的其他网元如SF进行感知服务资源的分配和配置。
如图5所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,所述方法还包括:
步骤501:接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息。
如图5所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,所述方法还包括:
步骤502:基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
步骤501和步骤502可以单独实施,也可以结合步骤301、步骤401a和/或步骤401b实施。
核心网接收到第二感知服务请求,并成资源分配和配置等流程后,可以向基站发送第一感知服务接受信息,指示核心网允许UE进行感知服务。
这里可以由核心网中的AMF发送第一感知服务接受信息,也可以由核 心网中的其他网元如SF等通过AMF发送第一感知服务接受信息。
基站接收到第一感知服务接受信息后,可以向UE发送第二感知服务接受信息,指示网络允许UE进行感知服务。
在一个实施例中,所述第一感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数、和/或所述基站进行所述感知服务的资源配置参数,其中,所述UE进行所述感知服务的资源配置参数、和所述基站进行所述感知服务的资源配置参数,是核心网至少基于所述请求服务参数信息确定的;
所述第二感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
这里,基站和UE的资源配置参数可以是AMF确定的,也可以是由核心网中的其他网元如SF等确定的。
第二感知服务接受信息还可以包括基站为UE配置的进行感知服务的资源配置参数。
如图6所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的UE执行,包括:
步骤601:向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
UE可以是蜂窝移动通信系统中的手机等终端。UE可以用于接收感知信息的通信设备。第一UE也可以发射感知信息。
网络可以包括但不限于接入网、和/或核心网等。
感知信号可以是蜂窝移动通信系统中,同时用于数据通信和环境感知的信号。感知信号在传输过程中会到周围环境干扰,例如反射等从而产生不同的变化。UE根据接收到的感知信号对周围环境实现感应。感知信号可以是射频信号,包括毫米波信号、或太赫兹信号等。UE也可以应用于发射 感知信号,供其他通信设备接收并对周围环境实现感应。
UE可以在接入基站的过程中、和/或与基站建立连接后发送第一感知服务请求。
第一感知服务请求可以包含用于指示所请求的感知服务类型的指示信息、感知服务需求的参数、以及UE的感知能力和/或指示UE的标识等。第一感知服务请求可以用于与网络进行感知能力的协商。网络可以基于第一感知服务请求等确定是否接受对UE提供感知服务。
网络可以基于第一感知服务请求确定是否向UE提供感知服务,以及向提供的的感知服务等配置资源等。
例如,可以由核心网确定是否向UE提供感知服务,当确定向UE提供感知服务时,为配置感知服务的资源。
在一个实施例中,UE可以在确定UE支持感知服务,并且接入的网络也支持感知服务时,向基站发送第一感知服务请求。
由于感知服务是以基站为粒度进行部署的,并非所有的基站都支持感知服务,或者,基站并非能支持所有类型的感知服务;并且UE是否能得到感知服务还取决于UE的服务权限、以及网络的资源状况等。因此,UE需要发送第一感知服务请求向网络请求感知服务,由网络确定UE是否能够得到感知服务。减少UE和网络对UE是否能进行感知服务认定的不一致,提高UE进行感知服务的可靠性。
如此,UE通过第一感知服务请求向网络请求感知服务。由网络确定UE是否能够进行感知服务,并由网络配置感知服务的资源。可以满足感知服务以基站为粒度进行部署等情况,在进行感知服务前进行请求,减少UE和网络对UE是否能进行感知服务认定的不一致,提高UE进行感知服务的可靠性。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
感知服务指示可以用于向基站指示UE向网络请求的感知服务。
UE可以不对感知服务进行分类。用一个比特位指示UE请求的是感知服务。
感知服务也可以是分类的。例如,可以基于感知服务的业务类型、感知对象的类型、发射感知信号的发射端等进行分类。感知服务指示可以指示感知服务的类型。不同所述感知服务指示所指示的所述感知服务不同。
基站接收到第一感知服务请求后,可以确定UE请求的感知服务,并确定是否支持感知服务。
服务参数信息可以包括UE请求的感知服务的感知服务需求的参数、以及UE的感知能力等。服务参数信息可以用于供核心网确定是否接受UE的感知服务请求,和/或根据服务参数信息配置感知服务的资源等。
服务参数信息可以是NAS信息。例如服务参数信息可以是NAS感知请求容器。服务参数信息可以由基站透传给核心网。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
感知能力信息可以用于指示UE的感知能力(Sensing Capabilities),如UE接收感知信号的能力,和/或UE发射感知信号的能力等。
感知类型信息可以用于指示UE请求的感知服务的类型。感知服务的类型可以是基于感知服务的业务类型、感知对象的类型、发射感知信号的发射端、UE在感知服务中的角色等进行分类的。
感知服务质量QoS可以包括在感知服务中通信数据的QoS,也可以包括感知服务中对感知对象感知精度等的QOS。
感知对象可以是基于运动状态分类的,如动态对象和静态对象等。感知对象可以是基于实际物体分类的,如车、建筑物等。
