WO2023176500A1 - 窒化珪素焼結体およびそれを用いた耐摩耗性部材 - Google Patents

窒化珪素焼結体およびそれを用いた耐摩耗性部材 Download PDF

Info

Publication number
WO2023176500A1
WO2023176500A1 PCT/JP2023/007996 JP2023007996W WO2023176500A1 WO 2023176500 A1 WO2023176500 A1 WO 2023176500A1 JP 2023007996 W JP2023007996 W JP 2023007996W WO 2023176500 A1 WO2023176500 A1 WO 2023176500A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
nitride crystal
less
nitride sintered
Prior art date
Application number
PCT/JP2023/007996
Other languages
English (en)
French (fr)
Inventor
克之 青木
孝幸 深澤
直十 寶槻
栄人 山形
健太郎 岩井
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN202380010379.1A priority Critical patent/CN117083256A/zh
Priority to JP2023552579A priority patent/JP7472408B2/ja
Priority to US18/460,797 priority patent/US20240025811A1/en
Publication of WO2023176500A1 publication Critical patent/WO2023176500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the embodiments described below generally relate to a silicon nitride sintered body and a wear-resistant member using the same.
  • Silicon nitride sintered bodies are used in wear-resistant members.
  • Wear-resistant members are used in fields such as bearing balls, rollers, roll materials, compressor vanes, gas turbine blades, engine parts, and friction stir welding tool members.
  • Roll material is used for rolling.
  • the engine component is, for example, a cam roller.
  • Patent Document 1 discloses a silicon nitride sintered body in which titanium nitride particles having an aspect ratio of 1.0 to 1.2 are dispersed.
  • Patent Document 1 the aspect ratio and particle size of titanium nitride particles are controlled.
  • Patent Document 2 the area ratio of the grain boundary phase and the aspect ratio of silicon nitride crystal grains are controlled.
  • Patent Document 2 oxidized silicon nitride powder is used to control the area ratio of the grain boundary phase.
  • Patent Document 1 a wear resistance test of a bearing ball is conducted at a maximum contact stress of 5.9 GPa and a rotation speed of 1200 rpm. Further, in Patent Document 2, a wear resistance test of bearing balls is conducted at a maximum contact pressure of 5.1 GPa and a rotation speed of 1200 rpm.
  • the bearing balls described in Patent Document 1 and Patent Document 2 both exhibit excellent durability.
  • the loads applied to the bearing include radial load, thrust load, and moment load.
  • the radial load is a load applied in a direction perpendicular to the rotation axis (circumferential direction of the rotation axis).
  • the thrust load is a load applied in a direction parallel to the rotating shaft (axial direction of the rotating shaft).
  • a moment load is a load generated by eccentricity of a rotating shaft.
  • the present invention is intended to address such problems, and is to provide a silicon nitride sintered body in which the amount of dissolved oxygen is controlled.
  • the silicon nitride sintered body according to the embodiment includes silicon nitride crystal grains and a grain boundary phase.
  • the average value of the amount of dissolved oxygen in the silicon nitride crystal particles is 0.2 wt % or more.
  • the average value of the major axis of the silicon nitride crystal grains is 0.1 ⁇ m or more and 10 ⁇ m or less, and the average value of the aspect ratio of the silicon nitride crystal grains is 1.5 or more and 10 or less.
  • FIG. 1 is a diagram showing an example of a cross-sectional structure of a silicon nitride sintered body according to an embodiment. The figure which shows an example of the bearing ball based on embodiment.
  • FIG. 1 is a diagram showing an example of a bearing according to an embodiment. An example of the first plot diagram. An example of the second plot diagram. An example of the third plot diagram.
  • FIG. 3 is a diagram showing an example of an XRD peak of a silicon nitride sintered body according to an embodiment.
  • the silicon nitride sintered body according to the embodiment includes silicon nitride crystal grains and a grain boundary phase.
  • the average value of the amount of dissolved oxygen in the silicon nitride crystal particles is 0.2 wt % or more.
  • the average value of the major axis of the silicon nitride crystal grains is 0.1 ⁇ m or more and 10 ⁇ m or less, and the average value of the aspect ratio of the silicon nitride crystal grains is 1.5 or more and 10 or less.
  • FIG. 1 is a diagram showing an example of a cross-sectional structure of a silicon nitride sintered body according to an embodiment.
  • reference numeral 1 is a silicon nitride sintered body
  • reference numeral 2 is a silicon nitride crystal grain
  • reference numeral 3 is a grain boundary phase.
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of a silicon nitride sintered body.
  • Silicon nitride sintered body 1 includes silicon nitride crystal grains 2 and grain boundary phases 3.
  • Grain boundary phase 3 is distributed in the gaps between silicon nitride crystal grains 2 .
  • the grain boundary phase 3 is formed by the reaction of a sintering aid, which will be described later.
  • the silicon nitride crystal grains 2 are firmly bonded, and a high-strength silicon nitride sintered body can be formed. Further, pores (not shown) may exist in the silicon nitride sintered body.
  • the average value of the major axis of the silicon nitride crystal particles 2 is 0.1 ⁇ m or more and 10 ⁇ m or less. Further, the average aspect ratio of the silicon nitride crystal particles 2 is 1.5 or more and 10 or less.
  • a scanning electron microscope (SEM) photograph is used to measure the average value of the major axis and the average aspect ratio.
  • a measurement area is set at an arbitrary cross section of silicon nitride sintered body 1. SEM photographs are taken at a magnification of 2000x or more. In the SEM photograph, the maximum diameter of each silicon nitride crystal particle is measured. The maximum diameter of the silicon nitride crystal grains shown in the SEM photograph is defined as the major axis. In the measurement area, the average value of the maximum diameter of silicon nitride crystal grains reflected in an area of 50 ⁇ m ⁇ 50 ⁇ m is taken as the average value of the major axis.
  • the major axis and minor axis are used.
  • the maximum diameter mentioned above is the major diameter.
  • the length of a line segment extending perpendicularly from the center point of the major axis is defined as the minor axis.
  • Aspect ratio is calculated by major axis/minor axis. Round off the second decimal place of the major axis/minor axis.
  • the average value of each silicon nitride crystal grain reflected in a region of 50 ⁇ m ⁇ 50 ⁇ m is defined as the average aspect ratio.
  • the major axis and the minor axis are measured using the portion of the silicon nitride crystal grains that appears in the SEM photograph.
  • one silicon nitride crystal grain overlaps with another silicon nitride crystal grain, and the entire outline of that one silicon nitride crystal grain may not be visible.
  • the major axis and minor axis of one silicon nitride crystal particle are measured using only the visible part (the part shown in the SEM photograph).
  • the major axis and minor axis are measured using only the visible portion (the portion shown in the SEM photograph).
  • the measurement area may be etched.
  • the surface layer portion and grain boundary phase of the silicon nitride crystal grains are removed. This makes it easier to confirm the outline of the silicon nitride crystal particles.
  • sialon crystal particles are present, the sialon crystal particles are counted as silicon nitride crystal particles.
  • the etching rate of silicon nitride crystal grains and the etching rate of the grain boundary phase are different. An example will be explained in which the etching rate of silicon nitride crystal grains is faster than that of the grain boundary phase.
  • the average value of the long diameter of the silicon nitride crystal grains 2 existing in the 50 ⁇ m x 50 ⁇ m area is within the range of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average aspect ratio of the silicon nitride crystal grains 2 existing in the 50 ⁇ m ⁇ 50 ⁇ m area is 1.5 or more and 10 or less.
  • durability when the silicon nitride sintered body 1 rotates at high speed can be improved.
  • the mechanical strength of the silicon nitride sintered body 1 can also be improved. If the average length of the long axis is less than 0.1 ⁇ m, the silicon nitride crystal particles 2 may be too small and the durability may be reduced.
  • the average value of the major axis is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 8 ⁇ m or less.
  • the average aspect ratio is less than 1.5, the mechanical strength of the silicon nitride sintered body 1 may decrease because there are fewer elongated silicon nitride crystal particles.
  • the average aspect ratio exceeds 10
  • the gaps between the silicon nitride crystal particles 2 may become large.
  • the grain boundary phase 3 becomes larger.
  • the large grain boundary phase 3 may cause a decrease in the mechanical strength of the silicon nitride sintered body 1. Therefore, the average aspect ratio is preferably 1.5 or more and 10 or less, more preferably 2 or more and 10 or less.
  • silicon nitride crystal particles 2 with a major axis of less than 3 ⁇ m and silicon nitride crystal particles 2 with a major axis of 3 ⁇ m or more are present. Since silicon nitride sintered body 1 includes small silicon nitride crystal particles 2 and large silicon nitride crystal particles 2, small crystal particles can be present in gaps between large crystal particles. Thereby, the durability and mechanical strength of the silicon nitride sintered body 1 can be improved.
  • TEM-EDS is used to measure the amount of dissolved oxygen in the silicon nitride crystal particles 2.
  • TEM is an abbreviation for transmission electron microscope.
  • EDS is an abbreviation for energy dispersive X-ray spectrometer.
  • a measurement method using TEM-EDS is also simply called EDS analysis.
  • a method for measuring the amount of dissolved oxygen in silicon nitride crystal particles 2 using EDS analysis is shown in JP-A-2022-71426 (Patent Document 3).
  • An arbitrary cross section of the silicon nitride sintered body 1 is used as a sample for EDS analysis.
  • a sample is collected from an arbitrary cross section by FIB (focused ion beam) processing or ion milling.
  • the thickness of the sample is preferably in the range of 0.05 ⁇ m or more and 0.5 ⁇ m or less. To prevent surface oxidation of the sample, it is desirable that the sample be prepared and stored in vacuum or in an inert gas atmosphere.
  • EDS For EDS, use JEOL JED-2300T or a device with equivalent or higher performance.
  • JEM-200CX acceleration voltage 200 kV
  • TEM For the TEM, use JEM-200CX (acceleration voltage 200 kV) manufactured by JEOL Ltd. or a device having performance equal to or higher than that.
  • the illustrated measurement conditions may be changed, the measurement conditions described above are used for measurement to obtain the first plot diagram described later.
  • silicon nitride crystal particles 2 can be selected as analysis spots.
  • SIMS secondary ion mass spectrometry
  • Another method for measuring the amount of dissolved oxygen is the total dissolution method.
  • the grain boundary phase of the silicon nitride sintered body is dissolved and silicon nitride crystal particles are taken out.
  • the amount of oxygen in the silicon nitride crystal particles taken out is measured.
