WO2023056648A1 - 传感服务提供方法及装置、通信设备及存储介质 - Google Patents

传感服务提供方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023056648A1
WO2023056648A1 PCT/CN2021/122919 CN2021122919W WO2023056648A1 WO 2023056648 A1 WO2023056648 A1 WO 2023056648A1 CN 2021122919 W CN2021122919 W CN 2021122919W WO 2023056648 A1 WO2023056648 A1 WO 2023056648A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
request
service
target
information
Prior art date
Application number
PCT/CN2021/122919
Other languages
English (en)
French (fr)
Inventor
刘建宁
沈洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003275.9A priority Critical patent/CN116569572A/zh
Priority to PCT/CN2021/122919 priority patent/WO2023056648A1/zh
Publication of WO2023056648A1 publication Critical patent/WO2023056648A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to a method and device for providing a sensing service, a communication device, and a storage medium.
  • sensing technology has become an important technical basis, such as radar-based technology, which is widely used in the fields of intelligent transportation and automatic driving.
  • the current radar-based sensing technology mainly relies on dedicated radar equipment, which is expensive and inflexible in deployment, and is mainly used in specific scenarios.
  • sensing services can be used in the dark Perceive the surrounding objects, such as indoor sensing human motion commands to control smart furniture, etc. Provide great convenience for daily life.
  • Embodiments of the present disclosure provide a sensing service providing method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by a user equipment (User Equipment, UE), and the method includes:
  • a sensing request sent to the Access Management Function (Access Management, AMF);
  • Sensing services are provided according to the sensing parameters.
  • the second aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by the AMF, and the method includes:
  • the third aspect of this functional embodiment provides a method for providing a sensing service, wherein, executed by the SF, the method includes:
  • the sensing parameter is sent to the UE through the AFM, where the sensing parameter is used for the UE to provide a sensing service.
  • a fourth aspect of an embodiment of the present disclosure provides a device for providing a sensing service, the device comprising:
  • the first sending module is configured to send a sensing request to the access management function AMF;
  • the first receiving module is configured to receive the sensing parameters returned by the target SF selected by the AMF;
  • a providing module configured to provide sensing services according to the sensing parameters.
  • a fifth aspect of an embodiment of the present disclosure provides a device for providing a sensing service, the device comprising:
  • a second receiving module configured to receive a sensing request from the UE
  • a first determining module configured to determine a target SF
  • the second sending module is configured to send the sensing request to the target SF.
  • a sixth aspect of the embodiments of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the third receiving module is configured to receive the sensing request of the UE provided by the AMF;
  • a third determining module configured to determine a sensing parameter according to the sensing request
  • the third sending module is configured to send the sensing parameter to the UE through the AFM, where the sensing parameter is used for the UE to provide a sensing service.
  • the seventh aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
  • the program executes the sensing service providing method provided in any aspect from the first aspect to the third aspect.
  • the eighth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by a processor, it can implement any of the aforementioned first to third aspects. Sensing service provider method.
  • the UE device can send a sensing request to the AMF, and the sensing request will trigger the AMF to determine the target SF for the sensing request, and the target SF will determine the sensor that provides the sensing service based on the sensing request.
  • the sensing parameters are returned to the UE, so that the UE can provide sensing services based on the sensing parameters given by the appropriate target SF determined by the AMF, so as to ensure that the sensing services provided by the UE meet the security requirements and/or quality requirements to the sensing service.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a system architecture according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 4A is a schematic diagram of a method for providing sensing services based on radar signals according to an exemplary embodiment
  • Fig. 4B is a schematic diagram showing a sensing service provided by a UE according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 9 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 10 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 11 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of an apparatus for providing a sensing service according to an exemplary embodiment.
  • Fig. 13 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 14 is a schematic structural diagram of a network element according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device for an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the wireless sensing method provided by the embodiments of the present disclosure may be applied to the system architecture shown in FIG. 2 , but is not limited to the system architecture shown in FIG. 2 .
  • Initiator Trigger the sensing service according to application requirements, which can be outside the communication system corresponding to 3GPP.
  • This data may include: sensing data and/or sensing results generated based on sensing data;
  • the sensing function can be any functional entity on the network side, which is a kind of network function. It determines the sensing model and determines the Sensing parameters of the transmitter (or transmitter or transmitter) and receiver (or receiver or receiver); the sensing parameters may at least need to coordinate the sensing signal between the transmitter and the receiver / Send parameters.
  • Transmitter transmit sensing signals according to the sensing parameters received from SF;
  • Receiver Receive the reflected signal according to the sensing parameters received from SF, and send the sensing data to the processor if there is sensing data;
  • Processor Process the sensing data received from the receiver and output the sensing result. It is worth noting that the processor here may include one or more processors, or one or more processing devices.
  • a device can act as one or more of the roles of initiator, consumer, transmitter, receiver, and processor.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by a UE, and the method includes:
  • S110 A sensing request sent to the access AMF
  • S130 Provide a sensing service according to the sensing parameter.
  • the UE may be various types of terminals.
  • the UE may be a mobile phone, a tablet computer, a vehicle-mounted device, a smart home device, a smart office device, or a ground-walking robot or a low-flying aircraft.
  • the UE When the UE needs the sensing service, or when the UE participates in providing the sensing service, it will send a sensing request to the AMF.
  • the sensing service is: through the transmission and reception of sensing signals, the detection of the distance, orientation and/or contour of the sensing target, etc. is performed.
  • the sensing signal is a wireless signal.
  • the wireless signal includes, but is not limited to: a radar signal, a laser signal, or an ultrasonic signal, or other types of electromagnetic wave signals.
  • Other electromagnetic wave signals include but are not limited to: ultra wide band (Ultra Wide Band, UWB), or electromagnetic waves used for ranging based on time of flight.
  • UWB Ultra Wide Band
  • Figure 4A shows the wireless sensing based on radar waves.
  • the transmitter transmits a radar signal, and the radar signal will be reflected or absorbed when it encounters an obstacle during transmission.
  • the reflected radar wave will be received by the receiver.
  • the receiver Based on the received radar wave, the receiver can realize radar ranging, Functions such as radar detection, so as to know parameters such as the location, volume and/or shape of obstacles.
  • the transmitter transmits a radar signal, and the radar signal will be reflected or absorbed when it encounters an obstacle during transmission.
  • the reflected radar wave will be received by the receiver.
  • the receiver Based on the received radar wave, the receiver can realize radar ranging, Functions such as radar detection, so as to know parameters such as the location, volume and/or shape of obstacles.
  • the distance between the sensing target and the device where the transmitter and receiver are located, and the direction relative to the device where the transmitter and receiver are located can be determined.
  • the specific use of the sensing service in the embodiments of the present disclosure includes but is not limited to at least one of the following:
  • the UE firstly sends the sensing request to the AMF.
  • the AMF as a function of UE access and mobility management, can select an appropriate SF to provide sensing parameters for the UE as required.
  • the sensing request may be any request to provide sensing parameters and/or sensing services.
  • the sensing request may be a Non-Access Stratum (NAS) message and/or an Access Stratum (AS) message.
  • NAS Non-Access Stratum
  • AS Access Stratum
  • the sensing request may include at least one of the following:
  • the identification information of the UE is a registered trademark of the Bluetooth Special Interest Group.
  • Identification information of a candidate transmitter wherein the candidate transmitter is capable of transmitting sensing signals
  • the identification information of the candidate receiver wherein the candidate receiver can receive the reflection signal generated by the sensing signal acting on the sensing target and output the sensing data based on the reflection signal;
  • Identification information of an alternative processor wherein the alternative processor is capable of determining a sensing result based on the sensing data
  • the sensing target information may be used to describe any information of the sensing target targeted by the sensing service.
  • the sensing target information can be used to describe the structure and/or shape characteristics of the sensing target, the current approximate location, and the device type, etc., so that the sensing service can configure a device capable of detecting the sensing target based on the sensing target information. Sensing parameters of the sensing target.
  • the identification information of the UE may be used to uniquely determine the UE.
  • the identification information of the UE includes but is not limited to: UE's International Mobile Equipment Identity (IMEI), Temporary Mobile Subscriber Identity (TMSI) or UE's network protocol (Internet Protocol, IP) address Or the MAC address of the UE, etc.
  • IMEI International Mobile Equipment Identity
  • TMSI Temporary Mobile Subscriber Identity
  • IP Internet Protocol
  • the sensing area indicated by the service area information due to the introduction of the mobile communication system including the base station, can divide the area covered by the network into different areas, and there are different network devices in different areas, which can be used as the executor of the sensing service Participate in the provision of sensing services.
  • the sensing period information of the sensing service is equivalent to limiting the provision time of the sensing service, so that it is also convenient for the sensing function to schedule available performers within the time period to provide the wireless sensing service.
  • the QoS requirements of the sensing service indicated by the QoS requirement information of the sensing service different uses or scenarios have different QoS requirements for wireless sensing. For example, some sensing services allow relatively large delays, and some sensing services are very sensitive to delays. For example, in intelligent driving or assisted driving, road safety is involved; the delay allowed by the detected terrain is smaller.
  • the distance accuracy requirements may be different, which are all reflected in QoS requirements, which can be indicated by the QoS requirement information.
  • sensing Function Send More Session
  • SF Sensing Function
  • the initiator itself can act as the executor of the wireless sensing service, or has known in advance some devices that can serve as the executor of the sensing service.
  • the sensor request can carry the name of the alternative transmitter Identification information, identification information of alternative recipients, and identification information of alternative processors.
  • the identification information may be an equipment identification, for example, an International Mobile Equipment Identity (International Mobile Equipment Identity, IMEI) may also be temporarily assigned information.
  • the identification information may be a cell identification (Identification, ID) of a cell formed by the base station.
  • the ID may specifically be a physical cell identification (Physical Cell Identification, PCI).
  • the candidate sensing model information may indicate the sensing model expected to be used by the initiator, or the sensing model recommended by the initiator according to the triggering scenario of the current sensing service or the triggering application program.
  • the executors of different sensing models are different; and/or, the types of sensing signals of different sensing models are different.
  • the sensing request may be one or more of the above information, and of course may not carry the above information, but only carry the request signaling of the sensing service.
  • the request parameter may further include: consumer information, which indicates a consumer of the sensing service. The sensing results of the sensing service will be sent to consumers for their use.
  • the initiator and consumer may be the same or different.
  • two mandatory fields and one or more optional fields are set in the sensing request.
  • the two mandatory fields can carry initiator information and consumer information respectively, while other optional fields can carry various information such as the aforementioned sensing target information.
  • the SF By carrying one or more of the above request parameters, it is convenient for the SF to determine the sensing parameters suitable for the current scene, so as to ensure the service quality of the sensing service.
  • the sensing target information includes at least one of the following:
  • sensing targets with different areas and/or volumes can be used to determine parameters such as the viewing angle and/or power of the transmitter sending the sensing signal.
  • the area information of the sensing target can indicate the area where the sensing target is currently located, and can conveniently determine the sensing service area.
  • the location of the sensing target can be used to determine the performer, for example, to select a suitable performer nearby to perform the sensing service.
  • the speed of the sensing target may have an impact on the successful provision of the sensing service.
  • a high-speed moving object has requirements on the transmitting power of the transmitter in the sensing service.
  • the Doppler effect may also be generated due to the movement of the sensing target.
  • the processing capability of the processor providing the sensing service has certain requirements.
  • the sensing target information is not limited to the aforementioned area, position, volume and/or velocity, and the type of the sensing target may also be used. For example, whether the sensing target is moving can be divided into static sensing target and dynamic sensing target. According to whether the sensing target is living or not, it can be divided into living targets and non-living targets. If it is aimed at a living target, it may be necessary to consider the impact of the radar spot on the living body and the negative impact of the living body.
  • the initiator can send the request parameters through the sensing request, and SF can determine the sensing parameters based on the request parameters and/or network information other than the request parameters, and the executor can provide security and service quality based on the sensing parameters. sensing service.
  • one or more of the request parameters in the sensing request may also be used by the AMF to determine the target SF.
  • the AMF selects the SF in the sensing area corresponding to the location of the UE and/or the location of the sensing target as the target service according to the location of the UE and/or the location of the sensing target indicated by the request parameter in the sensing request.
  • the AMF selects an SF that can provide the QoS that reaches the QoS indicated by the QoS information as the target SF.
  • the above are just examples.
  • the SF may be any functional entity on the network side, specifically, the SF may serve as one of the network elements of the core network and/or the access network.
  • the sensing function includes but not limited to at least one of the following:
  • Access Function Access Function, AF
  • Policy control Function Policy control Function
  • Access Management Function Access Management Function
  • Network Function Network Function
  • the SF may be other network elements independent of the AF, AMF or PCF.
