WO2023056649A1 - 传感服务提供方法及装置、通信设备及存储介质 - Google Patents

传感服务提供方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023056649A1
WO2023056649A1 PCT/CN2021/122920 CN2021122920W WO2023056649A1 WO 2023056649 A1 WO2023056649 A1 WO 2023056649A1 CN 2021122920 W CN2021122920 W CN 2021122920W WO 2023056649 A1 WO2023056649 A1 WO 2023056649A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
service
base station
request
target
Prior art date
Application number
PCT/CN2021/122920
Other languages
English (en)
French (fr)
Inventor
刘建宁
沈洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003291.8A priority Critical patent/CN116261867A/zh
Priority to PCT/CN2021/122920 priority patent/WO2023056649A1/zh
Publication of WO2023056649A1 publication Critical patent/WO2023056649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to a method and device for providing a sensing service, a communication device, and a storage medium.
  • sensing technology has become an important technical basis, such as radar-based technology, which is widely used in the fields of intelligent transportation and automatic driving.
  • the current radar-based sensing technology mainly relies on dedicated radar equipment, which is expensive and inflexible in deployment, and is mainly used in specific scenarios.
  • sensing services can be used in the dark Perceive the surrounding objects, such as indoor sensing human motion commands to control smart furniture, etc. Provide great convenience for daily life.
  • Embodiments of the present disclosure provide a sensing service providing method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by a base station, and the method includes:
  • a sensing service is provided according to the sensing parameters.
  • the second aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by the sensing function SF, and the method includes:
  • the third aspect of the embodiments of the present disclosure provides a method for providing a sensing service, wherein, executed by the AMF, the method includes:
  • the fourth aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by a UDM, and the method includes:
  • the query request includes: identification information of the originator of the sensing service;
  • the fifth aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by a PCF, and the method includes:
  • the policy request includes: identification information of the originator of the sensing service;
  • the sixth aspect of the embodiments of the present disclosure provides a method for providing a sensing service, which is executed by the application function AF or the initiator of the sensing service, and the method includes:
  • the sensing request at least includes: identification information of the initiator, at least used to verify the initiator of the sensing service;
  • the sensing request is used to request the SF to select a target base station to provide the sensing service.
  • a seventh aspect of an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • a first receiving module configured to receive sensing parameters from the sensing function SF
  • the providing module is configured to provide sensing services according to the sensing parameters.
  • An eighth aspect of an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the second receiving module is configured to receive a sensing request from the initiator of the application function AF or the sensing service;
  • the first determining module is configured to determine a target base station and sensing parameters that provide the sensing service according to the sensing request;
  • the second sending module is configured to send the sensing parameter to the target base station.
  • a ninth aspect of an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • a third receiving module configured to receive a sensing service query from the service function SF;
  • a second determining module configured to determine a target base station according to the sensing service query
  • the third sending module is configured to send a sensing service response including the identification information of the target base station to the SF.
  • a tenth aspect of an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the fourth receiving module is configured to receive a query request from SF, wherein the query request includes: identification information of the originator of the sensing service;
  • a query module configured to query the initiator according to the initiator's identification information
  • the fourth sending module is configured to send the query result to the SF.
  • the eleventh aspect of the embodiments of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the fifth receiving module is configured to receive a policy request from the SF, wherein the policy request includes: identification information of the originator of the sensing service;
  • the fifth sending module is configured to send a policy response to the SF according to the identification information of the initiator, where the policy response is used for the SF to determine the sensing parameters of the sensing service.
  • a twelfth aspect of the embodiments of the present disclosure provides a device for providing a sensing service, the device comprising:
  • the sixth sending module is configured to send a sensing request to the service function SF, wherein the sensing request at least includes: identification information of the initiator, at least used to verify the initiator of the sensing service ;
  • the sensing request is used to request the SF to select a target base station to provide the sensing service.
  • the thirteenth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, where the processor runs the executable program.
  • the program When the program is executed, the method for requesting a system message block as provided in any one or more of the aforementioned first aspect to the sixth aspect is executed.
  • the fourteenth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by a processor, any one of the aforementioned first to sixth aspects can be realized or more of the provided methods for requesting system message blocks.
  • the base station will participate in the provision of the sensing service, thereby enhancing the provision of the sensing service, so as to ensure the service quality of the sensing service.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a system architecture according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 4 is a schematic diagram of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 5 is a schematic diagram of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 9 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 10 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 11 is a schematic flowchart of a sensing service providing device according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 13 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 14 is a schematic flowchart of a device for providing a sensing service according to an exemplary embodiment
  • Fig. 15 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 16 is a schematic structural diagram of a sensing service providing device according to an exemplary embodiment
  • Fig. 17 is a schematic flowchart of a method for providing a sensing service according to an exemplary embodiment
  • Fig. 18 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 19 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the access device 12 .
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the wireless sensing method provided by the embodiments of the present disclosure may be applied to the system architecture shown in FIG. 2 , but is not limited to the system architecture shown in FIG. 2 .
  • Initiator Trigger the sensing service according to application requirements, which can be outside the communication system corresponding to 3GPP.
  • This data may include: sensing data and/or sensing results generated based on sensing data;
  • the sensing function can be any functional entity on the network side, which is a kind of network function. It is to determine the sensing model and determine the transmitter (or The sensing parameters of the transmitter or the transmitter) and the receiver (or the receiver or the receiver); the sensing parameters may at least need to coordinate the parameters of receiving/sending between the sensing signals between the transmitter and the receiver .
  • Transmitter transmit sensing signals according to the sensing parameters received from SF;
  • Receiver Receive the reflected signal according to the sensing parameters received from SF, and send the sensing data to the processor if there is sensing data;
  • Processor Process the sensing data received from the receiver and output the sensing result. It is worth noting that the processor here may include one or more processors, or one or more processing devices.
  • a device can act as one or more of the roles of initiator, consumer, transmitter, receiver, and processor.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by a base station, and the method includes:
  • S120 Provide a sensing service according to the sensing parameter.
  • the base station will receive the sensing parameters from the SF. Then the base station will provide sensing service according to the sensing parameters.
  • the sensing signal is a wireless signal.
  • the wireless signal includes, but is not limited to: a radar signal, a laser signal, or an ultrasonic signal, or other types of electromagnetic wave signals.
  • Other electromagnetic wave signals include but are not limited to: ultra wide band (Ultra Wide Band, UWB), or electromagnetic waves used for ranging based on time of flight.
  • UWB Ultra Wide Band
  • Figure 4 shows the wireless sensing based on radar waves.
  • the transmitter transmits a radar signal, and the radar signal will be reflected or absorbed when it encounters an obstacle during transmission.
  • the reflected radar wave will be received by the receiver.
  • the receiver Based on the received radar wave, the receiver can realize radar ranging, Functions such as radar detection, so as to know parameters such as the location, volume and/or shape of obstacles.
  • the transmitter transmits a radar signal, and the radar signal will be reflected or absorbed when it encounters an obstacle during transmission.
  • the reflected radar wave will be received by the receiver.
  • the receiver Based on the received radar wave, the receiver can realize radar ranging, Functions such as radar detection, so as to know parameters such as the location, volume and/or shape of obstacles.
  • the distance between the sensing target and the device where the transmitter and receiver are located, and the direction relative to the device where the transmitter and receiver are located can be determined.
  • the specific use of the sensing service in the embodiments of the present disclosure includes but is not limited to at least one of the following:
  • the UE firstly sends the sensing request to the AMF.
  • the AMF as a function of UE access and mobility management, can select an appropriate SF to provide sensing parameters for the UE as required.
  • the sensing request may be any request to provide sensing parameters and/or sensing services.
  • the sensing request may be a Non-Access Stratum (NAS) message and/or an Access Stratum (AS) message.
  • NAS Non-Access Stratum
  • AS Access Stratum
  • the SF may be any functional entity on the network side, specifically, the SF may serve as one of the network elements of the core network and/or the access network.
  • the sensing function includes but not limited to at least one of the following:
  • Access Function Access Function, AF
  • Policy control Function Policy control Function
  • Access Management Function Access Management Function
  • Network Function Network Function
  • the SF may be other network elements independent of the AF, AMF or PCF.
  • the sensing parameter can be: any parameter required by the executor who provides the sensing service.
  • the sensing parameter can include at least one of the following:
  • emission parameters used for the emitter to emit the sensing signal
  • the processing parameter is used for the processor to process the sensing data corresponding to the sensing signal.
  • the sensing parameters may also include at least one of the following:
  • the sensing period, sensing area, and accuracy requirements of sensing results are provided for sensing services.
  • the transmission parameters include but are not limited to: transmission power of the sensing signal, transmission frequency of the sensing signal;
  • the receiving parameters include, but are not limited to: the frequency of the receiving carrier of the sensing signal, the receiving period, and the like.
  • the processing parameters include, but are not limited to: upload parameters of the sensing data and/or identification information of a processing manner for processing the sensing data, and the like.
  • sensing models there may be multiple sensing models providing sensing services, and several optional sensing models are provided below.
  • the sensing model may include at least one of the following:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • the base station acts as the transmitter and receiver, it is equivalent to that the sensing service is completely performed by the network elements of the mobile communication network system.
  • the base station can act as a transmitter to send a sensing signal. After the sensing signal encounters a reflection object (Reflection Objects, RO), a reflected signal is generated, and the base station receives the reflected signal.
  • the reflective object here may be the aforementioned sensing target.
  • the solid line arrows indicate the transmission direction of the sensing signal; the dotted line arrows indicate the transmission direction of the reflection signal.
  • a processor may also be involved, and the processor may be a base station or a computing device near the base station or a UE.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the transmission and reception of sensing signals are performed by one or more UEs.
  • the UE serving as the transmitter of the second sensing model and the UE serving as the receiver may be the same UE or different UEs.
  • the UE sending the sensing request may be at least one of a transmitter and a receiver.
  • the UE can act as a transmitter and a receiver at the same time.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • a third sensing model is one that involves a base station and a UE, with the base station as the transmitter and the UE as the receiver.
  • the base station as a transmitter, can transmit sensing signals to multiple UEs, thereby implementing one-to-many sensing service provision, thereby providing sensing services to different UEs.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the fourth sensing model is one that involves a base station and a UE, with the base station as receiver and UE as transmitter.
  • the base station as the transmitter, can receive the sensing signals transmitted by multiple UEs at one time due to its strong receiving capability, so as to realize the provision of one-to-many sensing services, thereby providing sensing signals to different UEs. sense of service.
  • a processor may also be involved, which may be a UE or a base station or a computing device connected to a base station.
  • the computing device includes, but is not limited to, an edge computing device or a remotely connected computing device.
  • the fifth sensing model may be any sensing model other than the aforementioned first to fourth sensing models.
  • the fifth sensing model may include: a sensing model involving multiple transmitters and/or multiple receivers, and the types of multiple transmitters may be different, for example, the transmitter includes both UE and a base station; and/or, the recipient may include both a UE and a base station.
  • devices as transmitters and receivers include but are not limited to base stations and/or UEs.
  • the transmitter and/or receiver device may also be a roadside device capable of establishing a connection with a base station or a UE.
  • roadside monitoring equipment capable of transmitting and receiving wireless signals.
  • the monitoring equipment includes but is not limited to visual monitoring equipment based on image acquisition.
  • the base station can act as a transmitter and a receiver at the same time, transmit sensing signals based on the transmitting parameters in the sensing parameters, and receive sensing signals based on the receiving parameters to act on reflective objects (Reflection Objects, RO) The reflected signal of the reflection meeting.
  • Reflecting Objects Reflective Objects
  • the base station acts as a transmitter and a receiver at the same time, transmitting sensing signals.
  • the sensing signals encounter obstacles (reflecting objects) during transmission, they will be reflected and return to the base station again.
  • the base station After the base station receives the reflected signal, it will record the receiving time, received power and/or receiving direction of the reflected signal, and then combine the transmitted signal, transmitted power and/or transmitted direction of the transmitted sensing signal to determine the reflecting object distance and/or bearing.
  • the precise location of the RO can be known.
  • the S130 may include:
  • the receiving sensing signal acts on the reflected signal returned by the sensing target to obtain sensing data
  • the carrier frequency of the sensing signal transmitted by the base station may be different from the carrier frequency of the radio frequency signal used by the base station for wireless communication with the UE, so that mutual interference between wireless communication and sensing services provided by the base station can be achieved , to ensure the quality of wireless communication and the quality of service of sensing services.
  • the carrier frequency at which the base station transmits the sensing signal may be the same as the carrier frequency at which the base station performs wireless communication.
  • the wireless transmitting module does not need to support the transmission and reception of different carrier frequencies of wireless communication and sensing signals at the same time.
  • the base station transmitting the sensing signal and the base station receiving the sensing signal may be different.
  • the sensing model providing the sensing service is the first sensing model
  • one base station can be used as both a transmitter and a receiver, or one base station can be used as a transmitter and another base station can be used as a receiver.
  • the sensing data can be the original sensing data generated by receiving the reflected signal, and the sensing result can include: the sensing data formed after certain processing of the original sensing data, that is, the processed sensing data, the processed sensing data
  • the data is the sensing result.
  • the sensing data is sampled, and the sampled sensing data is one of the sensing results.
  • some preliminary processing is performed on the sensing data to obtain the sensing result.
  • the processing parameters may include: removing abnormal data and/or completing calculation of preliminary distance and/or direction sensing results.
  • the sensing result includes: an intermediate result of the sensing data, and/or a final processing result of the sensing data.
  • processing the sensing data to obtain the sensing result may include:
  • the sensing data is processed to obtain the final result.
  • Final results may include final results indicative of range, bearing and/or profile of the sensed target.
  • the intermediate result does not include final results indicating distance, orientation and/or contour of the sensing target, but a non-final result obtained by some preliminary processing, where the non-final result is the intermediate result.
