WO2023176830A1 - タイヤ用ゴム組成物 - Google Patents

タイヤ用ゴム組成物 Download PDF

Info

Publication number
WO2023176830A1
WO2023176830A1 PCT/JP2023/009843 JP2023009843W WO2023176830A1 WO 2023176830 A1 WO2023176830 A1 WO 2023176830A1 JP 2023009843 W JP2023009843 W JP 2023009843W WO 2023176830 A1 WO2023176830 A1 WO 2023176830A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
rubber
mass
styrene
thermoplastic resin
Prior art date
Application number
PCT/JP2023/009843
Other languages
English (en)
French (fr)
Inventor
隆太郎 中川
香織 大角
健太郎 竹内
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN202380023109.4A priority Critical patent/CN118742600A/zh
Publication of WO2023176830A1 publication Critical patent/WO2023176830A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire rubber composition for high-performance tires that has excellent wear resistance, dry performance, and wet performance.
  • High-performance tires are required to have high levels of wear resistance, dry performance, and wet performance. It is also required to maintain grip performance even after long-term use.
  • BACKGROUND ART As a tire rubber composition that improves wet performance and wear resistance, it has been proposed to blend an aromatic modified terpene resin into a tire rubber composition (see, for example, Patent Document 1).
  • Patent Document 1 was not necessarily sufficient to maintain excellent dry performance or grip performance at a high level after long-term use.
  • An object of the present invention is to provide a rubber composition for tires that has excellent wear resistance, dry performance, and wet performance, and maintains grip performance at a high level even after long-term use.
  • the tire rubber composition of the present invention which achieves the above object is a tire rubber composition comprising 100 parts by mass of diene rubber containing 55% by mass or more of styrene-butadiene rubber and 15 parts by mass or more of a thermoplastic resin.
  • the glass transition temperature of the styrene-butadiene rubber is -55°C or less
  • the total of the styrene monomer-derived units and vinyl monomer-derived units in the styrene-butadiene rubber is 50 mol% or less
  • the diene rubber and thermoplastic resin are as follows: It is characterized by satisfying the relationships (i) and (ii).
  • the tire rubber composition of the present invention is made by blending a specific thermoplastic resin with a diene rubber containing a specific styrene-butadiene rubber, so it has excellent abrasion resistance, dry performance, and wet performance, and is long-lasting. Grip performance can be maintained at a high level even after use.
  • the total amount of oil contained in the tire rubber composition is preferably less than 10 parts by mass based on 100 parts by mass of the diene rubber.
  • At least one end of the styrene-butadiene rubber is preferably modified with a functional group, and the amount of oil extended in the styrene-butadiene rubber is preferably 10 parts by mass or less based on 100 parts by mass of the styrene-butadiene rubber. .
  • the thermoplastic resin preferably has a glass transition temperature of 40° C. to 120° C., and a resin consisting of at least one selected from terpene, terpene phenol, rosin, rosin ester, C5 component, C9 component, and It is preferable that at least a portion of the double bonds of the resin be at least one selected from the group consisting of hydrogenated resins.
  • a tire having a tread made of the tire rubber composition described above is particularly suitable as a high-performance tire, and has excellent wear resistance, dry performance, and wet performance, and also maintains grip performance at a high level even after long-term use. can be maintained.
  • the rubber composition for tires of the present invention has a diene rubber as its rubber component, and contains 55% by mass or more of a specific styrene-butadiene rubber based on 100% by mass of the diene rubber.
  • a specific styrene-butadiene rubber By including a specific styrene-butadiene rubber, it is possible to improve the dispersibility of silica, increase the tensile strength at break, and increase the abrasion resistance, as well as increase the tan ⁇ at 0°C and provide excellent wet performance.
  • the specific styrene-butadiene rubber is preferably 55% by mass or more, preferably 55 to 80% by mass, more preferably 60 to 75% by mass based on 100% by mass of the diene rubber. If the specific styrene-butadiene rubber is less than 55% by mass, the effect of improving the dispersibility of silica cannot be sufficiently obtained, and the abrasion resistance and we
  • the specific styrene-butadiene rubber has a glass transition temperature (hereinafter sometimes referred to as "Tg") of -55°C or lower, preferably -80°C to -58°C, more preferably -75°C to -60°C. It is. If the Tg of the styrene-butadiene rubber is higher than -55°C, the wear resistance will deteriorate.
  • the Tg of styrene-butadiene rubber can be measured as the temperature at the midpoint of the transition range from a thermogram obtained by differential scanning calorimetry (DSC) at a heating rate of 20° C./min.
  • DSC differential scanning calorimetry
  • the Tg of the diene rubber is defined as the Tg of the diene rubber in a state that does not contain an oil-extended component (oil).
  • the specific styrene-butadiene rubber contains a total of styrene monomer-derived units and vinyl monomer-derived units of 50 mol% or less, preferably 10 to 50 mol%, and more preferably 15 to 50 mol%. If the total amount of units derived from styrene monomers and units derived from vinyl monomers exceeds 50 mol %, Tg tends to increase and wear resistance deteriorates.
  • the styrene monomer-derived unit is a repeating unit derived from a styrene monomer among the repeating units constituting styrene-butadiene rubber.
  • the amount (mol %) of styrene monomer-derived units and vinyl monomer-derived units in styrene-butadiene rubber can be measured by 1 H-NMR.
  • the content of styrene monomer-derived units in the styrene-butadiene rubber is not particularly limited, but is preferably 5 to 45 mol%, more preferably 8 to 42 mol%. It is preferable to set the content of units derived from styrene monomers within such a range, as this will improve wear resistance.
  • the content of vinyl monomer-derived units in the styrene-butadiene rubber is not particularly limited, but is preferably 5 to 45 mol%, more preferably 8 to 42 mol%. By setting the content of the styrene monomer-derived units within this range, dry grip performance can be maintained at a high level even after long-term use, which is preferable.
  • the content of units derived from styrene monomers in the styrene-butadiene rubber is preferably greater than the content of units derived from vinyl monomers. It is preferable that the content of the styrene monomer-derived units is higher and the total of the styrene monomer-derived units and the vinyl monomer-derived units is 50 mol % or less, as this results in a good balance between wear resistance and dry grip performance.
  • the specific styrene-butadiene rubber preferably has at least one end modified with a functional group, which can improve the dispersibility of silica and lower the rolling resistance of the tire.
  • functional groups include epoxy groups, carboxy groups, amino groups, hydroxy groups, alkoxy groups, silyl groups, alkoxysilyl groups, amide groups, oxysilyl groups, silanol groups, isocyanate groups, isothiocyanate groups, carbonyl groups, aldehyde groups, etc.
  • a functional group having a polyorganosiloxane structure or an aminosilane structure is preferably mentioned.
  • Styrene-butadiene rubber can contain an oil extending component.
  • the amount of oil extended is preferably 10 parts by mass or less per 100 parts by mass of styrene-butadiene rubber. By setting the amount of oil extension to 10 parts by mass or less, it is possible to suppress a decrease in grip performance after the tire ages.
  • the amount of oil extended is preferably 8 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the rubber composition for tires can contain diene rubber other than the specific styrene-butadiene rubber as a rubber component.
  • diene rubbers include, for example, styrene-butadiene rubber with a Tg of more than -55°C, styrene-butadiene rubber with a total of more than 50 mol% of units derived from styrene monomers and units derived from vinyl monomers, natural rubber, isoprene rubber, butadiene rubber, Examples include butyl rubber, halogenated butyl rubber, acrylonitrile-butadiene rubber, and modified rubbers obtained by adding functional groups to these rubbers. These other diene rubbers can be used alone or in any blend.
  • the content of the other diene rubber is preferably 45% by mass or less, more preferably 20 to 45% by mass, even more preferably 25 to 40% by mass based on 100% by mass of the diene rubber.
  • the rubber composition for tires is blended with styrene-butadiene rubber having a Tg of more than -55°C, as this improves wet performance.
  • the styrene-butadiene rubber having a Tg of more than -55°C preferably accounts for 3 to 45% by mass, more preferably 5 to 35% by mass, based on 100% by mass of the diene rubber.
  • As the styrene-butadiene rubber having a Tg of over -55°C it is preferable to use those commonly used in rubber compositions for tires.
  • the rubber composition for tires is blended with natural rubber, as this improves the abrasion resistance.
  • the natural rubber is preferably used in an amount of 5 to 35% by weight, more preferably 10 to 30% by weight based on 100% by weight of the diene rubber.
  • the natural rubber those commonly used in rubber compositions for tires may be used.
  • butadiene rubber it is also preferable to blend butadiene rubber, as this improves wear resistance.
  • the butadiene rubber is preferably used in an amount of 2 to 25% by weight, more preferably 4 to 20% by weight based on 100% by weight of the diene rubber.
  • the butadiene rubber it is preferable to use those commonly used in rubber compositions for tires.
  • a white filler can be blended with diene rubber. Wet performance can be improved by blending a white filler.