  • the AMF After the AMF determines the target SF, it will directly forward the sensing request to the target SF or repackage the sensing request and send it to the target SF. In short, the target SF will receive the content contained in the sensing request to determine the sensing parameter. In this way, the UE will receive the sensing parameters sent by the target SF.
  • the sensing parameter can be: any parameter required by the executor who provides the sensing service.
  • the sensing parameter can include at least one of the following:
  • emission parameters used for the emitter to emit the sensing signal
  • the processing parameter is used for the processor to process the sensing data corresponding to the sensing signal.
  • the sensing parameters may also include at least one of the following:
  • the sensing period, sensing area, and accuracy requirements of sensing results are provided for sensing services.
  • the transmission parameters include but are not limited to: transmission power of the sensing signal, transmission frequency of the sensing signal;
  • the receiving parameters include, but are not limited to: the frequency of the receiving carrier of the sensing signal, the receiving period, and the like.
  • the processing parameters include, but are not limited to: upload parameters of the sensing data and/or identification information of a processing manner for processing the sensing data, and the like.
  • the sensing model information indicates at least one of the following models:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • the base station acts as the transmitter and receiver, it is equivalent to that the sensing service is completely performed by the network elements of the mobile communication network system.
  • a processor may also be involved, and the processor may be a base station or a computing device near the base station or a UE.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the UE serving as the transmitter of the second sensing model and the UE serving as the receiver may be the same UE or different UEs.
  • the UE sending the sensing request may be at least one of a transmitter and a receiver.
  • the UE can act as a transmitter and a receiver at the same time.
  • the UE can act as a transmitter to send a sensing signal. After the sensing signal encounters a reflection object (Reflection Objects, RO), a reflected signal is generated, and the UE receives the reflected signal.
  • the reflective object here may be the aforementioned sensing target.
  • the solid line arrows indicate the transmission direction of the sensing signal; the dotted line arrows indicate the transmission direction of the reflected signal.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • a third sensing model is one that involves a base station and a UE, with the base station as the transmitter and the UE as the receiver.
  • the base station as a transmitter, can transmit sensing signals to multiple UEs, thereby implementing one-to-many sensing service provision, thereby providing sensing services to different UEs.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the fourth sensing model is one that involves a base station and a UE, with the base station as receiver and UE as transmitter.
  • the base station as the transmitter, can receive the sensing signals transmitted by multiple UEs at one time due to its strong receiving capability, so as to realize the provision of one-to-many sensing services, thereby providing sensing signals to different UEs. sense of service.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the fifth sensing model may be any sensing model other than the aforementioned first to fourth sensing models.
  • the fifth sensing model may include: a sensing model involving multiple transmitters and/or multiple receivers, and the types of multiple transmitters may be different, for example, the transmitter includes both UE and a base station; and/or, the recipient may include both a UE and a base station.
  • devices as transmitters and receivers include but are not limited to base stations and/or UEs.
  • the transmitter and/or receiver device may also be a roadside device capable of establishing a connection with a base station or a UE.
  • roadside monitoring equipment capable of transmitting and receiving wireless signals.
  • the monitoring equipment includes but is not limited to visual monitoring equipment based on image acquisition.
  • the sensing parameter may be sent to the UE by a non-access stratum (NAS) message, but is not limited to the NAS message.
  • NAS non-access stratum
  • the SF can also transmit the sensing parameters to the base station to which the UE is connected, and then the base station transmits the sensing parameters to the UE through RRC message, MAC CE or DCI message signaling.
  • the manner in which the UE receives the sensing parameter from the SF is not specifically limited.
  • the UE will participate in the provision of the sensing service.
  • the S130 may include at least one of the following:
  • the receiving parameters in the sensing parameters receiving the reflected signal formed by the sensing target transmitting the sensing signal to obtain the sensing data
  • the sensing data is processed to obtain a sensing result.
  • the UE may send sensing signals as a transmitter alone, or sense signals as a receiver alone, or process sensing data as a processor alone.
  • the sending UE sending the sensing request will act as two or three of the three roles of transmitter, receiver and processor.
  • the sensing data is not processed, and the sensing data is directly sent to the target SF, AF, or the initiator or consumer of the sensing service.
  • processing the sensing data to obtain the sensing result may include:
  • Preliminary processing is performed on the sensing data to obtain intermediate results.
  • the intermediate results do not include final results indicating the distance, orientation and/or contour of the sensing target, but non-final results obtained by some preliminary processing.
  • the preliminary processing may include: valid data selection, abnormal data elimination, or preliminary result calculation for final result calculation. For example, invalid data is eliminated, and sensory data participating in the settlement of the final result is selected as the result of the preliminary processing, and sent to the target SF, AF, initiator and/or consumer.
  • the sensing data is processed to obtain the final result.
  • the S130 may include:
  • the sensing data is sent to the application function AF of the sensing service, the initiator of the sensing service or the target server.
  • the target server can be a consumer who consumes the sensing data or needs to consume the sensing results.
  • the target server will be the consumer of the sensing data and/or sensing results.
  • the S130 may include:
  • the sensing result is sent to the application function AF, the initiator of the sensing service or the target server.
  • the UE as a processor, will perform preliminary processing and/or final processing on the sensing data, so as to generate a sensing result.
  • the UE sends the sensing result to the target SF, and the sensing result is then sent by the target SF to the application function AF, the initiator of the sensing service or the target server, or directly sent by the UE to the application function AF, the Initiator or target server of the sensing service.
  • the sensing result includes: an intermediate result of the sensing data, and/or a final processing result of the sensing data.
  • the UE may sense data in a predetermined manner to obtain the sensing result.
  • the predetermined mode may be indicated by a mode parameter of said sensory parameter.
  • the predetermined manner may include: a manner predefined by a standard protocol or a proprietary protocol.
  • the predetermined manner may also include: a manner of pre-negotiation between the UE and the target SF.
  • the predetermined method may include at least one of the following:
  • a calculation method for generating a final processing result based on the sensing data includes but not limited to a calculation method of calculating distance and/or orientation according to the time-of-flight of the sensing signal.
  • the sensing parameters further include: address information;
  • the method also includes:
  • S140 Establish a transmission link with the AF, the initiator of the sensing service, or the target server according to the address information, where the transmission link can be used at least to transmit the sensing data and/or the sensing result .
  • the sensing parameter includes address information, establish a transmission link with the AF, the initiator of the sensing service, or the target server.
  • the target SF will carry the address information in the sensing parameters, so that the address information received by the UE corresponds to the address indicated by the address information
  • the network element establishes a transmission link, and the transmission link includes but not limited to a TCP connection or a UDP connection.
  • the transmission link can be established after executing S130, or the transmission link can be established before executing S130, and the UE can also provide sensing parameters according to sensing parameters. When in service, the transmission link is established.
  • the transmission link may be: a PDU connection corresponding to a PDU session established based on protocol data unit (Protocol Data Unit, PDU) session establishment negotiation. Sensing data and/or sensing structures are transmitted over the PDU connection established by the PDU session.
  • protocol data unit Protocol Data Unit
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by an AMF, and the method includes:
  • S210 Receive a sensing request from the UE
  • the AMF after receiving the sensing request sent by the UE, the AMF will determine the target SF, and then send the sensing request to the target SF, so that the target SF will determine the sensing parameter.
  • the method also includes:
  • the S220 may include: when determining to respond to the sensing request, determining the target SF.
  • the AMF will not directly respond to the sensing request, or will determine the sensing request.
  • the request parameter included in the sensing request it is determined whether to respond to the sensing request.
  • the target SF is determined only when the sensing request is determined; otherwise, the target SF may not be determined, but a request rejection message is directly sent to the UE.
  • the request rejection message may be a message independently indicating that the sensing request is rejected, or a rejection request message carrying a reason for rejection. If the rejection request message carries a rejection reason, the UE can know the reason why the sensing request is rejected according to the rejection reason, and re-initiate the sensing request after removing the obstacle that causes the sensing request to be rejected.
  • the S211 may include at least one of the following:
  • the network does not support the provision of the sensing service, and it is determined not to respond to the sensing request;
  • the network supports providing the sensing service, and determines to respond to the sensing request.
  • the network does not support the provision of the sensing service, it is determined that the sensing request cannot be responded to, and the response to the sensing request is about to be refused. If the sensing request is rejected, a request rejection message may be sent to the UE, and the request rejection message may carry a reason value indicating that the network does not support it. The UE will not repeatedly send the sensing request after receiving the request rejection message indicating that the network does not support the cause value.
  • the network supports provision of sensing services, and may directly determine whether to respond to the sensing request, or further determine whether to respond to the sensing request according to other reference parameters such as request parameters carried in the sensing request.
  • the determining to respond to the sensing request in response to network support for providing the sensing service includes at least one of the following:
  • the network supports the provision of the sensing service and the UE subscribes to the sensing service, and determines to respond to the sensing request;
  • the network supports providing the sensing service up to the QoS indicated by the service instruction information included in the sensing request, and determining to respond to the sensing request;
  • the network supports the sensing service that provides the sensing model indicated by the sensing model information included in the sensing request, and determines to respond to the sensing request.
  • the UE's sensing request will also carry QoS information indicating the required QoS for the sensing service requested by the UE. Even if the network supports providing the sensing service, but cannot provide the sensing service for which the UE requests QoS, the AMF may also refuse to respond to the sensing request.
  • the UE when the UE requests the sensing service, it will give the suggested sensing model. If the current network side supports the provision of the sensing service, but does not support the sensing model suggested by the UE to provide the sensing service, Likewise, it may refuse to respond to the sensing request, and may determine to respond to the sensing request when the sensing model suggested by the UE is supported to provide the sensing service.
  • said determining whether to respond to said sensing request further includes:
  • the request information includes at least the identification information of the UE;
  • the UDM will sign up for the data in the future, and the AMF can send a request message to the UDM to query whether the UE has subscribed to the sensing service, or whether the UE has the QoS sensing service requested by the UE, Or, whether the UE has the sensing service provided by the sensing model suggested by the UE.
  • the feedback information may include: a query result directly indicating whether the UE subscribes to the sensing service.
  • the feedback information may further include: subscription data of the UE, where the subscription data indirectly indicates whether the UE subscribes to the sensing service. If the subscription data is received by the AMF, the AMF needs to determine whether the UE has subscribed to the sensing service through the subscription data.
  • the request information further includes: QoS information and/or sensing model information included in the sensing request;
  • the QoS information is used for the UDM to determine whether the UE has signed a sensing service that achieves the QoS information;
  • the sensing model information is used for the UDM to determine whether the UE subscribes to a sensing service using the sensing model indicated by the sensing model information.
  • the UE subscribes to the sensing service of the QoS information, it means that the UE has the authority to request the sensing service indicated by the QoS information.
  • the corresponding QoS levels are different.
  • the corresponding QoS levels are also different.
  • the S220 may include: according to at least one of the sensing request, the SF selection configuration of the AMF, and the network discovery mechanism, selecting the selected SF from candidate SFs capable of providing the sensing service The above target SF.
  • the AMF may directly determine the target SF according to the sensing request, for example, determining the target SF according to the sensing request may include:
  • the target SF is determined according to the SF information indicated by the sensing request, where the SF information includes but not limited to SF identification information.
  • the SF selection configuration may include:
  • the AMF may determine the target SF solely according to the SF selection policy, or determine the target SF according to the sensing request and the SF selection policy.
  • the AMF does not store the SF selection configuration locally, request the SF selection strategy from the PCF, receive the SF selection strategy policy information returned by the PCF, and determine the target SF independently, or, according to the sensing request and the PCF return
  • the policy information of the SF selection policy jointly determines the target SF.
  • the AMF may also determine the target SF based on the network discovery mechanism, exemplarily including but not limited to at least one of the following:
  • the AMF will discover the target SF that can provide the sensing service
  • the AMF discovers the target SF that can provide the sensing service requested by the request parameter of the sensing request.
  • Discovering the target SF based on the discovery mechanism may include but not limited to at least one of the following:
  • the AMF sends a request message to the network storage function (Network Repository Function, NRF); the request message may include: the attribute information of the target SF that the AMF needs to discover;
  • a response message returned by the NRF is received, where the response message may carry: information on SFs that can be used as the target SFs that the NRF inquires according to the attribute information.
  • the SF information includes but not limited to: SF identification information and/or SF address information.
  • the property information may be determined according to a sensing request.
  • the attribute information indicates the sensing area where the target SF is located, the type of the supported sensing model, and the QoS of the sensing service that can be provided.