  • the preliminary processing may include: valid data selection, abnormal data elimination, or preliminary result calculation for final result calculation. For example, invalid data is eliminated, and sensory data participating in the settlement of the final result is selected as the result of the preliminary processing, and sent to the target SF, AF, initiator and/or consumer.
  • the method also includes:
  • the establishment of the transmission link may be before transmitting sensing signals according to transmitting parameters and/or receiving sensing signals according to receiving parameters.
  • the establishment of the transmission link may be at the same time when the base station sends the sensing signal according to the transmission parameters and/or receives the sensing signal according to the received signal, or it needs to send the sensing data and/or send the sensing data to the AF or the initiator Or the transmission link is established before the sensing result.
  • the sensing parameters include: the address information of the transmission link established between the base station and the AF and the initiator.
  • the address information includes, but is not limited to, Internet Protocol (Internet Protocol, IP) address information and/or Media Access Control (MAC) address information.
  • IP Internet Protocol
  • MAC Media Access Control
  • the method also includes:
  • the base station may not establish a transmission link with the AF and/or the initiator, the base station will send the sensing data and/or sensing results to the SF, and the SF will send the sensing data and /or the sensing result is sent to the initiator of the AF and/or sensing service. Therefore, in some embodiments, the method also includes:
  • the sensing data is used for the SF to determine the sensing result or the SF transmits the sensing data to the AF or initiates the sensing service By.
  • the sensing parameters further include: target information of the sensing target, so that the base station can better transmit sensing signals and/or receive reflected signals according to the target information of the sensing target.
  • the sensing parameters received by the base station from the SF may include information such as the target information of the sensing target and the transmission time of the sensing signal.
  • the base station can determine the coverage of the sensing signal according to the target information of the sensing target. range and/or transmit power, etc.
  • this is only an example, and the specific implementation is not limited to this example.
  • the target information indicates at least one of the following:
  • the volume of the sensing target is the volume of the sensing target.
  • sensing targets with different areas and/or volumes can be used to determine parameters such as the viewing angle and/or power of the transmitter sending the sensing signal.
  • the area information of the sensing target can indicate the area where the sensing target is currently located, and can conveniently determine the sensing service area.
  • the location of the sensing target can be used to determine the performer, for example, to select a suitable performer nearby to perform the sensing service.
  • the speed of the sensing target may have an impact on the successful provision of the sensing service.
  • a high-speed moving object has requirements on the transmitting power of the transmitter in the sensing service.
  • the Doppler effect may also be generated due to the movement of the sensing target.
  • the processing capability of the processor providing the sensing service has certain requirements.
  • the target information of the sensing target is not limited to the aforementioned area, position, volume and/or velocity, and the type of the sensing target may also be used. For example, whether the sensing target is moving can be divided into static sensing target and dynamic sensing target. According to whether the sensing target is living or not, it can be divided into living targets and non-living targets. If it is aimed at a living target, it may be necessary to consider the impact of the radar spot on the living body and the negative impact of the living body.
  • the base station participates in providing the sensing service, so as to enhance the provision of the sensing service, thereby ensuring the service quality of the sensing service.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by the SF, and the method includes:
  • S210 Receive a sensing request sent by the initiator of the AF or sensing service
  • S220 Determine a target base station and sensing parameters that provide the sensing service according to the sensing request;
  • S230 Send the sensing parameter to the target base station.
  • AF can be the server or network element of the application program serving the sensing service.
  • the initiator may be a client with a corresponding application installed.
  • the sensing request sent by the AF or the initiator of the sensing service may be the sensing request sent by the AF or the initiator of the sensing service.
  • the SF may receive the sensing request from the AF or the initiator.
  • the SF After receiving the sensing request, the SF will determine the target base station and sensing parameters that provide sensing services.
  • candidate base stations capable of providing the sensing service may be determined, and the target base station may be selected from the candidate base stations.
  • a candidate base station with a low load rate is selected as the target base station.
  • a base station capable of providing the QoS sensing service required by the QoS information is determined as the target base station according to the QoS information carried in the sensing request.
  • the above are only examples for the SF to determine the target base station, and the specific implementation is not limited to the above examples.
  • the SF will also determine a sensing parameter according to the sensing request, and the sensing parameter may include: at least one of a transmitting parameter, a receiving parameter and a processing parameter. After the sensing parameter is determined, the sensing parameter will be sent to the target base station for the target base station to provide a sensing service based on the sensing parameter.
  • the sensing request includes at least: identification information of the originator of the sensing service; the method further includes:
  • the verification here may include but not limited to: authority verification, and/or, privacy security verification, etc.
  • the originator has the right to obtain the sensing service only after signing a contract with the sensing business that provides the sensing service. Therefore, in some embodiments, authority verification can be performed on the originator according to whether the originator subscribes to the subscription data of the sensing service.
  • the initiator has signed up for the sensor service, but the initiator requests a sensor service with a higher level of authority, the initiator still cannot pass the authority verification.
  • Privacy security verification is mainly used to determine whether the privacy data that users do not want to be exposed will be exposed during the provision of sensing services. For example, some users mind revealing their current location. If the initiator requests to locate the user, it will violate the privacy of the corresponding user. In this way, the privacy of the user is protected through privacy security verification.
  • the SF can complete the verification locally, or complete the verification through the interaction between the SF and other network elements.
  • the verifying according to the initiator's identification information includes:
  • SF sends a query request to UDM according to the sensing service.
  • the query request can query UDM for the subscription data of the initiator, or request UDM to verify the initiator according to the subscription data, and return the verification result in the query result. .
  • UDM stores the user's contract data, so it can be used for authority verification and/or privacy security verification.
  • the sensing request further includes: sensing model information, at least the sensing model expected to be used by the sensing request;
  • the query request also includes: the sensing model information
  • the query result is: returned according to the initiator's identification information and the sensing model information.
  • the sensing model information indicates the sensing model used by the sensing service acquired by the initiator.
  • the UDM receives the query request, it can also determine whether the initiator has signed a contract to use the sensing business that the initiator expects to use the sensing model to provide sensing services based on the sensing model information. If not, the authority authentication may be different ; or, using the sensing model may cause privacy exposure of one or more users, and the privacy security verification may be different.
  • the query result is returned according to the identification information of the initiator and the sensing model information.
  • the content carried by the query result may include: the subscription data of the sensing service used to verify the authority of the initiator; or, the query result may be that the UDM directly queries the subscription data located in the UDM based on the query request and whether the given verification passes verification results.
  • the verification result may include: a verification result that passes the verification and/or a verification result that fails the verification.
  • the sensing model includes at least one of the following:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • the relevant descriptions of the first sensing model, the second sensing model, the third sensing model, the fourth sensing model and the fifth sensing model please refer to the relevant descriptions in the aforementioned corresponding embodiments, and will not repeat them here. up.
  • the sensing request includes: target information, wherein the target information indicates an area of the sensing target;
  • determining a target base station that provides the sensing service includes:
  • the sensing service query includes: the target information
  • the sensing service response includes: the identity of the target base station, where the target base station is: the sensing service that can be provided in the area of the sensing target The base station of sense service.
  • the AMF is a common area that can be used for UE access and mobility management, therefore, when determining the target base station, it can be determined by the AMF.
  • the AMF may select an appropriate target base station for providing the sensing service according to the location of the UE involved in the sensing service and/or the sensing target.
  • the target base station may be at least one of the following:
  • the target base station is: a candidate base station with the closest distance to the sensing target, and the candidate base station is a base station capable of providing the sensing service;
  • the target base station is: a candidate base station located in the same sensing area as the sensing target;
  • the target base station is: the closest candidate base station to the UE involved in the sensing service;
  • the target base station is: a candidate base station where the UE involved in the sensing service is located in the same sensing area.
  • the above-mentioned execution is an example of the target base station, and when the AMF determines the target base station based on the sensing request, it is not limited to the above-mentioned example.
  • the SF after receiving the sensing request, the SF requests the AMF to determine the target base station, and ensures that the selected target base station is a suitable base station for providing the sensing service.
  • the sensing request further includes: quality of service (QoS) information indicating the QoS of the sensing service;
  • QoS quality of service
  • the sensing service query further includes: the QoS information
  • the target base station is: a base station within the area of the sensing target that can provide the sensing service of the QoS information.
  • QoS value indicated by the QoS information different QoS values are different for resources allocated when the sensing service is provided and/or for providing the sensing service.
  • some base stations may provide the sensing service, but may not be able to provide the QoS sensing service required by the initiator, or the base station may provide multiple QoS sensing services.
  • the target base station when selecting the target base station, it will be selected from the area of the sensing target, so that the sensing signal transmitted by the target base station can cover the sensing target and can provide the QoS information required by the initiator. Sensing service, so as to ensure the quality of service of the sensing service.
  • determining the sensing parameters for providing the sensing service according to the sensing request includes:
  • the sensing parameter is determined according to at least one of the sensing request and the policy parameter.
  • the identification information of the candidate model and the device information of the candidate device determine the executor who provides the sensing service, and determine the sensing model that provides the sensing service.
  • Determining the sensing parameter according to the strategy parameter may include:
  • a set of parameters is selected from the range as the sensing parameters.
  • determining the sensing parameters may include at least one of the following:
  • the above is just an example of determining the sensing parameter according to at least one of the sensing request and the side policy parameter, and the specific implementation is not limited to the above example.
  • the policy parameters include:
  • the policy parameters here may be stored locally by the SF, or may be requested from the PCF.
  • the local policy parameters of the SF can be pre-configured in the SF, or can be transferred to the local SF after the last request from the PCF.
  • the SF If the SF does not store policy parameters locally, it can request the policy parameters from the PCF, or when the priority of the policy parameters stored locally in the SF is low, it can request the policy parameters with higher priority from the PCF.
  • the determining the sensing parameter according to at least one of the sensing request and policy parameters includes:
  • the sensing parameter is determined according to the policy response.
  • a method of requesting policy parameters from the PCF may be by sending a policy request to the PCF.
  • the policy request may request the PCF to return one or more policies with certain parameters, and the one or more policies may be returned in the policy response, and the SF may, according to the one or more policies carried in the policy response, Determine the sensing parameters.
  • the policy parameter is a form of indicating policy.
  • the policy parameters may be: one or more sets of alternative parameters, and one set is selected as the sensing parameter according to the one or more sets of alternative parameters in the response strategy.
  • the policy parameter can also be a parameter range that defines the sensing parameter, then the SF can determine the sensing parameter independently according to the parameter range, or determine the sensing parameter according to the parameter range and the sensing request. parameter.
  • the initiator's identification information the initiator's identification information
  • the policy request includes the initiator's identification information; wherein, the policy response is returned according to the initiator's identification information.
  • the initiator's identification information may be unique identification information that can determine the initiator, such as device identification information, sensing service identification information, or application program identification information.
  • the policy request includes the identification information of the initiator, which is used by the PCF to determine the policy response returned for the initiator, so as to determine the sensing service for the initiator.
  • the method also includes:
  • the SF will receive the sensing data from the base station, and then process the sensing data in a predefined manner to obtain the sensing result.
  • the definition method may be a method specified in a standard protocol or a proprietary protocol, or a method of pre-negotiation between the SF and the base station, or a method of pre-negotiation between the SF and the initiator or with the AF.
  • the SF if the SF receives the sensing data from the target base station, it will process the sensing data in a predefined manner to obtain the sensing result.
  • the sensing results include: intermediate results and/or final results.
  • the sensing results are sent to the AF or the initiator of the sensing service.
  • the sensing results may also be sent directly to consumers.
  • the initiator of the AF or sensing service may also be the consumer of the sensing result, so it can be sent directly to the initiator of the AF or sensing service.
  • the AF or the initiator may not be the final consumer.
  • the SF can send it to the AF or the initiator, and the AF or the initiator forwards it to the consumer.
  • the SF can also directly send the sensing result to the consumer.
  • the method also includes:
  • the SF After the SF receives the sensing data sent by the base station, it directly sends it to the AF or the initiator without processing it.
  • the method also includes:
  • the SF receives the sensing result sent by the target base station
  • the target base station may directly send the sensing data and/or sensing results to the AF or the initiator or the consumer, so the SF may not receive the sensing data and/or sensing results.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by an AMF, and the method includes:
  • S330 Send a sensing service response including the identification information of the target base station to the SF.
  • the AMF will receive the sensing service query sent by the SF, based on which the query is sent by the SF based on the received sensing request. In view of this, the AMF will determine the target base station that responds to the sensing request according to the query.
  • the AMF selects a target base station providing the sensing service from one or more candidate base stations capable of providing the sensing service. Then send the identification information of the target base station to the SF in the sensing service response. The identification information is used for the SF to send the sensing parameters for providing the sensing service to the target base station.
  • the S320 may include:
  • a target base station capable of providing the sensing service is selected from an area indicated by the target information.
  • the target information may indicate the area where the sensing target is located, specifically, the target information may indicate the sensing area where the sensing target is located.
  • the AMF selects a nearby candidate base station that can provide the sensing service as the target base station.
  • the sensing service query further includes: indicating QoS information; the S320 may include:
  • Target base station is a base station of the sensing service that can provide the QoS information.
  • the AMF when the AMF selects the target base station, it will not only consider the area where the sensing target is located, but also the target base station serving the sensing service according to the QoS information, so that the selected target base station can provide the sensing request. Sensing service for required QoS.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by a UDM, and the method includes:
  • S410 Receive a query request from the SF, where the query request includes: identification information of the originator of the sensing service;
  • the UDM stores user data, and the user data may include: subscription data of the user.
  • the SF can send a query request to the UDM to verify the originator.
  • the UDM After receiving the query request, the UDM will query the user data to obtain the initiator's subscription data and/or perform query on the users involved in providing the sensing service corresponding to the sensing request to obtain the query result.
  • the identification information includes, but is not limited to: identification information that uniquely identifies the originator of the sensing service, such as a device identification, a service identification, and/or an application identification.