  • it is difficult to dissolve and remove all of the grain boundary phase, and the remaining grain boundary phase causes a decrease in measurement accuracy and reproducibility of the amount of dissolved oxygen.
  • the analysis spot diameter to 1 nm
  • the analysis spot can be set only on the silicon nitride crystal particles 2.
  • the amount of dissolved oxygen in silicon nitride crystal particles 2 can be measured regardless of the size of silicon nitride crystal particles 2.
  • At least 10 spots are set as analysis spots among all the silicon nitride crystal particles 2 existing in a 20 ⁇ m ⁇ 20 ⁇ m area.
  • the ten analysis spots are set on silicon nitride crystal grains as different as possible. That is, it is desirable that ten or more silicon nitride crystal particles 2 be selected as analysis spots.
  • the atomic ratios of silicon (Si), oxygen (O), and nitrogen (N) are measured by EDS analysis. Three or more locations where the Si count is 300,000 cps or more, and a total of 10 or more locations, are selected as measurement locations.
  • a Si count number of 300,000 cps or more indicates a state in which the amount of oxygen can be measured without being affected by surface oxygen. Therefore, even if the sample surface is naturally oxidized, the amount of dissolved oxygen can be measured.
  • FIG. 4 is an example of a first plot diagram.
  • FIG. 5 is an example of the second plot diagram.
  • FIG. 6 is an example of the third plot diagram. 4 to 6 show the results of measurement in Example 3, which will be described later.
  • First create the first plot. In the first plot, the atomic ratio of oxygen element/silicon element is plotted against the Si count number. In the first plot, the horizontal axis shows the Si count number (cps), and the vertical axis shows the O/Si atomic ratio.
  • the atomic ratio of oxygen element/silicon element in the first plot diagram is corrected using the second plot diagram.
  • absorption of X-rays by oxygen (O) which is a light element, is greater than absorption of X-rays by silicon (Si).
  • the absorption properties of oxygen (O) and nitrogen (N) are similar.
  • the main phase of the silicon nitride sintered body is Si 3 N 4 . Therefore, the theoretical value of the N/Si atomic ratio is 4/3.
  • the first plot is corrected from the approximate data of the atomic ratio of Si and N.
  • the horizontal axis shows the Si count number (cps)
  • the vertical axis shows the corrected O/Si atomic ratio.
  • X is the horizontal axis
  • y is the vertical axis
  • a is the slope
  • b is the point of contact with the vertical axis (y axis).
  • the approximation function of the tabulation software is used to calculate the approximate straight line.
  • Microsoft Excel registered trademark
  • the convergence region where the slope a of the approximate straight line in the third plot is within the above range is a region where the effects of natural oxidation on the sample surface and the grain boundary phase are minimized. If the measurement results are affected by natural oxidation on the sample surface or grain boundary phase, the variation in the O/Si atomic ratio will also increase. Therefore, the slope a does not fall within the above range.
  • the fact that the slope a of the approximate straight line is within the range of ⁇ 4 ⁇ 10 ⁇ 8 or more and 4 ⁇ 10 ⁇ 8 or less indicates that the variation in the O/Si atomic ratio is reduced. It can be seen that since the variation in the O/Si atomic ratio is reduced, the influence of natural oxidation and grain boundary phases is sufficiently reduced. Therefore, the values included in the convergence region indicate the amount of dissolved oxygen.
  • the average value of the O/Si atomic ratios from the third point with the largest Si count among the values included in the convergence region is calculated.
  • the average value of the O/Si atomic ratio up to the third point from the one with the largest Si count number is a region where the influence of natural oxidation or grain boundary second phase is further reduced.
  • the solid solution oxygen amount is calculated using the calculated average value of the O/Si atomic ratio.
  • the convergence region where the slope a of the approximate straight line at three or more points is within the range of -4 ⁇ 10 -8 to 4 ⁇ 10 -8 is the region where the Si count number is 350,000 or more. It becomes.
  • the amount of dissolved oxygen can be calculated by (3/7) ⁇ (average value of O/Si atomic ratio). This is a method of calculating the amount of dissolved oxygen from the amount of oxygen depending on the amount of Si in the Si 3 N 4 crystal particles.
  • the convergence region where the slope a of the approximate straight line at three or more points is within the range of -4 ⁇ 10 -8 to 4 ⁇ 10 -8 is the analysis spot where the Si count of 300,000 cps or more is obtained. Obtained from measurement results. Analysis spots with high Si counts are points where the effects of oxidation on the sample surface and grain boundary phases are minimized.
  • EDS analysis it is not possible to selectively measure only areas of 300,000 cps or more. Therefore, regardless of the number of counts, it is effective to measure 10 or more locations by EDS analysis.
  • An analysis spot with a Si count of 300,000 cps or more is extracted from the ten or more measured analysis spots. If there are less than three analysis spots with a Si count of 300,000 cps or more, EDS analyzes new analysis spots until there are three or more analysis spots with a Si count of 300,000 cps or more.
  • the silicon nitride sintered body according to the embodiment has a solid solution oxygen amount of 0.2 wt% or more as measured by the above method.
  • the amount of dissolved oxygen measured by TEM-EDS is an average value depending on the number of measurement points. That is, the average value of the amount of dissolved oxygen in the silicon nitride crystal grains existing in a 20 ⁇ m ⁇ 20 ⁇ m area of any cross section is 0.2 wt % or more.
  • An arbitrary cross-sectional structure means that no matter which section of the 20 ⁇ m x 20 ⁇ m area of the silicon nitride crystal grains the amount of dissolved oxygen is measured, the average value thereof is 0.2 wt% or more. ing.
  • the silicon nitride sintered body in which the amount of dissolved oxygen in the silicon nitride crystal particles is controlled has improved durability under high speed and high load conditions.
  • the amount of dissolved oxygen is 0.2 wt% or more, the thermal conductivity becomes 70 W/m ⁇ K or less, further 40 W/m ⁇ K or less.
  • the amount of solid dissolved oxygen in all the silicon nitride crystal particles existing in the 20 ⁇ m ⁇ 20 ⁇ m area is in the range of 0.2 wt% or more and 1.5 wt% or less.
  • only silicon nitride crystal particles can be set as analysis spots.
  • Performance can be further improved by controlling the amount of solid dissolved oxygen in all silicon nitride crystal particles.
  • an analysis spot is set at at least one location on each silicon nitride crystal particle existing in a 20 ⁇ m ⁇ 20 ⁇ m area. The analysis method was as described above. After setting an analysis spot on each silicon nitride crystal grain, the amount of solid dissolved oxygen is 0.2 wt% or more and 1.5 wt% or less, which means that the amount of solid dissolved oxygen in each silicon nitride crystal grain is controlled.
  • the amount of dissolved oxygen is preferably 0.2 wt% or more and 1.5 wt% or less, and more preferably 0.3 wt% or more and 1.3 wt% or less.
  • the solid solution oxygen may be either a substitutional type or an interstitial type.
  • the solid solution oxygen is of the substitutional type.
  • substitutional type indicates that some of the elements constituting the crystal lattice are replaced with solid solution elements.
  • the substitution type is a state in which a part of the crystal lattice of silicon nitride crystal particles is replaced with oxygen. The presence of substitutional solid solution oxygen can suppress distortion of the silicon nitride crystal lattice.
  • the silicon nitride sintered body according to the embodiment can be used for a bearing ball.
  • the bearing balls slide, load and frictional heat are generated. Even if load and frictional heat are generated, distortion of the silicon nitride crystal lattice can be suppressed.
  • the silicon nitride crystal particles contain solid solution oxygen, the adhesion between the silicon nitride crystal particles and the grain boundary phase can be improved. A part of the grain boundary phase is formed by the reaction between the solid solution oxygen of the silicon nitride crystal particles and the sintering aid, so that adhesion can be improved. This also makes it possible to improve durability when a load and frictional heat are generated.
  • the difference between the amount of solid dissolved oxygen in silicon nitride crystal particles with a major diameter of less than 3 ⁇ m and the amount of solid dissolved oxygen in silicon nitride crystal particles with a major diameter of 3 ⁇ m or more is 0.1 wt% or less. is preferred.
  • the average value of the solid dissolved oxygen amount obtained by using only silicon nitride crystal particles with a major axis of less than 3 ⁇ m as analysis spots is defined as the solid dissolved oxygen amount A
  • the silicon nitride crystal particles with a major axis of 3 ⁇ m or more are defined as the solid dissolved oxygen amount A.
  • the silicon nitride sintered body 1 contains grain boundary phase 3 of 1% by mass or more and 20% by mass or less.
  • the grain boundary phase 3 is formed by a reaction between the sintering aids or a reaction between the sintering aid and impurity oxygen on the surface of the silicon nitride powder.
  • the grain boundary phase 3 has the effect of strongly bonding silicon nitride crystal particles to each other and suppressing the generation of pores. By controlling the amount of grain boundary phase 3, mechanical, electrical, and thermal properties can be improved.
  • the grain boundary phase 3 is less than 1% by mass, the proportion of the grain boundary phase 3 is small. If the grain boundary phase 3 is small, pores are likely to occur.
  • the content of the grain boundary phase 3 is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less.
  • the bending strength of the silicon nitride sintered body 1 can be made to be 700 MPa or more, and further, 900 MPa or more.
  • the electrical property an antistatic effect can be mentioned.
  • Thermal properties include the effect of suppressing thermal expansion.
  • the silicon nitride sintered body 1 when used for a bearing ball, if charging can be suppressed, the occurrence of electrolytic corrosion can be suppressed. Moreover, suppression of thermal expansion can suppress changes in the gap between the inner ring and the outer ring when the silicon nitride sintered body 1 is used for a bearing.
  • the pore size is the maximum diameter of a pore that appears in a 50 ⁇ m x 50 ⁇ m SEM photograph.
  • the total area of pores reflected in the measurement area of 50 ⁇ m ⁇ 50 ⁇ m is determined. This operation is performed at three arbitrary locations, and the average value of the total area of pores is defined as the porosity (%). Note that when the porosity of the silicon nitride sintered body 1 is 2% or less, the mass of the grain boundary phase 3 may be a value obtained by subtracting the total mass of the silicon nitride crystal grains 2 from 100 mass%.
  • the grain boundary phase 3 preferably contains one or more selected from rare earth elements, aluminum, magnesium, titanium, hafnium, tungsten, molybdenum, and silicon.
  • Rare earth elements include yttrium, lanthanide elements, and the like.
  • the rare earth elements include one or more selected from yttrium (Y), erbium (Er), ytterbium (Yb), and cerium (Ce).
  • Y yttrium
  • Er erbium
  • Yb ytterbium
  • Ce cerium
  • These elements are added as sintering aids.