  • the white filler include silica, calcium carbonate, magnesium carbonate, talc, clay, alumina, aluminum hydroxide, titanium oxide, and calcium sulfate. These may be used alone or in combination of two or more. Among these, silica is preferred, as it can provide better wet performance and low heat build-up.
  • the white filler is preferably blended in an amount of 300 parts by mass or less, more preferably 250 parts by mass or less, still more preferably 200 parts by mass or less, per 100 parts by mass of the diene rubber. Further, the white filler is preferably added in an amount of 10 parts by mass or more, more preferably 25 parts by mass or more, still more preferably 50 parts by mass or more, per 100 parts by mass of the diene rubber.
  • silica those commonly used in tire rubber compositions may be used, such as wet process silica, dry process silica, carbon-silica (dual phase filler) in which silica is supported on the surface of carbon black, silane, etc.
  • Silica that has been surface-treated with a coupling agent or a compound that is reactive or compatible with both silica and rubber, such as polysiloxane, can be used.
  • wet process silica containing hydrous silicic acid as a main component is preferred.
  • silane coupling agent with silica because this improves the dispersibility of silica and further improves wet performance and low heat build-up.
  • the type of silane coupling agent is not particularly limited, but sulfur-containing silane coupling agents are preferred, such as bis-(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, etc.
  • Sulfide bis(3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3 -Mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyldimethylmethoxysilane, 2-mercaptoethyltriethoxysilane, 3-mercaptopropyltriethoxysilane, and Japanese specialty products such as VP Si363 manufactured by Evonik Mercaptosilane compounds etc.
  • the silane coupling agent is preferably blended in an amount of 3 to 20% by mass, preferably 5 to 15% by mass, based on the mass of silica.
  • amount of the silane coupling agent is less than 3% by mass of the silica, the effect of improving the dispersibility of silica cannot be sufficiently obtained.
  • the silane coupling agent exceeds 20% by mass, the diene rubber component tends to gel easily, making it impossible to obtain the desired effect.
  • the strength of the rubber composition can be increased and tire durability can be ensured.
  • other fillers include inorganic fillers such as carbon black, mica, aluminum oxide, and barium sulfate, and organic fillers such as cellulose, lecithin, lignin, and dendrimers.
  • carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite may be blended.
  • furnace black is preferred, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, FEF, and the like.
  • SAF SAF
  • ISAF ISAF-HS
  • ISAF-LS ISAF-LS
  • IISAF-HS High Speed F-HS
  • HAF HAF-HS
  • HAF-LS HAF-LS
  • FEF fluorous carbon black
  • the temperature dependence of its dynamic viscoelasticity can be adjusted.
  • the specific thermoplastic resin is blended in an amount of 15 parts by mass or more, preferably 20 parts by mass or more, more preferably 25 parts by mass or more, based on 100 parts by mass of the diene rubber. If the thermoplastic resin is less than 15 parts by mass, the object of the present invention, which is to have excellent abrasion resistance, dry performance and wet performance, and maintain grip performance at a high level even after long-term use, cannot be achieved. Further, the amount of the specific thermoplastic resin is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, based on 100 parts by mass of the diene rubber. If the amount of the specific thermoplastic resin exceeds 120 parts by mass, there is a risk that the wear resistance will decrease.
  • the specific thermoplastic resin shall satisfy the following relationship (i) with the diene rubber.
  • (i) In a mixture in which the above-mentioned diene rubber and thermoplastic resin are blended at a mass ratio of 1:1, the theoretical value Tga of the glass transition temperature of the mixture calculated from the glass transition temperatures of the diene rubber and the thermoplastic resin, The difference Tga-Tgm between the glass transition temperature of the mixture and the measured value Tgm is set to be 10°C or less. By setting the difference Tga-Tgm to 10° C. or less, it is possible to have excellent wear resistance and wet performance, and to reduce rolling resistance, and to reduce the temperature dependence of the rolling resistance.
  • the difference Tga-Tgm is preferably 7°C or less, more preferably 5°C or less.
  • the difference Tga-Tgm is 10°C or less, the diene rubber and the thermoplastic resin are compatible, and by blending a relatively large amount of the thermoplastic resin, the tensile strength at break of the rubber composition can be increased. , tan ⁇ , and other viscoelastic properties.
  • the theoretical value Tga of the glass transition temperature of the mixture can be calculated as a weighted average value from the glass transition temperature and mass ratio of the diene rubber and the thermoplastic resin.
  • the glass transition temperature of the diene rubber and thermoplastic resin and the glass transition temperature Tgm of the mixture are determined by measuring thermograms using differential scanning calorimetry (DSC) at a heating rate of 20°C/min. The temperature shall be measured as the midpoint temperature. In addition, when a thermogram has a plurality of transition regions, the middle point of the largest transition region is taken as the glass transition temperature Tgm of the mixture.
  • DSC differential scanning calorimetry
  • thermoplastic resin shall satisfy the following relationship (ii) with the diene rubber.
  • the rubber composition for tires of the present invention is referred to as Rubber Composition A, and a rubber having the same composition as Rubber Composition A except that all the thermoplastic resins contained in Rubber Composition A are replaced with oil.
  • composition B is defined as the maximum value of the loss tangent of rubber composition A at -40°C to 60°C is tan ⁇ MAXA
  • the maximum value of the loss tangent of rubber composition B at -40°C to 60°C is tan ⁇ MAXB
  • tan ⁇ MAXA and tan ⁇ MAXB satisfy the relationship of formula (1) below.
  • the ratio tan ⁇ MAXA /tan ⁇ MAXB is more preferably greater than 0.85, and still more preferably greater than 0.9.
  • tan ⁇ MAXA and tan ⁇ MAXB are the dynamic viscoelasticity of cured products of rubber compositions A and B measured using a viscoelastic spectrometer at an elongation deformation strain rate of 10 ⁇ 2%, a frequency of 20 Hz, and a temperature of - The measurement was performed under the conditions of 40°C to 60°C, and a viscoelastic curve was obtained with the measured temperature as the horizontal axis and the loss tangent (tan ⁇ ) as the vertical axis, and the thickest value (peak value) of tan ⁇ was calculated as tan ⁇ MAXA and tan ⁇ , respectively.
  • thermoplastic resin is a resin that is usually blended into a rubber composition for tires, has a molecular weight of about several hundred to several thousand, and has the effect of imparting tackiness to the rubber composition for tires.
  • a thermoplastic resin a group consisting of a resin consisting of at least one selected from terpene, modified terpene, rosin, rosin ester, C5 component, and C9 component, and a resin in which at least a portion of the double bonds of these resins are hydrogenated.
  • a resin consisting of at least one selected from the following is preferred.
  • natural resins such as terpene resins, modified terpene resins, rosin resins, and rosin ester resins, petroleum resins consisting of C5 and C9 components, synthetic resins such as coal resins, phenolic resins, and xylene resins. , and hydrogenated resins in which at least a portion of the double bonds of these natural resins and synthetic resins are hydrogenated.
  • terpene resins include ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, hydrogenated limonene resin, dipentene resin, terpene phenol resin, terpene styrene resin, aromatic modified terpene resin, hydrogenated terpene resin, etc. .
  • rosin-based resins examples include gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin such as maleated rosin and fumarized rosin, glycerin esters of these rosins, pentaerythritol esters, Examples include ester derivatives such as methyl ester and triethylene glycol ester, and rosin-modified phenol resins.
  • Petroleum-based resins include aromatic hydrocarbon resins and saturated or unsaturated aliphatic hydrocarbon resins, such as C5-based petroleum resins (such as distillates such as isoprene, 1,3-pentadiene, cyclopentadiene, methylbutene, and pentene).
  • C9-based petroleum resin aromatic petroleum resin obtained by polymerizing fractions such as ⁇ -methylstyrene, o-vinyltoluene, m-vinyltoluene, and p-vinyltoluene
  • C5C9 Examples include copolymerized petroleum resins and hydrogenated resins.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably 40°C to 120°C, preferably 45°C to 115°C, more preferably 50°C to 110°C.
  • Tg glass transition temperature
  • the Tg of the thermoplastic resin can be measured by the method described above.
  • the rubber composition for tires includes, in accordance with conventional methods, vulcanizing or crosslinking agents, vulcanization accelerators, anti-aging agents, processing aids, plasticizers, liquid polymers, thermosetting resins, etc.
  • vulcanizing or crosslinking agents vulcanization accelerators, anti-aging agents, processing aids, plasticizers, liquid polymers, thermosetting resins, etc.
  • Various compounding agents commonly used in rubber compositions can be blended. Such compounding agents can be kneaded in a conventional manner to form a rubber composition, which can be used for vulcanization or crosslinking.
  • the amounts of these compounding agents can be any conventional and common amounts as long as they do not contradict the purpose of the present invention.
  • the rubber composition for tires can be prepared by mixing the above-mentioned components using a known rubber kneading machine such as a Banbury mixer, kneader, roll, etc.
  • the rubber composition for tires is suitable for forming the tread portion and side portion of a high-performance tire, and is particularly suitable for forming the tread portion of a high-performance tire.