  • the query result may include: the verification result and/or the queried amount signing data that can verify the initiator.
  • the verification result may directly indicate passed verification or different verification.
  • the subscription data is carried in the query result and returned to the SF, which can be used by the SF to confidently determine whether the initiator has passed the verification based on the returned subscription data.
  • Verification here includes but is not limited to:
  • the S430 may include:
  • the initiator when it is determined that the initiator signs a contract with the sensing model indicated by the sensing model information to provide the sensing service, send the verified query result to the SF; or, according to the result of the query, determine the When the initiator does not subscribe to the sensing model indicated by the sensing model information to provide the sensing service or the initiator does not subscribe to the sensing service, send a query result that fails the verification to the SF.
  • the initiator's sensing request will carry sensing model information to indicate that it wants to acquire the sensing model used by the sensing service.
  • UDM can determine whether the initiator has the right to obtain the sensing service provided by the sensing model it requires based on the contract data and sensing model information.
  • the query request further includes: QoS information
  • the S230 may include:
  • UDM will check the initiator's subscription data according to the initiator's identification information, and determine whether the initiator has signed the QoS sensing service according to the subscription data. If you subscribe to the sensing service with the QoS information, you can confirm that the verification is passed, otherwise it can be considered that the verification is not passed, and whether the verification is passed can be returned to SF through the query result, or the queried subscription data can be carried in the query result and returned to SF.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by a PCF, and the method includes:
  • S510 Receive a policy request from the SF, where the policy request includes: identification information of the originator of the sensing service;
  • S520 Send a policy response to the SF according to the identification information of the initiator, where the policy response is used for the SF to determine a sensing parameter of the sensing service.
  • the PCF stores policy information. After receiving the sensing request, the SF may request the policy parameters from the PCF when determining the sensing parameters, so as to determine the appropriate sensing parameters for providing the sensing service.
  • the policy response includes: a policy parameter; the policy parameter is used for the SF to determine the sensing parameter.
  • the policy parameters may include: one or more sets of alternative parameters for providing sensing services.
  • the policy parameter may also indicate a parameter range value, and after receiving the parameter range value, the SF will determine the sensing parameter from the parameter range value.
  • an embodiment of the present disclosure provides a method for providing a sensing service, which is executed by the application function AF or the initiator of the sensing service.
  • the method includes:
  • S610 Send a sensing request to the service function SF, wherein the sensing request at least includes: identification information of the initiator, at least used to verify the initiator of the sensing service;
  • the sensing request is used to request the SF to select a target base station to provide the sensing service.
  • the AF or the originator sends a sensing request to the SF, and the sensing request includes at least identification information of the originator, and is used to verify the originator.
  • the verification may be of various types, including but not limited to: authority verification and/or privacy security verification.
  • the sensing request also includes at least one of the following:
  • Address information of the AF or the initiator wherein the address information is used for the target base station to establish a sensing data transmission link with the AF or the initiator;
  • Target information of the sensing target
  • QoS information at least used to indicate the QoS of the sensing service
  • Sensing model information at least the sensing model that the AF or the initiator intends to use.
  • Target information of the sensing target the target information indicating but not limited to at least one of the following: the position, object size and/or speed of the sensing target.
  • the target information indicates at least one of the following:
  • the volume of the sensing target is the volume of the sensing target.
  • the sensing model includes at least one of the following:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • Information related to quality of service such as the QoS level indicated by the QoS information.
  • the sending the sensing request to the service function SF includes:
  • the AF or initiator may be deployed in the trusted environment where network elements such as SF, AMF, UDM, and/or PCF are located. At this time, the AF Or the initiator can directly send the sensing request to the SF.
  • network elements such as SF, AMF, UDM, and/or PCF are located.
  • the AF or initiator may not be outside the trusted environment where network elements such as SF, AMF, UDM, and/or PCF are located. To ensure communication security, at this time, the AF or the initiator needs to send a sensing request to the SF through the NEF that isolates the trusted environment from the untrusted environment.
  • the embodiment of the present disclosure provides that the base station is enhanced to support the sensing service (which can also be called the sensing service), that is, through specific physical enhancements and corresponding parameter configurations, the base station can transmit sensing signals and can Recycle the sensing data, process it or send it directly to the data receiving end of the application layer.
  • the data receiving end may be an AF or an application server or the like.
  • STx/SRx gNB means that the base station can be the transmitter of the sensing signal and the receiver of the reflected signal at the same time, and the RO is the sensing target.
  • STx gNB indicates the base station transmitting the sensing signal
  • SRx gNB indicates the base station receiving the sensing signal.
  • the AF/Initiator sends a sensing request to SF or via NEF.
  • the sensing request may include at least one of the following:
  • target information of the sensing target includes but is not limited to: target position, target size and/or target speed;
  • QoS information indicating QoS requirements for providing sensing services
  • Sensing period information indicating the sensing period
  • Sensing area information indicating the sensing area
  • the sensing function SF sends an inquiry request to the UDM to check whether the inquiry request is allowed, and the inquiry request may include at least one of the following:
  • the SF selects the AMF according to the target information and/or pre-configuration, and sends a sensing service query to the AMF to check whether the requested sensing service is supported by the base station (eg, gNB).
  • the message content includes: target object target information and/or QoS information.
  • the AMF sends a response message to the AF, where the response message at least includes identification information of the determined target base station providing the sensing service.
  • the SF selects the PCF and requests relevant policy parameters from the PCF.
  • the request message includes: identification information of the initiator, so that after receiving the related request, the PCF knows which initiator it is for.
  • the PCF feeds back a policy response, which may include: policy parameters.
  • SF decides the detailed parameters of STx and SRx according to feedback from AMF/PCF and/or local policy.
  • the detailed parameters are the aforementioned sensing parameters finally determined for providing sensing services.
  • the SF sends sensing parameters to the target gNB.
  • the sensing parameters may include: transmitting parameters, receiving parameters, area information of a sensing target area, and/or address information of a device that needs to receive sensing data or sensing results.
  • the device receiving the sensing data or sensing result here includes but not limited to: AF, initiator and/or target server and so on.
  • the base station transmitting the sensing signal (for example, SRx gNB) establishes a transmission link of sensing data or sensing results to the target sensing server.
  • gNB starts to transmit sensing signals and receives reflected signals
  • the gNB collects the sensing data and sends it to the SF for further processing; or, the gNB collects the sensing data and sends it to the AF/initiator/target server.
  • SF collects and processes sensory data according to defined methods.
  • SF sends sensory data to AF/initiator.
  • an embodiment of the present disclosure provides a device for providing a sensing service, wherein the device includes:
  • the first receiving module 110 is configured to receive sensing parameters from the sensing function SF;
  • the providing module 120 is configured to provide sensing services according to the sensing parameters.
  • the first receiving module 110 and the providing module 120 may be program modules; after the program modules are executed by the processor, the receiving of the sensing parameters and the provision of sensing services can be realized.
  • the first receiving module 110 and the providing module 120 can also be a combination of hardware and software modules; the combination of hardware and software modules includes but not limited to various programmable circuits; the programmable circuits include But not limited to: field programmable circuits and/or complex programmable circuits.
  • the first receiving module 110 and the providing module 120 may also be pure hardware modules; the pure hardware modules include but are not limited to application specific integrated circuits.
  • the providing module 120 is configured to transmit a sensing signal according to a transmission parameter among the sensing parameters; and/or receive a sensing signal according to a receiving parameter among the sensing parameters Acting on the reflected signal returned by the sensing target to obtain the sensing data; and/or,
  • the device also includes:
  • the establishment module is configured to establish a transmission link with the service function AF or the initiator of the sensing service, wherein the transmission link is used to transmit the sensing data and/or the sensing result.
  • the sensory parameters also include:
  • Address information where the address information indicates the address of the initiator of the AF or the sensing server, at least for establishing the transmission link.
  • the device also includes:
  • the first sending module is configured to send the sensing data to the SF, wherein the sensing data is used for the SF to determine a sensing result or for the SF to transmit the sensing data to the AF Or the initiator of the sensing service.
  • the sensing results include:
  • the sensory parameters also include:
  • Target information of the sensing target is information of the sensing target.
  • the target information indicates at least one of the following:
  • the volume of the sensing target is the volume of the sensing target.
  • an embodiment of the present disclosure provides a device for providing a sensing service, which is executed by a sensing function SF, and the device includes:
  • the second receiving module 210 is configured to receive a sensing request from the application function AF or the initiator of the sensing service;
  • the first determining module 220 is configured to determine a target base station and sensing parameters that provide the sensing service according to the sensing request;
  • the second sending module 230 is configured to send the sensing parameter to the target base station.
  • the second receiving module 210 , the first determining module 220 and the second sending module 230 may be program modules, and after the program modules are executed by the processor, the functions of the above modules can be realized.
  • the second receiving module 210, the first determining module 220, and the second sending module 230 may be software and hardware combination modules; the software and hardware combination modules include but are not limited to: various possible Programmable arrays; the programmable arrays include, but are not limited to: Field Programmable Arrays and/or Complex Programmable Arrays.
  • the second receiving module 210, the first determining module 220 and the second sending module 230 may be pure hardware modules; the pure hardware modules include but not limited to: application specific integrated circuits.
  • the sensing request includes at least: identification information of the originator of the sensing service; the device further includes:
  • the verification module is configured to perform verification according to the identification information of the initiator; wherein, after the verification is passed, determine the target base station of the sensing service and/or the sensing parameters.
  • the verification module is configured to send a query request to UDM according to the sensing request, wherein the query request includes at least: identification information of the initiator of the sensing service ; Receive the query result returned by the UDM.
  • the sensing request further includes: sensing model information, at least the sensing model expected to be used by the sensing request;
  • the sensing service query request also includes: the sensing model information
  • the query result is: returned according to the initiator's identification information and the sensing model information.
  • the sensing model includes at least one of the following:
  • the first sensing model of the base station as transmitter and receiver
  • User equipment UE as a second sensing model of transmitter and receiver
  • the sensing request includes: target information, wherein the target information indicates an area of the sensing target;
  • determining a target base station that provides the sensing service includes:
  • the sensing service query includes: the target information
  • the sensing service response includes: the identity of the target base station, where the target base station is: the sensing service that can be provided in the area of the sensing target The base station of sense service.
  • the sensing request further includes: quality of service QoS information indicating the QoS of the sensing service; the sensing service query further includes: the QoS information;
  • the target base station is: a base station within the area of the sensing target that can provide the sensing service of the QoS information.
  • determining the sensing parameters for providing the sensing service includes:
  • the sensing parameter is determined according to at least one of the sensing request and the policy parameter.
  • the policy parameters include:
  • the first determination module 220 is configured to send a policy request to the policy control function PCF according to the sensing request; receive a policy response returned by the PCF; wherein the policy response includes the The policy parameter provided by the PCF; and determine the sensing parameter according to the policy response.
  • the sensing request includes: identification information of the initiator
  • the policy request includes the initiator's identification information; wherein, the policy response is returned according to the initiator's identification information.
  • the second receiving module 210 is further configured to receive sensing data from the target base station
  • the device also includes:
  • a processing module configured to obtain a sensing result processed in a predetermined manner based on the sensing data
  • the second sending module 230 is configured to send the sensing result to the application function AF or the initiator of the sensing service.
  • the second receiving module 210 is further configured to receive sensing data from the target base station, and the second sending module 230 is further configured to send the sensing data to the AF or the initiator of the sensing service;
  • the second receiving module 210 is also configured to receive the sensing result sent by the target base station, and the second sending module 230 is also configured to send the sensing result to the AF or the initiator .
  • an embodiment of the present disclosure provides an apparatus for providing a sensing service, wherein, executed by an AMF, the apparatus includes:
  • the third receiving module 310 is configured to receive a sensing service query from the service function SF;
  • the second determining module 320 is configured to determine a target base station according to the sensing service query
  • the third sending module 330 is configured to send a sensing service response including the identification information of the target base station to the SF.
  • the third receiving module 310 , the second determining module 320 and the third sending module 330 may be program modules, and after the program modules are executed by the processor, the functions of the above modules can be realized.
  • the third receiving module 310, the second determining module 320, and the third sending module 330 may be software and hardware combination modules; the software and hardware combination modules include but are not limited to: various possible Programmable arrays; the programmable arrays include, but are not limited to: Field Programmable Arrays and/or Complex Programmable Arrays.
  • the third receiving module 310, the second determining module 320 and the third sending module 330 may be pure hardware modules; the pure hardware modules include but not limited to: application specific integrated circuits.
  • the second determining module 320 is further configured to, according to the target information of the sensing target carried in the sensing service query, select a sensor that can provide the sensing target from the area indicated by the target information.
  • the target base station of the service is further configured to, according to the target information of the sensing target carried in the sensing service query, select a sensor that can provide the sensing target from the area indicated by the target information.
  • the sensing service query further includes: indicating QoS information
  • the determining the target base station according to the sensing service query includes:
  • Target base station is a base station of the sensing service that can provide the QoS information.
  • an embodiment of the present disclosure provides a device for providing a sensing service, which is executed by UDM, and the device includes:
  • the fourth receiving module 410 is configured to receive a query request from SF, where the query request includes: identification information of the originator of the sensing service;
  • the query module 420 is configured to query the initiator according to the identification information of the initiator;
  • the fourth sending module 430 is configured to send the query result to the SF.
  • the fourth receiving module 410 , the query module 420 and the fourth sending module 430 may be program modules, and after the program modules are executed by the processor, the functions of the above modules can be realized.
  • the fourth receiving module 410, the query module 420, and the fourth sending module 430 can be software and hardware combination modules; the software and hardware combination modules include but are not limited to: various programmable arrays ; The programmable array includes but is not limited to: field programmable array and/or complex programmable array.
  • the fourth receiving module 410, the query module 420 and the fourth sending module 430 may be pure hardware modules; the pure hardware modules include but not limited to: application specific integrated circuits.