  • the sintering aid one or more selected from metal oxides, metal nitrides, metal carbides, and metal sulfides can be used. Note that other components may be added as sintering aids as long as the grain boundary phase 3 is within the range of 1% by mass or more and 20% by mass or less.
  • the strongest peak intensity detected at 42.4 ⁇ 0.3° is defined as I 42.4° .
  • the strongest peak intensities detected at 27.1 ⁇ 0.3°, 33.6 ⁇ 0.3°, and 36.1 ⁇ 0.3° according to the ⁇ -Si 3 N 4 crystal are respectively I 27. 1° , I 33.6° , and I 36.1° .
  • the value of (I 42.4° )/(I 27.1° + I 33.6° + I 36.1° ) is preferably 0.005 or more and 0.030 or less.
  • XRD analysis use BRUKER's D8 ADVANCE or a device with performance equivalent to or higher than that.
  • a polished surface polished to a surface roughness Ra of 1 ⁇ m or less is used as a measurement surface for XRD analysis.
  • the XRD analysis was performed under the following measurement conditions: Cu target (Cu-K ⁇ ), tube voltage 40 kV, tube current 40 mA, scan speed 2.0°/min, slit (RS) 0.15 mm, and scanning range (2 ⁇ ) 10° to 60°. It will be carried out.
  • the strongest peak is the largest peak within the specified range.
  • the strongest peak intensity is the diffraction intensity at the top of the largest peak.
  • the peak position in XRD analysis is determined by the material and crystal state of the crystal phase. Moreover, the peak ratio depends on the abundance ratio of each crystal phase.
  • I 42.4° is a peak that does not appear from ⁇ -Si 3 N 4 crystal. Therefore, I 42.4° is a peak based on the crystalline phase contained in the grain boundary phase.
  • the grain boundaries are strengthened and durability can be improved. Therefore, it is preferable to satisfy 0.005 ⁇ (I 42.4° )/(I 27.1° +I 33.6° +I 36.1° ) ⁇ 0.030.
  • I 42.4° can be controlled by allowing one or more selected from rare earth elements and aluminum to exist in the grain boundary phase 3. In other words, the presence of a rare earth element-aluminum-oxygen crystal compound in the grain boundary phase 3 is effective in controlling I 42.4° .
  • FIG. 7 is a diagram showing an example of the XRD peak of the silicon nitride sintered body according to the embodiment. Specifically, FIG. 7 shows the results of XRD analysis of a silicon nitride sintered body according to Example 3, which will be described later. FIG. 7 shows the results of extracting only the scanning range of 20° to 50° from the analysis results obtained by the XRD analysis using the above-mentioned measurement conditions. In FIG. 7, the horizontal axis shows the diffraction angle (2 ⁇ ), and the vertical axis shows the diffraction intensity. In the illustrated example, peaks P1 to P4 are located at 27.1 ⁇ 0.3°, 33.6 ⁇ 0.3°, 36.1 ⁇ 0.3°, and 42.4 ⁇ 0.3°, respectively. It's appearing.
  • I 27.1° , I 33.6° , I 36.1° , and I 42.4° are the intensities at the apex of peaks P1 to P4, respectively.
  • the value of (I 42.4° )/(I 27.1° + I 33.6° + I 36.1° ) is 0.008, which is within the range of 0.005 or more and 0.030 or less.
  • peaks P5 to P9 also appear. These peaks are peaks caused by the grain boundary phase 3 and the like, and the durability of the silicon nitride sintered body 1 can be further improved.
  • the presence or absence of peaks other than peaks P1 to P4 is not particularly limited.
  • the silicon nitride sintered body 1 as described above has high strength and excellent wear resistance.
  • the three-point bending strength can be 700 MPa or more, and even 900 MPa or more.
  • the fracture toughness value can be increased to 6 MPa ⁇ m 1/2 or more, and further to 7 MPa ⁇ m 1/2 or more.
  • the Vickers hardness HV1 can be made 1400 or more. Note that the three-point bending strength can be measured by a method according to JIS-R-1601 (2008). JIS-R-1601 corresponds to ISO14704. Fracture toughness can be measured using Shinhara's formula according to the IF method of JIS-R-1607 (2015). JIS-R-1607 corresponds to ISO15732. Vickers hardness can be measured at HV1 with a test force of 9.807N according to JIS-R-1610 (2003). Wear resistance refers to durability during high-speed rotation. JIS-R-1610 corresponds to ISO14705.
  • the silicon nitride sintered body 1 according to the embodiment can be used for a wear-resistant member.
  • the wear-resistant member is preferably one selected from bearing balls, rollers, rollers, and friction stir welding tool members.
  • FIG. 2 is a diagram showing an example of a bearing ball, which is a type of wear-resistant member.
  • FIG. 3 is a diagram showing an example of a bearing incorporating bearing balls.
  • 4 is a bearing ball
  • 5 is an inner ring
  • 6 is an outer ring
  • 10 is a bearing.
  • the bearing ball 4 is made by processing the silicon nitride sintered body 1 into a sphere.
  • the bearing 10 has a structure in which a plurality of bearing balls 4 are incorporated between an inner ring 5 and an outer ring 6.
  • the number of bearing balls 4 used in the bearing 10 is arbitrary.
  • the bearing ball 4 has a spherical shape.
  • the bearing ball 4 is polished, if necessary, so that the surface roughness Ra becomes 0.1 ⁇ m or less.
  • the surface roughness Ra is determined according to the grade according to ASTM F2094 of the American Society for Testing and Materials. For this reason, the bearing balls 4 are polished so that the surface roughness corresponds to the grade.
  • the wear-resistant member according to the embodiment preferably has a polished surface with a surface roughness Ra of 0.1 ⁇ m or less, more preferably Ra of 0.02 ⁇ m or less.
  • a roller is a cylindrical bearing ball.
  • the roller is a cylindrical member.
  • the rollers are used as conveyance rollers, rolling rollers, and the like.
  • the silicon nitride sintered body 1 can also be used for a tool member for friction stir welding.
  • the friction stir welding tool member is a member called a probe.
  • a probe is shown in International Publication WO2016/047376 (Patent Document 4).
  • the bearing balls, rollers, rollers, and friction stir welding tool members all have sliding surfaces. These members are wear-resistant members that come into surface contact with the mating member.
  • a plurality of bearing balls 4 are arranged between the inner ring 5 and the outer ring 6.
  • the bearing 10 is fixed to a rotating shaft (not shown).
  • the loads applied to the bearing 10 include radial load, thrust load, and moment load.
  • the radial load is a load applied in a direction perpendicular to the rotation axis (circumferential direction of the rotation axis).
  • the thrust load is a load applied in a direction parallel to the rotation axis (in the axial direction of the rotation axis).
  • a moment load is a load generated by eccentricity of a rotating shaft.
  • the bearing ball 4 according to the embodiment is made of silicon nitride. The specific gravity of silicon nitride is lower than that of steel, and it is possible to reduce the attack on the inner ring 5 and outer ring 6 by the bearing balls 4.
  • the bearing 10 includes a plurality of bearing balls 4. According to the embodiment, the durability of the bearing balls 4 can be improved. Moreover, the aggressiveness towards the other member can be reduced. The ability of each bearing ball 4 to attack a mating member is reduced. Therefore, the durability of the bearing 10 using the bearing balls 4 according to the embodiment can also be improved. Furthermore, bearings installed in automobiles, machine tools, etc. are used in vibrating environments. In a vibrating environment, the aggressiveness towards the other member increases. The bearing 10 using the bearing balls 4 according to the embodiment exhibits excellent durability even when used in a vibrating environment.
  • the manufacturing method of the silicon nitride sintered body 1 according to the embodiment is not particularly limited as long as it has the above configuration.
  • a method for obtaining silicon nitride sintered body 1 with a high yield will be described.
  • silicon nitride powder it is preferable that the silicon nitride powder has an average particle size of 2.5 ⁇ m or less and an impurity oxygen content of 2% by mass or less. If the amount of impurity oxygen is more than 2% by mass, it may be difficult to control the amount of dissolved oxygen. Further, it is preferable to use silicon nitride powder with a gelatinization rate of 90% or more.
  • the ⁇ -type silicon nitride powder grows into ⁇ -type silicon nitride crystal grains through a sintering process. ⁇ -type silicon nitride crystal particles tend to be elongated particles with an aspect ratio of 1.5 or more. Due to the complicated distribution of elongated particles, the mechanical properties of the silicon nitride sintered body 1 can be improved.
  • silicon nitride powder there are those manufactured by imide decomposition method, direct nitriding method, etc. Silicon nitride powder produced by imide decomposition method is sometimes called imide powder. Silicon nitride powder produced by the direct nitriding method is sometimes referred to as direct nitriding powder.
  • imide powder the amount of oxygen in the grain is small and the amount of impurities is also small.
  • Direct nitrided powder has a higher amount of oxygen and impurities in the grains than imide powder. As long as the amount of impurity oxygen is 2% by mass or less, either imide powder or direct nitriding powder may be used.
  • the sintering aid powder is preferably one or more metal compound powders selected from rare earth elements, aluminum, magnesium, titanium, hafnium, tungsten, molybdenum, and silicon.
  • the metal compound powder is one or more selected from metal oxides, metal nitrides, metal carbides, and metal sulfides.
  • the rare earth compound powder and the aluminum compound powder can react with each other to form the grain boundary phase 3.
  • the rare earth element is preferably one or more selected from yttrium (Y), erbium (Er), ytterbium (Yb), and cerium (Ce).
  • the aluminum compound is preferably one or two selected from aluminum oxide, aluminum nitride, and MgO.Al 2 O 3 spinel. These can react with rare earth oxides to form rare earth aluminum oxides, or rare earth aluminum nitrides, or rare earth aluminum oxynitrides.
  • Rare earth aluminum oxides, rare earth aluminum nitrides, and rare earth aluminum oxynitrides are collectively referred to as rare earth aluminum compounds.
  • the rare earth aluminum compound may contain other elements. Other elements include magnesium, hafnium, and silicon.
  • titanium oxide (TiO 2 ) becomes titanium nitride (TiN) through a sintering process.
  • the titanium nitride particles serve as reinforcing particles that strengthen the grain boundary phase.
  • molybdenum nitrides, carbides, and sulfides serve as reinforcing particles.
  • Silicon carbide also serves as reinforcing particles. Wear resistance can be further improved by dispersing reinforcing particles in the grain boundary phase 3 made of a rare earth aluminum compound to strengthen the grain boundary phase 3.