基于服务参数信息核心网等可以确定是否接受UE的感知服务请求,和/或基于服务参数信息确定进行感知服务所需要的资源,并对资源进行分配和配置。
如图7所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,所述方法还包括以下之一:
步骤701a:接收感知服务拒绝信息,其中,所述感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
步骤701b:接收感知服务接受信息,其中,所述感知服务接受信息,用于指示所述所述网络支持所述感知服务。
步骤701a和/或步骤701b可以单独实施,也可以结合步骤601实施。
基站可以基于感知服务指示确定基站是否支持感知服务。
基站也可以基于第一感知服务请求中的感知服务的服务参数信息,确定第一感知服务请求是用于请求感知服务的。基站可以根据自身对感知服务的支持能力确定是否支持感知服务。
基站还可以根据UE的授权情况确定是否支持UE进行感知服务。例如,基站可以根据第一感知服务请求中的UE标识,如UE ID确定UE是否被允许进行感知服务。
实施例性的,基站可以根据服务指示所指示和/或第一感知服务请求中的感知服务的服务参数信息,确定第一感知服务请求用于请求感知服务,基站根据自身感知服务能力,确定是否支持感知服务。
如果基站不支持感知服务指示所指示的感知服务时,可以发送感知服 务拒绝信息。基站可以向UE和/或核心网发送感知服务拒绝信息。
感知服务拒绝信息也可以是由核心网发送的,核心网可以基于基站能力和/或UE是否被授权进行感知服务确定是否允许UE进行感知服务,如果不允许,则向UE发送感知服务拒绝信息。
在一个实施例中,所述接收感知服务拒绝信息,包括至少以下之一:
接收所述基站发送的第一感知服务拒绝信息;
接收核心网发送的第三感知服务拒绝信息,其中,所述第三感知服务拒绝信息是所述核心网基于基站发送的第二感知服务拒绝信息触发的。
基站可以采用AS消息向UE发送第一感知服务拒绝信息。即基站可以直接向UE指示拒绝感知服务。基站也可以采用NAS消息向UE发送第一感知服务拒绝信息。
当基站不支持第一感知服务请求所请求的感知服务时,基站还可以向核心网发送第二感知服务拒绝信息,指示基站不支持感知服务。例如,第二感知服务拒绝信息可以由NAS消息承载。
核心网接收到第二感知服务拒绝信息后,可以采用NAS消息向UE发送第三感知服务拒绝信息,指示网络不支持UE进行感知服务。核心网也可以通过基站采用AS消息向UE发送第三感知服务拒绝信息。
这里,基站向核心网发送的第二感知服务拒绝信息可以由核心网中的AMF接收。并由AMF向UE发送第三感知服务拒绝信息。第二感知服务拒绝信息也可以由核心网中的其他网元如SF接收处理,并通过AMF向UE发送第三感知服务拒绝信息。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
基站或核心网拒绝UE进行感知服务的原因可以包括:基站不支持、和/或UE未被授权进行感知服务等。在基站或核心网发送给UE的感知服务 拒绝信息:第一感知服务拒绝信息,或第二感知服务拒绝信息均可以携带有服务拒绝信息。
在基站发送给核心网的感知服务拒绝信息:第二感知服务拒绝信息,或可以携带有服务拒绝信息。
如果基站支持感知服务指示所指示的感知服务时,可以向核心网发送第二感知服务请求。
第二感知服务请求中可以携带有服务参数信息,用于供核心网进行感知服务资源的分配和配置。
第二感知服务请求中可以携带基站的感知服务能力,供核心网基于基站的能力进行资源配置。
基站可以向核心网中的AMF发送服务参数信息,由AMF进行感知服务资源的分配和配置。也可以由核心网中的其他网元如SF进行感知服务资源的分配和配置。
在一个实施例中,基站接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息。
在一个实施例中,基站基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
核心网接收到第二感知服务请求,并成资源分配和配置等流程后,可以向基站发送第一感知服务接受信息,指示核心网允许UE进行感知服务。
这里可以由核心网中的AMF发送第一感知服务接受信息,也可以由核心网中的其他网元如SF等通过AMF发送第一感知服务接受信息。
基站接收到第一感知服务接受信息后,可以向UE发送第二感知服务接受信息,指示网络允许UE进行感知服务。
在一个实施例中,所述感知服务接受信息(即上述第二感知服务接受 信息),至少用于指示:所述UE进行所述感知服务的资源配置参数。
这里,基站和UE的资源配置参数可以是AMF确定的,也可以是由核心网中的其他网元如SF等确定的。
第二感知服务接受信息还可以包括基站为UE配置的进行感知服务的资源配置参数。
以下结合上述任意实施例提供一个具体示例:
如图8所示,针对感知复审是按接入网(如基站)粒度部署的情况,UE和核心网相互交换感知能力的具体步骤包括:
步骤801:UE向基站(如gNB等)发送感知服务请求,感知服务请求包括:UE ID、感知服务指示(Sensing Service indication)、感知服务的服务参数信息(如NAS感知请求容器,NAS感知请求容器可以包括:感知能力信息、感知类型信息、感知服务质量QoS、感知对象信息)
步骤802:基站判断是否支持感知服务。当接收到感知服务请求时,基站根据感知服务指示,或者通过检测是否有NAS感知请求容器,确定UE请求感知服务。
步骤803a:当基站支持感知服务时,基站将感知服务请求转发给AMF。可选的,感知服务请求中可以携带基站的感知服务能力。
步骤803b:当基站不支持感知服务时,基站拒绝感知服务请求,并指示拒绝原因。
在一个实施例中,当基站不支持感知服务时,基站会向AMF发送NAS消息(服务请求),指示不支持感知服务。AMF向UE发送NAS消息以拒绝服务请求。
步骤804:AMF在接收到来自基站的感知服务请求时,触发从网络到gNB和UE的感知服务资源分配和配置。