  • the query request further includes: sensing model information, indicating the sensing model expected to be used by the sensing service;
  • the fourth receiving module 410 is configured to send the query result to the SF according to the initiator's identification information and the sensing model information.
  • the query request further includes: QoS information
  • the fourth sending module 430 is configured to send the query result to the SF according to the initiator's identification information and the QoS information.
  • an embodiment of the present disclosure provides a device for providing a sensing service, which is executed by a PCF, and the device includes:
  • the fifth receiving module 510 is configured to receive a policy request from the SF, wherein the policy request includes: identification information of the originator of the sensing service;
  • the fifth sending module 520 is configured to send a policy response to the SF according to the identification information of the initiator, wherein the policy response is used for the SF to determine the sensing parameters of the sensing service.
  • the fifth receiving module 510 and the fifth sending module 520 may be program modules. After the program modules are executed by the processor, the functions of the above modules can be realized.
  • the fifth receiving module 510 and the fifth sending module 520 may be modules combining hardware and software; the modules combining hardware and software include but are not limited to: various programmable arrays; Programmable arrays include, but are not limited to: Field Programmable Arrays and/or Complex Programmable Arrays.
  • the fifth receiving module 510 and the fifth sending module 520 may be pure hardware modules; the pure hardware modules include but are not limited to: application specific integrated circuits.
  • the policy response includes: a policy parameter; the policy parameter is used for the SF to determine the sensing parameter.
  • an embodiment of the present disclosure provides an apparatus for providing a sensing service, which is executed by an application function AF or an initiator of a sensing service, and the apparatus includes:
  • the sixth sending module 610 is configured to send a sensing request to the service function SF, wherein the sensing request at least includes: identification information of the initiator, at least used to perform verify;
  • the sensing request is used to request the SF to select a target base station to provide the sensing service.
  • the fifth receiving module and the fifth sending module may be program modules, and after the program modules are executed by the processor, the functions of the above modules can be realized.
  • the sixth sending module 610 can be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: various programmable arrays; the programmable arrays include, but not limited to: field programmable arrays and/or complex programmable arrays.
  • the sixth sending module 610 may be a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the sensing request also includes at least one of the following:
  • Address information of the AF or the initiator wherein the address information is used for the target base station to establish a sensing data transmission link with the AF or the initiator;
  • Target information of the sensing target
  • Quality of service QoS information at least used to indicate the QoS of the sensing service
  • Sensing model information at least the sensing model that the AF or the initiator intends to use.
  • the sixth sending module 610 is configured to send the sensing request to the SF through a network opening function NEF.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the sensing service providing method provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: an access device or a UE or a core network device.
  • the processor may be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in FIG. 2 , FIG. 6 to FIG. 10 and FIG. 17 .
  • Fig. 18 is a block diagram of a UE 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816 .
  • Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
  • the multimedia component 808 includes a screen providing an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gates Arrays
  • controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the UE 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of an access device.
  • the communication device 900 may be provided as a network side device.
  • the communication device may be the aforementioned access device and/or core network device.
  • the communication device 900 includes a processing component 922 , which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922 , such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods applied to the access device, for example, at least one of the methods shown in FIG. 2 , FIG. 6 to FIG. 10 and FIG. 17 one.
  • the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958 .
  • the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种传感服务提供方法及装置、通信设备及存储介质。被基站执行的传感服务提供方法可包括:接收来自传感功能SF的传感参数(S110);根据所述传感参数,提供传感服务(S120)。

Description

传感服务提供方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种传感服务提供方法及装置、通信设备及存储介质。
背景技术
当前随着人工智能(Artificial Intelligence,AI)技术的发展,极大促进了众多行业的智能化,其中传感技术成为重要的技术基础,如基于雷达技术广泛应用于智慧交通、自动驾驶领域等。当前基于雷达的传感技术,主要依赖于专用的雷达设备,造价高,部署不灵活,主要用在特定的场景下。
在移动互联网时代,随着移动通信的发展,未来拥有数量更为庞大的移动终端和移动基站,同时随着新业务的不断涌现,传感需求也逐渐强烈,比如,黑暗中可以用传感服务感知周围的物体,再如室内传感人体动作指令从而控制智能家具等。为日常生活提供极大的便利。
发明内容
本公开实施例提供一种传感服务提供方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种传感服务提供方法,被基站执行,所述方法包括:
接收来自传感功能SF的传感参数;
根据所述传感参数,提供传感服务。
本公开实施例第二方面提供一种传感服务提供方法,其中,被传感功能SF执行,所述方法包括:
接收来自应用功能AF或者传感服务的发起者的传感请求;
根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
将所述传感参数发送给所述目标基站。
本公开实施例第三方面提供一种传感服务提供方法,其中,被AMF执行,所述方法包括:
接收来自服务功能SF的传感服务查询;
根据所述传感服务查询确定目标基站;
向所述SF发送包含所述目标基站的标识信息的传感服务响应。
本公开实施例第四方面提供一种传感服务提供方法,被UDM执行,所述方法包括:
接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
根据所述发起者的标识信息,对所述发起者进行查询;
向所述SF发送所述查询结果。
本公开实施例第五方面提供一种传感服务提供方法,被PCF执行,所述方法包括:
接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
本公开实施例第六方面提供一种传感服务提供方法,被应用功能AF或者传感服务的发起者执行,所述方法包括:
向服务功能SF发送传感请求,其中,所述传感请求,至少包括:所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。
本公开实施例第七方面提供一种传感服务提供装置,其中,所述装置包括:
第一接收模块,被配置为接收来自传感功能SF的传感参数;
提供模块,被配置为根据所述传感参数,提供传感服务。
本公开实施例第八方面提供一种传感服务提供装置,其中,所述装置包括:
第二接收模块,被配置为接收来自应用功能AF或者传感服务的发起者的传感请求;
第一确定模块,被配置为根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
第二发送模块,被配置为将所述传感参数发送给所述目标基站。
本公开实施例第九方面提供一种传感服务提供装置,其中,所述装置包括:
第三接收模块,被配置为接收来自服务功能SF的传感服务查询;
第二确定模块,被配置为根据所述传感服务查询确定目标基站;
第三发送模块,被配置为向所述SF发送包含所述目标基站的标识信息的传感服务响应。
本公开实施例第十方面提供一种传感服务提供装置,其中,所述装置包括:
第四接收模块,被配置为接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
查询模块,被配置为根据所述发起者的标识信息,对所述发起者进行查询;
第四发送模块,被配置为向所述SF发送所述查询结果。
本公开实施例第十一方面提供一种传感服务提供装置,其中,所述装置包括:
第五接收模块,被配置为接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
第五发送模块,被配置为根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
本公开实施例第十二方面提供一种传感服务提供装置,所述装置包括:
第六发送模块,被配置为向服务功能SF发送传感请求,其中,所述传感请求,至少包括:所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。
本公开实施例第十三方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面至第六方面中任意一个或多个提供的请求系统消息块的方法。
本公开实施例第十四方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述第一方面至第六方面中任意一个或多个提供的请求系统消息块的方法。
本公开实施例提供的技术方案,本公开实施例,基站会参与传感服务的提供,从而对传感服务的提供进行增强,以确保传感服务的服务质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种系统架构的示意图;
图3是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图4是根据一示例性实施例示出的一种传感服务提供方法的示意图;
图5是根据一示例性实施例示出的一种传感服务提供方法的示意图;
图6是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图7是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图8是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图9是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图10是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图11是根据一示例性实施例示出的一种传感服务提供装置的流程示意图;