  • the attribute information may independently indicate a service identifier of the sensing service, and the service identifier may be used by the NRF to determine a candidate SF capable of providing the sensing service.
  • the target SF may have one of the following characteristics:
  • the target SF is located in the same sensing area as the UE;
  • the target SF is located in the same sensing area as the sensing target;
  • the target SF is the SF closest to the UE and supports the SF that can provide the sensing service requested by the UE;
  • the target SF is the closest SF to the AF of the sensing service or the target server;
  • the target SF is an SF located in the same sensing area as the AF of the sensing service or the target server;
  • the target SF is the SF suggested by the UE.
  • the AMF determines the target SF that responds to the sensing request according to at least one of the sensing request, the SF selection strategy and the network discovery mechanism.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by the SF, and the method includes:
  • S320 Determine a sensing parameter according to the sensing request
  • S330 Send the sensing parameter to the UE through the AFM, where the sensing parameter is used for the UE to provide a sensing service.
  • the SF After receiving the UE's sensing request forwarded by the AMF, the SF will determine the sensing parameters according to the sensing request, and return the determined security parameters to the UE for the UE to provide sensing services.
  • the sensing parameters may include at least one of the following:
  • Transmission parameters for example, the transmission parameters indicate: the type of sensory signal transmitted, the frequency of transmission, the general direction of transmission and/or the period of transmission;
  • reception parameters for example, the reception parameters indicate: reception period and/or reception frequency
  • a processing parameter for example, the receiving parameter indicates a predetermined way of processing the sensory data.
  • the sensing request includes at least: identification information of the UE; the method may include:
  • the S320 may include: after passing the verification, determining the sensing parameter.
  • the security of the sensing service can be ensured through verification, which includes: the security and/or privacy security of the service provision process, etc., the identification information of the UE will be verified, and the sensing parameters will be determined after passing the verification. If the verification is not passed, the sensing parameter is not provided.
  • the SF may not need to perform verification again, but directly determines the sensing parameters according to the sensing request.
  • SF can perform local verification, or request UDM to perform remote verification, etc.
  • the verification according to the identification information of the UE includes:
  • the subscription query request includes at least: identification information of the UE;
  • a subscription query request is sent to the UDM, and after receiving the subscription query request, the UDM queries the subscription data according to the identification information of the UE, thereby obtaining a query result.
  • the query result may include a verification result, which may indicate whether the verification is passed.
  • the inquiry result may include: the inquired contract data, and after receiving the contract data, the SF generates a verification result of whether it passes the verification by processing the contract information. If the returned subscription data indicates that the UE has not subscribed to the sensing service, the verification result indicates that the verification fails (that is, the verification fails); if the returned subscription data indicates that the UE has subscribed to the sensing service
  • the sensing request further includes: sensing model information, at least the sensing model expected to be used by the sensing request;
  • the subscription query request also includes: the sensing model information
  • the query result is: returned according to the initiator's identification information and the sensing model information.
  • the sensing request includes sensing model information
  • the sensing model information indicates the sensing model requested by the UE.
  • the query result may indicate that the verification fails.
  • the query result will indicate that the verification is passed.
  • the verification includes:
  • the authority verification is: whether the UE has the authority to obtain the sensing service, and/or the UE has the authority to verify what kind of sensing service.
  • the privacy and security verification the request for the UE to obtain the sensing service will expose the privacy of other users or the user corresponding to the UE and other information security issues. If not, the privacy and security verification is determined to be passed, otherwise the privacy and security verification can be considered to be not passed. .
  • the S320 may include:
  • the sensing parameter is determined according to at least one of the sensing request and the policy parameter.
  • the identification information of the candidate model and the device information of the candidate device determine the executor who provides the sensing service, and determine the sensing model that provides the sensing service.
  • Determining the sensing parameter according to the strategy parameter may include:
  • a set of parameters is selected from the range as the sensing parameters.
  • determining the sensing parameters may include at least one of the following:
  • the above is just an example of determining the sensing parameter according to at least one of the sensing request and the side policy parameter, and the specific implementation is not limited to the above example.
  • the policy parameters include:
  • Policy parameters may be stored locally by the SF, or may be requested from the PCF.
  • the local policy parameters of the SF can be pre-configured in the SF, or can be transferred to the local SF after the last request from the PCF.
  • the SF If the SF does not store policy parameters locally, it can request the policy parameters from the PCF, or when the priority of the policy parameters stored locally in the SF is low, it can request the policy parameters with higher priority from the PCF.
  • the determining the sensing parameter according to at least one of the sensing request and policy parameters includes:
  • the sensing parameter is determined according to the policy response.
  • a method of requesting policy parameters from the PCF may be by sending a policy request to the PCF.
  • the policy request may be at UE granularity, at UE group granularity. If it is targeted at the UE granularity, the policy request carries identification information of the corresponding UE, and if it is targeted at the UE group granularity, the policy request carries group identification information of the UE group. If the policy request is for UE granularity, the policy parameters returned in the policy response are only applicable to the corresponding UE. If the policy request is for UE group granularity, the policy parameters returned in the policy response are for all UEs in the UE group.
  • a UE group may include one or more UEs.
  • the sensing request includes: identification information of the UE;
  • the policy request includes the identification information of the UE; wherein, the policy response is returned according to the identification information of the UE.
  • the policy request carries the identification information of the UE, and the PCF may return a policy response for the UE according to the identification information of the UE.
  • the method also includes:
  • the initiator of the sensing service may be the aforementioned UE, or an application server of the UE, or the like.
  • the SF will receive the sensing data obtained by the UE providing sensing services based on the sensing parameters, and then process the sensing data in a predetermined way to obtain the sensing results, and finally the sensing results Sent to the initiator of the AF or sensing service.
  • the method also includes:
  • the SF After receiving the sensing data, the SF will not process the sensing data, but directly forward it to the AF or the initiator of the sensing service. In this way, the AF and/or the initiator can process the sensing data by themselves to obtain the sensing data. result.
  • the embodiment of the present invention provides a method of supporting sensing services through UE enhancement, that is, receiving the sensing service request initiated by the UE through the SF, judging whether the UE is authorized to establish the sensing service, and determining the transmission and reception required by the UE to implement the sensing service. Relevant parameter configuration, and relevant policy information, etc.
  • an embodiment of the present disclosure provides a method for enhancing sensing service provision through a UE, which may include:
  • the UE sends a sensing request to the AMF, and the sensing request includes:
  • Target information of the sensing target the target information indicating but not limited to at least one of the following: the position, object size and/or speed of the sensing target;
  • Sensing period information indicating the time period for providing sensing services
  • Sensing field information indicating the field where the sensing service is applied.
  • AMF selects SF according to UE requirements/local configuration
  • the request will be rejected when the network does not support the sensing service, the sensing model requested by the UE is not supported, or for other reasons.
  • the AMF requests the UDM whether the UE subscribes to the sensing service.
  • the AMF sends a sensing request to the SF, and the sensing request includes: UE ID, sensing model information and/or QoS information; optionally, the SF sends a query request to the UDM to check whether the sensing request of the UE is allowed verification, if the AMF does not perform the verification, the SF sends a query request including the UE's ID and/or sensing model information to the UDM.
  • the SF selects the PCF and requests the relevant policies from the PCF, and the request message includes the ID of the UE.
  • the PCF feeds back a policy response, which includes policy parameters.
  • the SF determines the sensing parameters of the UE according to the policy and/or local policy provided by the AMF or PCF and the sensing request of the UE.
  • the sensing parameters may at least include: transmission parameters for the UE to transmit sensing signals and/or the UE Receiving the receiving parameter based on the reflection signal generated by the sensing signal.
  • the SF sends sensing parameters to the UE, where the sensing parameters include: transmitting parameters and/or receiving parameters. If necessary, the UE establishes a transmission link by initiating a PDU session, and the transmission link can at least be used for the UE to send sensing data and/or sensing results AF, an initiator or a target sensing server.
  • the UE starts to transmit sensing signals and receive reflected signals.
  • the UE collects the sensing data and sends it to the SF for further processing; or, the UE collects the sensing data and sends it to the AF or the initiator or target server.
  • SF collects sensory data and processes the data according to predefined ways.
  • SF sends sensory data to AF and/or initiator.
  • an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the first sending module 110 is configured to send a sensing request to an access management function AMF;
  • the first receiving module 120 is configured to receive the sensing parameters returned by the target SF selected by the AMF;
  • the providing module 130 is configured to provide sensing services according to the sensing parameters.
  • the first sending module 110, the first receiving module 120, and the providing module 130 can be program modules; after the program modules are executed by the processor, they can send sensing requests to the AMF, receive target The SF returns the provided sensing parameters, and provides the sensing service based on the sensing parameters.
  • the first sending module 110 , the first receiving module 120 and the providing module 130 may be a combination of hardware and software modules; the combination of hardware and software modules includes, but is not limited to: various programmable arrays.
  • the programmable array includes, but is not limited to: a field programmable array and/or a complex programmable array.
  • the first sending module 110 , the first receiving module 120 and the providing module 130 may be pure hardware modules; the pure hardware modules include but not limited to application specific integrated circuits.
  • the sensing request includes at least one of the following:
  • the identification information of the UE is a registered trademark of the Bluetooth Special Interest Group.
  • Sensing model information indicating the sensing model providing the sensing service
  • Target information of the sensing target
  • the quality of service QoS information indicates the QoS of the sensing service.
  • the sensing model includes at least one of the following:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • the target information indicates at least one of the following:
  • the volume of the sensing target is the volume of the sensing target.
  • the providing module 130 is configured to perform at least one of the following:
  • the receiving parameters in the sensing parameters receiving the reflected signal formed by the sensing target transmitting the sensing signal to obtain the sensing data
  • the sensing data is processed to obtain a sensing result.
  • the providing module 130 is further configured to send the sensing data to the target SF; or, send the sensing data to the application function AF of the sensing service, the Initiator or target server of the sensing service.
  • the providing module 130 is configured to send the sensing result to the target SF; or, send the sensing result to the application function AF, the initiator of the sensing service or target server.
  • the sensing result includes: an intermediate result of the sensing data, and/or a final processing result of the sensing data.
  • the sensing parameters further include: address information;
  • the method also includes:
  • a transmission link is established with the AF, the initiator of the sensing service, or the target server, where the transmission link can be used at least to transmit the sensing data and/or the sensing result.
  • an embodiment of the present disclosure provides an apparatus for providing a sensing service, wherein, executed by an AMF, the apparatus includes:
  • the second receiving module 210 is configured to receive a sensing request from the UE
  • the first determination module 220 is configured to determine the target SF
  • the second sending module 230 is configured to send the sensing request to the target SF.
  • the second receiving module 210, the first determining module 220, and the second sending module 230 may be program modules; after the program modules are executed by the processor, they can receive the sensing request of the UE, And determine the target SF, and send the sensing request to the target SF.
  • the second receiving module 210, the first determining module 220, and the second sending module 230 may be a combination of hardware and software; the combination of hardware and software includes but is not limited to: various programmable array.
  • the programmable array includes, but is not limited to: a field programmable array and/or a complex programmable array.
  • the second receiving module 210, the first determining module 220 and the second sending module 230 may be pure hardware modules; the pure hardware modules include but not limited to application specific integrated circuits.
  • the device also includes:
  • a second determining module configured to determine whether to respond to the sensing request
  • the first determination module 220 is configured to determine the target SF when it is determined to respond to the sensing request.
  • the second determination module is configured to perform at least one of the following:
  • the network does not support the provision of the sensing service, and it is determined not to respond to the sensing request;
  • the network supports providing the sensing service, and determines to respond to the sensing request.
  • the second determining module is configured to perform at least one of the following:
  • the network supports the provision of the sensing service and the UE subscribes to the sensing service, and determines to respond to the sensing request;
  • the network supports the sensing service that provides the QoS indicated by the service instruction information included in the sensing request, and determines to respond to the sensing request;
  • the network supports the sensing service that provides the sensing model indicated by the sensing model information included in the sensing request, and determines to respond to the sensing request.
  • the second determining module is configured to send request information to UDM; wherein the request information includes at least identification information of the UE; receiving feedback information based on the identification information of the UDM, the The feedback information indicates whether the UE has subscribed to the sensing service.
  • the request information further includes: QoS information and/or sensing model information included in the sensing request;
  • the QoS information is used for the UDM to determine whether the UE has a sensing service subscribed to the QoS information;
  • the sensing model information is used for the UDM to determine whether the UE subscribes to a sensing service using the sensing model indicated by the sensing model information.
  • the first determining module 220 is configured to, according to at least one of the sensing request, the SF selection configuration of the AMF, and the network discovery mechanism, select The target SF is selected from the candidate SFs.