  • the resulting high-performance tire has excellent wear resistance, dry performance, and wet performance, and can maintain grip performance at a high level even after long-term use.
  • the additive formulations in Table 7 are expressed in parts by mass based on 100 parts by mass of the diene rubbers listed in Tables 1 to 6.
  • the tire rubber compositions of Examples 1 to 21 and Comparative Examples 1 to 18 described above were each referred to as Rubber Composition A, and had the same composition as each rubber composition A except that all the thermoplastic resins were replaced with oil.
  • Rubber composition B was prepared in the same manner as above.
  • a mixture was prepared in which the diene rubber and thermoplastic resin constituting the tire rubber compositions of each example and comparative example were blended at a mass ratio of 1:1, and the glass transition temperature (Tgm) of the mixture was as described above.
  • Tgm glass transition temperature
  • the tire rubber compositions obtained above were each vulcanized in a mold of a predetermined shape at 160° C. for 20 minutes to prepare evaluation samples. Using the obtained evaluation sample, dynamic viscoelasticity (loss tangent tan ⁇ ) and abrasion resistance were measured by the following methods. Further, the obtained tire rubber composition was used for a tire tread to vulcanize and mold a tire of size 205/55R16, and wet grip performance, dry performance, and dry grip performance after heat aging were measured by the following methods.
  • Dynamic viscoelasticity (loss tangent tan ⁇ )
  • the dynamic viscoelasticity of the obtained evaluation samples of the tire rubber composition (rubber composition A) and rubber composition B was measured using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho Co., Ltd., at an extensional deformation strain rate of 10 ⁇ . 2%, a vibration frequency of 20 Hz, and a temperature of -40°C to 60°C, a viscoelastic curve of -40°C to 60°C was created, and the thickest value of tan ⁇ of rubber composition A and rubber composition B was determined. (peak value) as tan ⁇ MAXA and tan ⁇ MAXB , tan ⁇ MAXA /tan ⁇ MAXB was calculated, and the obtained results are listed in Tables 1 to 6.
  • Abrasion resistance The evaluation sample of the obtained tire rubber composition was tested in accordance with JIS K6264 using a Lambourn abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.) at a load of 15.0 kg (147.1 N) and a slip rate. The amount of wear was measured under the condition of 25%. The reciprocal of each of the obtained results was calculated, and Tables 1 and 2 are the reciprocal of the wear amount of Standard Example 1, Tables 3 and 4 are the reciprocal of the wear amount of Standard Example 2, and Tables 5 and 6 are the reciprocal of the wear amount of Standard Example 3. They are listed in the "Abrasion Resistance" column of Tables 1 to 6 as an index with the reciprocal of 100. The larger the abrasion resistance index, the better the abrasion resistance.
  • Dry grip performance The obtained tire was attached to a standard rim and mounted on a test vehicle equipped with ABS with a displacement of 2000 cc, and the air pressure of the front tire and rear tire was set to 220 kPa.
  • the test vehicle was run on a dry road surface with relatively few irregularities, and the braking stopping distance from a speed of 100 km/h was measured.
  • the reciprocal of each of the obtained results is calculated, and the value of Standard Example 1 is set to 100 in Tables 1 and 2, the value of Standard Example 2 is set to 100 in Tables 3 and 4, and the value of Standard Example 3 is set to 100 in Tables 5 and 6. It is expressed as an index and shown in the "Dry Performance" column of Tables 1 to 6. The larger this index is, the better the dry grip performance is.
  • Dry grip performance after heat aging The obtained tire was heat aged at 70°C for 7 days.
  • the dry grip performance after heat aging was evaluated in the same manner as the dry grip performance described above, except that the tire after heat aging treatment was used.
  • the reciprocal of each of the obtained results is calculated, and the value of Standard Example 1 is set to 100 in Tables 1 and 2, the value of Standard Example 2 is set to 100 in Tables 3 and 4, and the value of Standard Example 3 is set to 100 in Tables 5 and 6.
  • the index is shown in the "Dry performance after heat aging" column of Tables 1 to 6. The larger this index is, the better the dry grip performance after heat aging is.
  • ⁇ NR Natural rubber, TSR20, glass transition temperature -65°C
  • SBR-1 Terminal-modified styrene-butadiene rubber having a polyorganosiloxane structure, Nipol NS612 manufactured by Nippon Zeon, glass transition temperature -61°C, styrene monomer-derived units 8.4 mol%, vinyl monomer-derived units 28 .4 mol%, non-oil-extended product / SBR-2: terminal-modified styrene-butadiene rubber having a polyorganosiloxane structure, Nipol NS616 manufactured by Nippon Zeon, glass transition temperature -23°C, styrene monomer-derived units 12.8 mol %, unit derived from vinyl monomer is 58.4 mol%, non-oil extended product
  • SBR-3 End-modified solution polymerized styrene-butadiene rubber manufactured
  • Glass transition temperature is -48°C, styrene monomer-derived units are 16.1 mol%, vinyl monomer-derived units are 22.7 mol%, oil extension amount is 25 parts by mass.
  • BR Butadiene rubber, Nipol BR1220 manufactured by Nippon Zeon Co., Ltd. Glass transition temperature is -105°C ⁇ Carbon black: Seast 7HM manufactured by Tokai Carbon Co., Ltd.
  • ⁇ Silica Solvay Zeosil 1165MP, nitrogen adsorption specific surface area 159 m 2 /g ⁇ Coupling agent: Silane coupling agent, Evonik Degussa Si69 ⁇ Resin-1: Aromatic modified terpene resin, manufactured by Yasuhara Chemical Co., Ltd.
  • HSR-7 glass transition temperature 72°C ⁇ Resin-2: Aromatic modified terpene resin, YS resin TO-105 manufactured by Yasuhara Chemical Co., Ltd., glass transition temperature is 57°C ⁇ Resin-3: Indene resin, FMR0150 manufactured by Mitsui Chemicals, glass transition temperature 89°C ⁇ Resin-4: Phenol-modified terpene resin, Tamanol 803L manufactured by Arakawa Chemical Industry Co., Ltd., glass transition temperature is 95°C ⁇ Resin-5: Polyterpene resin, Sylvatraxx8115 manufactured by Kraton, glass transition temperature 67°C ⁇ Oil: Shell Lubricants Japan Extract No. 4 S
  • the tire rubber composition of Comparative Example 1 has a difference Tga ⁇ Tgm of more than 10° C. and a tan ⁇ MAXA /tan ⁇ MAXB of 0.8 or less, so its wear resistance and dry performance are low.
  • the tire rubber composition of Comparative Example 2 has low wear resistance because the specific styrene-butadiene rubber is less than 55 parts by mass.
  • the specific thermoplastic resin is less than 15 parts by mass, the abrasion resistance, wet performance, dry performance, and dry grip performance after heat aging cannot be improved.
  • the tire rubber composition of Comparative Example 4 has a difference Tga ⁇ Tgm of more than 10° C.
  • the wear resistance and dry performance are low.
  • the Tg of the styrene-butadiene rubber (SBR-3) is higher than -55°C, and the total of styrene monomer-derived units and vinyl monomer-derived units in the styrene-butadiene rubber exceeds 50 mol%. Therefore, wear resistance is low.
  • the tire rubber composition of Comparative Example 6 has low wear resistance because the Tg of the styrene-butadiene rubber (SBR-4) is higher than -55°C.
  • the tire rubber composition of Comparative Example 7 has a difference Tga ⁇ Tgm of more than 10° C. and a tan ⁇ MAXA /tan ⁇ MAXB of 0.8 or less, so it has low wear resistance and dry performance.
  • the tire rubber composition of Comparative Example 8 has low wear resistance because the specific styrene-butadiene rubber is less than 55 parts by mass. Since the tire rubber composition of Comparative Example 9 contains less than 15 parts by mass of the specific thermoplastic resin, it is not possible to improve the abrasion resistance, wet performance, dry performance, and dry grip performance after heat aging.
  • the tire rubber composition of Comparative Example 10 has a difference Tga ⁇ Tgm of more than 10° C.
  • the wear resistance and dry performance are low.
  • the Tg of the styrene-butadiene rubber (SBR-3) is higher than -55°C, and the total of styrene monomer-derived units and vinyl monomer-derived units in the styrene-butadiene rubber exceeds 50 mol%. Therefore, wear resistance is low.
  • the tire rubber composition of Comparative Example 12 has low wear resistance because the Tg of the styrene-butadiene rubber (SBR-4) is higher than -55°C.
  • the tire rubber composition of Comparative Example 13 has a difference Tga ⁇ Tgm of more than 10° C. and a tan ⁇ MAXA /tan ⁇ MAXB of 0.8 or less, so its wear resistance and dry performance are low.
  • the tire rubber composition of Comparative Example 14 has low wear resistance because the specific styrene-butadiene rubber is less than 55 parts by mass.
  • the specific thermoplastic resin is less than 15 parts by mass, so that the abrasion resistance, wet performance, dry performance, and dry grip performance after heat aging cannot be improved.
  • the tire rubber composition of Comparative Example 16 has a difference Tga ⁇ Tgm of more than 10° C.
  • the wear resistance and dry performance are low.
  • the Tg of the styrene-butadiene rubber (SBR-3) is higher than -55°C, and the total of styrene monomer-derived units and vinyl monomer-derived units in the styrene-butadiene rubber exceeds 50 mol%. Therefore, wear resistance is low.
  • the tire rubber composition of Comparative Example 18 has low wear resistance because the Tg of the styrene-butadiene rubber (SBR-4) is higher than -55°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐摩耗性、ドライ性能およびウェット性能に優れると共に、長期に使用した後でもグリップ性能を高いレベルで維持するようにしたタイヤ用ゴム組成物を提供する。スチレンブタジエンゴムを55質量%以上含むジエン系ゴム100質量部に、熱可塑性樹脂を15質量部以上配合し、前記スチレンブタジエンゴムが、そのガラス転移温度が-55℃以下、スチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%以下であり、(i)前記ジエン系ゴムおよび熱可塑性樹脂を質量比1:1で配合した混合物において、前記混合物のガラス転移温度の理論値Tgaと測定値Tgmとの差Tga-Tgmが10℃以下であること、および(ii)前記タイヤ用ゴム組成物の前記熱可塑性樹脂をすべてオイルに置き換えたゴム組成物Bとの関係で、前記タイヤ用ゴム組成物およびゴム組成物Bの-40℃~60℃における損失正接の最大値tanδMAXAおよびtanδMAXBの比が0.8より大であること、を満たす。