图12是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图13是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图14是根据一示例性实施例示出的一种传感服务提供装置的流程示意图;
图15是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图16是根据一示例性实施例示出的一种传感服务提供装置的结构示意图;
图17是根据一示例性实施例示出的一种传感服务提供方法的流程示意图;
图18是根据一示例性实施例示出的一种UE的结构示意图;
图19是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可 以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例提供的无线传感方法,可以应用于如图2所示的系统架构中,但是不局限于图2所示的系统架构。
发起者:根据应用需求触发传感服务,可以在3GPP对应的通信系统之外。
消费者:接收和消费传感服务的输出数据;该数据可包括:传感数据和/或根据传感数据生成的传感结果;
传感功能(Sensing Function,SF):该传感功能可为网络侧的任意功能实体,属于网络功能的一种,是根据发起者提供的信息/要求,确定传感模型,确定发射者(或称发射器或者发射机)和接收者(或称接收器或者接收机)的传感参数;该传感参数可至少需要协调发射者和接收者之间的传感信号之间收/发的参数。
发射者:根据从SF接收到的传感参数并发射传感信号;
接收者:根据从SF接收到的传感参数接收反射信号,如果有传感数据,则将传感数据发送给处理器;
处理者:处理从接收者处接收到的传感数据并输出传感结果。值的注意的是:此处的处理者可包括一个或多个处理器,或者一个或多个处理装置。
值的注意的是:一个设备可以充当发起者、消费者、发射者、接收者和处理者这些角色中的一个或多个角色。
如图3所示,本公开实施例提供一种传感服务提供方法,被基站执行,所述方法包括:
S110:接收来自SF的传感参数;
S120:根据所述传感参数,提供传感服务。
若基站作为传感功能的发射者、接收者及处理者的至少其中之一时,基站会从SF接收传感参数。进而基站会根据传感参数提供传感服务。
所述传感信号为一种无线信号,示例性地,该无线信号包括但不限于:雷达信号、激光信号或者超声波信号,或者其他类型的电磁波信号。其他的电磁波信号包括但不限于:超宽带(Ultra Wide Band,UWB),或者基于飞行时间进行测距所使用的电磁波。
图4所示为基于雷达波的无线传感。
发射者发射雷达信号,雷达信号在传输的过程中遭遇到障碍物时会被反射或者吸收,被反射的雷达波会被接收者接收到,接收者基于接收的雷达波,可以实现雷达测距、雷达探测等功能,从而知晓障碍物所在的而为之、体积和/或形状等参数。
发射者发射雷达信号,雷达信号在传输的过程中遭遇到障碍物时会被反射或者吸收,被反射的雷达波会被接收者接收到,接收者基于接收的雷达波,可以实现雷达测距、雷达探测等功能,从而知晓障碍物所在的而为之、体积和/或形状等参数。
如图4所示,根据雷达波的收发时间,可以确定出传感目标与发射者和接收者所在设备之间的距离,以及相对于发射者和接收者所在设备之间的方向等信息。
示例性地,本公开实施例中所述传感服务的具体用途包括但不限于以下至少之一:
检测飞行器;
障碍物检测;
导弹发射;
飞船导航;
海上导航;
自动驾驶;
天气检测;
地形探测等。
在本公开实施例中,UE首先将传感请求发送给AMF,如此,AMF作为对UE接入和移动管理的功能,可以根据需要,选择合适为UE提供传感参数的SF。
该传感请求可为任意请求提供传感参数和/或传感服务的任意请求。该传感请求可为非接入层(NAS)消息和/或接入层(AS)消息。
所述SF可以为网络侧任意功能实体,具体如SF可以作为核心网和/或接入网的网元之一。
示例性地,该传感功能包括但不限于以下至少之一:
接入功能(Access Function,AF);
策略控制功能(Policy control Function,PCF);
接入管理功能(Access Management Function)或其他网络功能(Network Function,NF)。
当然以上仅仅举例,具体实现时不局限于此。在一些实施例中,所述SF可为独立于AF、AMF或者PCF的其他网元。
所述传感参数可为:提供传感服务的执行者需要的任意参数,具体所述传感参数可包括以下至少之一:
发射参数,用于发射者发射所述传感信号;
接收参数,用于接收者接收所述传感信号;
处理参数,用于处理者处理所述传感信号对应的传感数据。
示例性地,所述传感参数还可包括如下至少之一:
提供传感服务的传感时段、传感区域和传感结果的精确度要求等。
所述发射参数包括但不限于:传感信号的发射功率、传感信号的发射频率;
所述接收参数包括但不限于:传感信号的接收载波的频率,接收时段等。
所述处理参数包括但不限于:传感数据的上传参数和/或处理传感数据的处理方式的标识信息等。
在一些实施例中,提供传感服务的传感模型可以有多种,以下提供几种可选传感模型。
示例性地,所述传感模型可包括以下至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
若基站作为发射者和接收者,则相当于传感服务完全由移动通信网络系统的网元来执行。
如图5所示,基站可以作为发射者发送传感信号,传感信号碰到反射对象(Reflection Objects,RO)之后产生反射信号,基站接收反射信号。这里的反射对象可为前述的传感目标。图5中实线箭头表示传感信号的传输方向;虚线箭头表示反射信号的传输方向。
在第一传感模型中,还可能涉及处理者,该处理者可为基站或者基站附近的计算设备或者是UE等。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
UE作为发射者接收者的第二传感模型,则至少传感信号的发射和接收都是由一个或多个UE来执行。此时第二传感模型作为发射者的UE和作为接收者的UE可以相同的UE,也可以是不同的UE。在本公开实施例中,发送所述传感请求的UE可为作为发射者和接收者的至少其中之一。示例性地,该UE可以同时作为发射者和接收者。
在第二传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第三传感模型是涉及基站和UE,基站作为发射者且UE作为接收者。在这种情况下,基站作为发射者可以向多个UE发射传感信号,从而实现一对多的传感服务提供,从而向不同的UE提供传感服务。
在第三传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第四传感模型是涉及基站和UE,基站作为接收者且UE作为发射者。在这种情况下,基站作为发射者,由于其自身强大的接收能力,可以一次性接收多个UE发射的传感信号,从而实现一对多的传感服务提供,从而向不同的UE提供传感服务。
在第四传感模型中,还可能涉及处理者,该处理者可以是UE或者基站或者与基站连接的计算设备。该计算设备包括但不限于边缘计算设备或者位于远程连接的计算设备。
第五传感模型可为前述第一传感模型至第四传感模型以外的任意传感模型。
示例性地,第五传感模型可包括:涉及多个发射者和/或多个接收者的传感模型,且多个发射者的类型可以不同,例如,发射者既包括UE,也可以包括基站;和/或,接收者既可以包括UE也可以包括基站。当然作为发射者和接收者的设备包括但不限于基站和/或UE。在具体实现时,作为发射者和/或接收者的设备,还可以是能够与基站或者UE建立连接的路边设备。例如,路旁具有无线信号收发能力的监控设备等。该监控设备包括但不限于以图像采集为主的视觉监控设备等。
在本公开实施例中,所述基站可以同时作为发射者和接收者,基于传感参数中的发射参数发射传感信号,并基于接收参数接收传感信号作用于反射物体(Reflection Objects,RO)反射会的反射信号。
如图5所示,基站同时作为发射者和接收者,发射传感信号,传感信号在传输过程中遇到障碍物(反射物体)就会被反射,再次返回到基站。基站在接收到反射信号之后,会记录接收到反射信号的接收时间、接收功率和/或接收方向,然后结合发射传感信号的发送信号、发射功率和/或发射方向等,可以确定出反射物体距离和/或方位。再结合基站自身的已知的地理位置,就可以知晓RO的精确位置。
在一些实施例中,所述S130可包括:
根据所述传感参数中的发射参数,发射传感信号;
和/或
根据所述传感参数中的接收参数,接收传感信号作用于传感目标返回的反射信号得到传感数据;
和/或,
根据所述传感参数中的处理参数处理所述传感数据得到传感结果。
在一个实施例中,基站发射的传感信号的载波频率可为不同于基站用于与UE之间无线通信的 射频信号的载波频率,从而可以实现基站的无线通信和传感服务提供的相互干扰,确保无线通信质量和传感服务的服务质量。
在另一个实施例中,基站发射传感信号的载波频率可与基站进行无线通信的载波频率相同,例如,利用无线通信中空闲载波频率进行通信,从而提高频率资源的有效利用率,同时基站的无线发射模组无需同时支持无线通信和传感信号的不同载波频率的收发。
在一个实施例中,发射传感信号和接收传感信号的基站可不相同。如此,在提供传感服务的传感模型为第一传感模型时,可以由一个基站既作为发射者也作为接收者,也可以由一个基站作为发射者,另一个基站作为接收者。
传感数据可为接收反射信号生成的原始传感数据,传感结果可包括:对原始传感数据经过一定处理之后形成的传感数据,即处理后的传感数据,该处理后的传感数据即为所述传感结果。示例性地,对传感数据进行抽样,抽样后的传感数据即为所述传感结果的一种。再例如,按照传感传输中包含的处理参数,对传感数据进行一些初步处理得到传感结果。例如,处理参数可以包括:异常数据的剔除操作和/或完成初步距离和/或方向的传感结果的计算。
在一些实施例中,所述传感结果包括:所述传感数据的中间结果,和/或,所述传感数据的最终处理结果。
示例性地,处理所述传感数据得到所述传感结果,可包括:
对所述传感数据进行初步处理,得到中间结果;
和/或,
对所述传感数据进行处理,得到最终结果。
最终结果可包括指示传感目标的距离、方位和/或轮廓等最终结果。
该中间结果不包含指示传感目标的距离、方位和/或轮廓等最终结果,而是一些初步处理得到的非最终结果,此处的非最终结果即为所述中间结果。
该初步处理可包括:有效数据选择、异常数据剔除或者计算最终结果的初步结果计算等。例如,剔除无效数据,选择参与最终结果结算的传感数据作为所述初步处理的结果,发送给目标SF、AF、发起者和/或消费者。
当然以上仅仅是举例,具体实现不局限于上述举例。
在一个实施例中,所述方法还包括:
与服务功能AF或者所述传感服务的发起者建立传输链路,其中,所述传输链路,用于传输所述传感数据和/或所述传感结果。
例如,该传输链路的建立可以是在根据发射参数发射传感信号和/或根据接收参数接收传感信号之前。又例如,该传输链路的建立可以是在基站根据发射参数发送传感信号和/或根据接收信号接收传感信号的同时,或者,需要在想AF或者发起者发送所述传感数据和/或所述传感结果之前才建立所述传输链路。
所述传感参数包括:基站与AF与发起者之间建立传输链路的地址信息。该地址信息包括但不 限于网络协议(Internet Protocol,IP)地址信息和/或媒体访问控制(MAC)地址信息。
所述方法还包括:
与服务功能AF或者所述传感服务的发起者建立传输链路,其中,所述传输链路,用于传输所述传感数据和/或所述传感结果。
在一些实施例中,基站也可以不与AF和/或发起者之间建立传输链路,基站会将传感数据和/或传感结果发送给SF,再由SF将所述传感数据和/或传感结果发送给AF和/或传感服务的发起者。故在一些实施例中,所述方法还包括:
将所述传感数据发送给SF,其中,所述传感数据,用于供所述SF确定传感结果或由所述SF将所述传感数据传输给AF或者所述传感服务的发起者。
在一些实施例中,所述传感参数还包括:传感目标的目标信息,方便基站根据传感目标的目标信息,更好的发射传感信号和/或接收反射信号。
例如,基站从SF接收的传感参数可包括:传感目标的目标信息和发射传感信号的发射时间等信息,此时,基站可以根据传感目标的目标信息,确定发射传感信号的覆盖范围和/或发射功率等。当然此处仅仅是举例,具体实现不限于该举例。
示例性地,所述目标信息指示以下至少之一:
所述传感目标的所在区域;
所述传感目标的类型;
所述传感目标的运动速度;
所述传感目标的体积。
在一些实施例中,不同面积和/或体积的传感目标,可以用于确定发射者发送传感信号的视角和/或功率等参数。
所述传感目标的区域信息可指示传感目标当前所在区域,可方便确定传感服务区域。
所述传感目标的位置,可以用于确定执行者,例如,就近选择合适的执行者来执行该传感服务。
传感目标的速度可能会对传感服务的成功提供有影响,例如,高速运动的物体,则对传感服务中发射者的发射功率有要求。另外,还可以由于传感目标的运动产生多普勒效应,此时提供传感服务的处理者的处理能力有一定的要求。
在一些实施例中,所述传感目标的目标信息不局限于上述面积、位置、体积和/或速度,还可以传感目标的类型。例如,传感目标是否运动,可以分为静态传感目标和动态传感目标。根据传感目标是否是活体,可以分为活体目标和非活体目标。若针对活体目标,可能需要考虑雷达光斑对活体的影响活体的负面影响等。
本公开实施例中,基站参与提供传感服务,以增强传感服务的提供,从而确保传感服务的服务质量。
如图6所示,本公开实施例提供一种传感服务提供方法,被SF执行,所述方法包括:
S210:接收AF或者传感服务的发起者发送的传感请求;
S220:根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
S230:将所述传感参数发送给所述目标基站。
AF可以为传感服务的应用程序的服务器或者网元。发起者可能是安装有对应应用程序的客户端。
总之,在本公开实施例中,可能是AF或者传感服务的发起者发送的传感请求。SF可以从AF或者发起者接收所述传感请求。
在接收到传感请求之后,SF会确定出提供传感服务的目标基站及传感参数等。
示例性地,在接收到传感请求之后,可以确定出能够提供传感服务的候选基站,从候选基站中选择所述目标基站。示例性地,根据候选基站的负载率,选择负载率低的候选基站作为所述目标基站。又示例性地,根据传感请求携带的QoS信息确定出能够提供QoS信息所需QoS的传感服务的基站作为所述目标基站。当然以上仅仅是对SF确定目标基站的举例,具体实现时不局限于上述举例。
此外,SF还会根据传感请求确定传感参数,该传感参数可包括:发射参数、接收参数及处理参数的至少其中之一。在确定出所述传感参数之后,会将所述传感参数发送给所述目标基站,供所述目标基站基于所述传感参数提供传感服务。
在一些实施例中,所述传感请求至少包括:传感服务的发起者的标识信息;所述方法还包括:
根据所述发起者的标识信息,对所述发起者进行验证;其中,在所述验证通过后,确定所述传感服务的目标基站和/或所述传感参数查询。
此处的验证可包括但不限于:权限验证,和/或,隐私安全验证等。
例如,发起者签约了提供传感服务的传感业务,该发起者才具有获取传感服务的权限。故在一些实施例中,可以根据发起者是否签约有传感业务的签约数据,对发起者进行权限验证。
再例如,发起者虽然签约了传感业务,但是发起者请求的更高等级权限的传感服务,则同样发起者依然不能通过权限验证。
隐私安全验证主要是用于确定传感服务提供的过程中,是否会暴露用户不想要暴露的隐私数据。例如,有的用户介意暴露自己当前所在位置,若发起者请求对该用户进行定位,则会侵犯对应用户隐私,如此通过隐私安全验证来保护用户隐私。
对发起者进行验证,验证的方式具有很多种,具体如,SF可以基于在本地完成验证,也可以通过该与其他网元之间的交互完成验证。
在一个实施例中,所述根据所述发起者的标识信息进行验证,包括:
根据所述传感请求,向用户数据管理UDM发送查询请求,其中,所述查询请求至少包括:所述传感服务的发起者的标识信息;
接收所述UDM返回的查询结果。
例如,SF根据该传感服务,向UDM发送查询请求,该查询请求可以向UDM查询发起者的签约数据,或者请求UDM根据签约数据对发起者进行验证,并将验证结果携带在查询结果中返回。
UDM存储有用户的签约数据,故可以用于进行权限验证和/或隐私安全验证。
在一些实施例中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
所述查询请求还包括:所述传感模型信息;
所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
该传感模型信息指示的发起者获取的传感服务所使用的传感模型。如此,UDM接收到查询请求之后,还可以根据该传感模型信息,确定发起者是否有签约使用发起者期望使用传感模型提供传感服务的传感业务,若没有,则可能权限鉴权不同;或者,使用该传感模型可能会引起一个或多个用户的隐私暴露,则可能隐私安全验证不同。有鉴于此,该查询结果是根据发起者的标识信息和传感模型信息返回的。
该查询结果携带的内容可包括:用于对发起者进行权限验证的传感业务的签约数据;或者,查询结果可以是UDM基于查询请求直接查询位于UDM内的签约数据并给出的验证是否通过的验证结果。
该验证结果可包括:验证通过的验证结果和/或验证不通过的验证结果。
在一些实施例中,所述传感模型包括以下至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
第一传感模型、第二传感模型、第三传感模型、第四传感模型及第五传感模型的相关描述,可以参见前述对应实施例处的相关描述,此处就不再重复了。
在一些实施例中,所述传感请求包括:目标信息,其中,所述目标信息指示传感目标的区域;
根据所述传感请求,确定提供所述传感服务的目标基站,包括:
向AMF发送传感服务查询;其中,所述传感服务查询包括:所述目标信息;
接收所述AMF返回的传感服务响应,其中,所述传感服务响应包括:所述目标基站的标识,其中,所述目标基站为:所述传感目标的区域内能够提供的所述传感服务的基站。
AMF是可以用于对UE进行接入和移动管理的往往圆,因此,在确定目标基站时,可以由AMF来确定。
例如,AMF可以根据传感服务涉及的UE和/或传感目标的位置,选择合适提供传感服务的目标基站。
示例性地,所述目标基站可为如下至少之一:
所述目标基站为:与传感目标距离最近的候选基站,候选基站为能够提供所述传感服务的基站;