  • an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the third receiving module 310 is configured to receive the sensing request of the UE provided by the AMF;
  • the third determination module 320 is configured to determine a sensing parameter according to the sensing request
  • the third sending module 330 is configured to send the sensing parameter to the UE through the AFM, where the sensing parameter is used for the UE to provide a sensing service.
  • the third receiving module 310 , the third determining module 320 and the third sending module 330 may be program modules; after the program modules are executed by the processor, the functions of the above modules can be realized.
  • the third receiving module 310, the third determining module 320, and the third sending module 330 may be a combination of hardware and software modules; the combination of hardware and software modules include but are not limited to: various programmable array.
  • the programmable array includes, but is not limited to: a field programmable array and/or a complex programmable array.
  • the third receiving module 310, the third determining module 320 and the third sending module 330 may be pure hardware modules; the pure hardware modules include but not limited to application specific integrated circuits.
  • the sensing request includes at least: identification information of the UE; the device further includes:
  • a verification module configured to perform verification according to the identification information of the UE
  • the third determining module 320 is configured to determine the sensing parameter after passing the verification.
  • the verification module is configured to send a subscription query request to a user data management UDM according to the sensing request, wherein the subscription query request includes at least: identification information of the UE; The query results returned by the above UDM.
  • the sensing request further includes: sensing model information, at least the sensing model expected to be used by the sensing request;
  • the subscription query request also includes: the sensing model information
  • the query result is: returned according to the initiator's identification information and the sensing model information.
  • the verification includes:
  • the third determining module 320 is configured to determine the sensing parameter according to at least one of the sensing request and policy parameters.
  • the policy parameters include:
  • the third determination module 320 is configured to send a policy request to the policy control function PCF according to the sensing request; receive a policy response returned by the PCF; wherein the policy response includes the The policy parameter provided by the PCF; and determine the sensing parameter according to the policy response.
  • the sensing request includes: identification information of the UE;
  • the policy request includes the identification information of the UE; wherein, the policy response is returned according to the identification information of the UE.
  • the device also includes:
  • a fourth receiving module configured to receive sensing data sent by the UE
  • a processing module configured to process the sensing parameters to obtain sensing results
  • the fourth sending module is configured to send the sensing result to the application function AF or the initiator of the sensing service.
  • the device also includes:
  • a fifth receiving module configured to receive sensing data sent by the UE
  • the fifth sending module is configured to send the sensing data to the AF or the initiator of the sensing service.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any of the foregoing technical solutions to provide a sensing service providing method.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: a UE or a network element.
  • the network element includes but not limited to: a network element of the core network, for example, AMF, SF, PCF and/or UDM.
  • the processor may be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in FIG. 3 , FIG. 6 to FIG. 9 .
  • Fig. 13 is a block diagram of a UE 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and communication component 816 .
  • Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
  • the multimedia component 808 includes a screen providing an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gates Arrays
  • controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the UE 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of an access device.
  • the communication device 900 may be provided as a network side device.
  • the communication device may be the aforementioned UE and/or network element.
  • the communication device 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the access device, for example, at least one of the methods shown in FIG. 3 , FIG. 6 to FIG. 9 . .
  • the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958 .
  • the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种传感服务提供方法及装置、通信设备及存储介质。被UE执行的传感服务提供方法包括:向接入管理功能AMF发送传感请求;接收所述AMF选择的目标SF返回的传感参数;根据所述传感参数提供传感服务。

Description

传感服务提供方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种传感服务提供方法及装置、通信设备及存储介质。
背景技术
当前随着人工智能(Artificial Intelligence,AI)技术的发展,极大促进了众多行业的智能化,其中传感技术成为重要的技术基础,如基于雷达技术广泛应用于智慧交通、自动驾驶领域等。当前基于雷达的传感技术,主要依赖于专用的雷达设备,造价高,部署不灵活,主要用在特定的场景下。
在移动互联网时代,随着移动通信的发展,未来拥有数量更为庞大的移动终端和移动基站,同时随着新业务的不断涌现,传感需求也逐渐强烈,比如,黑暗中可以用传感服务感知周围的物体,再如室内传感人体动作指令从而控制智能家具等。为日常生活提供极大的便利。
发明内容
本公开实施例提供一种传感服务提供方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种传感服务提供方法,被用户设备(User Equipment,UE)执行,所述方法包括:
向接入管理功能(Access Management,AMF)发送的传感请求;
接收所述AMF选择的目标传感功能(Sensing Function,SF)返回的传感参数;
根据所述传感参数提供传感服务。
本公开实施例第二方面提供一种传感服务提供方法,被AMF执行,所述方法包括:
接收来自UE的传感请求;
确定目标SF;
将所述传感请求发送给所述目标SF。
本功能实施例第三方面提供一种传感服务提供方法,其中,被SF执行,所述方法包括:
接收AMF提供的UE的传感请求;
根据所述传感请求,确定传感参数;
通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
本公开实施例第四方面提供一种传感服务提供装置,所述装置包括:
第一发送模块,被配置为向接入管理功能AMF发送传感请求;
第一接收模块,被配置为接收所述AMF选择的目标SF返回的传感参数;
提供模块,被配置为根据所述传感参数提供传感服务。
本公开实施例第五方面提供一种传感服务提供装置,所述装置包括:
第二接收模块,被配置为接收来自UE的传感请求;
第一确定模块,被配置为确定目标SF;
第二发送模块,被配置为将所述传感请求发送给所述目标SF。
本公开实施例第六方面提供一种传感服务提供装置,其中,所述装置包括:
第三接收模块,被配置为接收AMF提供的UE的传感请求;
第三确定模块,被配置为根据所述传感请求,确定传感参数;
第三发送模块,被配置为通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
本公开实施例第七方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面至第三方面任意方面提供的传感服务提供方法。
本公开实施例第八方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面至第三方面任意方面提供传感服务提供方法。
本公开实施例提供的技术方案,UE设备可以向AMF发送传感请求,该传感请求会触发AMF会针对传感请求确定目标SF,目标SF会基于传感请求确定出提供传感服务的传感参数,并返回给UE,如此,UE就可以基于AMF确定的合适的目标SF给出的传感参数提供传感服务,从而确保UE提供的传感服务满足要求安全性要求和/或质量要到的传感服务。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种系统架构的示意图;
图3是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图4A是根据一示例性实施例示出的一种基于雷达信号的传感服务提供方法的示意图;
图4B是根据一示例性实施例示出的一种UE提供传感服务提的示意图;
图5是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图6是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图7是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图8是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图9是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图10是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图11是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图12是根据一示例性实施例示出的一种传感服务提供装置的结构示意图。