Description

タイヤ用ゴム組成物
 本発明は、耐摩耗性、ドライ性能およびウェット性能に優れた、高性能タイヤ向けタイヤ用ゴム組成物に関する。
 高性能タイプのタイヤには、耐摩耗性、ドライ性能およびウェット性能を高いレベルで兼備することが求められる。また、長期に使用した後でもグリップ性能を維持していることも求められている。ウェット性能や耐摩耗性を改良するタイヤ用ゴム組成物として、タイヤ用ゴム組成物に芳香族変性テルペン樹脂を配合することが提案されている(例えば特許文献1を参照)。
 しかし、特許文献1に記載された発明では、優れたドライ性能や長期に使用した後にグリップ性能の高いレベルで維持するには必ずしも十分ではなかった。
日本国特開2013-166864号公報
 本発明の目的は、耐摩耗性、ドライ性能およびウェット性能に優れると共に、長期に使用した後でもグリップ性能を高いレベルで維持するようにしたタイヤ用ゴム組成物を提供することにある。
 上記目的を達成する本発明のタイヤ用ゴム組成物は、スチレンブタジエンゴムを55質量%以上含むジエン系ゴム100質量部に、熱可塑性樹脂を15質量部以上配合したタイヤ用ゴム組成物であって、前記スチレンブタジエンゴムのガラス転移温度が-55℃以下、前記スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%以下であり、前記ジエン系ゴムおよび熱可塑性樹脂が以下の(i)および(ii)の関係を満たすことを特徴とする。
(i)前記ジエン系ゴムおよび熱可塑性樹脂を質量比1:1で配合した混合物において、前記ジエン系ゴムおよび熱可塑性樹脂のガラス転移温度から計算される前記混合物のガラス転移温度の理論値Tgaと、前記混合物のガラス転移温度の測定値Tgmとの差Tga-Tgmが10℃以下である。
(ii)前記熱可塑性樹脂をすべてオイルに置き換えたことを除き前記タイヤ用ゴム組成物と同じ組成を有するゴム組成物Bとの関係で、前記タイヤ用ゴム組成物の-40℃~60℃における損失正接の最大値tanδMAXAと、前記ゴム組成物Bの-40℃~60℃における損失正接の最大値tanδMAXBが、下記式(1)を満たす。
tanδMAXA/tanδMAXB > 0.8   (1)
 本発明のタイヤ用ゴム組成物は、特定のスチレンブタジエンゴムを含むジエン系ゴムに、特定の熱可塑性樹脂を配合するようにしたので、耐摩耗性、ドライ性能およびウェット性能に優れると共に、長期に使用した後でもグリップ性能を高いレベルで維持することができる。
 前記タイヤ用ゴム組成物に含まれるオイルの合計が、前記ジエン系ゴム100質量部に対し、10質量部未満であるとよい。
 前記スチレンブタジエンゴムの少なくとも1つの末端が官能基で変性されているとよく、また、前記スチレンブタジエンゴムの油展量が、該スチレンブタジエンゴム100質量部に対し、10質量部以下であるとよい。
 前記熱可塑性樹脂は、そのガラス転移温度が40℃~120℃であるとよく、また、テルペン、テルペンフェノール、ロジン、ロジンエステル、C5成分、C9成分から選ばれる少なくとも1つからなる樹脂、およびそれら樹脂の二重結合の少なくとも一部が水添された樹脂からなる群から選ばれる少なくとも1つであるとよい。
 上述したタイヤ用ゴム組成物からなるトレッド部を有するタイヤは、特に高性能タイヤとして好適であり、耐摩耗性、ドライ性能およびウェット性能に優れると共に、長期に使用した後でもグリップ性能を高いレベルで維持することができる。
 本発明のタイヤ用ゴム組成物は、そのゴム成分がジエン系ゴムであり、ジエン系ゴム100質量%中、特定のスチレンブタジエンゴムを55質量%以上含む。特定のスチレンブタジエンゴムを含むことにより、シリカの分散性を良好にし、引張破断強度を大きくし耐摩耗性を高くすると共に、0℃のtanδを大きくしウェット性能を優れたものにすることができる。特定のスチレンブタジエンゴムは、ジエン系ゴム100質量%中55質量%以上、好ましくは55~80質量%、より好ましくは60~75質量%であるとよい。特定のスチレンブタジエンゴムが55質量%未満であると、シリカの分散性を良好にする作用が十分に得られず、耐摩耗性およびウェット性能を充分に向上することができない。
 特定のスチレンブタジエンゴムは、ガラス転移温度(以下、「Tg」と記載することがある。)が-55℃以下、好ましくは-80℃~-58℃、より好ましくは-75℃~-60℃である。スチレンブタジエンゴムのTgが-55℃より高いと、耐摩耗性が悪化する。スチレンブタジエンゴムのTgは、示差走査熱量測定(DSC)により20℃/分の昇温速度条件により得られたサーモグラムから転移域の中点の温度として測定することができる。また、ジエン系ゴムが油展品であるときは、油展成分(オイル)を含まない状態におけるジエン系ゴムのTgとする。
 特定のスチレンブタジエンゴムは、含有するスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%以下、好ましくは10~50モル%、より好ましくは15~50モル%である。スチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%を超えると、Tgが高くなる傾向があり、耐摩耗性が悪化する。本明細書において、スチレンモノマー由来単位は、スチレンブタジエンゴムを構成する繰り返し単位のうちスチレンモノマーに由来する繰り返し単位である。また、ビニルモノマー由来単位は、スチレンブタジエンゴムを構成する繰り返し単位のうちブタジエンモノマーが1,2-結合することにより形成された繰り返し単位である。1,2-結合したブタジエンモノマーは、その繰り返し単位がビニルエチレン(-CH2-CH(CH=CH2)-)の形になるので、本明細書では、これをビニルモノマーというものとする。スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の量(モル%)は、1H-NMRにより測定することができる。
 スチレンブタジエンゴム中のスチレンモノマー由来単位の含有量は、特に限定されるものではないが、好ましくは5~45モル%、より好ましくは8~42モル%であるとよい。スチレンモノマー由来単位の含有量をこのような範囲内にすることにより、耐摩耗性が良好になり好ましい。
 スチレンブタジエンゴム中のビニルモノマー由来単位の含有量は、特に限定されるものではないが、好ましくは5~45モル%、より好ましくは8~42モル%であるとよい。スチレンモノマー由来単位の含有量をこのような範囲内にすることにより、ドライグリップ性能を長期に使用した後でも高いレベルで維持することができ、好ましい。
 なお、スチレンブタジエンゴム中のスチレンモノマー由来単位の含有量は、ビニルモノマー由来単位の含有量より多いことが好ましい。スチレンモノマー由来単位の含有量の方が多く、かつスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%以下にすることにより、耐摩耗性とドライグリップ性能のバランスが良好になり好ましい。
 本発明において、特定のスチレンブタジエンゴムは、その少なくとも1つの末端が官能基で変性されているとよく、シリカの分散性を良好にし、タイヤの転がり抵抗をより小さくすることができる。官能基として、例えばエポキシ基、カルボキシ基、アミノ基、ヒドロキシ基、アルコキシ基、シリル基、アルコキシシリル基、アミド基、オキシシリル基、シラノール基、イソシアネート基、イソチオシアネート基、カルボニル基、アルデヒド基等が挙げられ、なかでもポリオルガノシロキサン構造またはアミノシラン構造を有する官能基が好ましく挙げられる。ポリオルガノシロキサン構造またはアミノシラン構造を有する官能基を有することにより、シリカの分散性を良好にし、耐摩耗性、ドライ性能およびウェット性能を優れたものにすることができる。
 スチレンブタジエンゴムは、油展成分を含有することができる。その油展量は、スチレンブタジエンゴム100質量部に対し、好ましくは10質量部以下であるとよい。油展量を10質量部以下にすることにより、タイヤが老化した後のグリップ性能の低下を抑制することができる。油展量は、より好ましくは8質量部以下、さらに好ましくは5質量部以下であるとよい。