所述目标基站为:与所述传感目标位于同一个传感区域的候选基站;
所述目标基站为:传感服务所涉及UE距离最近的候选基站;
所述目标基站为:传感服务所涉及UE位于同一个传感区域的候选基站。
上述进行是对目标基站的举例,而AMF基于传感请求进行目标基站确定时,不限于上述举例。
在本公开实施例中,SF接收到传感请求之后,请求AMF确定目标基站,确保选择的目标基站是合适提供传感服务的基站。
在一些实施例中,所述传感请求还包括:服务质量QoS信息,指示所述传感服务的QoS;
其中,所述传感服务查询还包括:所述QoS信息;
所述目标基站为:所述传感目标的区域内能够提供所述QoS信息的所述传感服务的基站。
该QoS信息指示的QoS值,不同的QoS值对传感服务提供时分配的资源和/或传感服务的提供方式都不同。
因此,有的基站可以提供传感服务,可能没有办法提供发起者所需的QoS的传感服务,或者基站可以提供多种QoS的传感服务。
在本公开实施例中,在选择目标基站时,会从传感目标的区域内选择,从而使得目标基站发射的传感信号能够覆盖的传感目标,且能够提供发起者所需的QoS信息的传感服务,从而确保传感服务的服务质量。
在一些实施例中,根据所述传感请求,确定提供所述传感服务的传感参数,包括:
根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
根据所述传感请求提供的备选参数,确定所述传感参数,例如,将备选参数的至少其中之一确定为所述传感参数;又例如,根据所述传感请求中携带的备选模型的标识信息、备选设备的设备信息,确定提供所述传感服务的执行者,以及确定提供所述传感服务的传感模型。
根据所述策略参数确定所述传感参数,可包括:
根据所述策略参数提供的一套或多套备选参数,随机确定或者预定义方式选择一套备选参数作为所述传感参数;
和/或,
根据所述策略参数限定的传感参数的范围,从该范围选择一套参数作为所述传感参数。
根据所述传感请求及所述策略参数,确定传感参数可包括以下至少之一:
确定所述传感请求提供备选参数是否包含在所述策略参数中,若包含在所述策略参数中,则将所述备选参数确定为所述传感参数;和/或,若不包含在所述策略参数中,从策略参数中随机选择一套参数作为所述传感参数,或者从所述策略参数中选择与所述备选参数最接近的一套作为所述传感参数。
以上仅仅是对根据传感请求及侧策略参数的至少其中之一,确定传感参数的举例,具体实现时,不局限于上述举例。
在一些实施例中,所述策略参数包括:
所述SF的本地策略参数;
策略控制功能PCF提供的策略参数。
此处的策略参数可以SF本地存储的,还可能是从PCF请求的。
SF的本地策略参数可以是预先配置在SF中的,也可以是上次从PCF请求之后转存到SF本地。
若SF本地未存储有策略参数,则可以向PCF请求策略参数,或者SF本地存储的策略参数优先级较低时,可以从PCF请求优先级更高的策略参数。
当然以上仅仅是对策略参数的来源和/或获取方式的举例,具体实现时不局限于该举例。
在一些实施例中,所述根据所述传感请求及策略参数的至少其中之一,确定所述传感参数,包括:
根据所述传感请求,向策略控制功能PCF发送策略请求;
接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;
根据所述策略响应,确定所述传感参数。
向PCF请求策略参数的方式可通过向PCF发送策略请求。
在一些实施例中,该策略请求可以请求PCF返回确定参数的一条或多条策略,该一条或多条策略可以携带在策略响应中返回,SF可以根据策略响应中携带的一条或多条策略,确定传感参数。该策略参数即为指示策略的一种形式。
在另一些实施例中,所述策略参数可为:一套或多套备选参数,则所述根据响应策略中的一套或多套备选参数选择一套作为传感参数。
在还有一些实施例中,所述策略参数还可以是限定了传感参数的参数范围,则SF可以根据该参数范围单独确定传感参数,或者根据参数范围及所述传感请求确定传感参数。
在一些实施例中,所述发起者的标识信息;
其中,所述策略请求包含所述发起者的标识信息;其中,所述策略响应是根据所述发起者的标识信息返回的。
该发起者的标识信息可为设备标识信息、传感服务的标识信息、或者应用程序的标识信息等唯一可以确定发起者的标识信息。
策略请求包含发起者的标识信息,就供PCF确定针对该发起者返回的策略响应,从而确定出针对该发起者的传感服务。
在一个实施例中,所述方法还包括:
接收来自所述目标基站的传感数据;
基于所述传感数据,得到按照预定方式处理的传感结果;
将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
在本公开实施例中,SF会从基站接收到传感数据,然后按照预定义方式对传感数据进行处理,将得到所述传感结果。
该定义方式可以为标准协议或者私有协议指定的方式,或者,SF和基站之间预先协商的方式,或者,SF与发起者或者与AF之间预先协商的方式。总之,在本公开实施例中,若SF从目标基站接收到传感数据,会对传感数据进行预定义方式的处理,从而的传感结果。
该传感结果包括:中间结果和/或最终结果。
然后得到的传感结果发送给AF或者传感服务的发起者。在一些实施例中,该传感结果还会可以直接发送给消费者。例如,AF或者传感服务的发起者通常可能也是传感结果的消费者,因此可以直接发送给AF或者传感服务的发起者。再例如,AF或者发起者可能不是最终的消费者,此时SF可以发送给AF或者发起者,由AF或者发起者转发给消费者,SF也可以将传感结果直接发送给消费者。
在一个实施例中,所述方法还包括:
接收来自所述目标基站的传感数据;
将所述传感数据发送给AF或者所述传感服务的发起者。
SF接收到基站发送的传感数据之后,不做处理直接发送给AF或者发起者。
在另一个实施例中,所述方法还包括:
SF接收目标基站发送的传感结果;
将接收的所述传感结果发送给SF或者所述发起者。
在还有一些实施例中,目标基站可能直接将传感数据和/或传感结果直接发送给AF或者发起者或者消费者,因此SF可能不会接收到传感数据和/或传感结果。
如图7所示,本公开实施例提供一种传感服务提供方法,其中,被AMF执行,所述方法包括:
S310:接收SF发送的传感服务查询;
S320:根据所述传感服务查询确定目标基站;
S330:向所述SF发送包含所述目标基站的标识信息的传感服务响应。
AMF会接收到SF发送的传感服务查询,基于该查询是SF基于接收到的传感请求发送的。有鉴于此,AMF会根据该查询为确定出响应所述传感请求的目标基站。
示例性地,AMF会从一个或多个能够提供传感服务的候选基站中选择出提供所述传感服务的目标基站。然后将目标基站的标识信息携带传感服务响应中发送给SF。该标识信息,用于供SF向目标基站发送提供传感服务的传感参数。
在一些实施例中,所述S320可包括:
根据所述传感服务查询携带的传感目标的目标信息,从所述目标信息指示的区域内选择能够提供所述传感服务的目标基站。
该目标信息可指示传感目标的所在区域,具体地,该目标信息可指示传感目标所在的传感区域。
在本公开实施例中,AMF会就近选择能够提供传感服务的候选基站作为目标基站。
在一些实施例中,所述传感服务查询还包括:指示QoS信息;所述S320可包括:
根据所述传感服务查询携带的传感目标的目标信息,选择目标基站,其中,所述目标基站为:能够提供所述QoS信息的所述传感服务的基站。
在本公开实施例中,AMF在选择目标基站时,不仅会考虑到传感目标所在区域,还会根据QoS 信息的传感服务的目标基站,从而使得选择出的目标基站能够提供传感请求所要求的QoS的传感服务。
如图8所示,本公开实施例提供一种传感服务提供方法,被UDM执行,所述方法包括:
S410:接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
S420:根据所述发起者的标识信息,对所述发起者进行查询;
S430:向所述SF发送所述查询结果。
该UDM存储有用户数据,该用户数据可包括:用户的签约数据。
SF接收到传感请求之后,可以向UDM发送查询请求,以对发起者进行验证。
UDM接收到查询请求之后,会查询用户数据,从而得到发起者的签约数据和/或提供该传感请求所对应传感服务涉及的用户进行查询,从而得到查询结果。
该标识信息包括但不限于:设备标识、服务标识和/或应用标识等唯一标识传感服务的发起者的标识信息。
该查询结果可包括:验证结果和/或查询到的可以对发起者进行验证的额签约数据。
该验证结果可直接指示通过验证或不同验证。
该签约数据携带在查询结果中返回给SF,可以供SF自信根据返回的签约数据确定发起者是否通过验证。
此处的验证包括但不限于:
权限验证和/或隐私安全验证。权限验证和隐私安全验证的相关描述,在前述实施例中有对应描述,此处就不再重复了。
在一个实施例中,所述S430可包括:
根据所述发起者的标识信息及所述传感模型信息,查询用户数据库;
根据查询的结果,确定出所述发起者签约有所述传感模型信息指示的传感模型提供传感服务时,向所述SF发送通过验证的查询结果;或者,根据查询的结果,确定出所述发起者未订购所述传感模型信息指示的传感模型提供传感服务或所述发起者未订购所述传感服务时,向所述SF发送不通过验证的查询结果。
在一个实施例中,发起者的传感请求会携带传感模型信息,来指示想要获取传感服务所使用的传感模型。
UDM可以根据签约数据及传感模型信息,确定发起者是否有权限获取其所要求传感模型提供的传感服务。
在一些实施例中,所述查询请求还包括:QoS信息;
所述S230可包括:
根据所述发起者的标识信息及所述QoS信息,向所述SF发送所述查询结果。
UDM通过会根据发起者的标识信息,查阅发起者的签约数据,根据签约数据,确定该发起者是 否有签订所述QoS的传感业务。若签约有所述QoS信息的传感业务,则可确定验证通过,否则可认为验证不通过,验证是否通过可以通过查询结果返回给SF,或者,将查询到的签约数据携带在查询结果中返回给SF。
如图9所示,本公开实施例提供一种传感服务提供方法,被PCF执行,所述方法包括:
S510:接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
S520:根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
PCF存储有策略信息,SF在接收到传感请求之后,确定传感参数时,可以向PCF请求策略参数,以为传感服务的提供确定合适的传感参数。
在一些实施例中,所述策略响应包括:策略参数;所述策略参数,用于供所述SF确定所述传感参数。
在一个实施例中,该策略参数可包括:用于提供传感服务的一套或多套备选参数。
在另一个实施例中,该策略参数还可指示参数范围值,SF接收到该参数范围值之后,会从该参数范围值中确定出所述传感参数。
如图10所示,本公开实施例提供一种传感服务提供方法,被应用功能AF或者传感服务的发起者执行,所述方法包括:
S610:向服务功能SF发送传感请求,其中,所述传感请求,至少包括:所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。
在本公开实施例中,AF或者发起者会向SF发送传感请求,该传感请求,至少包含发起者的标识信息,用于对发起者进行验证。
该验证可为各种类型的验证,包括但不限于:权限验证和/或隐私安全验证。
在一些实施例中,所述传感请求还包括以下至少之一:
所述AF或者所述发起者的地址信息;其中,所述地址信息,用于供所述目标基站与所述AF或者所述发起者建立传感数据传输链路;
传感目标的目标信息;
QoS信息,至少用于指示所述传感服务的QoS;
传感模型信息,至少所述AF或者所述发起者期望使用的传感模型。
传感目标的目标信息,该目标信息指示但不限于以下至少之一:传感目标的位置、对象大小和/或速度。
示例性地,所述目标信息指示以下至少之一:
所述传感目标的所在区域;
所述传感目标的类型;
所述传感目标的运动速度;
所述传感目标的体积。
示例性地,所述传感模型,包括以下至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
所述QoS信息指示的QoS等级等与服务质量相关的信息。
在一些实施例中,所述向服务功能SF发送传感请求,包括:
通过NEF向所述SF发送所述传感请求。
若AF或者发起者属于通信运商部署的或者通信运营商授权部署的,则该AF或者发起者可能部署在SF、AMF、UDM和/或PCF等网元所在的可信任环境内,此时AF或者发起者就可以直接向SF发送所述传感请求。
若所述AF或者发起者不属于通信运营商部署的或者通信运营商授权部署的,则AF或者发起者可能不是在SF、AMF、UDM和/或PCF等网元所在的可信任环境外,为了确保通信安全,则此时AF或者发起者需要通过隔离可信任环境和非可信任环境的NEF向所述SF发送传感请求。
参考图17所示,本公开实施例提供通过基站来增强来支持传感业务(又可以成为感知业务),即通过特定的物理增强,及相应参数配置,使基站可以发射传感信号,并能回收传感数据,处理或直接发送给应用层的数据接收端。该数据接收端可为AF或者应用服务器等。
该系统中STx/SRx gNB是指该基站可以同时作为传感信号的发射者和反射信号的接收者,RO是传感目标。STx gNB表示发射传感信号的基站,SRx gNB表示接收传感信号的基站。
本功能实施例提供的传感服务提供方法可包括:
AF/发起者向SF或通过NEF发送传感请求。传感请求可包括如下至少之一:
发起者的ID;
传感模型信息;
传感目标的目标信息,该目标信息包括但不限于:目标位置、目标大小和/或目标速度;
QoS信息,指示提供传感服务的QoS需求;
传感时段信息,指示传感时段;
传感区域信息,指示传感区域;
AF、发起者或者目标服务器的地址信息。
传感功能SF向UDM发送查询请求,检查该查询请求是否被允许,该查询请求可包括以下至少 之一:
发起者的标识信息;
传感模型信息;
传感目标的目标信息等。
SF根据目标信息和/或预配置选择AMF,向AMF发送传感服务查询,以检查所请求的传感服务是否得到基站(例如,gNB)的支持,消息内容包括:目标对象目标信息和/或QoS信息。
AMF向AF发送响应消息,该响应消息至少包括确定的提供传感服务的目标基站的标识信息。
SF选择PCF并向PCF请求相关的策略参数,请求消息包括:发起者的标识信息,如此PCF接收到相关请求之后,就知晓是针对哪个发起者。
PCF反馈策略响应,该策略响应可包括:策略参数。
SF根据AMF/PCF和/或本地政策的反馈决定STx和SRx的详细参数。该详细参数即为前述最终确定的用于提供传感服务的传感参数。
SF向目标gNB发送传感参数。该传感参数可包括:发射参数、接收参数、传感的目标区域的区域信息和/或需要接收传感数据或传感结果的设备的地址信息。此处的接收传感数据或传感结果的设备包括但不限于:AF、发起者和/或目标服务器等。
传感信号的发射基站(例如,SRx gNB)建立到目标传感服务器的传感数据或传感结果的传输链路。
gNB开始发射传感信号,并接收到反射信号;
gNB采集传感数据并将其发送给SF进行进一步处理;或者,gNB采集传感数据并发送至AF/发起者/目标服务器。
SF根据定义的方法采集并处理传感数据。
SF将传感数据发送给AF/发起者。
如图11所示,本公开实施例提供一种传感服务提供装置,其中,所述装置包括:
第一接收模块110,被配置为接收来自传感功能SF的传感参数;
提供模块120,被配置为根据所述传感参数,提供传感服务。
在一些实施例中,所述第一接收模块110及所述提供模块120可为程序模块;所述程序模块被处理器执行之后,能够实现所述传感参数的接收和传感服务的提供。
在另一些实施例中,所述第一接收模块110及所述提供模块120还可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程电路;所述可编程电路包括但不限于:现场可编程电路和/或复杂可编程电路。
在还有一些实施例中,所述第一接收模块110和所述提供模块120还可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述提供模块120,被配置为根据所述传感参数中的发射参数,发射传感信 号;和/或,根据所述传感参数中的接收参数,接收传感信号作用于传感目标返回的反射信号得到传感数据;和/或,
根据所述传感参数中的处理参数处理所述传感数据得到传感结果。
在一些实施例中,所述装置还包括:
建立模块,被配置为与服务功能AF或者所述传感服务的发起者建立传输链路,其中,所述传输链路,用于传输所述传感数据和/或所述传感结果。
在一些实施例中,所述传感参数还包括:
地址信息,所述地址信息指示所述AF或者传感服务器的发起者的地址,至少用于所述传输链路的建立。
在一些实施例中,所述装置还包括:
第一发送模块,被配置为将所述传感数据发送给SF,其中,所述传感数据,用于供所述SF确定传感结果或由所述SF将所述传感数据传输给AF或者所述传感服务的发起者。
在一些实施例中,所述传感结果包括:
所述传感数据的中间结果;
和/或,
所述传感数据的最终处理结果。
在一些实施例中,所述传感参数还包括:
传感目标的目标信息。
在一些实施例中,所述目标信息指示以下至少之一:
所述传感目标的所在区域;
所述传感目标的类型;
所述传感目标的运动速度;
所述传感目标的体积。
如图12所示,本公开实施例提供一种传感服务提供装置,其中,被传感功能SF执行,所述装置包括:
第二接收模块210,被配置为接收来自应用功能AF或者传感服务的发起者的传感请求;
第一确定模块220,被配置为根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
第二发送模块230,被配置为将所述传感参数发送给所述目标基站。
在一些实施例中,所述第二接收模块210、第一确定模块220及所述第二发送模块230可为程序模块,该程序模块被处理器执行之后,能够实现上述各个模块的功能。
在还有一些实施例中,所述第二接收模块210、第一确定模块220及所述第二发送模块230可为软硬件结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,述第二接收模块210、第一确定模块220及所述第二发送模块230可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述传感请求至少包括:传感服务的发起者的标识信息;所述装置还包括:
验证模块,被配置为根据所述发起者的标识信息进行验证;其中,在所述验证通过后,确定所述传感服务的目标基站和/或所述传感参数。