图13是根据一示例性实施例示出的一种UE的结构示意图;
图14是根据一示例性实施例示出的一种网元的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以 是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例提供的无线传感方法,可以应用于如图2所示的系统架构中,但是不局限于图2所示的系统架构。
发起器:根据应用需求触发传感服务,可以在3GPP对应的通信系统之外。
消费者:接收和消费传感服务的输出数据;该数据可包括:传感数据和/或根据传感数据生成的传感结果;
传感功能或称感知功能(Sensing Function,SF):该传感功能可为网络侧的任意功能实体,属于网络功能的一种,是根据发起者提供的信息/要求,确定传感模型,确定发射者(或称发射器或者发射机)和接收者(或称接收器或者接收机)的传感参数;该传感参数可至少需要协调发射者和接收者之间的传感信号之间收/发的参数。
发射者:根据从SF接收到的传感参数并发射传感信号;
接收者:根据从SF接收到的传感参数接收反射信号,如果有传感数据,则将传感数据发送给处理器;
处理者:处理从接收者处接收到的传感数据并输出传感结果。值的注意的是:此处的处理者可包括一个或多个处理器,或者一个或多个处理装置。
值的注意的是:一个设备可以充当发起者、消费者、发射者、接收者和处理者这些角色中的一个或多个角色。
如图3所示,本公开实施例提供一种传感服务提供方法,被UE执行,所述方法包括:
S110:向接入AMF发送的传感请求;
S120:接收所述AMF选择的目标SF返回的传感参数;
S130:根据所述传感参数提供传感服务。
该UE可为各种类型的终端,示例性地,该UE可为手机、平板电脑、车载设备、智能家居设备、智能办公设备或者地面行走的机器人或者低空飞行的飞行器。
UE需要传感服务时,或者UE参与提供传感服务时,会向AMF发送传感请求。
该传感服务为:通过传感信号的发射和接收,进行传感目标的距离、方位和/或轮廓等检测等。
所述传感信号为一种无线信号,示例性地,该无线信号包括但不限于:雷达信号、激光信号或者超声波信号,或者其他类型的电磁波信号。其他的电磁波信号包括但不限于:超宽带(Ultra Wide Band,UWB),或者基于飞行时间进行测距所使用的电磁波。
图4A所示为基于雷达波的无线传感。
发射者发射雷达信号,雷达信号在传输的过程中遭遇到障碍物时会被反射或者吸收,被反射的雷达波会被接收者接收到,接收者基于接收的雷达波,可以实现雷达测距、雷达探测等功能,从而知晓障碍物所在的而为之、体积和/或形状等参数。
发射者发射雷达信号,雷达信号在传输的过程中遭遇到障碍物时会被反射或者吸收,被反射的雷达波会被接收者接收到,接收者基于接收的雷达波,可以实现雷达测距、雷达探测等功能,从而知晓障碍物所在的而为之、体积和/或形状等参数。
如图4A所示,根据雷达波的收发时间,可以确定出传感目标与发射者和接收者所在设备之间的距离,以及相对于发射者和接收者所在设备之间的方向等信息。
示例性地,本公开实施例中所述传感服务的具体用途包括但不限于以下至少之一:
检测飞行器;
障碍物检测;
导弹发射;
飞船导航;
海上导航;
自动驾驶;
天气检测;
地形探测等。
在本公开实施例中,UE首先将传感请求发送给AMF,如此,AMF作为对UE接入和移动管理的功能,可以根据需要,选择合适为UE提供传感参数的SF。
该传感请求可为任意请求提供传感参数和/或传感服务的任意请求。该传感请求可为非接入层(NAS)消息和/或接入层(AS)消息。
所述传感请求可包括如下内容至少之一:
所述UE的标识信息;
传感目标信息;
传感服务的服务区域信息;
传感服务的传感时段信息;
传感服务质量QoS需求信息;
备选发射者的标识信息,其中,所述备选发射者,能够发射传感信号;
备选接收者的标识信息,其中,所述备选接收者,能够接收所述传感信号作用于传感目标产生的反射信号并基于所述反射信号输出传感数据;
备选处理器的标识信息,其中,所述备选处理器,能够基于所述传感数据确定传感结果;
备选传感模型信息。
所述传感目标信息可以用于描述传感服务所针对的传感目标的任意信息。示例性地,该传感目标信息可以用于描述传感目标的结构和/或形状特征、当前大致所在位置以及设备类型等,方便传感服务基于传感目标信息,配置出能够检测到该传感目标的传感参数。
所述UE的标识信息,可用于唯一确定所述UE。该UE的标识信息包括但不限于:UE的国际移动设备识别码(International Mobile Equipment Identity,IMEI)、临时移动用户标识(Temporary Mobile Subscriber Identity,TMSI)或者UE的网络协议(Internet Protocol,IP)地址或者UE的MAC地址等。
服务区域信息指示的传感区域,由于包含基站的移动通信系统的引入,可以将网络覆盖的区域划分为不同的区域,在不同的区域内有不同的网络设备,可以作为传感服务的执行者参与提供传感服务。
传感服务的传感时段信息,例如,相当于限定了传感服务的提供时间,从而也方便传感功能调度在该时段内可用的执行者提供无线传感服务。
传感服务的QoS需求信息指示的传感服务的QoS需求,不同用途或者不同场景对无线传感的 QoS要求是不同。例如,有的传感服务允许比较大的延时,有的传感服务对延时非常敏感。例如,在智能驾驶或者辅助驾驶时,涉及路面安全;相对于被探测地貌所允许的延时是更小的。
再例如,在使用无线传感进行距离检测和进行障碍物探测时,可能对距离的精度要求就不一样,则都体现为QoS需求,可由所述QoS需求信息来指示。
通过所述QoS需求信息的提供,方便网络侧的传感功能(Sensing Function,SF)配置合适的传感参数和调度合适的执行者提供所述传感服务。
在一些实施例中发起者自身可以充当无线传感服务的执行者,或者已经预先知晓了一些可以作为传感服务的执行者的设备,此时,在传感请求中可以携带备选发射者的标识信息、备选接收者的标识信息以及备选处理者的标识信息。
这些标识信息可以是设备标识,例如,国际移动设备识别码(International Mobile Equipment Identity,IMEI)还可以是临时分配的信息。例如,假设基站作为无线传感的备选发射者或者备选接收者,则该标识信息可以为该基站所形成小区的小区标识(Identification,ID)。该ID具体可为物理小区标识(Physical Cell Identification,PCI)。
备选传感模型信息,可以指示发起者期望使用的传感模型,或者发起者根据当前传感服务的触发场景或者触发应用程序推荐使用的传感模型。
示例性地,不同的传感模型的执行者不同;和/或,不同的传感模型的传感信号的类型不同等。
所述传感请求可以上述信息中的一种或者多种,当然也可以不携带上述信息,仅仅携带传感服务的请求信令即可。
在一些实施例中,所述请求参数还可包括:消费者信息,该消费者信息指示传感服务的消费者。传感服务的传感结果,将被发送给消费者,供消费者使用。
在一个实施例中,发起者和消费者可以相同或者不同。
示例性地,在传感请求中设置有两个必选字段和一个或多个可选字段。该两个必选字段可以分别携带发起者信息和消费者信息,而其他可选字段可以携带前述传感目标信息等各种信息。当然此处仅仅是举例,具体实现时不局限于此。
通过上述请求参数中的一种或多种的携带,方便SF确定出适合当前场景的传感参数,从而确保传感服务的服务质量。
示例性地,所述传感目标信息包括以下至少之一:
所述传感目标的面积;
所述传感目标的区域信息;
所述传感目标的位置;
所述传感目标的体积;
所述传感目标的速度。
在一些实施例中,不同面积和/或体积的传感目标,可以用于确定发射者发送传感信号的视角和/或功率等参数。
所述传感目标的区域信息可指示传感目标当前所在区域,可方便确定传感服务区域。
所述传感目标的位置,可以用于确定执行者,例如,就近选择合适的执行者来执行该传感服务。
传感目标的速度可能会对传感服务的成功提供有影响,例如,高速运动的物体,则对传感服务中发射者的发射功率有要求。另外,还可以由于传感目标的运动产生多普勒效应,此时提供传感服务的处理者的处理能力有一定的要求。
在一些实施例中,所述传感目标信息不局限于上述面积、位置、体积和/或速度,还可以传感目标的类型。例如,传感目标是否运动,可以分为静态传感目标和动态传感目标。根据传感目标是否是活体,可以分为活体目标和非活体目标。若针对活体目标,可能需要考虑雷达光斑对活体的影响活体的负面影响等。
总之,发起者可以通过传感请求将请求参数的发送,SF会根据请求参数和/或请求参数以外的网络信息等可以确定传感参数,执行者基于传感参数能够提供安全和服务质量得到保证的传感服务。
在一些实施例中,所述传感请求中的请求参数中一个或多个,还可以用于所述AMF确定目标SF。例如,AMF根据传感请求中请求参数指示的UE所在位置和/或传感目标所在位置,选择UE所在位置和/或传感目标所在位置对应的传感区域内的SF作为所述目标服务。又例如,AMF根据传感请求中请求参数指示的传感服务的QoS,选择能够提供达到所述QoS信息指示的QoS的SF作为所述目标SF。当然以上仅仅是举例。
所述SF可以为网络侧任意功能实体,具体如SF可以作为核心网和/或接入网的网元之一。
示例性地,该传感功能包括但不限于以下至少之一:
接入功能(Access Function,AF);
策略控制功能(Policy control Function,PCF);
接入管理功能(Access Management Function)或其他网络功能(Network Function,NF)。
当然以上仅仅举例,具体实现时不局限于此。在一些实施例中,所述SF可为独立于AF、AMF或者PCF的其他网元。
AMF在确定出目标SF之后,会将传感请求直接转发给目标SF或者将传感请求重新封装之后发送给目标SF,总之目标SF会接收到传感请求中包含的内容,从而确定出传感参数。如此,UE将接收到目标SF发送的传感参数。
所述传感参数可为:提供传感服务的执行者需要的任意参数,具体所述传感参数可包括以下至少之一:
发射参数,用于发射者发射所述传感信号;
接收参数,用于接收者接收所述传感信号;
处理参数,用于处理者处理所述传感信号对应的传感数据。
示例性地,所述传感参数还可包括如下至少之一:
提供传感服务的传感时段、传感区域和传感结果的精确度要求等。
所述发射参数包括但不限于:传感信号的发射功率、传感信号的发射频率;
所述接收参数包括但不限于:传感信号的接收载波的频率,接收时段等。
所述处理参数包括但不限于:传感数据的上传参数和/或处理传感数据的处理方式的标识信息等。
在一些实施例中,所述传感模型信息指示以下模型至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
若基站作为发射者和接收者,则相当于传感服务完全由移动通信网络系统的网元来执行。
在第一传感模型中,还可能涉及处理者,该处理者可为基站或者基站附近的计算设备或者是UE等。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
UE作为发射者接收者的第二传感模型,则至少传感信号的发射和接收都是由一个或多个UE来执行。此时第二传感模型作为发射者的UE和作为接收者的UE可以相同的UE,也可以是不同的UE。在本公开实施例中,发送所述传感请求的UE可为作为发射者和接收者的至少其中之一。示例性地,该UE可以同时作为发射者和接收者。如图4B所示,UE可以作为发射者发送传感信号,传感信号碰到反射对象(Reflection Objects,RO)之后产生反射信号,UE接收反射信号。这里的反射对象可为前述的传感目标。图4B中实线箭头表示传感信号的传输方向;虚线箭头表示反射信号的传输方向。
在第二传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第三传感模型是涉及基站和UE,基站作为发射者且UE作为接收者。在这种情况下,基站作为发射者可以向多个UE发射传感信号,从而实现一对多的传感服务提供,从而向不同的UE提供传感服务。
在第三传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第四传感模型是涉及基站和UE,基站作为接收者且UE作为发射者。在这种情况下,基站作为发射者,由于其自身强大的接收能力,可以一次性接收多个UE发射的传感信号,从而实现一对多的传感服务提供,从而向不同的UE提供传感服务。
在第四传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第五传感模型可为前述第一传感模型至第四传感模型以外的任意传感模型。
示例性地,第五传感模型可包括:涉及多个发射者和/或多个接收者的传感模型,且多个发射者的类型可以不同,例如,发射者既包括UE,也可以包括基站;和/或,接收者既可以包括UE也可以 包括基站。当然作为发射者和接收者的设备包括但不限于基站和/或UE。在具体实现时,作为发射者和/或接收者的设备,还可以是能够与基站或者UE建立连接的路边设备。例如,路旁具有无线信号收发能力的监控设备等。该监控设备包括但不限于以图像采集为主的视觉监控设备等。
该传感参数可以被非接入层(NAS)消息下发给UE的,但是不限于NAS消息。例如,SF还可以将传感参数先传输到UE所连接的基站,然后再由基站通过RRC消息、MAC CE或者DCI等消息信令传输给UE。具体地,UE从SF接收传感参数的方式不做具体限制。
在本公开实施例中,UE将参与传感服务的提供。示例性地,所述S130可包括以下至少之一:
根据所述传感参数中的发射参数,发射传感信号;
根据所述传感参数中的接收参数,接收被传感目标发射所述传感信号形成的反射信号得到传感数据;
处理所述传感数据得到传感结果。
所述UE参与所述传感服务提供时,可以单独作为发射者发送传感信号,也可以单独作为接收者来而传感信号,还可以单独作为处理者来处理传感数据。
在一些实施例中,发送传感请求的发送UE将充当发射者、接收者和处理者这三个角色中的两个或者三个。
在所述UE作为接收者时,接收反射信号形成触感数据之后,不处理传感数据,直接将传感数据发送给目标SF、AF或者传感服务的发起者或者消费者等。
此处的处理所述传感数据得到所述传感结果,可包括:
对所述传感数据进行初步处理,得到中间结果,该中间结果不包含指示传感目标的距离、方位和/或轮廓等最终结果,而是一些初步处理得到的非最终结果。该初步处理可包括:有效数据选择、异常数据剔除或者计算最终结果的初步结果计算等。例如,剔除无效数据,选择参与最终结果结算的传感数据作为所述初步处理的结果,发送给目标SF、AF、发起者和/或消费者。
对所述传感数据进行处理,得到最终结果。
在一个实施例中,所述S130可包括:
将所述传感数据发送给所述目标SF;
或者,
将所述传感数据发送给所述传感服务的应用功能AF、所述传感服务的发起者或者目标服务器。
该目标服务器可为消费该传感数据或者需要消费传感结果的消费者。
例如,以智能驾驶为例,若智能驾驶的控制模式为目标服务器的远程控制,则此时目标服务器将作为传感数据和/或传感结果的消费者。
在一些实施例中,所述S130可包括:
将所述传感结果发送给所述目标SF;
或者,
将所述传感结果发送给应用功能AF、所述传感服务的发起者或者目标服务器。
例如,UE作为处理者会对传感数据进行初步处理和/或最终处理,从而生成传感结果。此时,UE将传感结果发送给目标SF,传感结果再由目标SF发送给应用功能AF、所述传感服务的发起者或者目标服务器,或者,由UE直接发送给应用功能AF、所述传感服务的发起者或者目标服务器。
总之,所述传感结果包括:所述传感数据的中间结果,和/或,对所述传感数据的最终处理结果。
示例性地,UE可按照预定方式进行传感数据得到所述传感结果。该预定方式可以由所述传感参数的方式参数指示。
在一些实施例中,该预定方式可包括:标准协议或者私有协议预先定义的方式。
在另一些实施例中,该预定方式还可包括:UE和目标SF预先协商的方式。
所述预定方式可包括以下至少之一:
从传感数据选择出需要发送给目标SF、应用功能AF、所述传感服务的发起者或者目标服务器的抽样方式;
提出异常数据的异常排除方式;
根据所述传感数据生成最终处理结果的计算方式。该计算方式包括但不限于根据传感信号的飞行时间计算距离和/或方位的计算方式。