  • the sintering aid powder is preferably in the range of 1 part by mass or more and 20 parts by mass or less.
  • the grain boundary phase 3 is formed by a reaction between sintering aids or a reaction between silicon nitride and a sintering aid. By controlling the amount of the sintering aid powder added, the mass ratio of the grain boundary phase 3 can be controlled.
  • a step of mixing silicon nitride powder and sintering aid powder is performed. Homogeneity of sinterability is required to control the major axis and aspect ratio of silicon nitride crystal grains in a silicon nitride sintered body. For this purpose, it is necessary that the silicon nitride powder and the sintering aid powder are uniformly mixed. During the sintering process, the sintering aid reacts to form a grain boundary phase 3. The growth reaction of silicon nitride particles 2 proceeds via this grain boundary phase 3. By uniformly mixing the silicon nitride powder and the sintering aid powder, the reaction via the grain boundary phase 3 can be homogenized. In other words, the homogeneity of sinterability refers to the homogeneity of the reaction in which the sintering aid becomes a grain boundary phase and the homogeneity of grain growth of silicon nitride crystal particles.
  • Silicon nitride powder and sintering aid powder often exist as agglomerated secondary particles. These secondary particles become a factor that inhibits homogeneous sinterability. By uniformly mixing the secondary particles while crushing them into primary particles without agglomeration, the homogeneity of sinterability can be improved.
  • this mixing step that involves crushing, it is preferable not to apply strong stress that would further destroy the primary particles.
  • a fractured surface is formed in the silicon nitride powder. Since the fracture surface is an active surface, a surface different from the original reactivity of the primary particle is formed. This becomes a factor that inhibits homogeneous sinterability. Therefore, it is effective to suppress the formation of fractured surfaces in the primary particles.
  • the reaction between the silicon nitride powder and oxygen can be suppressed. Thereby, the amount of solid solution oxygen in the silicon nitride crystal particles to be formed can be controlled within the range of 0.2 wt% or more and 1.5 wt% or less.
  • a solvent is used that has high wettability to the particle surface and low reactivity with the particles. According to this method, the stress required for crushing is small, and the destruction of primary particles can be suppressed.
  • R and R' are an alkyl group and the like.
  • Aromatics are organic substances that contain benzene rings. These organic solvents have high wettability with silicon nitride powder and sintering aid powder. Furthermore, the reactivity between the organic solvent and the powder is low. Thereby, the silicon nitride powder and the sintering aid powder can be mixed uniformly.
  • the diameter of the media is preferably 20 mm or less, more preferably 12 mm or less.
  • the media is a ceramic ball.
  • a ball mill is a method in which powder and media are placed in a cylindrical container and crushed while rotating the cylindrical container.
  • the ball milling process using an organic solvent is wet crushing and mixing.
  • the stress required for crushing can be reduced.
  • the secondary particles can be crushed using ceramic balls with a small media diameter, which has the effect of weakening the energy of the media colliding with the powder. By weakening the energy with which the media hits the powder, it is possible to suppress the formation of fractured surfaces in the primary particles.
  • the minimum diameter of the media is preferably 3 mm or more. If the media is too small, work efficiency may decrease.
  • the time for wet crushing and mixing using a ball mill is preferably within the range of 5 hours or more and 40 hours or less. If the wet crushing and mixing time is less than 5 hours, the crushing effect may be insufficient and many secondary particles may remain. If the wet crushing and mixing time is longer than 40 hours, the possibility that fractured surfaces will be formed in the primary particles increases. Therefore, the time for wet crushing and mixing using a ball mill is preferably in the range of 5 hours or more and 40 hours or less, more preferably 10 hours or more and 30 hours or less. Further, in the ball milling step, the rotational speed of the cylindrical container is preferably within a range of 30 rpm or more and 500 rpm or less. More preferably, the rotation speed is within a range of 50 rpm or more and 180 rpm or less.
  • the secondary particles have been crushed by examining the particle size distribution before and after crushing. As the secondary particles are crushed and the number of primary particles increases, the peak position of the particle size distribution (frequency distribution) shifts to the smaller particle size. Furthermore, the peak of the particle size distribution becomes sharper.
  • the fact that the formation of fractured surfaces of primary particles is suppressed can be ascertained by measuring the amount of oxygen before and after crushing.
  • the amount of oxygen before crushing is the amount of oxygen in the raw material powder. There is no problem as long as the amount of oxygen in the raw material powder after crushing is not significantly increased compared to before crushing.
  • a step of adsorbing a silane coupling agent onto the surface of the primary particles may be performed. Adsorption of the silane coupling agent on the surface of the primary particles improves the dispersibility in the solvent and is effective for uniform mixing. When the silane coupling agent is adsorbed, an oxide film is formed on the surface of the primary particles. This makes it possible to more precisely control the amount of oxygen on the surface of each primary particle. As a result, the homogeneity of sinterability can be improved.
  • a raw material powder slurry is obtained.
  • a molding process is performed using the obtained raw material slurry.
  • granulation is performed as necessary to prepare a molded body.
  • the molding process include die pressing, cold isostatic pressing (CIP), and the like. It is preferable that the molding pressure is 100 MPa or more.
  • a degreasing step is performed to degrease the molded body.
  • the degreasing step is preferably performed at a temperature of 300°C or higher and 700°C or lower.
  • the degreasing process is performed in the air or in a non-oxidizing atmosphere.
  • the atmosphere in the degreasing step is not particularly limited.
  • a sintering process is performed to sinter the degreased body.
  • the sintering step is preferably performed at a temperature of 1600°C or higher and 1900°C or lower.
  • the sintering process may be either normal pressure sintering or pressure sintering.
  • the sintering step is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere includes a nitrogen atmosphere or an argon atmosphere.
  • the sintering process it is preferable to pressurize from 1500°C while raising the temperature to a range of 1600°C or more and 1900°C or less. At temperatures below 1500°C, normal pressure (0.1 MPa) is applied. The pressure at 1500° C. or higher is preferably 0.2 MPa or higher. Further, it is desirable to control the temperature increase rate from 1500° C. to the sintering temperature within a range of 20° C./hr or more and 100° C./hr or less. From around 1500°C, the ⁇ -type silicon nitride powder transforms to the ⁇ -type and grains grow. During the ⁇ -type transition, oxygen within the silicon nitride crystal particles is likely to be released.
  • the upper limit of the pressure is not particularly limited, but is preferably 10 MPa or less. Furthermore, controlling the temperature increase rate is effective in homogenizing the degree of grain growth.
  • the obtained sintered body is subjected to a hot isostatic pressing (HIP) process.
  • the HIP step is preferably performed at a temperature of 1500°C or higher and 1900°C. In the HIP process, it is preferable to apply a pressure of 30 MPa or more in a non-oxidizing atmosphere.
  • the silicon nitride sintered body 1 according to the embodiment can be manufactured. Further, by polishing the portion of the silicon nitride sintered body 1 that will become the sliding surface, a wear-resistant member can be obtained.
  • the surface roughness Ra of the sliding surface is preferably 1 ⁇ m or less.
  • Example 1 Silicon nitride powder having an average particle diameter of 2.5 ⁇ m or less, an impurity oxygen content of 2 mass % or less, and a gelatinization rate of 90% or more was prepared. Next, a sintering aid was prepared. The components of the sintering aid, the proportion of the silicon nitride powder, and the proportion of the sintering aid are as listed in Table 1.
  • a mixing step was performed using a ball mill to mix the silicon nitride powder and the sintering aid.
  • a ball mill In the mixing step using a ball mill, one or more types selected from alcohols, ketones, and aromatics were used as the organic solvent.
  • the media diameter, rotation speed, and mixing time are as listed in Table 2.
  • a silane coupling agent was added during the mixing process.
  • a raw material slurry was prepared by a mixing process using a ball mill. Next, spray granulation is performed using the obtained raw material slurry. Using the granulated powder, a molded body was created by die press molding. Furthermore, a molded body was prepared by cold isostatic pressing. The molding pressure was set at 150 MPa.
  • the degreasing step was performed at a temperature of 300° C. or higher and 700° C. or lower in a non-oxidizing atmosphere.
  • the obtained degreased body was subjected to a sintering process.
  • the pressure and temperature increase rate from 1500° C. to the sintering temperature are as listed in Table 3.
  • the sintering process was performed in a non-oxidizing atmosphere.
  • the obtained silicon nitride sintered body was subjected to HIP treatment.
  • the HIP treatment was performed within a range of 1600° C. or more and 1800° C. or less and a pressure of 30 MPa or more and 150 MPa or less.
  • silicon nitride sintered bodies according to Examples and Comparative Examples were manufactured.
  • the amount of dissolved oxygen in the silicon nitride crystal particles contained in the silicon nitride sintered body, the average value of the major axis of the silicon nitride crystal particles, the average aspect ratio, and the XRD peak were measured.
  • the average value of the major axis of the silicon nitride crystal grains and the average aspect ratio a 50 ⁇ m ⁇ 50 ⁇ m area of an arbitrary cross section was used as the measurement area.
  • the average value of the major axis and the average aspect ratio were measured using a SEM photograph. The method using the SEM photograph is as described above.
  • the peak intensity ratio (I 42.4° )/(I 27.1° +I 33.6° +I 36.1° ) in a predetermined range was also analyzed by XRD analysis. The conditions for XRD analysis were as described above.
  • FIGS. 4 to 6 respectively show the first plot, second plot, and third plot when the silicon nitride sintered body according to Example 3 was measured.
  • FIG. 7 shows an example of the XRD peak of the silicon nitride sintered body according to Example 3.
  • the amount of dissolved oxygen was 0.2 wt% or more.
  • the amount of dissolved oxygen was small at less than 0.2 wt%.
  • the amount of solid dissolved oxygen in Comparative Example 2 was 0.2 wt% or more.
  • the average length of the long axis was outside the range of 0.1 ⁇ m or more and 10 ⁇ m or less, and the average aspect ratio was outside the range of 1.5 or more and 10 or less.
  • the three-point bending strength was measured according to JIS-R-1601 (2008). Fracture toughness was measured using Shinhara's formula according to the IF method of JIS-R-1607 (2015). Vickers hardness was measured at HV1 with a test force of 9.807N in accordance with JIS-R-1610 (2003). These measurement results are listed in Table 6.
  • the three-point bending strength was 700 MPa or more, and the fracture toughness was 6 MPa ⁇ m 1/2 or more.
  • the Vickers hardness HV1 was 1400 or more.
  • the thermal conductivity was measured, it was 40 W/m ⁇ K or less in all cases.
  • a wear resistance test was conducted.