 タイヤ用ゴム組成物は、ゴム成分として、特定のスチレンブタジエンゴム以外の他のジエン系ゴムを含むことができる。他のジエン系ゴムとして、例えば、Tgが-55℃超のスチレンブタジエンゴム、スチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%超のスチレンブタジエンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル-ブタジエンゴム、およびこれらゴムに官能基を付した変性ゴム等を例示することができる。これら他のジエン系ゴムは、単独又は任意のブレンドとして使用することができる。他のジエン系ゴムの含有量は、ジエン系ゴム100質量%中、好ましくは45質量%以下、より好ましくは20~45質量%、さらに好ましくは25~40質量%であるとよい。
 タイヤ用ゴム組成物は、Tgが-55℃超のスチレンブタジエンゴムを配合することにより、ウェット性能が良好になり好ましい。Tgが-55℃超のスチレンブタジエンゴムは、ジエン系ゴム100質量%中、好ましくは3~45質量%、より好ましくは5~35質量%であるとよい。Tgが-55℃超のスチレンブタジエンゴムとして、タイヤ用ゴム組成物に通常使用されるものを用いるとよい。
 タイヤ用ゴム組成物は、天然ゴムを配合することにより、耐摩耗性が良好になり好ましい。天然ゴムは、ジエン系ゴム100質量%中、好ましくは5~35質量%、より好ましくは10~30質量%であるとよい。天然ゴムとして、タイヤ用ゴム組成物に通常使用されるものを用いるとよい。
 また、ブタジエンゴムを配合することにより、耐摩耗性が良好になり好ましい。ブタジエンゴムは、ジエン系ゴム100質量%中、好ましくは2~25質量%、より好ましくは4~20質量%であるとよい。ブタジエンゴムとして、タイヤ用ゴム組成物に通常使用されるものを用いるとよい。
 タイヤ用ゴム組成物は、ジエン系ゴムに白色充填剤を配合することができる。白色充填剤を配合することにより、ウェット性能を向上させることができる。白色充填剤として、例えばシリカ、炭酸カルシウム、炭酸マグネシウム、タルク、クレイ、アルミナ、水酸化アルミニウム、酸化チタン、硫酸カルシウムを挙げることができる。これらを単独または2種以上を組合わせて使用してもよい。なかでもシリカが好ましく、ウェット性能および低発熱性をより優れたものにすることができる。白色充填剤は、ジエン系ゴム100質量部に、好ましくは300質量部以下、より好ましくは250質量部以下、更に好ましくは200質量部以下配合するとよい。また、白色充填剤は、ジエン系ゴム100質量部に、好ましくは10質量部以上、より好ましくは25質量部以上、更に好ましくは50質量部以上配合するとよい。
 シリカとして、タイヤ用ゴム組成物に通常使用されるものを用いるとよく、例えば湿式法シリカ、乾式法シリカあるいは、カーボンブラック表面にシリカを担持させたカーボン-シリカ(デュアル・フェイズ・フィラー)、シランカップリング剤又はポリシロキサンなどシリカとゴムの両方に反応性或いは相溶性のある化合物で表面処理したシリカなどを使用することができる。これらの中でも、含水ケイ酸を主成分とする湿式法シリカが好ましい。
 また、シリカとともに、シランカップリング剤を配合することによりシリカの分散性を向上し、ウェット性能および低発熱性がさらに改善されるので好ましい。シランカップリング剤の種類は、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス-(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジメチルメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、及びエボニック社製のVP Si363等日本国特開2006-249069号公報に例示されているメルカプトシラン化合物等、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシラン、3-プロピオニルチオプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシランなどを挙げることができる。
 シランカップリング剤は、シリカの質量に対し3~20質量%、好ましくは5~15質量%配合するとよい。シランカップリング剤がシリカ質量の3質量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が20質量%を超えると、ジエン系ゴム成分がゲル化し易くなる傾向があるため、所望の効果を得ることができなくなる。
 タイヤ用ゴム組成物は、白色充填剤以外の他の充填剤を配合することにより、ゴム組成物の強度を高くし、タイヤ耐久性を確保することができる。他の充填剤として、例えばカーボンブラック、マイカ、酸化アルミニウム、硫酸バリウム等の無機フィラーや、セルロース、レシチン、リグニン、デンドリマー等の有機フィラーを例示することができる。
 なかでもカーボンブラックを配合することにより、ゴム組成物の強度を優れたものにすることができる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどのカーボンブラックを配合してもよい。これらの中でも、ファーネスブラックが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、FEFなどが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、これらのカーボンブラックを種々の酸化合物等で化学修飾を施した表面処理カーボンブラックも用いることができる。
 タイヤ用ゴム組成物は、特定の熱可塑性樹脂を配合することにより、その動的粘弾性の温度依存性を調節することができる。特定の熱可塑性樹脂は、ジエン系ゴム100質量部に対し15質量部以上、好ましくは20質量部以上、より好ましくは25質量部以上配合する。熱可塑性樹脂が15質量部未満であると、耐摩耗性、ドライ性能およびウェット性能に優れ、長期に使用した後でもグリップ性能を高いレベルで維持するという本発明の目的を達成することができない。また特定の熱可塑性樹脂は、ジエン系ゴム100質量部に対し好ましくは150質量部以下、より好ましくは120質量部以下であるとよい。特定の熱可塑性樹脂が120質量部を超えると、耐摩耗性が低下する虞がある。
 特定の熱可塑性樹脂は、ジエン系ゴムとの間で以下の(i)の関係を満たすものとする。
(i)上述したジエン系ゴムおよび熱可塑性樹脂を質量比1:1で配合した混合物において、ジエン系ゴムおよび熱可塑性樹脂のガラス転移温度から計算される混合物のガラス転移温度の理論値Tgaと、混合物のガラス転移温度の測定値Tgmとの差Tga-Tgmが10℃以下になるようにする。
差Tga-Tgmを10℃以下にすることにより、耐摩耗性およびウェット性能に優れ、かつ転がり抵抗性を小さくし、その転がり抵抗性の温度依存性を小さくすることができる。差Tga-Tgmは、好ましくは7℃以下、より好ましくは5℃以下であるとよい。差Tga-Tgmが10℃以下であると、ジエン系ゴムおよび熱可塑性樹脂が相溶関係にあり、その熱可塑性樹脂を比較的多量に配合することにより、ゴム組成物の引張破断強度を大きくし、tanδなどの粘弾性特性の改良に寄与すると考えられる。本明細書において、混合物のガラス転移温度の理論値Tgaは、ジエン系ゴムおよび熱可塑性樹脂のガラス転移温度および質量比から加重平均値として算出することができる。また、ジエン系ゴムおよび熱可塑性樹脂のガラス転移温度、並びに混合物のガラス転移温度Tgmは、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度として測定するものとする。なお、サーモグラムに複数の転移域があるときは、最も大きな転移域における中点を混合物のガラス転移温度Tgmとする。