在一些实施例中,所述传感参数还包括:地址信息;
如图6所示,所述方法还包括:
S140:根据所述地址信息,与AF、所述传感服务的发起者或者目标服务器之间建立传输链路,其中,该传输链路可至少用于传输所述传感数据和/传感结果。
若传感参数包括的地址信息,与AF、所述传感服务的发起者或者目标服务器之间建立传输链路。
例如,UE不是将传感数据和/或传感结果发送给目标SF时,则目标SF会在传感参数携带所述地址信息,如此,UE接收到地址信息与该地址信息指示的地址所对应网元建立传输链路,该传输链路包括但不限于TCP连接或者UDP连接。
值的注意是:S130和S140之间的没有一定的先后关系,可以在执行S130之后建立传输链路,也可以在执行S130之前就建立传输链路,还可在UE根据传感参数提供传感服务时,就建立所述传输链路。
该传输链路可为:基于协议数据单元(Protocol Data Unit,PDU)会话建立协商建立的PDU会话所对应的PDU连接。传感数据和/或传感结构通过该PDU会话建立的PDU连接传输。
如图6所示,本公开实施例提供一种传感服务提供方法,其中,被AMF执行,所述方法包括:
S210:接收来自UE的传感请求;
S220:确定目标SF;
S230:将所述传感请求发送给所述目标SF。
在本公开实施例中,所述AMF接收到UE发送的传感请求之后,会确定出目标SF,然后将传感请求发送给目标SF,如此目标SF将根据该传感请求,确定出传感参数。
在一些实施例中,如图7所示,所述方法还包括:
S211:确定是否响应所述传感请求;
所述S220可包括:在确定响应所述传感请求时,确定所述目标SF。
为了确保提供传感服务的安全性和可靠性等,AMF在接收到传感请求之后,不会直接响应所述传感请求,还是会确定所述传感请求。示例性地,根据所述传感请求包含的请求参数,确定是否响应所述传感请求。
在确定出所述传感请求时,才会确定目标SF,否则可以不确定目标SF,而是直接向UE发送请求拒绝消息。所述请求拒绝消息可以是单独指示传感请求被拒绝的消息,还可以是携带有拒绝原因的拒绝请求消息。若该拒绝请求消息携带有拒绝原因,UE就可以根据拒绝原因知晓传感请求被拒绝的原因,是否可以排除导致传感请求被拒绝的障碍之后,重新发起传感请求。
在一些实施例中,所述S211可包括以下至少之一:
网络不支持提供所述传感服务,确定不响应所述传感请求;
网络支持提供所述传感服务,确定响应所述传感请求。
在一些实施例中,网络不支持提供传感服务,则确定不能响应该传感请求,即将拒绝响应该传感请求。若拒绝该传感请求可以向UE发送请求拒绝消息,该请求拒绝消息可以携带指示网络不支持的原因值。UE接收到指示网络不支持原因值的请求拒绝消息,将不会重复发送所述传感请求。
在另一些实施例中,网络支持提供传感服务,可以直接确定响应传感请求,或者进一步根据传感请求携带的请求参数等其他参考参数,确定是否响应所述传感请求。
示例性地,所述响应于网络支持提供所述传感服务,确定响应所述传感请求,包括以下至少之一:
所述网络支持提供所述传感服务且所述UE签约有所述传感服务,确定响应所述传感请求;
所述网络支持提供达到所述传感请求包含的服务指令信息指示的QoS的所述传感服务,确定响应所述传感请求;
网络支持提供所述传感请求包含的传感模型信息指示的传感模型的所述传感服务,确定响应所述传感请求。
传感请求另外,UE的传感请求中还会携带QoS信息指示UE请求提供的传感服务所需达到的QoS。即便网络支持提供传感服务,但是无法提供UE请求QoS的传感服务,AMF也可以拒绝响应该传感请求。
在一些实施例中,UE在请求传感服务时,会给出建议使用的传感模型,若当前网络侧即便支持提供传感服务,但是不支持UE建议的传感模型提供传感服务时,同样可以拒绝响应传感请求,可以在支持使用UE建议的传感模型提供传感服务时,确定响应所述传感请求。
在一些实施例中,所述确定是否响应所述传感请求,还包括:
发送给UDM发送请求信息;其中,所述请求信息至少包括UE的标识信息;
接收所述UDM基于标识信息的反馈信息,所述反馈信息,指示所述UE是否有签约所述传感服务。
UE是否有签约传感服务,UDM会以后签约数据,AMF可以向UDM发送请求信息,查询所述UE是否有签约所述传感服务,或者UE是否有所述UE请求的QoS的传感服务,或者,UE是否有所述UE建议使用的传感模型提供的传感服务。
在一个实施例中,反馈信息可包括:直接指示UE是否签约所述传感服务的查询结果。
在另一个实施例中,该反馈信息还可包括:UE的签约数据,该签约数据间接指示UE是否签约所述传感服务。若AMF接收的签约数据,则AMF需要通过签约数据自行确定UE是否有签约所述传感服务。
在一些实施例中,所述请求信息还包括:所述传感请求包含的QoS信息和/或传感模型信息;
所述QoS信息,用于供所述UDM确定所述UE是否有签约达到所述QoS信息的传感业务;
所述传感模型信息,用于供所述UDM确定所述UE是否有签约使用所述传感模型信息指示的传感模型的传感服务。
若UE有签约所述QoS信息的传感业务,则说明UE具有请求所述QoS信息指示的传感服务的权限。
示例性的,所述QoS信息指示的传感服务对传感目标的定位精确不同,则对应的QoS等级不同。
又示例性地,所述QoS信息指示用于传感业务的保证带宽不同,则对应的QoS等级也不同。
当然以上仅仅是对QoS信息进行举例,具体实现时不局限于上述举例。
在一个实施例中,所述S220可包括:根据所述传感请求、所述AMF的SF选择配置和网络发现机制的至少其中之一,从能够提供所述传感服务的候选SF中选择所述目标SF。
在一个实施例中,AMF可以直接根据传感请求,确定目标SF,例如,根据传感请求确定目标SF可包括:
根据传感请求包含的所述UE的标识信息确定UE所在传感区域,从所述传感区域选择一个或多个候选SF确定为目标SF;
根据所述传感请求指示的SF信息,确定所述目标SF,其中,所述SF信息包括但不限于SF的标识信息。
所述SF选择配置可包括:
AMF本地存储的SF选择配置;
和/或,
从PCF请求的SF选择配置。
若AMF本地存储有所述SF选择策略,则所述AMF可以单独根据SF选择策略确定所述目标SF,或者,根据所述传感请求和所述SF选择策略确定所述目标SF。
若所述AMF本地未存储有SF选择配置,则向PCF请求SF选择策略,并接收PCF返回的SF选择策略的策略信息,单独确定所述目标SF,或者,根据传感请求和所述PCF返回的SF选择策略的策略信息共同确定目标SF。
所述AMF还可以基于所述网络发现机制确定所述目标SF,示例性地包括但不限于以下至少之 一:
AMF单独根据网络发现机制,将发现的能够提供传感服务的目标SF;
AMF根据传感请求及网络发现机制,发现能够提供传感请求的请求参数所请求的传感服务的目标SF。
基于发现机制发现目标SF可包括但不限于以下至少之一:
AMF向网络存储功能(Network Repository Function,NRF)发送请求消息;该请求消息可包括:AMF需要发现的目标SF的属性信息;
接收NRF返回的响应消息,该响应消息可携带:NRF根据所述属性信息查询的能够作为所述目标SF的SF信息。该SF信息包括但不限于:SF的标识信息和/或SF的地址信息。
在一个实施例中,所述属性信息可为根据传感请求确定的。例如,属性信息指示目标SF所处的传感区域,支持的传感模型的类型、能够提供的传感服务的QoS。
在另一个实施例中,所述属性信息可单独指示传感服务的服务标识,该服务标识可供NRF确定能够提供传感服务的候选SF。
示例性地,所述目标SF可具有如下特征之一:
所述目标SF与所述UE位于同一个传感区域;
所述目标SF与所述传感目标位于同一个传感区域;
所述目标SF为与所述UE距离最近且支持能够提供所述UE所请求传感服务的SF;
所述目标SF为与传感服务的AF或者目标服务器最近的SF;
所述目标SF为与传感服务的AF或者目标服务器位于同一个传感区域的SF;
所述目标SF为所述UE建议的SF。
总之,在本公开实施例中,AMF会根据传感请求、SF选择策略及网络发现机制的至少其中之一,确定响应所述传感请求的目标SF。
如图8所示,本公开实施例提供一种传感服务提供方法,被SF执行,所述方法包括:
S310:接收AMF提供的UE的传感请求;
S320:根据所述传感请求,确定传感参数;
S330:通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
SF接收到AMF转发的UE的传感请求之后,会根据传感请求确定出传感参数,并将确定的创安参数返回给UE,供UE提供传感服务。
该传感请求包含的请求参数可以参见对应实施例的描述,此处就不重复了。
所述传感参数可包括以下至少之一:
发射参数,例如,该发射参数指示:发射的传感信号类型、发射频率、发射大致方向和/或发射时段;
接收参数,例如,该接收参数指示:接收时段和/或接收频率;
处理参数,例如,该接收参数指示:处理传感数据的预定方式。
在一些实施例中,所述传感请求至少包括:所述UE的标识信息;所述方法可包括:
根据所述UE的标识信息,进行验证;
所述S320可包括:在通过所述验证之后,确定所述传感参数。
通过验证可以确保传感服务的安全性,这种安全性包括:服务提供过程的安全和/或隐私安全等,会对UE的标识信息进行验证,在通过验证之后才确定所述传感参数,若未通过验证就不提供所述传感参数。
当然根据UE的标识信息的验证已经由AMF完整的情况下,SF也可以不用再进行验证,而是直接根据传感请求确定所述传感参数。
SF可以进行本地验证,也可以请求UDM进行远程验证等。
若由UDM进行远程验证,则所述根据所述UE的标识信息进行验证,包括:
根据所述传感请求,向用户数据管理UDM发送签约查询请求,其中,所述签约查询请求至少包括:所述UE的标识信息;
接收所述UDM返回的查询结果。
示例性地,根据传感请求,向UDM发送签约查询请求,UDM接收到签约查询请求之后,会根据UE的标识信息查询签约数据,从而得到查询结果。
在一个实施例中,查询结果可以包括验证结果,该验证结果可指示验证是否通过。
在另一个实施例中,查询结果可包括:查询的签约数据,SF接收到签约数据之后,通过签约信息的处理,自行生成是否通过验证的验证结果。若返回的签约数据指示所述UE未签约有传感服务,则所述验证结果指示验证失败(即验证不通过)、若返回的签约数据指示所述UE有签约所述传感服务
在一些实施例中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
所述签约查询请求还包括:所述传感模型信息;
所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
例如,传感请求中包含传感模型信息,该传感模型信息指示了UE请求使用的传感模型。UDM根据签约信息发现UE没有签约使用其请求的传感模型提供传感服务时,则查询结果可能会指示验证不通过,若UDM根据签约信息发现UE有签约其使用传感模型提供的传感服务时,则查询结果会指示验证通过。
在一个实施例中,所述验证包括:
鉴权验证;
和/或,
隐私安全验证。
所述权限验证为:对所述UE是否具有获取传感服务的权限验证,和/或所述UE具有何种传感 服务的权限验证。
所述隐私安全验证:是对UE请求获得传感服务会使得其他用户或者该UE所对应用户的隐私暴露等信息安全性问题,若没有则认定隐私安全验证通过,否则可认为隐私安全验证不通过。
在一些实施例中,所述S320可包括:
根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
根据所述传感请求提供的备选参数,确定所述传感参数,例如,将备选参数的至少其中之一确定为所述传感参数;又例如,根据所述传感请求中携带的备选模型的标识信息、备选设备的设备信息,确定提供所述传感服务的执行者,以及确定提供所述传感服务的传感模型。
根据所述策略参数确定所述传感参数,可包括:
根据所述策略参数提供的一套或多套备选参数,随机确定或者预定义方式选择一套备选参数作为所述传感参数;
和/或,
根据所述策略参数限定的传感参数的范围,从该范围选择一套参数作为所述传感参数。
根据所述传感请求及所述策略参数,确定传感参数可包括以下至少之一:
确定所述传感请求提供备选参数是否包含在所述策略参数中,若包含在所述策略参数中,则将所述备选参数确定为所述传感参数;和/或,若不包含在所述策略参数中,从策略参数中随机选择一套参数作为所述传感参数,或者从所述策略参数中选择与所述备选参数最接近的一套作为所述传感参数。
以上仅仅是对根据传感请求及侧策略参数的至少其中之一,确定传感参数的举例,具体实现时,不局限于上述举例。
在一些实施例中,所述策略参数包括:
所述SF的本地策略参数;
策略控制功能PCF提供的策略参数。
策略参数可以SF本地存储的,还可能是从PCF请求的。
SF的本地策略参数可以是预先配置在SF中的,也可以是上次从PCF请求之后转存到SF本地。
若SF本地未存储有策略参数,则可以向PCF请求策略参数,或者SF本地存储的策略参数优先级较低时,可以从PCF请求优先级更高的策略参数。
当然以上仅仅是对策略参数的来源和/或获取方式的举例,具体实现时不局限于该举例。
在一些实施例中,所述根据所述传感请求及策略参数的至少其中之一,确定所述传感参数,包括:
根据所述传感请求,向策略控制功能PCF发送策略请求;
接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;
根据所述策略响应,确定所述传感参数。
向PCF请求策略参数的方式可通过向PCF发送策略请求。该策略请求可以是针对UE粒度的、针对UE组粒度的。若针对UE粒度的,则该策略请求携带有对应UE的标识信息,若针对UE组粒度的,则策略请求携带有UE组的组标识信息。若针对UE粒度的策略请求,则策略响应中返回的策略参数仅适用于对应UE。若针对UE组粒度的策略请求,则策略响应中返回的策略参数是针对UE组内所有UE的。一个UE组可包括一个或多个UE。
在一个实施例中,所述传感请求包括:所述UE的标识信息;
其中,所述策略请求包含所述UE的标识信息;其中,所述策略响应是根据所述UE的标识信息返回的。
所述策略请求携带有所述UE的标识信息,则PCF可以根据该UE的标识信息,返回针对该UE的策略响应。
在一些实施例中,所述方法还包括:
接收所述UE发送的传感数据;
处理所述传感参数得到传感结果;
将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
该传感服务的发起者可为前述UE,也可以是所述UE的应用服务器等。
总之,在本公开实施例中,SF会接收所述UE基于传感参数提供传感服务得到的传感数据,然后按照预定方式处理该传感数据得到传感结果,并最终将该传感结果发送给AF或者传感服务的发起者。
在一些实施例中,所述方法还包括:
接收所述UE发送的传感数据;
将所述传感数据发送给AF或者所述传感服务的发起者。
SF接收到传感数据之后,不会对传感数据进行处理,而是直接转发给AF或者传感服务的发起者,如此,AF和/或发起者可以自行处理传感数据,从而得到传感结果。
本发明实施例提供一种通过UE增强来支持传感业务,即通过SF接收UE发起的传感业务请求,判断UE是否授权建立传感业务,并确定UE实施传感业务所需要的发射、接收相关的参数配置,及相关策略信息等。
参考图9所示,本公开实施例提供一种通过UE增强传感服务提供的方法,可包括:
UE向AMF发送传感请求,该传感请求包括:
UE的ID;
传感模型信息;
传感目标的目标信息,该目标信息指示但不限于以下至少之一:传感目标的位置、对象大小和/或速度;
传感时段信息,指示提供传感服务的时间段;
传感领域信息,指示该传感服务应用的领域。
AMF根据UE要求/本地配置选择SF;
当网络不支持传感服务、不支持UE请求的传感模型或其他原因时,该请求将被拒绝。可选地,AMF向UDM请求UE是否签约传感业务。
AMF向SF发送传感请求,该传感请求包括:UE的ID、传感模型信息和/或QoS信息;可选地,SF向UDM发送查询请求,检查该UE的该传感请求是否被允许的验证,如果AMF没有做该验证的话,SF向UDM发送包括UE的ID和/或传感模型信息的查询请求。
SF选择PCF并向PCF请求相关的策略,请求消息包括UE的ID。
PCF反馈策略响应,该策略响应包括策略参数。
SF根据AMF或PCF提供的策略和/或本地政策和UE的传感请求,确定UE的传感参数,该传感参数可至少包括:用于供UE发射传感信号的发射参数和/或UE接收基于传感信号产生的反射信号的接收参数。