步骤805、AMF向基站和UE发送感知服务接受消息,带有gNB/UE 的感知服务相关参数。
本发明实施例还提供了一种信息传输装置,如图9所示,应用于蜂窝移动无线通信的基站中,其中,所述装置100包括:
第一收发模块110,配置为接收来自用户设备UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务,其中,不同所述感知服务指示所指示的所述感知服务不同;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
在一个实施例中,所述第一收发模块110,还配置为以下之一:
当确定基站不支持所述感知服务时,发送感知服务拒绝信息;
当确定所述基站支持所述感知服务时,向核心网发送第二感知服务请求,其中,所述第二感知服务请求至少包括所述请求服务参数信息。
在一个实施例中,所述第一收发模块110,具体配置为以下至少之一:
向所述UE发送第一感知服务拒绝信息,其中,所述第一感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
向所述核心网发送第二感知服务拒绝信息,其中,所述第二感知服务拒绝信息,用于指示所述网络不支持所述感知服务。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信 息。
在一个实施例中,所述第一收发模块110,还配置为:
接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息;
在一个实施例中,所述第一收发模块110,还配置为:
基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
在一个实施例中,所述第一感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数、和/或所述基站进行所述感知服务的资源配置参数,其中,所述UE进行所述感知服务的资源配置参数、和所述基站进行所述感知服务的资源配置参数,是核心网至少基于所述请求服务参数信息确定的;
所述第二感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
本发明实施例还提供了一种信息传输装置,如图10所示,应用于蜂窝移动无线通信的UE中,其中,所述装置200包括:
第二收发模块210,配置为向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向用户设备UE提供感知服务。
在一个实施例中,所述第一感知服务请求,包括至少以下之一:
感知服务指示,其中,用于指示所述感知服务;
所述感知服务的请求服务参数信息。
在一个实施例中,所述请求服务参数信息,包括至少以下之一:
感知能力信息;
感知类型信息;
感知服务质量QoS;
感知对象信息。
在一个实施例中,所述第二收发模块210,还配置为以下之一:
接收感知服务拒绝信息,其中,所述感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
接收感知服务接受信息,其中,所述感知服务接受信息,用于指示所述所述网络支持所述感知服务。
在一个实施例中,所述第二收发模块210,具体配置为以下至少之一:
接收所述基站发送的第一感知服务拒绝信息;或
接收核心网发送的第三感知服务拒绝信息,其中,所述第三感知服务拒绝信息是所述核心网基于基站发送的第二感知服务拒绝信息触发的。
在一个实施例中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
在一个实施例中,所述感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
在示例性实施例中,第一收发模块110和第二收发模块210等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,Baseband Processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图11是根据一示例性实施例示出的一种用于信息传输的装置3000的 框图。例如,装置3000可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图12,装置3000可以包括以下一个或多个组件:处理组件3002、存储器3004、电源组件3006、多媒体组件3008、音频组件3010、输入/输出(I/O)接口3012、传感器组件3014、以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统、一个或多个电源、及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面 板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态、组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变、用户与装置3000接触的存在或不存在、装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方 式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi、2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种信息传输方法,其中,被基站执行,所述方法包括:
    接收来自用户设备UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
  2. 根据权利要求1所述的方法,其中,所述第一感知服务请求,包括至少以下之一:
    感知服务指示,其中,用于指示所述感知服务;
    所述感知服务的请求服务参数信息。
  3. 根据权利要求2所述的方法,其中,所述请求服务参数信息,包括至少以下之一:
    感知能力信息;
    感知类型信息;
    感知服务质量QoS
    感知对象信息。
  4. 根据权利要求2所述的方法,其中,所述方法还包括以下之一:
    当确定所述基站不支持所述感知服务时,发送感知服务拒绝信息;
    当确定所述基站支持所述感知服务时,向核心网发送第二感知服务请求,其中,所述第二感知服务请求至少包括所述请求服务参数信息。
  5. 根据权利要求4所述的方法,其中,所述发送感知服务拒绝信息,包括以下至少之一:
    向所述UE发送第一感知服务拒绝信息,其中,所述第一感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
    向所述核心网发送第二感知服务拒绝信息,其中,所述第二感知服务拒绝信息,用于指示所述网络不支持所述感知服务。
  6. 根据权利要求4所述的方法,其中,所述服务拒绝信息,包括:指示 拒绝原因的指示信息。
  7. 根据权利要求4所述的方法,其中,所述方法还包括:
    接收核心网基于所述第二感知服务请求发送的第一感知服务接受信息。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    基于所述第一感知服务接受信息,向所述UE发送第二感知服务接受信息,其中,所述第二感知服务接受信息,用于指示所述网络支持所述感知服务。
  9. 根据权利要求7所述的方法,其中,
    所述第一感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数、和/或所述基站进行所述感知服务的资源配置参数,其中,所述UE进行所述感知服务的资源配置参数、和所述基站进行所述感知服务的资源配置参数,是核心网至少基于所述请求服务参数信息确定的;
    所述第二感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
  10. 一种信息传输方法,其中,被用户设备UE执行,所述方法包括:
    向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
  11. 根据权利要求10所述的方法,其中,所述第一感知服务请求,包括至少以下之一:
    感知服务指示,其中,用于指示所述感知服务,其中,不同所述感知服务指示所指示的所述感知服务不同;
    所述感知服务的请求服务参数信息。
  12. 根据权利要求11所述的方法,其中,所述请求服务参数信息,包括至少以下之一:
    感知能力信息;
    感知类型信息;
    感知服务质量QoS;
    感知对象信息。
  13. 根据权利要求11所述的方法,其中,所述方法还包括以下之一:
    接收感知服务拒绝信息,其中,所述感知服务拒绝信息,用于指示所述网络不支持所述感知服务;
    接收感知服务接受信息,其中,所述感知服务接受信息,用于指示所述所述网络支持所述感知服务。
  14. 根据权利要求13所述的方法,其中,所述接收感知服务拒绝信息,包括至少以下之一:
    接收所述基站发送的第一感知服务拒绝信息;
    接收核心网发送的第三感知服务拒绝信息,其中,所述第三感知服务拒绝信息是所述核心网基于基站发送的第二感知服务拒绝信息触发的。
  15. 根据权利要求13所述的方法,其中,所述服务拒绝信息,包括:指示拒绝原因的指示信息。
  16. 根据权利要求13所述的方法,其中,所述感知服务接受信息,至少用于指示:所述UE进行所述感知服务的资源配置参数。
  17. 一种信息传输装置,其中,所述装置包括:
    第一收发模块,配置为接收来自用户设备UE的第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向所述UE提供感知服务。
  18. 一种信息传输装置,其中,所述装置包括:
    第二收发模块,配置为向基站发送第一感知服务请求,其中,所述第一感知服务请求,至少用于向网络请求向用户设备UE提供感知服务。
  19. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够 由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至9、或10至16任一项所述信息传输方法的步骤。
  20. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至9、或10至16任一项所述信息传输方法的步骤。
PCT/CN2022/081793 2022-03-18 2022-03-18 信息传输方法、装置、通信设备和存储介质 WO2023173430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/081793 WO2023173430A1 (zh) 2022-03-18 2022-03-18 信息传输方法、装置、通信设备和存储介质
CN202280000833.0A CN117099392A (zh) 2022-03-18 2022-03-18 信息传输方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081793 WO2023173430A1 (zh) 2022-03-18 2022-03-18 信息传输方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023173430A1 true WO2023173430A1 (zh) 2023-09-21

Family