 更に、特定の熱可塑性樹脂は、ジエン系ゴムとの間で以下の(ii)の関係を満たすものとする。
(ii)本発明のタイヤ用ゴム組成物をゴム組成物Aとし、ゴム組成物Aに含まれる熱可塑性樹脂をすべてオイルに置き換えたことを除き、ゴム組成物Aと同じ組成を有するものをゴム組成物Bとし、ゴム組成物Aの-40℃~60℃における損失正接の最大値をtanδMAXA、ゴム組成物Bの-40℃~60℃における損失正接の最大値をtanδMAXBとするとき、tanδMAXAおよびtanδMAXBが、下記式(1)の関係を満たす。
tanδMAXA/tanδMAXB > 0.8   (1)
 損失正接の最大値の比tanδMAXA/tanδMAXBが0.8より大きいと本発明のタイヤ用ゴム組成物(ゴム組成物A)の引張破断強度が大きくなり、タイヤにしたときの耐摩耗性がより優れたものになる。ゴム組成物Bは含有するジエン系ゴムおよびオイルの相溶性が高く引張破断強度が大きい傾向がある。ゴム組成物AのtanδMAXAが、ゴム組成物BのtanδMAXBに近い値であることは、ゴム組成物の粘弾性挙動が類似し、ジエン系ゴムおよび熱可塑性樹脂の相溶性が良好で、熱可塑性樹脂が破壊の起点になるのが抑制され引張破断強度が大きくなるものと推測される。比tanδMAXA/tanδMAXBは、より好ましくは0.85より大、さらに好ましくは0.9より大であるとよい。本明細書において、tanδMAXAおよびtanδMAXBは、ゴム組成物AおよびBの硬化物の動的粘弾性を、粘弾性スペクトロメーターを用い、伸張変形歪率10±2%、振動数20Hz、温度-40℃~60℃の条件にて測定し、測定温度を横軸、損失正接(tanδ)を縦軸にした粘弾性カーブを求め、tanδの最太値(ピーク値)を、それぞれtanδMAXAおよびtanδMAXBとすることができる。
 熱可塑性樹脂とは、タイヤ用ゴム組成物へ通常配合する樹脂であり、分子量が数百から数千くらいで、タイヤ用ゴム組成物に粘着性を付与する作用を有する。熱可塑性樹脂として、テルペン、変性テルペン、ロジン、ロジンエステル、C5成分、C9成分から選ばれる少なくとも1つからなる樹脂、およびそれら樹脂の二重結合の少なくとも一部が水添された樹脂からなる群から選ばれる少なくとも1つからなる樹脂が好ましい。例えば、テルペン系樹脂、変性テルペン系樹脂、ロジン系樹脂、ロジンエステル系樹脂などの天然樹脂、C5成分、C9成分からなる石油系樹脂、石炭系樹脂、フェノール系樹脂、キシレン系樹脂などの合成樹脂、並びにこれら天然樹脂および合成樹脂二重結合の少なくとも一部を水素添加した水添樹脂が挙げられる。
 テルペン系樹脂としては、例えばα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、水添リモネン樹脂、ジペンテン樹脂、テルペンフェノール樹脂、テルペンスチレン樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂等が挙げられる。ロジン系樹脂としては、例えばガムロジン、トール油ロジン、ウッドロジン、水素添加ロジン、不均化ロジン、重合ロジン、マレイン化ロジンおよびフマル化ロジン等の変性ロジン、これらのロジンのグリセリンエステル、ペンタエリスリトールエステル、メチルエステルおよびトリエチレングリコールエステルなどのエステル誘導体、並びにロジン変性フェノール樹脂等が挙げられる。
 石油系樹脂としては、芳香族系炭化水素樹脂あるいは飽和または不飽和脂肪族系炭化水素樹脂が挙げられ、例えばC5系石油樹脂(イソプレン、1,3-ペンタジエン、シクロペンタジエン、メチルブテン、ペンテンなどの留分を重合した脂肪族系石油樹脂)、C9系石油樹脂(α-メチルスチレン、o-ビニルトルエン、m-ビニルトルエン、p-ビニルトルエンなどの留分を重合した芳香族系石油樹脂)、C5C9共重合石油樹脂、およびそれら樹脂を水素添加した樹脂などが例示される。
 熱可塑性樹脂は、そのガラス転移温度(Tg)が好ましくは40℃~120℃、好ましくは45℃~115℃、より好ましくは50℃~110℃であるとよい。熱可塑性樹脂のTgを40℃以上にすることにより、ドライグリップ性能が向上し好ましい。また。120℃以下にすることにより、耐摩耗性が向上し好ましい。熱可塑性樹脂のTgは、上述した方法で測定することができる。
 タイヤ用ゴム組成物には、上記成分以外に、常法に従って、加硫又は架橋剤、加硫促進剤、老化防止剤、加工助剤、可塑剤、液状ポリマー、熱硬化性樹脂などのタイヤ用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤ用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって調製することができる。
 タイヤ用ゴム組成物は、高性能タイヤのトレッド部やサイド部を形成するのに好適であり、とりわけ高性能タイヤのトレッド部を形成するのに好適である。これにより得られた高性能タイヤは、耐摩耗性、ドライ性能およびウェット性能に優れると共に、長期に使用した後でもグリップ性能を高いレベルで維持することができる。
 以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
 表7に示す共通の添加剤処方を有し、表1~6に示す配合からなる21種類のタイヤ用ゴム組成物(標準例1~3,実施例1~21、比較例1~18)を調製するに当たり、それぞれ硫黄および加硫促進剤を除く成分を秤量し、1.7リットルの密閉式バンバリーミキサーで5分間混練した後、そのマスターバッチをミキサー外に放出し室温冷却した。このマスターバッチを同バンバリーミキサーに供し、硫黄および加硫促進剤を加えて混合し、タイヤ用ゴム組成物を得た。表中、SBR-4は、25質量部の油展品であるため、下段の括弧内に油展成分抜きの配合量を記載した。なお、表7の添加剤処方は、表1~6に記載したジエン系ゴム100質量部に対する質量部で記載している。また、上述した実施例1~21、比較例1~18のタイヤ用ゴム組成物をそれぞれゴム組成物Aとし、熱可塑性樹脂をすべてオイルに置き換えたことを除き、各ゴム組成物Aと同じ組成を有するものをゴム組成物Bとして、上記と同様に調製した。さらに、各実施例および比較例のタイヤ用ゴム組成物を構成するジエン系ゴムおよび熱可塑性樹脂を質量比1:1で配合した混合物を調製し、その混合物のガラス転移温度(Tgm)を上述した方法で測定すると共に、ガラス転移温度の理論値Tgaを算出し、ガラス転移温度の測定値Tgmとの差Tga-Tgmを算出し、表1~6に記載した。
 上記で得られたタイヤ用ゴム組成物を、それぞれ所定形状の金型中で、160℃、20分間加硫して評価用試料を作製した。得られた評価用試料を使用し、動的粘弾性(損失正接tanδ)、耐摩耗性を以下の方法で測定した。また得られたタイヤ用ゴム組成物をタイヤトレッドに使用してサイズ205/55R16のタイヤを加硫成型し、ウェットグリップ性能、ドライ性能および熱老化後のドライグリップ性能を以下の方法で測定した。
   動的粘弾性(損失正接tanδ)
 得られたタイヤ用ゴム組成物(ゴム組成物A)およびゴム組成物Bの評価用試料の動的粘弾性を、岩本製作所(株)製の粘弾性スペクトロメーターを用い、伸張変形歪率10±2%、振動数20Hz、温度-40℃~60℃の条件にて測定し、-40℃~60℃の粘弾性カーブを作成し、ゴム組成物Aおよびゴム組成物Bのtanδの最太値(ピーク値)をtanδMAXAおよびtanδMAXBとし、tanδMAXA/tanδMAXBを算出し、得られた結果を表1~6に記載した。
   耐摩耗性
 得られたタイヤ用ゴム組成物の評価用試料をJIS K6264に準拠し、ランボーン摩耗試験機(岩本製作所株式会社製)を使用して、荷重15.0kg(147.1N)、スリップ率25%の条件にて、摩耗量を測定した。得られた結果それぞれの逆数を算出し、表1~2では標準例1の摩耗量の逆数、表3~4では標準例2の摩耗量の逆数、表5~6では標準例3の摩耗量の逆数をそれぞれ100にする指数として表1~6の「耐摩耗性」の欄に記載した。耐摩耗性の指数が大きいほど、耐摩耗性に優れていることを意味する。