  • a bearing ball with a diameter of 3/8 inch (9.525 mm) was used as the sample.
  • a bearing ball polished to a surface roughness Ra of 0.01 ⁇ m was prepared.
  • a thrust type rolling wear test device was used.
  • a plate member made of bearing steel SUJ2 was prepared. Bearing balls were placed on the plate member, and a wear resistance test was conducted under the test conditions listed in Table 7.
  • the bearing balls according to the Examples and Comparative Examples exhibited equivalent performance under Test Condition 1. Further, the bearing balls according to the examples exhibited excellent characteristics even under test condition 2. In particular, even with large balls such as 1-3/16 inches, the bearing balls according to the examples showed excellent durability. On the other hand, the performance of the bearing ball according to the comparative example deteriorated under test condition 2. Therefore, it has been found that controlling the amount of dissolved oxygen is an effective method for improving durability against loads.
  • Embodiments of the present invention include the following configurations.
  • a silicon nitride sintered body comprising silicon nitride crystal grains and a grain boundary phase, In an area of 20 ⁇ m x 20 ⁇ m of an arbitrary cross section, the average value of the solid solution oxygen amount of the silicon nitride crystal particles is 0.2 wt% or more, In a 50 ⁇ m x 50 ⁇ m region of an arbitrary cross section, the average value of the major axis of the silicon nitride crystal grains is 0.1 ⁇ m or more and 10 ⁇ m or less, and the average value of the aspect ratio of the silicon nitride crystal grains is 1.5 or more and 10 or less. Silicon nitride sintered body.
  • Appendix 5 The silicon nitride sintered body according to any one of Supplementary Notes 1 to 4, wherein the maximum value of the major axis of the silicon nitride crystal grains is 25 ⁇ m or less in a region of 300 ⁇ m ⁇ 300 ⁇ m in an arbitrary cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

耐摩耗性を向上させた窒化珪素焼結体およびそれを用いた耐摩耗性部材を提供する。実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子および粒界相を備える。任意の断面の20μm×20μmの領域において、前記窒化珪素結晶粒子の固溶酸素量の平均値は0.2wt%以上である。 任意の断面の50μm×50μmの領域において、前記窒化珪素結晶粒子の長径の平均値は0.1μm以上10μm以下、前記窒化珪素結晶粒子のアスペクト比の平均値は1.5以上10以下である。

Description

窒化珪素焼結体およびそれを用いた耐摩耗性部材
 後述する実施形態は、おおむね、窒化珪素焼結体およびそれを用いた耐摩耗性部材に関する。
 窒化珪素焼結体は、耐摩耗性部材に用いられている。耐摩耗性部材は、例えば、ベアリングボール、ころ、ロール材、コンプレッサ用ベーン、ガスタービン翼、エンジン部品、摩擦攪拌接合用ツール部材などの分野で使用されている。ロール材は、圧延に用いられる。エンジン部品は、例えばカムローラである。
 例えば、特許第5362758号公報(特許文献1)では、アスペクト比1.0~1.2の窒化チタン粒子を分散させた窒化珪素焼結体が開示されている。特許文献1では、窒化チタン粒子のアスペクト比と粒径を制御している。また、特許第6400478号公報(特許文献2)では、粒界相の面積比および窒化珪素結晶粒子のアスペクト比を制御している。特許文献2では、粒界相の面積比を制御するために、酸化処理した窒化珪素粉末を用いている。
 特許文献1では、最大接触応力5.9GPa、回転数1200rpmで、ベアリングボールの耐摩耗性試験を行っている。また、特許文献2では、最大接触圧力5.1GPa、回転数1200rpmで、ベアリングボールの耐摩耗性試験を行っている。特許文献1および特許文献2に記載されたベアリングボールは、いずれも優れた耐久性を示している。
 近年、ベアリングに対し高速回転が要求されている。ベアリングにかかる荷重としては、ラジアル荷重、スラスト荷重、モーメント荷重がある。ラジアル荷重は、回転軸に対し垂直な方向(回転軸の円周方向)にかかる荷重である。また、スラスト荷重は、回転軸に対し平行な方向(回転軸の軸方向)にかかる荷重である。モーメント荷重は、回転軸の偏心によって発生する荷重である。
特許第5362758号公報 特許第6400478号公報 特開2022-71426号公報 国際公開第2016/047376号
 軸受けの回転速度を上げると、ラジアル荷重、スラスト荷重およびモーメント荷重がそれぞれ大きくなる。従来の窒化珪素焼結体からなるベアリングボールを用いたベアリングは、高速回転した際に耐久性が低下する場合があった。この解決策を検討したところ、窒化珪素結晶粒子の固溶酸素量に影響があることが判明した。
 本発明は、このような課題に対処するためのものであり、固溶酸素量を制御した窒化珪素焼結体を提供するためのものである。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子および粒界相を備える。任意の断面の20μm×20μmの領域において、前記窒化珪素結晶粒子の固溶酸素量の平均値は0.2wt%以上である。 任意の断面の50μm×50μmの領域において、前記窒化珪素結晶粒子の長径の平均値は0.1μm以上10μm以下、前記窒化珪素結晶粒子のアスペクト比の平均値は1.5以上10以下である。
実施形態に係る窒化珪素焼結体の断面組織の一例を示す図。 実施形態に係るベアリングボールの一例を示す図。 実施形態に係るベアリングの一例を示す図。 第一のプロット図の一例。 第二のプロット図の一例。 第三のプロット図の一例。 実施形態に係る窒化珪素焼結体のXRDピークの一例を示す図。
 実施形態に係る窒化珪素焼結体は、窒化珪素結晶粒子および粒界相を備える。任意の断面の20μm×20μmの領域において、前記窒化珪素結晶粒子の固溶酸素量の平均値は0.2wt%以上である。 任意の断面の50μm×50μmの領域において、前記窒化珪素結晶粒子の長径の平均値は0.1μm以上10μm以下、前記窒化珪素結晶粒子のアスペクト比の平均値は1.5以上10以下である。
 図1は、実施形態に係る窒化珪素焼結体の断面組織の一例を示す図である。
 図1において、符号1は窒化珪素焼結体、符号2は窒化珪素結晶粒子、符号3は粒界相である。図1は、窒化珪素焼結体の断面組織の一例を示した模式図である。
 窒化珪素焼結体1は、窒化珪素結晶粒子2と粒界相3を備える。粒界相3は、窒化珪素結晶粒子2同士の隙間に分布している。粒界相3は、後述する焼結助剤が反応して形成される。粒界相3が存在することにより、窒化珪素結晶粒子2が強固に結合し、強度の高い窒化珪素焼結体を形成することができる。また、窒化珪素焼結体には、図示しないポアが存在してもよい。
 窒化珪素結晶粒子2の長径の平均値は、0.1μm以上10μm以下である。また、窒化珪素結晶粒子2の平均アスペクト比は、1.5以上10以下である。長径の平均値および平均アスペクト比の測定には、走査電子顕微鏡(SEM)写真を用いる。窒化珪素焼結体1の任意の断面に測定エリアを設定する。SEM写真は、2000倍以上の倍率で撮影する。SEM写真において、窒化珪素結晶粒子の個々の最大径を測定する。SEM写真に写る窒化珪素結晶粒子の最大径を長径とする。測定エリアにおいて、50μm×50μmの領域に写る窒化珪素結晶粒子の最大径の平均値を、長径の平均値とする。