在一些实施例中,所述验证模块,被配置为根据所述传感请求,向用户数据管理UDM发送查询请求,其中,所述查询请求至少包括:所述传感服务的发起者的标识信息;接收所述UDM返回的查询结果。
在一些实施例中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
所述传感服务查询请求还包括:所述传感模型信息;
所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
在一些实施例中,所述传感模型包括以下至少之一:
基站作为发射者和接收者的第一传感模型;
用户设备UE作为发射者和接收者的第二传感模型;
基站作为发射者且UE作为接收者的第三传感模型;
UE作为接收者且基站作为发射者的第四传感模型;
除所述第一传感模型至所述第四传感模型以外的第五传感模型。
在一些实施例中,所述传感请求包括:目标信息,其中,所述目标信息指示传感目标的区域;
根据所述传感请求,确定提供所述传感服务的目标基站,包括:
向接入管理功能AMF发送传感服务查询;其中,所述传感服务查询包括:所述目标信息;
接收所述AMF返回的传感服务响应,其中,所述传感服务响应包括:所述目标基站的标识,其中,所述目标基站为:所述传感目标的区域内能够提供的所述传感服务的基站。
在一些实施例中,所述传感请求还包括:服务质量QoS信息,指示所述传感服务的QoS;所述传感服务查询还包括:所述QoS信息;
所述目标基站为:所述传感目标的区域内能够提供所述QoS信息的所述传感服务的基站。
在一些实施例中,根据所述传感请求,确定提供所述传感服务的传感参数包括:
根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
在一些实施例中,所述策略参数包括:
所述SF的本地策略参数;
策略控制功能PCF提供的策略参数。
在一些实施例中,所述第一确定模块220,被配置为根据所述传感请求,向策略控制功能PCF发送策略请求;接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;根据所述策略响应,确定所述传感参数。
在一些实施例中,所述传感请求包括:所述发起者的标识信息;
其中,所述策略请求包含所述发起者的标识信息;其中,所述策略响应是根据所述发起者的标识信息返回的。
在一些实施例中,所述第二接收模块210,还被配置为接收来自所述目标基站的传感数据;
所述装置还包括:
处理模块,被配置为基于所述传感数据,得到按照预定方式处理的传感结果;
所述第二发送模块230,被配置为将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
在一些实施例中,所述第二接收模块210,还被配置接收来自所述目标基站的传感数据,并所述第二发送模块230,还被配置为将所述传感数据发送给AF或者所述传感服务的发起者;
或者,
所述第二接收模块210,还被配置为接收所述目标基站发送的传感结果,并所述第二发送模块230,还被配置为将所述传感结果发送给AF或者所述发起者。
如图13所示,本公开实施例提供一种传感服务提供装置,其中,被AMF执行,所述装置包括:
第三接收模块310,被配置为接收来自服务功能SF的传感服务查询;
第二确定模块320,被配置为根据所述传感服务查询确定目标基站;
第三发送模块330,被配置为向所述SF发送包含所述目标基站的标识信息的传感服务响应。
在一些实施例中,所述第三接收模块310、第二确定模块320及所述第三发送模块330可为程序模块,该程序模块被处理器执行之后,能够实现上述各个模块的功能。
在还有一些实施例中,所述第三接收模块310、第二确定模块320及所述第三发送模块330可为软硬件结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第三接收模块310、第二确定模块320及所述第三发送模块330可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述第二确定模块320,还被配置为根据所述传感服务查询携带的传感目标的目标信息,从所述目标信息指示的区域内选择能够提供所述传感服务的目标基站。
在一些实施例中,所述传感服务查询还包括:指示QoS信息;
所述根据所述传感服务查询确定目标基站,包括:
根据所述传感服务查询携带的传感目标的目标信息,选择目标基站,其中,所述目标基站为:能够提供所述QoS信息的所述传感服务的基站。
如图14所示,本公开实施例提供一种传感服务提供装置,被UDM执行,所述装置包括:
第四接收模块410,被配置为接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
查询模块420,被配置为根据所述发起者的标识信息,对所述发起者进行查询;
第四发送模块430,被配置为向所述SF发送所述查询结果。
在一些实施例中,所述第四接收模块410、查询模块420及所述第四发送模块430可为程序模块,该程序模块被处理器执行之后,能够实现上述各个模块的功能。
在还有一些实施例中,所述第四接收模块410、查询模块420及所述第四发送模块430可为软硬件结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第四接收模块410、查询模块420及所述第四发送模块430可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述查询请求还包括:传感模型信息,指示所述传感服务期望使用的传感模型;
所述第四接收模块410,被配置为根据所述发起者的标识信息及所述传感模型信息,向所述SF发送所述查询结果。
在一些实施例中,所述查询请求还包括:QoS信息;
所述第四发送模块430,被配置为根据所述发起者的标识信息及所述QoS信息,向所述SF发送所述查询结果。
如图15所示,本公开实施例提供一种传感服务提供装置,被PCF执行,所述装置包括:
第五接收模块510,被配置为接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
第五发送模块520,被配置为根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
在一些实施例中,所述第五接收模块510及所述第五发送模块520可为程序模块,该程序模块被处理器执行之后,能够实现上述各个模块的功能。
在还有一些实施例中,所述第五接收模块510及所述第五发送模块520可为软硬件结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第五接收模块510及所述第五发送模块520可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述策略响应包括:策略参数;所述策略参数,用于供所述SF确定所述传感参数。
如图16所示,本公开实施例提供一种传感服务提供装置,被应用功能AF或者传感服务的发起者执行,所述装置包括:
第六发送模块610,被配置为向服务功能SF发送传感请求,其中,所述传感请求,至少包括: 所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。、
在一些实施例中,所述第五接收模块及所述第五发送模块可为程序模块,该程序模块被处理器执行之后,能够实现上述各个模块的功能。
在还有一些实施例中,所述第六发送模块610可为软硬件结合模块;所述软硬结合模块包括但不限于:各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第六发送模块610可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述传感请求还包括以下至少之一:
所述AF或者所述发起者的地址信息;其中,所述地址信息,用于供所述目标基站与所述AF或者所述发起者建立传感数据传输链路;
传感目标的目标信息;
服务质量QoS信息,至少用于指示所述传感服务的QoS;
传感模型信息,至少所述AF或者所述发起者期望使用的传感模型。
在一些实施例中,所述第六发送模块610,被配置为通过网络开放功能NEF向所述SF发送所述传感请求。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的传感服务提供方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:接入设备或UE或者核心网设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2、图6至图10和图17所示的方法的至少其中之一。
图18是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图18,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802 之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技 术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图19所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为前述的接入设备和/或核心网设备。
参照图19,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,,如图2、图6至图10和图17所示的方法的至少其中之一。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (66)

  1. 一种传感服务提供方法,其中,被基站执行,所述方法包括:
    接收来自传感功能SF的传感参数;
    根据所述传感参数,提供传感服务。
  2. 根据权利要1所述的方法,所述根据所述传感参数,提供传感服务,包括:
    根据所述传感参数中的发射参数,发射传感信号;
    和/或,
    根据所述传感参数中的接收参数,接收传感信号作用于传感目标返回的反射信号得到传感数据;
    和/或,
    根据所述传感参数中的处理参数处理所述传感数据得到传感结果。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    与服务功能AF或者所述传感服务的发起者建立传输链路,其中,所述传输链路,用于传输所述传感数据和/或所述传感结果。
  4. 根据权利要求3所述的方法,其中,所述传感参数还包括:
    地址信息,所述地址信息指示所述AF或者传感服务器的发起者的地址,至少用于所述传输链路的建立。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    将所述传感数据发送给SF,其中,所述传感数据,用于供所述SF确定传感结果或由所述SF将所述传感数据传输给AF或者所述传感服务的发起者。
  6. 根据权利要求2所述的方法,其中,所述传感结果包括:
    所述传感数据的中间结果;
    和/或,
    所述传感数据的最终处理结果。
  7. 根据权利要求1所述的方法,其中,所述传感参数还包括:
    传感目标的目标信息。
  8. 根据权利要求7所述的方法,其中,所述目标信息指示以下至少之一:
    所述传感目标的所在区域;
    所述传感目标的类型;
    所述传感目标的运动速度;
    所述传感目标的体积。
  9. 一种传感服务提供方法,其中,被传感功能SF执行,所述方法包括:
    接收来自应用功能AF或者传感服务的发起者的传感请求;
    根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
    将所述传感参数发送给所述目标基站。
  10. 根据权利要求9所述的方法,其中,所述传感请求至少包括:传感服务的发起者的标识信息;所述方法还包括:
    根据所述发起者的标识信息进行验证;其中,在所述验证通过后,确定所述传感服务的目标基站和/或所述传感参数。
  11. 根据权利要求10所述的方法,其中,所述根据所述发起者的标识信息进行验证,包括:
    根据所述传感请求,向用户数据管理UDM发送查询请求,其中,所述查询请求至少包括:所述传感服务的发起者的标识信息;
    接收所述UDM返回的查询结果。
  12. 根据权利要求11所述的方法,其中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
    所述传感服务查询请求还包括:所述传感模型信息;
    所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
  13. 根据权利要求12所述的方法,其中,所述传感模型包括以下至少之一:
    基站作为发射者和接收者的第一传感模型;
    用户设备UE作为发射者和接收者的第二传感模型;
    基站作为发射者且UE作为接收者的第三传感模型;
    UE作为接收者且基站作为发射者的第四传感模型;
    除所述第一传感模型至所述第四传感模型以外的第五传感模型。
  14. 根据权利要求9所述的方法,其中,所述传感请求包括:目标信息,其中,所述目标信息指示传感目标的区域;
    根据所述传感请求,确定提供所述传感服务的目标基站,包括:
    向接入管理功能AMF发送传感服务查询;其中,所述传感服务查询包括:所述目标信息;
    接收所述AMF返回的传感服务响应,其中,所述传感服务响应包括:所述目标基站的标识,其中,所述目标基站为:所述传感目标的区域内能够提供的所述传感服务的基站。
  15. 根据权利要求9所述的方法,其中,所述传感请求还包括:服务质量QoS信息,指示所述传感服务的QoS;所述传感服务查询还包括:所述QoS信息;
    所述目标基站为:所述传感目标的区域内能够提供所述QoS信息的所述传感服务的基站。
  16. 根据权利要求9至15任一项所述的方法,其中,根据所述传感请求,确定提供所述传感服务的传感参数包括:
    根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
  17. 根据权利要求16所述的方法,其中,所述策略参数包括:
    所述SF的本地策略参数;
    策略控制功能PCF提供的策略参数。
  18. 根据权利要求16所述的方法,其中,所述根据所述传感请求及策略参数的至少其中之一,确定所述传感参数,包括:
    根据所述传感请求,向策略控制功能PCF发送策略请求;
    接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;
    根据所述策略响应,确定所述传感参数。
  19. 根据权利要求18所述的方法,其中,所述传感请求包括:所述发起者的标识信息;
    其中,所述策略请求包含所述发起者的标识信息;其中,所述策略响应是根据所述发起者的标识信息返回的。
  20. 根据权利要求9至19任一项所述的方法,其中,所述方法还包括:
    接收来自所述目标基站的传感数据;
    基于所述传感数据,得到按照预定方式处理的传感结果;
    将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
  21. 根据权利要求9至21任一项所述的方法,其中,所述方法还包括:
    接收来自所述目标基站的传感数据,并将所述传感数据发送给AF或者所述传感服务的发起者;
    或者,
    接收来自所述目标基站的传感结果,并将所述传感结果发送给AF或者所述发起者。
  22. 一种传感服务提供方法,其中,被AMF执行,所述方法包括:
    接收来自服务功能SF的传感服务查询;
    根据所述传感服务查询确定目标基站;
    向所述SF发送包含所述目标基站的标识信息的传感服务响应。
  23. 根据权利要求22所述的方法,其中,所述根据所述传感服务查询确定目标基站,包括:
    根据所述传感服务查询携带的传感目标的目标信息,从所述目标信息指示的区域内选择能够提供所述传感服务的目标基站。
  24. 根据权利要求22或23所述的方法,其中,所述传感服务查询还包括:指示QoS信息;
    所述根据所述传感服务查询确定目标基站,包括:
    根据所述传感服务查询携带的传感目标的目标信息,选择目标基站,其中,所述目标基站为:能够提供所述QoS信息的所述传感服务的基站。
  25. 一种传感服务提供方法,被UDM执行,所述方法包括:
    接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
    根据所述发起者的标识信息,对所述发起者进行查询;
    向所述SF发送所述查询结果。
  26. 根据权利要求25所述的方法,其中,所述查询请求还包括:传感模型信息,指示所述传感服务期望使用的传感模型;
    所述向所述SF发送所述查询结果,包括:
    根据所述发起者的标识信息及所述传感模型信息,向所述SF发送所述查询结果。
  27. 根据权利要求25所述的方法,其中,所述查询请求还包括:QoS信息;
    所述向所述SF发送所述查询结果,包括:
    根据所述发起者的标识信息及所述QoS信息,向所述SF发送所述查询结果。
  28. 一种传感服务提供方法,被PCF执行,所述方法包括:
    接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
    根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
  29. 根据权利要求28所述的方法,其中,所述策略响应包括:策略参数;所述策略参数,用于供所述SF确定所述传感参数。
  30. 一种传感服务提供方法,被应用功能AF或者传感服务的发起者执行,所述方法包括:
    向服务功能SF发送传感请求,其中,所述传感请求,至少包括:所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