   ウェットグリップ性能
 得られたタイヤを標準リムに取付け、排気量2000ccのABSを搭載した試験車両に装着し、フロントタイヤおよびリヤタイヤの空気圧を220kPaにした。試験車両を水深2.0~3.0mmに散水したアスファルト路面上を走行させ、速度100km/hからの制動停止距離を測定した。得られた結果は、それぞれの逆数を算出し、表1では標準例1~2の値、表3~4では標準例2の値、表5~6では標準例3の値をそれぞれ100とする指数とし、表1~6の「ウェット性能」の欄に示した。この指数が大きいほど、ウェットグリップ性能が優れることを意味する。
   ドライグリップ性能
 得られたタイヤを標準リムに取付け、排気量2000ccのABSを搭載した試験車両に装着し、フロントタイヤおよびリヤタイヤの空気圧を220kPaにした。試験車両を比較的凸凹の少ない乾燥路面上を走行させ、速度100km/hからの制動停止距離を測定した。得られた結果は、それぞれの逆数を算出し、表1~2では標準例1の値、表3~4では標準例2の値、表5~6では標準例3の値をそれぞれ100とする指数とし、表1~6の「ドライ性能」の欄に示した。この指数が大きいほど、ドライグリップ性能が優れることを意味する。
   熱老化後のドライグリップ性能
 得られたタイヤを70℃で7日間、熱老化処理を行った。熱老化処理後のタイヤを使用した以外は、上述したドライグリップ性能と同様にして、熱老化後のドライグリップ性能を評価した。得られた結果は、それぞれの逆数を算出し、表1~2では標準例1の値、表3~4では標準例2の値、表5~6では標準例3の値をそれぞれ100とする指数とし、表1~6の「熱老化後のドライ性能」の欄に示した。この指数が大きいほど、熱老化後のドライグリップ性能が優れることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~6において使用した原材料の種類を下記に示す。
・NR:天然ゴム、TSR20、ガラス転移温度が-65℃
・SBR-1:ポリオルガノシロキサン構造を有する末端変性のスチレンブタジエンゴム、日本ゼオン社製Nipol NS612、ガラス転移温度が-61℃、スチレンモノマー由来単位が8.4モル%、ビニルモノマー由来単位が28.4モル%、非油展品
・SBR-2:ポリオルガノシロキサン構造を有する末端変性のスチレンブタジエンゴム、日本ゼオン社製Nipol NS616、ガラス転移温度が-23℃、スチレンモノマー由来単位が12.8モル%、ビニルモノマー由来単位が58.4モル%、非油展品
・SBR-3:バッチ重合で製造された末変性の溶液重合スチレンブタジエンゴム、JSR社製HPR850、ガラス転移温度が-25℃、スチレンモノマー由来単位が16.1モル%、ビニルモノマー由来単位が49.5モル%、非油展品
・SBR-4:連続重合で製造されたアルコキシシラン変性の溶液重合スチレンブタジエンゴム、LG社製M2520、ガラス転移温度が-48℃、スチレンモノマー由来単位が16.1モル%、ビニルモノマー由来単位が22.7モル%、油展量が25質量部
・BR:ブタジエンゴム、日本ゼオン社製 Nipol BR1220、ガラス転移温度が-105℃
・カーボンブラック:東海カーボン社製 シースト7HM
・シリカ:Solvay社製 Zeosil 1165MP、窒素吸着比表面積が159m2/g
・カップリング剤:シランカップリング剤、Evonik Degussa社製 Si69
・樹脂-1:芳香族変性テルペン樹脂、ヤスハラケミカル社製 HSR-7、ガラス転移温度が72℃
・樹脂-2:芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-105、ガラス転移温度が57℃
・樹脂-3:インデン樹脂、三井化学社製 FMR0150、ガラス転移温度が89℃
・樹脂-4:フェノール変性テルペン樹脂、荒川化学工業社製 タマノル803L、ガラス転移温度が95℃
・樹脂-5:ポリテルペン樹脂、Kraton社製 Sylvatraxx8115、ガラス転移温度が67℃
・オイル:シェルルブリカンツジャパン社製エキストラクト4号S
Figure JPOXMLDOC01-appb-T000007
 表7において使用した原材料の種類を下記に示す。
・老化防止剤:LANXESS社製VULANOX 4020
・ワックス:NIPPON SEIRO社製 OZOACE-0015A
・硫黄:鶴見化学工業社製サルファックス5
・加硫促進剤:大内振興化学工業社製ノクセラーCZ-G
 表2,4,6から明らかなように、実施例1~21のタイヤ用ゴム組成物は、耐摩耗性、ウェット性能、ドライ性能および熱老化後のグリップ性能が優れることが確認された。
 表1から明らかなように、比較例1のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例2のタイヤ用ゴム組成物は、特定のスチレンブタジエンゴムが55質量部未満なので、耐摩耗性が低い。
 比較例3のタイヤ用ゴム組成物は、特定の熱可塑性樹脂が15質量部未満なので、耐摩耗性、ウェット性能、ドライ性能、および熱老化後のドライグリップ性能を改良することができない。
 比較例4のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例5のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-3)のTgが-55℃より高く、スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%を超えるので、耐摩耗性が低い。
 比較例6のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-4)のTgが-55℃より高いので、耐摩耗性が低い。
 表3から明らかなように、比較例7のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例8のタイヤ用ゴム組成物は、特定のスチレンブタジエンゴムが55質量部未満なので、耐摩耗性が低い。
 比較例9のタイヤ用ゴム組成物は、特定の熱可塑性樹脂が15質量部未満なので、耐摩耗性、ウェット性能、ドライ性能、および熱老化後のドライグリップ性能を改良することができない。
 比較例10のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例11のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-3)のTgが-55℃より高く、スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%を超えるので、耐摩耗性が低い。
 比較例12のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-4)のTgが-55℃より高いので、耐摩耗性が低い。
 表5から明らかなように、比較例13のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例14のタイヤ用ゴム組成物は、特定のスチレンブタジエンゴムが55質量部未満なので、耐摩耗性が低い。
 比較例15のタイヤ用ゴム組成物は、特定の熱可塑性樹脂が15質量部未満なので、耐摩耗性、ウェット性能、ドライ性能、および熱老化後のドライグリップ性能を改良することができない。
 比較例16のタイヤ用ゴム組成物は、差Tga-Tgmが10℃を超え、tanδMAXA/tanδMAXBが0.8以下なので、耐摩耗性およびドライ性能が低い。
 比較例17のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-3)のTgが-55℃より高く、スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%を超えるので、耐摩耗性が低い。
 比較例18のタイヤ用ゴム組成物は、スチレンブタジエンゴム(SBR-4)のTgが-55℃より高いので、耐摩耗性が低い。