 アスペクト比の測定では、長径と短径を用いる。前述の最大径を長径とする。長径が得られた窒化珪素結晶粒子2について、長径の中心点から垂直に伸ばした線分の長さを短径とする。アスペクト比は、長径/短径により計算される。長径/短径の小数点2桁目は、四捨五入する。長径の平均値と同様に、50μm×50μmの領域に写る窒化珪素結晶粒子の個々の平均値を、平均アスペクト比とする。なお、長径および短径は、SEM写真に写る窒化珪素結晶粒子の部分を使って測定する。例えば、1つの窒化珪素結晶粒子が、他の窒化珪素結晶粒子と重なり、その1つの窒化珪素結晶粒子の輪郭のすべてが見えない場合がある。その場合、見えている部分(SEM写真に写っている部分)のみを使って、その1つの窒化珪素結晶粒子の長径及び短径を測定する。また、50μm×50μmのSEM写真の端部で輪郭が途切れている窒化珪素結晶粒子についても、見えている部分(SEM写真に写っている部分)のみを使って、長径および短径を測定する。SEM写真において窒化珪素結晶粒子の輪郭が確認し難い場合、測定エリアをエッチング処理しても良い。エッチング処理を施すことで、窒化珪素結晶粒子の表層部分および粒界相が除去される。これにより、窒化珪素結晶粒子の輪郭が確認し易くなる。また、サイアロン結晶粒子が存在していた場合、サイアロン結晶粒子は窒化珪素結晶粒子としてカウントする。窒化珪素結晶粒子のエッチング速度と粒界相のエッチング速度は異なる。窒化珪素結晶粒子の方が、粒界相よりもエッチング速度が速い場合を例に説明する。この場合、個々の窒化珪素結晶粒子2の一部が、粒界相3よりも大きく除去される。この結果、窒化珪素結晶粒子2の表面が粒界相3の表面よりも下方に位置する。これにより、窒化珪素結晶粒子2に対して粒界相3が壁のように立体的になるので、コントラストなどで窒化珪素結晶粒子2と粒界相3が容易に区別可能となる。
 50μm×50μmの領域に存在する窒化珪素結晶粒子2の長径の平均値は、0.1μm以上10μm以下の範囲内である。50μm×50μmの領域に存在する窒化珪素結晶粒子2の平均アスペクト比は、1.5以上10以下である。この範囲内であると、窒化珪素焼結体1が高速回転するときの耐久性を向上させることができる。また、窒化珪素焼結体1の機械強度の向上も図ることができる。長径の平均値が0.1μm未満であると、窒化珪素結晶粒子2が小さすぎて、耐久性が低下する可能性がある。長径の平均値が10μmを超えると、窒化珪素焼結体1の機械強度が低下する可能性がある。このため、長径の平均値は0.1μm以上10μm以下、さらには0.5μm以上8μm以下が好ましい。
 平均アスペクト比が1.5未満であると、細長い窒化珪素結晶粒子が少ないため、窒化珪素焼結体1の機械強度が低下する可能性がある。平均アスペクト比が10を超えると、窒化珪素結晶粒子2同士の隙間が大きくなる可能性がある。窒化珪素結晶粒子2同士の隙間が大きくなると、粒界相3が大きくなる。大きな粒界相3は、窒化珪素焼結体1の機械強度を低下させる原因となりうる。このため、平均アスペクト比は1.5以上10以下、さらには2以上10以下が好ましい。
 任意の断面において、長径が3μm未満の窒化珪素結晶粒子2と、長径が3μm以上の窒化珪素結晶粒子2と、の両方が存在することが好ましい。窒化珪素焼結体1が小さな窒化珪素結晶粒子2と大きな窒化珪素結晶粒子2を備えることで、大きな結晶粒子の隙間に小さな結晶粒子を存在させることができる。これにより、窒化珪素焼結体1の耐久性と機械強度の向上を図ることができる。
 窒化珪素焼結体1では、任意の断面の20μm×20μmの領域に存在する窒化珪素結晶粒子2の固溶酸素量を測定した場合、それらの平均値は0.2wt%以上である。窒化珪素結晶粒子2の固溶酸素量の測定には、TEM-EDSを用いる。TEMは、透過型電子顕微鏡の略称である。EDSは、エネルギー分散型X線分光器の略称である。TEM-EDSを用いた測定方法は、単にEDS分析とも呼ばれる。EDS分析を用いた窒化珪素結晶粒子2の固溶酸素量の測定方法は、特開2022-71426号公報(特許文献3)に示されている。
 EDS分析を行うための試料に、窒化珪素焼結体1の任意の断面を用いる。任意の断面から、FIB(集束イオンビーム)加工又はイオンミリング加工により、試料を採取する。試料の厚さは、0.05μm以上0.5μm以下の範囲内が好ましい。試料の表面酸化を防ぐために、真空中又は不活性ガス雰囲気中で、試料が作製および保管されることが望ましい。
 EDSには、日本電子製JED-2300Tまたはそれと同等以上の性能を有する装置を用いる。TEMには、日本電子製JEM-200CX(加速電圧200kV)またはそれと同等以上の性能を有する装置を用いる。EDS分析では、加速電圧が200kV、照射電流が1.00nA、分析時のスポット径が1nmの条件が推奨される。分析時間は30秒、試料傾斜角はX=10°、Y=0°が推奨される。例示した測定条件は変更されてもよいが、後述する第一のプロット図を得るための測定には、上述の測定条件を用いる。
 TEM-EDSを用いることにより、窒化珪素結晶粒子2を分析スポットに選択することができる。固溶酸素を測定するために、二次イオン質量分析(SIMS)法を用いた方法がある。SIMS法を用いた測定では、大きな窒化珪素結晶粒子2の固溶酸素量しか測定できなかった。また、照射径を小さくできるナノSIMS法であっても、窒化珪素結晶粒子2の画像認識が困難であった。このため、SIMS法を用いた測定では、小さな窒化珪素結晶粒子2の固溶酸素量は、測定できなかった。
 固溶酸素量を測定するための別の方法として、全溶解法がある。全溶解法では、窒化珪素焼結体の粒界相を溶かし、窒化珪素結晶粒子を取り出す。取り出した窒化珪素結晶粒子の酸素量が測定される。しかし、粒界相のすべてを溶解して除去することが困難であり、残留した粒界相による固溶酸素量の測定精度の低下および再現性の低下などが生じていた。
 TEM-EDSについては、分析スポット径を1nmとすることにより、窒化珪素結晶粒子2のみに分析スポットを設定することができる。また、窒化珪素結晶粒子2のサイズに拘わらず、窒化珪素結晶粒子2の固溶酸素量の測定が可能となる。
 EDS分析では、20μm×20μmの領域に存在するすべての窒化珪素結晶粒子2の中から、少なくとも10カ所を分析スポットとする。10か所の分析スポットは、できるだけ異なる窒化珪素結晶粒子にそれぞれ設定する。すなわち、10個以上の窒化珪素結晶粒子2が分析スポットとして選択されることが望ましい。EDS分析により、珪素(Si)、酸素(O)、窒素(N)の原子比を測定する。Siカウントが300000cps以上になる個所が3つ以上、かつ合計10カ所以上を測定箇所として選択する。選択した複数の分析スポットにおいて、Siカウントが300000cps以上になる個所が3つ未満であった場合、Siカウントが300000cps以上になる個所が3つ以上となるまで分析スポットを新たに選択する。Siカウント数が300000cps以上であるということは、表面酸素の影響を受けずに酸素量の測定が可能な状態を示す。このため、試料表面が自然酸化していたとしても、固溶酸素量を測定することができる。
 図4は、第一のプロット図の一例である。図5は、第二のプロット図の一例である。図6は、第三のプロット図の一例である。図4~図6は、後述する実施例3を測定した結果である。
 まず、第一のプロット図を作成する。第一のプロット図では、Siカウント数に対する酸素元素/珪素元素の原子比をプロットする。第一のプロット図では、横軸にSiカウント数(cps)を示し、縦軸にO/Si原子比を示す。続いて、第二のプロット図を作成する。第二のプロット図では、Siカウント数に対する窒素元素/珪素元素の原子比をプロットする。
 次に、第二のプロット図を用いて、第一のプロット図の酸素元素/珪素元素の原子比を補正する。窒化珪素焼結体では、軽元素である酸素(O)によるX線の吸収は、珪素(Si)によるX線の吸収よりも大きいためである。酸素(O)と窒素(N)の吸収特性は類似している。また、窒化珪素焼結体の主相は、Siである。このため、N/Si原子比の理論値は、4/3である。SiとNの原子比の近似データから、第一のプロット図を補正する。この補正方法では、第二のプロット図の各測定点のN/Si原子比を用いて、第一のプロット図のO/Si原子比を補正する。つまり、各測定点のN/Si原子比と、理論値である4/3(=1.33)との差分を用いて、第一のプロット図のO/Si原子比を補正する。例えば、N/Si原子比が0.70であったとき、補正係数は1.9(=1.33/0.70)となる。O/Si原子比×補正係数により、補正値を算出する。この方法により、第一のプロット図におけるO/Si原子比を補正する。補正された第一のプロット図を第三のプロット図とする。
 次に、第三のプロット図の3点以上の近似直線の傾きをy=aX+bで示した場合に、-4×10-8≦a≦4×10-8となる収束領域を求める。第三のプロット図では、横軸がSiカウント数(cps)を示し、縦軸が補正後のO/Si原子比を示す。近似直線の傾きy=aX+bは、Xが横軸、yが縦軸、aが傾き、bが縦軸(y軸)との接点、である。近似直線の計算には、集計ソフトの近似機能を用いる。集計ソフトとして、マイクロソフト社のExcel(登録商標)を用いることができる。
 第三のプロット図の近似直線の傾きaが前述の範囲内である収束領域は、試料表面の自然酸化および粒界相の影響が最小化された領域である。測定結果が試料表面の自然酸化または粒界相の影響を受けた場合、O/Si原子比のばらつきも大きくなる。このため、傾きaが前述の範囲内にならない。近似直線の傾きaが-4×10-8以上4×10-8以下の範囲内であるということは、O/Si原子比のばらつきが低減されていることを示している。O/Si原子比のばらつきが低減されているため、自然酸化および粒界相の影響が十分低減された値であることが分かる。このため、収束領域に含まれる値は、固溶酸素量を示していることになる。
 収束領域を求めた後、その収束領域に含まれる値のうち、Siカウント数が大きい方から3点目までのO/Si原子比の平均値を算出する。Siカウント数が大きい方から3点目までのO/Si原子比の平均値は、自然酸化または粒界第2相の影響がより低減された領域である。算出されたO/Si原子比の平均値を使って、固溶酸素量を計算する。図6(第三のプロット図)において、3点以上の近似直線の傾きaが-4×10-8以上4×10-8以下の範囲内となる収束領域は、Siカウント数350000以上の領域となっている。
 窒化珪素結晶粒子はSiであるので、(3/7)×(O/Si原子比の平均値)により、固溶酸素量(wt%)を算出することができる。これは、Si結晶粒子中のSi量に応じた酸素量から、固溶酸素量を計算する方法である。また、上述の通り、3点以上の近似直線の傾きaが-4×10-8以上4×10-8以下の範囲内となる収束領域は、300000cps以上のSiカウントが得られた分析スポットの測定結果から求める。Siカウントが多い分析スポットは、試料表面の酸化および粒界相の影響が最小化された点である。EDS分析では、300000cps以上のエリアだけを選択的に測定することができない。このため、カウント数に拘わらず、EDS分析により10カ所以上を測定する方法が有効である。測定された10カ所以上の分析スポットから、Siカウント数が300000cps以上の分析スポットを抽出する。Siカウントが300000cps以上である分析スポットが3個所未満であった場合は、Siカウントが300000cps以上である分析スポットが3個所以上となるまで、新たな分析スポットをEDS分析する。
 実施形態に係る窒化珪素焼結体は、上記方法により測定した固溶酸素量が0.2wt%以上である。TEM-EDSにより測定した固溶酸素量は、測定点数に応じた平均値である。つまり、任意の断面の20μm×20μmの領域に存在する窒化珪素結晶粒子の固溶酸素量の平均値が、0.2wt%以上である。任意の断面組織とは、つまり、どの断面の20μm×20μmの領域に存在する窒化珪素結晶粒子の固溶酸素量を測定したとしても、それらの平均値が0.2wt%以上であることを示している。