SF发送传感参数给UE,该传感参数包括:发射参数和/或接收参数。如果需要,UE通过启动PDU会话建立传输链路,该传输链路至少可用于UE发送传感数据和/或传感结果AF、发起者或者目标传感服务器。
UE开始发射传感信号,并接收反射信号。
UE采集传感数据并发送给SF进行进一步处理;或者,UE采集传感数据并下发到AF或发起者或目标服务器。
SF收集传感数据,并根据预定义的方式处理数据。
SF向AF和/或发起者发送传感数据。
如图10所示,本公开实施例提供一种传感服务提供装置,其中,所述装置包括:
第一发送模块110,被配置为向接入管理功能AMF发送传感请求;
第一接收模块120,被配置为接收所述AMF选择的目标SF返回的传感参数;
提供模块130,被配置为根据所述传感参数提供传感服务。
在一些实施例中,所述第一发送模块110、第一接收模块120及所述提供模块130可为程序模块;所述程序模块被处理器执行之后,能够向AMF发送传感请求、接收目标SF返回提供的传感参数,并基于所述传感参数提供所述传感服务。
在另一些实施例中,所述第一发送模块110、第一接收模块120及所述提供模块130可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列。该可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有些实施例中,所述第一发送模块110、第一接收模块120及所述提供模块130可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述传感请求包括以下至少之一:
所述UE的标识信息;
传感模型信息,指示提供所述传感服务的传感模型;
传感目标的目标信息;
服务质量QoS信息,指示所述传感服务的QoS。
在一些实施例中,所述传感模型,包括以下至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
在一些实施例中,所述目标信息指示以下至少之一:
所述传感目标的所在区域;
所述传感目标的类型;
所述传感目标的运动速度;
所述传感目标的体积。
在一些实施例中,所述提供模块130,被配置为执行以下至少之一:
根据所述传感参数中的发射参数,发射传感信号;
根据所述传感参数中的接收参数,接收被传感目标发射所述传感信号形成的反射信号得到传感数据;
处理所述传感数据得到传感结果。
在一些实施例中,所述提供模块130,还被配置为将所述传感数据发送给所述目标SF;或者,将所述传感数据发送给所述传感服务的应用功能AF、所述传感服务的发起者或者目标服务器。
在一些实施例中,所述提供模块130,被配置为将所述传感结果发送给所述目标SF;或者,将所述传感结果发送给应用功能AF、所述传感服务的发起者或者目标服务器。
在一些实施例中,所述传感结果包括:所述传感数据的中间结果,和/或,对所述传感数据的最终处理结果。
在一些实施例中,所述传感参数还包括:地址信息;
所述方法还包括:
根据所述地址信息,与AF、所述传感服务的发起者或者目标服务器之间建立传输链路,其中,该传输链路可至少用于传输所述传感数据和/传感结果。
如图11所示,本公开实施例提供一种传感服务提供装置,其中,被AMF执行,所述装置包括:
第二接收模块210,被配置为接收来自UE的传感请求;
第一确定模块220,被配置为确定目标SF;
第二发送模块230,被配置为将所述传感请求发送给所述目标SF。
在一些实施例中,所述第二接收模块210、第一确定模块220及所述第二发送模块230可为程 序模块;所述程序模块被处理器执行之后,能够接收UE的传感请求,并确定目标SF,并将传感请求发送给目标SF。
在另一些实施例中,所述第二接收模块210、第一确定模块220及所述第二发送模块230可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列。该可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有些实施例中,所述第二接收模块210、第一确定模块220及所述第二发送模块230可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述装置还包括:
第二确定模块,被配置为确定是否响应所述传感请求;
所述第一确定模块220,被配置为在确定响应所述传感请求时,确定所述目标SF。
在一些实施例中,所述第二确定模块,被配置为执行以下至少之一:
网络不支持提供所述传感服务,确定不响应所述传感请求;
网络支持提供所述传感服务,确定响应所述传感请求。
在一些实施例中,所述第二确定模块,被配置为执行以下至少之一:
所述网络支持提供所述传感服务且所述UE签约有所述传感服务,确定响应所述传感请求;
所述网络支持提供所述传感请求包含的服务指令信息指示的QoS的所述传感服务,确定响应所述传感请求;
网络支持提供所述传感请求包含的传感模型信息指示的传感模型的所述传感服务,确定响应所述传感请求。
在一些实施例中,所述第二确定模块,被配置为向用户数据管理UDM发送请求信息;其中,所述请求信息至少包括UE的标识信息;接收所述UDM基于标识信息的反馈信息,所述反馈信息,指示所述UE是否有签约所述传感服务。
在一些实施例中,所述请求信息还包括:所述传感请求包含的QoS信息和/或传感模型信息;
所述QoS信息,用于供所述UDM确定所述UE是否有签约所述QoS信息的传感业务;
所述传感模型信息,用于供所述UDM确定所述UE是否有签约使用所述传感模型信息指示的传感模型的传感服务。
在一些实施例中,所述第一确定模块220,被配置为根据所述传感请求、所述AMF的SF选择配置及网络发现机制的至少其中之一,从能够提供所述传感服务的候选SF中选择所述目标SF。
如图12所示,本公开实施例提供一种传感服务提供装置,其中,所述装置包括:
第三接收模块310,被配置为接收AMF提供的UE的传感请求;
第三确定模块320,被配置为根据所述传感请求,确定传感参数;
第三发送模块330,被配置为通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
在一些实施例中,所述第三接收模块310、第三确定模块320及所述第三发送模块330可为程序模块;所述程序模块被处理器执行之后,能够实现上述模块的功能。
在另一些实施例中,所述第三接收模块310、第三确定模块320及所述第三发送模块330可为软硬结合模块;所述软硬结合模块包括但不限于:各种可编程阵列。该可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有些实施例中,所述第三接收模块310、第三确定模块320及所述第三发送模块330可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述传感请求至少包括:所述UE的标识信息;所述装置还包括:
验证模块,被配置为根据所述UE的标识信息进行验证;
所述第三确定模块320,被配置为在通过所述验证之后,确定所述传感参数。
在一些实施例中,所述验证模块,被配置为根据所述传感请求,向用户数据管理UDM发送签约查询请求,其中,所述签约查询请求至少包括:所述UE的标识信息;接收所述UDM返回的查询结果。
在一些实施例中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
所述签约查询请求还包括:所述传感模型信息;
所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
在一些实施例中,所述验证包括:
鉴权验证;
和/或,
隐私安全验证。
在一些实施例中,所述第三确定模块320,被配置为根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
在一些实施例中,所述策略参数包括:
所述SF的本地策略参数;
策略控制功能PCF提供的策略参数。
在一些实施例中,所述第三确定模块320,被配置为根据所述传感请求,向策略控制功能PCF发送策略请求;接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;根据所述策略响应,确定所述传感参数。
在一些实施例中,所述传感请求包括:所述UE的标识信息;
其中,所述策略请求包含所述UE的标识信息;其中,所述策略响应是根据所述UE的标识信息返回的。
在一些实施例中,所述装置还包括:
第四接收模块,被配置为接收所述UE发送的传感数据;
处理模块,被配置为处理所述传感参数得到传感结果;
第四发送模块,被配置为将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
在一些实施例中,所述装置还包括:
第五接收模块,被配置为接收所述UE发送的传感数据;
第五发送模块,被配置为将所述传感数据发送给AF或者所述传感服务的发起者。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供传感服务提供方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:UE或者网元。该网元包括但不限于:核心网的网元,例如,AMF、SF、PCF和/或UDM。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3、图6至图9所示的方法的至少其中之一。
图13是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触 摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图14所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为前述的UE和/或网元。
参照图14,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器 932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,,如图3、图6至图9所示的方法的至少其中之一。。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (56)

  1. 一种传感服务提供方法,其中,被用户设备UE执行,所述方法包括:
    向接入管理功能AMF发送传感请求;
    接收所述AMF选择的目标传感功能SF返回的传感参数;
    根据所述传感参数提供传感服务。
  2. 根据权利要1所述的方法,所述传感请求包括以下至少之一:
    所述UE的标识信息;
    传感模型信息,指示提供所述传感服务的传感模型;
    传感目标的目标信息;
    服务质量QoS信息,指示所述传感服务的QoS。
  3. 根据权利要求2所述的方法,其中,所述传感模型,包括以下至少之一:
    基站作为发射者和接收者的第一传感模型;
    用户设备UE作为发射者和接收者的第二传感模型;
    基站作为发射者且UE作为接收者的第三传感模型;
    UE作为接收者且基站作为发射者的第四传感模型;
    除所述第一传感模型至所述第四传感模型以外的第五传感模型。
  4. 根据权利要求2所述的方法,其中,所述目标信息指示以下至少之一:
    所述传感目标的所在区域;
    所述传感目标的类型;
    所述传感目标的运动速度;
    所述传感目标的体积。
  5. 根据权利要求1至4任一项所述的方法,其中,所述根据所述传感参数提供传感服务,包括以下至少之一:
    根据所述传感参数中的发射参数,发射传感信号;
    根据所述传感参数中的接收参数,接收被传感目标发射所述传感信号形成的反射信号得到传感数据;
    处理所述传感数据得到传感结果。
  6. 根据权利要求1至4任一项所述的方法,其中,所述根据所述传感参数提供传感服务,包括:
    将所述传感数据发送给所述目标SF;
    或者,
    将所述传感数据发送给所述传感服务的应用功能AF、所述传感服务的发起者或者目标服务器。
  7. 根据权利要求6所述的方法,其中,所述根据所述传感参数提供传感服务,包括:
    将所述传感结果发送给所述目标SF;
    或者,
    将所述传感结果发送给应用功能AF、所述传感服务的发起者或者目标服务器。
  8. 根据权利要求5至7任一项所述的方法,其中,
    所述传感结果包括:所述传感数据的中间结果,和/或,对所述传感数据的最终处理结果。
  9. 根据权利要求8所述的方法,还包括:
    根据所述传感参数中的地址信息,与AF、所述传感服务的发起者或者目标服务器之间建立传输链路,其中,该传输链路可至少用于传输所述传感数据和/传感结果。
  10. 一种传感服务提供方法,其中,被AMF执行,所述方法包括:
    接收来自UE的传感请求;
    确定目标SF;
    将所述传感请求发送给所述目标SF。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    确定是否响应所述传感请求;
    所述确定目标SF,包括:在确定响应所述传感请求时,确定所述目标SF。
  12. 根据权利要求11所述的方法,其中,所述确定是否响应所述传感请求,包括以下至少之一:
    网络不支持提供所述传感服务,确定不响应所述传感请求;
    网络支持提供所述传感服务,确定响应所述传感请求。
  13. 根据权利要求12所述的方法,其中,所述响应于网络支持提供所述传感服务,确定响应所述传感请求,包括以下至少之一:
    所述网络支持提供所述传感服务且所述UE签约有所述传感服务,确定响应所述传感请求;
    所述网络支持提供所述传感请求包含的服务指令信息指示的QoS的所述传感服务,确定响应所述传感请求;
    网络支持提供所述传感请求包含的传感模型信息指示的传感模型的所述传感服务,确定响应所述传感请求。
  14. 根据权利要求12所述的方法,其中,所述确定是否响应所述传感请求,还包括:
    向向用户数据管理UDM发送请求信息;其中,所述请求信息至少包括UE的标识信息;
    接收所述UDM基于标识信息的反馈信息,所述反馈信息,指示所述UE是否有签约所述传感服务。
  15. 根据权利要求14所述的方法,其中,所述请求信息还包括:所述传感请求包含的QoS信息和/或传感模型信息;
    所述QoS信息,用于供所述UDM确定所述UE是否有签约所述QoS信息的传感业务;
    所述传感模型信息,用于供所述UDM确定所述UE是否有签约使用所述传感模型信息指示的传感模型的传感服务。
  16. 根据权利要求10至15任一项所述的方法,其中,所述确定目标SF,包括:
    根据所述传感请求、所述AMF的SF选择配置及网络发现机制的至少其中之一,从能够提供所述传感服务的候选SF中选择所述目标SF。
  17. 一种传感服务提供方法,其中,被SF执行,所述方法包括:
    接收AMF提供的UE的传感请求;
    根据所述传感请求,确定传感参数;
    通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    根据所述传感请求中的所述UE的标识信息进行验证;
    所述根据所述传感请求,确定传感参数,包括:
    在通过所述验证之后,确定所述传感参数。
  19. 根据权利要求18所述的方法,其中,所述根据所述传感请求中的所述UE的标识信息进行验证,包括:
    根据所述传感请求,向用户数据管理UDM发送签约查询请求,其中,所述签约查询请求至少包括:所述UE的标识信息;
    接收所述UDM返回的查询结果。
  20. 根据权利要求19所述的方法,其中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
    所述签约查询请求还包括:所述传感模型信息;
    所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
  21. 根据权利要求18所述的方法,其中,所述验证包括:
    鉴权验证;
    和/或,
    隐私安全验证。
  22. 根据权利要求17至21任一项所述的方法,其中,所述根据所述传感请求,确定传感参数,包括:
    根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
  23. 根据权利要求22所述的方法,其中,所述策略参数包括:
    所述SF的本地策略参数;