    所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。
  31. 根据权利要求30所述的方法,其中,所述传感请求还包括以下至少之一:
    所述AF或者所述发起者的地址信息;其中,所述地址信息,用于供所述目标基站与所述AF或者所述发起者建立传感数据传输链路;
    传感目标的目标信息;
    服务质量QoS信息,至少用于指示所述传感服务的QoS;
    传感模型信息,至少所述AF或者所述发起者期望使用的传感模型。
  32. 根据权利要求30所述的方法,其中,所述向服务功能SF发送传感请求,包括:
    通过网络开放功能NEF向所述SF发送所述传感请求。
  33. 一种传感服务提供装置,其中,所述装置包括:
    第一接收模块,被配置为接收来自传感功能SF的传感参数;
    提供模块,被配置为根据所述传感参数,提供传感服务。
  34. 根据权利要33所述的装置,其中,所述提供模块,被配置为根据所述传感参数中的发射参数,发射传感信号;和/或,根据所述传感参数中的接收参数,接收传感信号作用于传感目标返回的反射信号得到传感数据;和/或,
    根据所述传感参数中的处理参数处理所述传感数据得到传感结果。
  35. 根据权利要求34所述的装置,其中,所述装置还包括:
    建立模块,被配置为与服务功能AF或者所述传感服务的发起者建立传输链路,其中,所述传输链路,用于传输所述传感数据和/或所述传感结果。
  36. 根据权利要求35所述的装置,其中,所述传感参数还包括:
    地址信息,所述地址信息指示所述AF或者传感服务器的发起者的地址,至少用于所述传输链 路的建立。
  37. 根据权利要求34所述的装置,其中,所述装置还包括:
    第一发送模块,被配置为将所述传感数据发送给SF,其中,所述传感数据,用于供所述SF确定传感结果或由所述SF将所述传感数据传输给AF或者所述传感服务的发起者。
  38. 根据权利要求34所述的装置,其中,所述传感结果包括:
    所述传感数据的中间结果;
    和/或,
    所述传感数据的最终处理结果。
  39. 根据权利要求33所述的装置,其中,所述传感参数还包括:
    传感目标的目标信息。
  40. 根据权利要求39所述的装置,其中,所述目标信息指示以下至少之一:
    所述传感目标的所在区域;
    所述传感目标的类型;
    所述传感目标的运动速度;
    所述传感目标的体积。
  41. 一种传感服务提供装置,其中,所述装置包括:
    第二接收模块,被配置为接收来自应用功能AF或者传感服务的发起者的传感请求;
    第一确定模块,被配置为根据所述传感请求,确定提供所述传感服务的目标基站及传感参数;
    第二发送模块,被配置为将所述传感参数发送给所述目标基站。
  42. 根据权利要求41所述的装置,其中,所述传感请求至少包括:传感服务的发起者的标识信息;所述装置还包括:
    验证模块,被配置为根据所述发起者的标识信息进行验证;其中,在所述验证通过后,确定所述传感服务的目标基站和/或所述传感参数。
  43. 根据权利要求42所述的装置,其中,所述验证模块,被配置为根据所述传感请求,向用户数据管理UDM发送查询请求,其中,所述查询请求至少包括:所述传感服务的发起者的标识信息;接收所述UDM返回的查询结果。
  44. 根据权利要求43所述的装置,其中,所述传感请求还包括:传感模型信息,至少所述传感请求期望使用的传感模型;
    所述传感服务查询请求还包括:所述传感模型信息;
    所述查询结果是:根据所述发起者的标识信息和所述传感模型信息返回的。
  45. 根据权利要求44所述的装置,其中,所述传感模型包括以下至少之一:
    基站作为发射者和接收者的第一传感模型;
    用户设备UE作为发射者和接收者的第二传感模型;
    基站作为发射者且UE作为接收者的第三传感模型;
    UE作为接收者且基站作为发射者的第四传感模型;
    除所述第一传感模型至所述第四传感模型以外的第五传感模型。
  46. 根据权利要求43所述的装置,其中,所述传感请求包括:目标信息,其中,所述目标信息指示传感目标的区域;
    根据所述传感请求,确定提供所述传感服务的目标基站,包括:
    向接入管理功能AMF发送传感服务查询;其中,所述传感服务查询包括:所述目标信息;
    接收所述AMF返回的传感服务响应,其中,所述传感服务响应包括:所述目标基站的标识,其中,所述目标基站为:所述传感目标的区域内能够提供的所述传感服务的基站。
  47. 根据权利要求41所述的装置,其中,所述传感请求还包括:服务质量QoS信息,指示所述传感服务的QoS;所述传感服务查询还包括:所述QoS信息;
    所述目标基站为:所述传感目标的区域内能够提供所述QoS信息的所述传感服务的基站。
  48. 根据权利要求41至47任一项所述的装置,其中,根据所述传感请求,确定提供所述传感服务的传感参数包括:
    根据所述传感请求及策略参数的至少其中之一,确定所述传感参数。
  49. 根据权利要求48所述的装置,其中,所述策略参数包括:
    所述SF的本地策略参数;
    策略控制功能PCF提供的策略参数。
  50. 根据权利要求48所述的装置,其中,所述第一确定模块,被配置为根据所述传感请求,向策略控制功能PCF发送策略请求;接收所述PCF返回的策略响应;其中,所述策略响应包括所述PCF提供的策略参数;根据所述策略响应,确定所述传感参数。
  51. 根据权利要求50所述的装置,其中,所述传感请求包括:所述发起者的标识信息;
    其中,所述策略请求包含所述发起者的标识信息;其中,所述策略响应是根据所述发起者的标识信息返回的。
  52. 根据权利要求41至51任一项所述的装置,其中,所述第二接收模块,还被配置为接收来自所述目标基站的传感数据;
    所述装置还包括:
    处理模块,被配置为基于所述传感数据,得到按照预定方式处理的传感结果;
    所述第二发送模块,被配置为将所述传感结果发送给应用功能AF或者所述传感服务的发起者。
  53. 根据权利要求41至51任一项所述的装置,其中,所述第二接收模块,还被配置接收来自所述目标基站的传感数据,且所述第二发送模块,还被配置为将所述传感数据发送给AF或者所述传感服务的发起者;
    或者,
    所述第二接收模块,还被配置为接收所述目标基站发送的传感结果,且所述第二发送模块,还被配置为将所述传感结果发送给AF或者所述发起者。
  54. 一种传感服务提供装置,其中,所述装置包括:
    第三接收模块,被配置为接收来自服务功能SF的传感服务查询;
    第二确定模块,被配置为根据所述传感服务查询确定目标基站;
    第三发送模块,被配置为向所述SF发送包含所述目标基站的标识信息的传感服务响应。
  55. 根据权利要求54所述的装置,其中,所述第二确定模块,还被配置为根据所述传感服务查询携带的传感目标的目标信息,从所述目标信息指示的区域内选择能够提供所述传感服务的目标基站。
  56. 根据权利要求54或55所述的装置,其中,所述传感服务查询还包括:指示QoS信息;
    所述根据所述传感服务查询确定目标基站,包括:
    根据所述传感服务查询携带的传感目标的目标信息,选择目标基站,其中,所述目标基站为:能够提供所述QoS信息的所述传感服务的基站。
  57. 一种传感服务提供装置,其中,所述装置包括:
    第四接收模块,被配置为接收来自SF的查询请求,其中,所述查询请求包括:传感服务的发起者的标识信息;
    查询模块,被配置为根据所述发起者的标识信息,对所述发起者进行查询;
    第四发送模块,被配置为向所述SF发送所述查询结果。
  58. 根据权利要求57所述的装置,其中,所述查询请求还包括:传感模型信息,指示所述传感服务期望使用的传感模型;
    所述第四接收模块,被配置为根据所述发起者的标识信息及所述传感模型信息,向所述SF发送所述查询结果。
  59. 根据权利要求57所述的装置,其中,所述查询请求还包括:QoS信息;
    所述第四发送模块,被配置为根据所述发起者的标识信息及所述QoS信息,向所述SF发送所述查询结果。
  60. 一种传感服务提供装置,其中,所述装置包括:
    第五接收模块,被配置为接收来自SF的策略请求,其中,所述策略请求包含:传感服务的发起者的标识信息;
    第五发送模块,被配置为根据所述发起者的标识信息,向所述SF发送策略响应,其中,所述策略响应,用于所述SF确定所述传感服务的传感参数。
  61. 根据权利要求60所述的装置,其中,所述策略响应包括:策略参数;所述策略参数,用于供所述SF确定所述传感参数。
  62. 一种传感服务提供装置,所述装置包括:
    第六发送模块,被配置为向服务功能SF发送传感请求,其中,所述传感请求,至少包括:所述发起者的标识信息,至少用于对所述传感服务的发起者进行验证;
    所述传感请求,用于请求所述SF选择目标基站提供所述传感服务。
  63. 根据权利要求62所述的装置,其中,所述传感请求还包括以下至少之一:
    所述AF或者所述发起者的地址信息;其中,所述地址信息,用于供所述目标基站与所述AF或者所述发起者建立传感数据传输链路;
    传感目标的目标信息;
    服务质量QoS信息,至少用于指示所述传感服务的QoS;
    传感模型信息,至少所述AF或者所述发起者期望使用的传感模型。
  64. 根据权利要求62所述的装置,其中,所述第六发送模块,被配置为通过网络开放功能NEF向所述SF发送所述传感请求。
  65. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至8、9至21、22至24、25至27、28至29或30至32任一项提供的方法。
  66. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至8、9至21、22至24、25至27、28至29或30至32任一项提供的方法。
PCT/CN2021/122920 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质 WO2023056649A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003291.8A CN116261867A (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质
PCT/CN2021/122920 WO2023056649A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122920 WO2023056649A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023056649A1 true WO2023056649A1 (zh) 2023-04-13

Family

ID=85803853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122920 WO2023056649A1 (zh) 2021-10-09 2021-10-09 传感服务提供方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN116261867A (zh)
WO (1) WO2023056649A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070061024A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 상황인식 서비스 시스템 및 그 방법
CN103546888A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种在lte系统中的感知实现方法及装置
CN112262610A (zh) * 2018-04-09 2021-01-22 上海诺基亚贝尔股份有限公司 装置、方法和计算机程序
CN112567714A (zh) * 2018-08-14 2021-03-26 华为技术有限公司 通信系统中的时间感知服务质量
CN113225779A (zh) * 2020-02-05 2021-08-06 大唐移动通信设备有限公司 终端的定向切换处理方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070061024A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 상황인식 서비스 시스템 및 그 방법
CN103546888A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种在lte系统中的感知实现方法及装置
CN112262610A (zh) * 2018-04-09 2021-01-22 上海诺基亚贝尔股份有限公司 装置、方法和计算机程序
CN112567714A (zh) * 2018-08-14 2021-03-26 华为技术有限公司 通信系统中的时间感知服务质量
CN113225779A (zh) * 2020-02-05 2021-08-06 大唐移动通信设备有限公司 终端的定向切换处理方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Study on Architecture Enhancement to support Sensing-based services", 3GPP DRAFT; S2-2106377, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 August 2021 (2021-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052054105 *
XIAOMI: "New SID on Study on Sensing based services", 3GPP DRAFT; S2-2106378, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. E (e-meeting); 20210816 - 20210827, 10 August 2021 (2021-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052054106 *

Also Published As

Publication number Publication date
CN116261867A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
US20230034681A1 (en) Positioning processing method and apparatus, base station, terminal device, and storage medium
WO2021243723A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2023056649A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023056648A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023065090A1 (zh) 传感服务提供方法及装置、通信设备及存储介质
WO2023039896A1 (zh) 无线传感方法及装置、通信设备及存储介质
WO2023184119A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023178578A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023201736A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023178533A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2023178532A1 (zh) 通感业务的处理方法、装置、通信设备及存储介质
WO2024026689A1 (zh) 提供无线感知服务的方法和装置、电子设备和存储介质
WO2023240479A1 (zh) 无线感知处理方法及装置、通信设备及存储介质
WO2023216116A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023216210A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2023150978A1 (zh) 感知数据传输方法、装置、通信设备和存储介质
WO2024011413A1 (zh) 一种信息处理方法、装置、通信设备及存储介质
WO2023216257A1 (zh) 信号覆盖信息确定方法、装置、通信设备和存储介质
WO2023212951A1 (zh) 测距方法、装置、通信设备和存储介质
WO2023216259A1 (zh) 卫星覆盖信息确定方法、装置、通信设备和存储介质
WO2024065125A1 (zh) 感知实现方法、装置、通信设备及存储介质
WO2023173430A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024000131A1 (zh) 测距方法、装置、通信设备和存储介质
WO2023236157A1 (zh) 一种信息处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021959739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021959739

Country of ref document: EP

Effective date: 20240510