Claims (7)

  1.  スチレンブタジエンゴムを55質量%以上含むジエン系ゴム100質量部に、熱可塑性樹脂を15質量部以上配合したタイヤ用ゴム組成物であって、前記スチレンブタジエンゴムのガラス転移温度が-55℃以下、前記スチレンブタジエンゴム中のスチレンモノマー由来単位およびビニルモノマー由来単位の合計が50モル%以下であり、前記ジエン系ゴムおよび熱可塑性樹脂が以下の(i)および(ii)の関係を満たすことを特徴とするタイヤ用ゴム組成物。
    (i)前記ジエン系ゴムおよび熱可塑性樹脂を質量比1:1で配合した混合物において、前記ジエン系ゴムおよび熱可塑性樹脂のガラス転移温度から計算される前記混合物のガラス転移温度の理論値Tgaと、前記混合物のガラス転移温度の測定値Tgmとの差Tga-Tgmが10℃以下である。
    (ii)前記熱可塑性樹脂をすべてオイルに置き換えたことを除き前記タイヤ用ゴム組成物と同じ組成を有するゴム組成物Bとの関係で、前記タイヤ用ゴム組成物の-40℃~60℃における損失正接の最大値tanδMAXAと、前記ゴム組成物Bの-40℃~60℃における損失正接の最大値tanδMAXBが、下記式(1)を満たす。
    tanδMAXA/tanδMAXB > 0.8   (1)
  2.  前記タイヤ用ゴム組成物に含まれるオイルの合計が、前記ジエン系ゴム100質量部に対し、10質量部未満であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。
  3.  前記スチレンブタジエンゴムの少なくとも1つの末端が官能基で変性されていることを特徴とする請求項1または2に記載のタイヤ用ゴム組成物。
  4.  前記熱可塑性樹脂のガラス転移温度が40℃~120℃であることを特徴とする請求項1~3いずれかに記載のタイヤ用ゴム組成物。
  5.  前記熱可塑性樹脂が、テルペン、変性テルペン、ロジン、ロジンエステル、C5成分、C9成分から選ばれる少なくとも1つからなる樹脂、およびそれら樹脂の二重結合の少なくとも一部が水添された樹脂からなる群から選ばれる少なくとも1つであることを特徴とする請求項1~4いずれかに記載のタイヤ用ゴム組成物。
  6.  前記スチレンブタジエンゴムの油展量が、該スチレンブタジエンゴム100質量部に対し、10質量部以下であることを特徴とする請求項1~5いずれかに記載のタイヤ用ゴム組成物。
  7.  請求項1~6のいずれかに記載のタイヤ用ゴム組成物からなるトレッド部を有するタイヤ。
PCT/JP2023/009843 2022-03-16 2023-03-14 タイヤ用ゴム組成物 WO2023176830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380023109.4A CN118742600A (zh) 2022-03-16 2023-03-14 轮胎用橡胶组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041018A JP7397362B2 (ja) 2022-03-16 2022-03-16 タイヤ用ゴム組成物
JP2022-041018 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176830A1 true WO2023176830A1 (ja) 2023-09-21

Family

ID=88023872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009843 WO2023176830A1 (ja) 2022-03-16 2023-03-14 タイヤ用ゴム組成物

Country Status (3)

Country Link
JP (1) JP7397362B2 (ja)
CN (1) CN118742600A (ja)
WO (1) WO2023176830A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122057A (ja) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2013001826A1 (ja) * 2011-06-28 2013-01-03 横浜ゴム株式会社 タイヤ用ゴム組成物、空気入りタイヤ、及びタイヤ用ゴム組成物の製造方法
JP2013185092A (ja) * 2012-03-08 2013-09-19 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2013227375A (ja) * 2012-04-24 2013-11-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2019104484A (ja) * 2017-12-08 2019-06-27 横浜ゴム株式会社 空気入りタイヤ
WO2023281855A1 (ja) * 2021-07-07 2023-01-12 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023281854A1 (ja) * 2021-07-07 2023-01-12 横浜ゴム株式会社 タイヤ用ゴム組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122057A (ja) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2013001826A1 (ja) * 2011-06-28 2013-01-03 横浜ゴム株式会社 タイヤ用ゴム組成物、空気入りタイヤ、及びタイヤ用ゴム組成物の製造方法
JP2013185092A (ja) * 2012-03-08 2013-09-19 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2013227375A (ja) * 2012-04-24 2013-11-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2019104484A (ja) * 2017-12-08 2019-06-27 横浜ゴム株式会社 空気入りタイヤ
WO2023281855A1 (ja) * 2021-07-07 2023-01-12 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023281854A1 (ja) * 2021-07-07 2023-01-12 横浜ゴム株式会社 タイヤ用ゴム組成物

Also Published As

Publication number Publication date
CN118742600A (zh) 2024-10-01
JP2023135762A (ja) 2023-09-29
JP7397362B2 (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
EP3000616B1 (en) Rubber composition for tire and tire
JP6229284B2 (ja) タイヤトレッド用ゴム組成物
JP5900036B2 (ja) タイヤトレッド用ゴム組成物
JP2015013974A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6539947B2 (ja) タイヤトレッド用ゴム組成物
JP6329187B2 (ja) タイヤ、及びその製造方法
JP7009768B2 (ja) ゴム組成物およびタイヤ
US20180362740A1 (en) Rubber composition for tire, tread and tire
JP2016003274A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP7159566B2 (ja) タイヤ用ゴム組成物
JP6824813B2 (ja) 空気入りタイヤ
JP6208428B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5415813B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP2017214508A (ja) タイヤ用ゴム組成物
JP7168029B1 (ja) タイヤ用ゴム組成物
JP7397362B2 (ja) タイヤ用ゴム組成物
JP6172307B1 (ja) タイヤ用ゴム組成物
JP2019077832A (ja) スタッドレスタイヤ用ゴム組成物
JP2017214509A (ja) タイヤ用ゴム組成物
WO2024034665A1 (ja) ゴム組成物
WO2023176831A1 (ja) タイヤ用ゴム組成物
JP7372567B1 (ja) タイヤ用ゴム組成物
JP2024027632A (ja) ゴム組成物
WO2023176832A1 (ja) タイヤ用ゴム組成物
JP7518454B2 (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770785

Country of ref document: EP

Kind code of ref document: A1