    策略控制功能PCF提供的策略参数。
  24. 根据权利要求23所述的方法,其中,所述根据所述传感请求及策略参数的至少其中之一,确定所述传感参数,包括:
    根据所述传感请求,向策略控制功能PCF发送策略请求;
    接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;
    根据所述策略响应,确定所述传感参数。
  25. 根据权利要求24所述的方法,其中,所述传感请求包括:所述UE的标识信息;
    其中,所述策略请求包含所述UE的标识信息;其中,所述策略响应是根据所述UE的标识信息返回的。
  26. 根据权利要求17至25任一项所述的方法,其中,所述方法还包括:
    接收所述UE发送的传感数据;
    处理所述传感参数得到传感结果;
    将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
  27. 根据权利要求17至26任一项所述的方法,其中,所述方法还包括:
    接收所述UE发送的传感数据;
    将所述传感数据发送给AF或者所述传感服务的发起者。
  28. 一种传感服务提供装置,其中,所述装置包括:
    第一发送模块,被配置为向接入管理功能AMF发送传感请求;
    第一接收模块,被配置为接收所述AMF选择的目标SF返回的传感参数;
    提供模块,被配置为根据所述传感参数提供传感服务。
  29. 根据权利要28所述的装置,其中,所述传感请求包括以下至少之一:
    所述UE的标识信息;
    传感模型信息,指示提供所述传感服务的传感模型;
    传感目标的目标信息;
    服务质量QoS信息,指示所述传感服务的QoS。
  30. 根据权利要求29所述的装置,其中,所述传感模型,包括以下至少之一:
    基站作为发射者和接收者的第一传感模型;
    用户设备UE作为发射者和接收者的第二传感模型;
    基站作为发射者且UE作为接收者的第三传感模型;
    UE作为接收者且基站作为发射者的第四传感模型;
    除所述第一传感模型至所述第四传感模型以外的第五传感模型。
  31. 根据权利要求29所述的装置,其中,所述目标信息指示以下至少之一:
    所述传感目标的所在区域;
    所述传感目标的类型;
    所述传感目标的运动速度;
    所述传感目标的体积。
  32. 根据权利要求28至31任一项所述的装置,其中,所述提供模块,被配置为执行以下至少之一:
    根据所述传感参数中的发射参数,发射传感信号;
    根据所述传感参数中的接收参数,接收被传感目标发射所述传感信号形成的反射信号得到传感数据;
    处理所述传感数据得到传感结果。
  33. 根据权利要求28至31任一项所述的装置,其中,所述提供模块,还被配置为将所述传感数据发送给所述目标SF;或者,将所述传感数据发送给所述传感服务的应用功能AF、所述传感服务的发起者或者目标服务器。
  34. 根据权利要求33所述的装置,其中,所述提供模块,被配置为将所述传感结果发送给所述目标SF;或者,将所述传感结果发送给应用功能AF、所述传感服务的发起者或者目标服务器。
  35. 根据权利要求32至34任一项所述的装置,其中,
    所述传感结果包括:所述传感数据的中间结果,和/或,对所述传感数据的最终处理结果。
  36. 根据权利要求35所述的装置,其中,所述提供模块,还被配置为根据所述传感参数中地址信息,与AF、所述传感服务的发起者或者目标服务器之间建立传输链路,其中,该传输链路可至少用于传输所述传感数据和/传感结果。
  37. 一种传感服务提供装置,其中,所述装置包括:
    第二接收模块,被配置为接收来自UE的传感请求;
    第一确定模块,被配置为确定目标SF;
    第二发送模块,被配置为将所述传感请求发送给所述目标SF。
  38. 根据权利要求37所述的装置,其中,所述装置还包括:
    第二确定模块,被配置为确定是否响应所述传感请求;
    所述第一确定模块,被配置为在确定响应所述传感请求时,确定所述目标SF。
  39. 根据权利要求38所述的方法,其中,所述第二确定模块,被配置为执行以下至少之一:
    网络不支持提供所述传感服务,确定不响应所述传感请求;
    网络支持提供所述传感服务,确定响应所述传感请求。
  40. 根据权利要求39所述的装置,其中,所述第二确定模块,被配置为执行以下至少之一:
    所述网络支持提供所述传感服务且所述UE签约有所述传感服务,确定响应所述传感请求;
    所述网络支持提供所述传感请求包含的服务指令信息指示的QoS的所述传感服务,确定响应所述传感请求;
    网络支持提供所述传感请求包含的传感模型信息指示的传感模型的所述传感服务,确定响应所述传感请求。
  41. 根据权利要求39所述的装置,其中,所述第二确定模块,被配置为向用户数据管理UDM发送请求信息;其中,所述请求信息至少包括UE的标识信息;接收所述UDM基于标识信息的反馈信息,所述反馈信息,指示所述UE是否有签约所述传感服务。
  42. 根据权利要求41所述的装置,其中,所述请求信息还包括:所述传感请求包含的QoS信息和/或传感模型信息;
    所述QoS信息,用于供所述UDM确定所述UE是否有签约所述QoS信息的传感业务;
    所述传感模型信息,用于供所述UDM确定所述UE是否有签约使用所述传感模型信息指示的传感模型的传感服务。
  43. 根据权利要求37至42任一项所述的装置,其中,所述第一确定模块,被配置为根据所述传感请求、所述AMF的SF选择配置及网络发现机制的至少其中之一,从能够提供所述传感服务的候选SF中选择所述目标SF。
  44. 一种传感服务提供装置,其中,所述装置包括:
    第三接收模块,被配置为接收AMF提供的UE的传感请求;
    第三确定模块,被配置为根据所述传感请求,确定传感参数;
    第三发送模块,被配置为通过所述AFM将所述传感参数发送给所述UE,其中,所述传感参数,用于供所述UE提供传感服务。
  45. 根据权利要求44所述的装置,其中,所述装置还包括:
    验证模块,被配置为根据所述传感请求中的所述UE的标识信息进行验证;
    所述第三确定模块,被配置为在通过所述验证之后,确定所述传感参数。
  46. 根据权利要求45所述的装置,其中,所述验证模块,被配置为根据所述传感请求,向用户数据管理UDM发送签约查询请求,其中,所述签约查询请求至少包括:所述UE的标识信息;接收所述UDM返回的查询结果。
  47. 根据权利要求46所述的装置,其中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
    所述签约查询请求还包括:所述传感模型信息;
    所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
  48. 根据权利要求45所述的方法,其中,所述验证包括:
    鉴权验证;
    和/或,
    隐私安全验证。
  49. 根据权利要求44至48任一项所述的装置,其中,所述第三确定模块,被配置为根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
  50. 根据权利要求49所述的装置,其中,所述策略参数包括:
    所述SF的本地策略参数;
    策略控制功能PCF提供的策略参数。
  51. 根据权利要求50所述的装置,其中,所述第三确定模块,被配置为根据所述传感请求,向策略控制功能PCF发送策略请求;接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;根据所述策略响应,确定所述传感参数。
  52. 根据权利要求50所述的装置,其中,所述传感请求包括:所述UE的标识信息;
    其中,所述策略请求包含所述UE的标识信息;其中,所述策略响应是根据所述UE的标识信息返回的。
  53. 根据权利要求44至52任一项所述的装置,其中,所述装置还包括:
    第四接收模块,被配置为接收所述UE发送的传感数据;
    处理模块,被配置为处理所述传感参数得到传感结果;
    第四发送模块,被配置为将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
  54. 根据权利要求44至52任一项所述的装置,其中,所述装置还包括:
    第五接收模块,被配置为接收所述UE发送的传感数据;
    第五发送模块,被配置为将所述传感数据发送给AF或者所述传感服务的发起者。
  55. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至9、10至16、或17至27任一项提供的方法。
  56. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至9、10至16、或17至27任一项提供的方法。
PCT/CN2021/122919 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质 WO2023056648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003275.9A CN116569572A (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质
PCT/CN2021/122919 WO2023056648A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122919 WO2023056648A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023056648A1 true WO2023056648A1 (zh) 2023-04-13

Family

ID=85803836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122919 WO2023056648A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN116569572A (zh)
WO (1) WO2023056648A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634360A (zh) * 2012-08-28 2014-03-12 中国电信股份有限公司 传感器功能的分享应用方法、系统和服务器、移动终端
CN107852340A (zh) * 2015-07-10 2018-03-27 三星电子株式会社 集线器装置及其提供服务的方法
US20180090009A1 (en) * 2016-09-26 2018-03-29 Alcatel Lucent Dynamic traffic guide based on v2v sensor sharing method
CN112640494A (zh) * 2018-09-06 2021-04-09 高通股份有限公司 交通工具之间的网络控制的传感器信息共享
CN113286742A (zh) * 2020-09-22 2021-08-20 深圳市大疆创新科技有限公司 可移动平台的数据管理方法、装置、可移动平台及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634360A (zh) * 2012-08-28 2014-03-12 中国电信股份有限公司 传感器功能的分享应用方法、系统和服务器、移动终端
CN107852340A (zh) * 2015-07-10 2018-03-27 三星电子株式会社 集线器装置及其提供服务的方法
US20180090009A1 (en) * 2016-09-26 2018-03-29 Alcatel Lucent Dynamic traffic guide based on v2v sensor sharing method
CN112640494A (zh) * 2018-09-06 2021-04-09 高通股份有限公司 交通工具之间的网络控制的传感器信息共享
CN113286742A (zh) * 2020-09-22 2021-08-20 深圳市大疆创新科技有限公司 可移动平台的数据管理方法、装置、可移动平台及介质

Also Published As

Publication number Publication date
CN116569572A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US20230034681A1 (en) Positioning processing method and apparatus, base station, terminal device, and storage medium
WO2021243723A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2023056648A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023056649A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023065090A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023039896A1 (zh) 无线传感方法及装置、通信设备及存储介质
WO2023240479A1 (zh) 无线感知处理方法及装置、通信设备及存储介质
WO2023184119A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023178532A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2023178533A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2023216210A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2023201736A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023216257A1 (zh) 信号覆盖信息确定方法、装置、通信设备和存储介质
WO2023216259A1 (zh) 卫星覆盖信息确定方法、装置、通信设备和存储介质
WO2023236157A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2023150978A1 (zh) 感知数据传输方法、装置、通信设备和存储介质
WO2024011413A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2024026893A1 (zh) 事件报告允许区域设置方法及装置、通信设备及存储介质
WO2023150979A1 (zh) 上报感知数据的方法、装置、通信设备及存储介质
WO2023173430A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024016349A1 (zh) 提供感知服务的方法、装置、通信设备及存储介质
WO2023178578A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023212951A1 (zh) 测距方法、装置、通信设备和存储介质
WO2024000131A1 (zh) 测距方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003275.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021959738

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021959738

Country of ref document: EP

Effective date: 20240510