 以上のように窒化珪素結晶粒子の固溶酸素量を制御した窒化珪素焼結体では、高速高負荷条件の耐久性が向上する。なお、固溶酸素量が0.2wt%以上になると、熱伝導率が70W/m・K以下、さらには40W/m・K以下になる。また、前記の20μm×20μmの領域に存在するすべての窒化珪素結晶粒子の固溶酸素量が0.2wt%以上1.5wt%以下の範囲内であることが好ましい。前述のように、TEM-EDSを用いた方法は、窒化珪素結晶粒子のみを分析スポットに設定することができる。すべての窒化珪素結晶粒子の固溶酸素量を制御することにより、さらに性能を向上させることができる。なお、すべての窒化珪素結晶粒子の固溶酸素量を測定する場合、20μm×20μmの領域に存在する個々の窒化珪素結晶粒子の少なくとも1カ所に、分析スポットを設定する。分析方法は、前述の通りである。個々の窒化珪素結晶粒子に分析スポットを設定した上で、固溶酸素量が0.2wt%以上1.5wt%以下であるということは、個々の窒化珪素結晶粒子の固溶酸素量が制御されていることを示す。また、固溶酸素量が1.5wt%を超えて多いと、窒化珪素結晶粒子の特性の活かせなくなる可能性がある。このため、固溶酸素量は0.2wt%以上1.5wt%以下、さらには0.3wt%以上1.3wt%以下が好ましい。
 窒化珪素結晶粒子内の固溶酸素量を制御することにより、個々の窒化珪素結晶粒子の耐久性を向上させることができる。また、固溶酸素は、置換型、侵入型のどちらであってもよい。固溶酸素の少なくとも一部は、置換型であることが好ましい。置換型とは、結晶格子を構成する元素の一部が固溶元素に置き換わっていることを示す。つまり、置換型は、窒珪素結晶粒子の結晶格子の一部が、酸素に置き換わった状態である。置換型の固溶酸素が存在することにより、窒化珪素結晶格子がゆがむのを抑制することができる。
 後述するように、実施形態に係る窒化珪素焼結体は、ベアリングボールに用いることができる。ベアリングボールが摺動すると、荷重および摩擦熱が発生する。荷重および摩擦熱が発生したとしても、窒化珪素結晶格子のゆがみを抑制できる。また、窒化珪素結晶粒子が固溶酸素を含む場合、窒化珪素結晶粒子と粒界相との密着性を向上させることができる。粒界相の一部が窒化珪素結晶粒子の固溶酸素と焼結助剤との反応によって形成されることで、密着性を向上させることができる。これによっても、荷重および摩擦熱が発生したときの耐久性を向上させることができる。
 前記の20μm×20μmの領域において、長径3μm未満の窒化珪素結晶粒子の固溶酸素量と、長径3μm以上の窒化珪素結晶粒子の固溶酸素量と、の差が0.1wt%以下であることが好ましい。換言すると、20μm×20μmの領域において、長径3μm未満の窒化珪素結晶粒子のみを分析スポットにして得られた固溶酸素量の平均値を固溶酸素量Aとし、長径3μm以上の窒化珪素結晶粒子のみを分析スポットにして得られた固溶酸素量の平均値を固溶酸素量Bとした場合、|固溶酸素量A-固溶酸素量B|が0.1wt%以下であることが好ましい。このように、小さな窒化珪素結晶粒子と大きな窒化珪素結晶粒子が存在することにより、耐久性および機械強度の向上を図ることができる。
 窒化珪素焼結体1は、1質量%以上20質量%以下の粒界相3を含有していることが好ましい。粒界相3は、焼結助剤同士の反応または焼結助剤と窒化珪素粉末表面の不純物酸素との反応などにより形成される。粒界相3は、窒化珪素結晶粒子同士を強固に結合したり、ポアの発生を抑制する効果を有する。粒界相3の量を制御することにより、機械、電気、熱に関連する特性を向上させることができる。粒界相3が1質量%未満の場合、粒界相3の割合が少ない。粒界相3が少ないと、ポアが発生し易い。また、粒界相3が20質量%を超えると、ポアの発生は抑制できるものの機械強度が低下し易い。このため、粒界相3の含有量は、1質量%以上20質量%以下、さらには3質量%以上15質量%以下が好ましい。また、窒化珪素焼結体1の気孔率を2%以下、ポアサイズを5μm以下とすることにより、窒化珪素焼結体1の抗折強度を700MPa以上、さらには900MPa以上とすることができる。また、電気特性として、帯電抑制効果が挙げられる。熱特性として、熱膨張の抑制効果が挙げられる。例えば、窒化珪素焼結体1をベアリングボールに用いたときに、帯電が抑制できると電蝕の発生を抑制できる。また、熱膨張の抑制は、窒化珪素焼結体1をベアリングに用いたときの内輪と外輪との隙間が変化するのを抑制することができる。ポアサイズは、50μm×50μmのSEM写真に写るポアの最大径とする。また、測定領域50μm×50μmに写るポアの合計面積を求める。この作業を任意の3か所行い、ポアの合計面積の平均値を気孔率(%)とする。なお、窒化珪素焼結体1の気孔率が2%以下であるとき、粒界相3の質量は、100質量%から窒化珪素結晶粒子2の合計質量を引いた値としても良い。
 粒界相3は、希土類元素、アルミニウム、マグネシウム、チタン、ハフニウム、タングステン、モリブデン、および珪素から選択される1種以上を含有することが好ましい。希土類元素は、イットリウム、ランタノイド元素などである。例えば、希土類元素として、イットリウム(Y)、エルビウム(Er)、イッテルビウム(Yb)、セリウム(Ce)から選択される1種以上が挙げられる。これらの元素は、焼結助剤として添加される。焼結助剤としては、金属酸化物、金属窒化物、金属炭化物、および金属硫化物から選択される1種以上を用いることができる。なお、粒界相3が1質量%以上20質量%以下の範囲内になるのであれば、焼結助剤として他の成分が添加されてもよい。
 窒化珪素焼結体1の任意の断面をX線回折(XRD)分析したときに、42.4±0.3°に検出される最強ピーク強度をI42.4°とする。β-Si結晶に応じた27.1±0.3°、33.6±0.3°、36.1±0.3°に検出される最強ピーク強度を、それぞれ、I27.1°、I33.6°、I36.1°とする。(I42.4°)/(I27.1°+I33.6°+I36.1°)の値が、0.005以上0.030以下であることが好ましい。
 XRD分析には、BRUKER製D8 ADVANCEまたはそれと同等以上の性能を有する装置を用いる。表面粗さRaが1μm以下に研磨された研磨面を、XRD分析の測定面に用いる。XRD分析は、Cuターゲット(Cu-Kα)、管電圧40kV、管電流40mA、スキャンスピート2.0°/min、スリット(RS)0.15mm、走査範囲(2θ)10°~60°の測定条件で実施する。また、最強ピークとは、指定した範囲の中で、最も大きなピークである。最強ピーク強度とは、その最も大きなピークのトップにおける回折強度である。XRD分析のピーク位置は、結晶相の材質および結晶状態によって決まる。また、ピーク比は、各結晶相の存在割合に応じている。
 I42.4°は、β-Si結晶からは現れないピークである。このため、I42.4°は、粒界相に含まれる結晶相に基づくピークである。固溶酸素量を制御した窒化珪素結晶粒子2の周りの粒界相3に、結晶相を含ませることにより、粒界が強化され、耐久性の向上を図ることができる。このため、0.005≦(I42.4°)/(I27.1°+I33.6°+I36.1°)≦0.030を満たすことが好ましい。なお、I42.4°は、希土類元素およびアルミニウムから選択される1種以上を粒界相3に存在させることにより、制御することができる。言い換えると、粒界相3に、希土類元素-アルミニウム-酸素系の結晶化合物を存在させることが、I42.4°の制御に有効である。
 図7は、実施形態に係る窒化珪素焼結体のXRDピークの一例を示す図である。具体的には、図7は、後述する実施例3に係る窒化珪素焼結体のXRD分析の結果を示す。図7では、上述した測定条件を用いたXRD分析により得られた分析結果から、走査範囲20°~50°の範囲のみを抽出した結果を示している。図7において、横軸は回折角度(2θ)を示し、縦軸は回折強度を示す。図示した例では、27.1±0.3°、33.6±0.3°、36.1±0.3°、および42.4±0.3°に、それぞれ、ピークP1~P4が現れている。I27.1°、I33.6°、I36.1°、およびI42.4°は、それぞれ、ピークP1~P4の頂点での強度である。(I42.4°)/(I27.1°+I33.6°+I36.1°)の値は、0.008であり、0.005以上0.030以下の範囲内である。図7に示す例では、そのほかに、ピークP5~P9が現れている。これらのピークは、粒界相3などに起因するピークであり、窒化珪素焼結体1の耐久性をさらに向上させることができる。実施形態に係る窒化珪素焼結体1について、ピークP1~P4以外の他のピークの有無については、特に限定されない。
 以上のような窒化珪素焼結体1は、高い強度および優れた耐摩耗性を有する。3点曲げ強度を700MPa以上、さらには900MPa以上とするこができる。破壊靭性値を6MPa・m1/2以上、さらには7MPa・m1/2以上にすることができる。また、ビッカース硬さHV1を、1400以上にすることができる。なお、3点曲げ強度は、JIS-R-1601(2008)に準じた方法で測定することができる。JIS-R-1601は、ISO14704に対応している。破壊靭性は、JIS-R-1607(2015)のIF法に準じ、新原の式を使って測定することができる。JIS-R-1607は、ISO15732に対応している。ビッカース硬さは、JIS-R-1610(2003)に準じ、試験力9.807NのHV1で測定することができる。耐摩耗性は、高速回転時の耐久性である。JIS-R-1610は、ISO14705に対応している。
 実施形態に係る窒化珪素焼結体1は、耐摩耗性部材に用いることができる。耐摩耗性部材は、ベアリングボール、ころ、ローラ、摩擦攪拌接合用ツール部材から選択される1種であることが好ましい。
 図2は、耐摩耗性部材の一種であるベアリングボールの一例を示す図である。図3は、ベアリングボールを組込んだベアリングの一例を示す図である。図2及び図3において、符号4はベアリングボール、符号5は内輪、符号6は外輪、符号10はベアリングである。
 ベアリングボール4は、窒化珪素焼結体1を球体に加工したものである。ベアリング10は、内輪5と外輪6の間に複数個のベアリングボール4を組込んだ構造を有する。ベアリング10に用いられるベアリングボール4の個数は任意である。
 ベアリングボール4は、球体形状である。ベアリングボール4は、必要に応じ、表面粗さRaが0.1μm以下になるように研磨加工が施される。ベアリングボール4については、米国試験材料協会ASTM F2094において、グレードに応じた表面粗さRaが定められている。このため、グレードに応じた表面粗さとなるように、ベアリングボール4に対して研磨加工が施される。また、窒化珪素焼結体1がベアリングボール以外の耐摩耗性部材に適用される場合であっても、必要に応じて、表面研磨加工を施す。言い換えると、実施形態に係る耐摩耗性部材は、表面粗さRaが0.1μm以下、さらにはRa0.02μm以下の研磨面を備えていることが好ましい。