ID=88021996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081793 WO2023173430A1 (zh) 2022-03-18 2022-03-18 信息传输方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN117099392A (zh)
WO (1) WO2023173430A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990271A (zh) * 2009-08-05 2011-03-23 北京大学 一种基站与终端间的通信方法及一种无线通信基站、系统
US20160241433A1 (en) * 2015-02-12 2016-08-18 Intel Corporation Apparatus, system and method of communicating in an awareness cluster
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
CN113630226A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种感知资源请求方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990271A (zh) * 2009-08-05 2011-03-23 北京大学 一种基站与终端间的通信方法及一种无线通信基站、系统
US20160241433A1 (en) * 2015-02-12 2016-08-18 Intel Corporation Apparatus, system and method of communicating in an awareness cluster
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
CN113630226A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种感知资源请求方法和设备

Also Published As

Publication number Publication date
CN117099392A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
EP4258744A1 (en) Communication method and device, and wireless access network, terminal and storage medium
CN112262597A (zh) 通信方法及装置、网络设备、ue及存储介质
CN114096868A (zh) 位置确定方法、装置、通信设备及存储介质
WO2023130472A1 (zh) 提早识别的方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2023173430A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023216210A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2024016349A1 (zh) 提供感知服务的方法、装置、通信设备及存储介质
WO2024011413A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2024000131A1 (zh) 测距方法、装置、通信设备和存储介质
WO2024000132A1 (zh) 测距方法、装置、通信设备和存储介质
WO2023141771A1 (zh) 提供感知服务的方法、装置、通信设备及存储介质
CN111096046B (zh) 接入方式确定方法、装置及通信设备
WO2023236157A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2022073243A1 (zh) 通信方法及装置、用户设备及存储介质
WO2022077377A1 (zh) 通信方法及装置、网络设备、用户设备及存储介质
WO2023065090A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2024031288A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023184195A1 (zh) 支持增强现实业务能力协商方法及装置、网元、ue及存储介质
WO2023212951A1 (zh) 测距方法、装置、通信设备和存储介质
WO2023178703A1 (zh) 个人物联网网络建立方法及装置、网元、ue及存储介质
WO2024031391A1 (zh) 测距或侧行链路定位方法、装置、通信设备及存储介质
WO2023070560A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023197188A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024055329A1 (zh) 邻近服务ProSe的无线通信方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000833.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931461

Country of ref document: EP

Kind code of ref document: A1