 ころは、円柱形状のベアリングボールのことである。ローラは、円柱形状の部材である。ローラは、搬送用ローラ、圧延用ローラなどとして用いられる。また、窒化珪素焼結体1は、摩擦攪拌接合用ツール部材に用いることもできる。摩擦攪拌接合用ツール部材は、プローブと呼ばれる部材である。例えば、国際公開WO2016/047376(特許文献4)に、プローブが示されている。ベアリングボール、ころ、ローラ、摩擦攪拌接合用ツール部材は、いずれも摺動面を具備している。これらの部材は、相手部材と面接触する耐摩耗性部材である。
 ベアリング10では、内輪5と外輪6との間に、複数個のベアリングボール4が配置される。ベアリング10は、図示しない回転軸に固定される。回転軸を回転させると、ベアリング10に荷重がかかる。ベアリング10にかかる荷重としては、ラジアル荷重、スラスト荷重、モーメント荷重がある。ラジアル荷重は、回転軸に対し垂直な方向(回転軸の円周方向)にかかる荷重である。スラスト荷重は、回転軸に対し平行な方向(回転軸の軸方向)にかかる荷重である。モーメント荷重は、回転軸の偏心によって発生する荷重である。
 ベアリング10を回転させると、ベアリングボール4は、内輪5および外輪6と接触しながら摺動する。実施形態に係るベアリングボール4では、窒化珪素結晶粒子2内の固溶酸素量が制御されている。このため、ベアリングボール4は、接触による耐久性に優れている。高速回転を行うと、ラジアル荷重およびスラスト荷重が大きくなる。また、内輪5および外輪6には、SUJ2などの軸受鋼が用いられることもある。従来、ベアリングボールに、軸受鋼が用いられることもあった。実施形態に係るベアリングボール4は、窒化珪素から構成される。窒化珪素の比重は鋼の比重よりも小さく、ベアリングボール4による内輪5および外輪6への攻撃性を低減できる。つまり、ベアリングボール4からの摺動に伴って、軌道輪の摺動面が削れて行くことを抑制できる。摺動面が削れると、回転軸の偏心が生じる。攻撃性が低減されることで、回転軸の偏心が抑制される。このため、実施形態によれば、モーメント荷重が増加することを抑制できる効果もある。例えば、高速回転になるほど遠心力に差がでる。また、実施形態によれば、回転摩擦による温度上昇を抑える効果もある。
 それぞれの荷重はベアリングボールの重量、つまりは体積に影響を受ける。ベアリングボールの直径が3mm以下の小さなものでは、回転速度が上がっても、荷重への影響は小さい。一方、ベアリングボールの直径が5/16インチ(7.9375mm)以上になると、荷重への影響が大きく現れてくる。ベアリング10は、複数のベアリングボール4を備える。実施形態によれば、ベアリングボール4の耐久性を向上させることができる。また、相手部材への攻撃性も低減できる。個々のベアリングボール4による相手部材への攻撃性が低下される。このため、実施形態に係るベアリングボール4を用いたベアリング10の耐久性も向上させることができる。また、自動車や工作機械などに搭載されるベアリングは、振動する環境下で使われている。振動する環境では、相手部材への攻撃性が高くなる。実施形態に係るベアリングボール4を用いたベアリング10は、振動する環境下で使用したとしても、優れた耐久性を示す。
 次に、実施形態に係る窒化珪素焼結体1の製造方法について説明する。実施形態に係る窒化珪素焼結体1は、上記構成を備えていれば、その製造方法は特に限定されない。ここでは、窒化珪素焼結体1を歩留まり良く得るための方法を説明する。
 まず、窒化珪素粉末を用意する。窒化珪素粉末の平均粒径は2.5μm以下であり、不純物酸素含有量が2質量%以下であることが好ましい。不純物酸素量が2質量%を超えて多いと、固溶酸素量を制御することが困難となる可能性がある。また、α化率90%以上の窒化珪素粉末を用いることが好ましい。α型窒化珪素粉末は、焼結工程により、β型窒化珪素結晶粒子に粒成長する。β型窒化珪素結晶粒子は、アスペクト比が1.5以上の細長い粒子になり易い。細長い粒子が複雑に分布することにより、窒化珪素焼結体1の機械的特性を向上させることができる。
 窒化珪素粉末としては、イミド分解法、直接窒化法などで製造されたものがある。イミド分解法で作製された窒化珪素粉末を、イミド粉と呼ぶこともある。直接窒化法で作製された窒化珪素粉末を、直接窒化粉と呼ぶこともある。イミド粉については、粒内の酸素量が少なく、不純物量も少ない。直接窒化粉では、イミド粉と比べて、粒内の酸素量および不純物量が多い。不純物酸素量が2質量%以下であれば、イミド粉、直接窒化粉のどちらを用いてもよい。
 次に、焼結助剤粉末を用意する。焼結助剤粉末は、希土類元素、アルミニウム、マグネシウム、チタン、ハフニウム、タングステン、モリブデン、および珪素から選択される1種以上の金属化合物粉末であることが好ましい。金属化合物粉末は、金属酸化物、金属窒化物、金属炭化物、および金属硫化物から選択される1種以上である。
 希土類化合物粉末とアルミニウム化合物粉末は、互いに反応して粒界相3を形成することができる。希土類元素は、イットリウム(Y)、エルビウム(Er)、イッテルビウム(Yb)、およびセリウム(Ce)から選択される1種以上であることが好ましい。希土類元素は希土類酸化物として添加することにより、希土類元素とアルミニウム化合物とが反応し易くなる。また、アルミニウム化合物は、酸化アルミニウム、窒化アルミニウム、およびMgO・Alスピネルから選択される1種または2種が好ましい。これらは、希土類酸化物と反応して、希土類アルミニウム酸化物、または希土類アルミニウム窒化物、希土類アルミニウム酸窒化物を形成することができる。希土類アルミニウム酸化物、希土類アルミニウム窒化物、および希土類アルミニウム酸窒化物をまとめて希土類アルニウム系化合物と呼ぶ。希土類アルミニウム系化合物は、他の元素を含んでいてもよい。他の元素としては、マグネシウム、ハフニウム、および珪素が挙げられる。
 チタン、ハフニウム、タングステン、モリブデン、および珪素から選択される1種以上は、粒界相を強化する効果を有する。例えば、酸化チタン(TiO)は、焼結工程により窒化チタン(TiN)となる。窒化チタン粒子は、粒界相を強化する強化粒子となる。これ以外にも、モリブデンの窒化物、炭化物、および硫化物は、強化粒子となる。珪素の炭化物も強化粒子となる。希土類アルミニウム系化合物からなる粒界相3に、強化粒子を分散させ、粒界相3を強化することにより、さらに耐摩耗性を向上させることができる。
 窒化珪素粉末と焼結助剤粉末の合計を100質量部としたとき、焼結助剤粉末は1質量部以上20質量部以下の範囲内であることが好ましい。粒界相3は、焼結助剤同士の反応または窒化珪素と焼結助剤の反応によって形成される。焼結助剤粉末の添加量を制御することにより、粒界相3の質量比を制御することができる。
 次に、窒化珪素粉末と焼結助剤粉末を混合する工程を行う。窒化珪素焼結体における窒化珪素結晶粒子の長径およびアスペクト比を制御するには、焼結性の均質性が必要である。そのためには、窒化珪素粉末と焼結助剤粉末が均一に混合されていることが必要である。焼結工程にて、焼結助剤は、反応して粒界相3になる。この粒界相3を介して窒化珪素粒子2の成長反応が進む。窒化珪素粉末と焼結助剤粉末が均一混合されていることにより、粒界相3を介する反応を均質化することができる。つまり、焼結性の均質性とは、焼結助剤が粒界相となる反応の均質さ、および窒化珪素結晶粒子の粒成長の均質さを示す。
 また、混合工程では、ボールミルやビーズミルが用いられている。窒化珪素粉末および焼結助剤粉末は、凝集した2次粒子として存在することが多い。この2次粒子は、均質な焼結性の阻害要因となる。2次粒子を、凝集のない1次粒子に解砕しながら均一に混合することで、焼結性の均質性を向上させることができる。
 この解砕をともなう混合工程では、1次粒子をさらに破壊するような強い応力を加えないことが好ましい。1次粒子を破壊すると、窒化珪素粉末に破断面が形成される。破断面は活性面であるため、1次粒子本来の反応性とは異なる面が形成される。これは均質な焼結性の阻害要因となる。従って、1次粒子に破断面が形成されるのを抑制することが有効である。破断面の形成を抑制することで、窒化珪素粉末と酸素との反応を抑制できる。これにより、形成される窒化珪素結晶粒子の固溶酸素量を、0.2wt%以上1.5wt%以下の範囲内に制御できる。
 上述した2次粒子の解砕には、溶媒を用いた湿式解砕が適している。粒子表面への濡れ性が大きく、且つ粒子との反応性が小さい溶媒を用いる。この方法によれば、解砕に必要な応力が小さくて済み、1次粒子の破壊が抑制できる。窒化珪素粉末と焼結助剤粉末の解砕をともなう混合には、有機溶媒が適している。有機溶媒には、アルコール類、ケトン類、または芳香族が適している。アルコール類、ケトン類、および芳香族から選択される2種以上を混合した有機溶媒が用いられてもよい。アルコール類は、炭化水素の水素の一部をヒドロシル基(OH基)に置き換えた物質の総称である。ケトン類は、RC(=O)-R’で示される物質である。RおよびR’は、アルキル基などである。芳香族は、ベンゼン環を含む有機物である。これら有機溶媒は、窒化珪素粉末および焼結助剤粉末との濡れ性が大きい。また、有機溶媒と粉末との反応性が小さい。これにより、窒化珪素粉末と焼結助剤粉末を均一に混合することができる。
 解砕工程をボールミルで行う場合、メディアの直径は、20mm以下、さらには12mm以下であることが好ましい。メディアは、セラミックスボールである。ボールミルは、円筒状の容器の中に粉末およびメディアを入れて、円筒状容器を回転させながら解砕する方法である。前述のように有機溶媒を用いたボールミル工程は、湿式解砕混合である。粉末に適した有機溶媒の選定により、解砕に必要な応力を小さくできる。つまり、メディア径の小さいセラミックスボールで2次粒子を解砕でき、メディアが粉末にぶつかるエネルギーを弱める効果がある。メディアが粉末にぶつかるエネルギーを弱めることにより、1次粒子に破断面が形成されることを抑制できる。なお、メディアの直径の最小値は、3mm以上であることが好ましい。メディアがあまり小さいと、作業効率が低下する可能性がある。
 ボールミルによる湿式解砕混合の時間は、5時間以上40時間以下の範囲内であることが好ましい。湿式解砕混合の時間が5時間未満では、解砕の効果が不足して、2次粒子が多く残存する可能性がある。湿式解砕混合の時間が40時間を超えて長いと、1次粒子に破断面が形成される可能性が増える。このため、ボールミルによる湿式解砕混合の時間は、5時間以上40時間以下、さらには10時間以上30時間以下の範囲内であることが好ましい。また、ボールミル工程において、円筒状容器の回転速度は、30rpm以上500rpm以下の範囲内であることが好ましい。さらに好ましくは、回転速度は、50rpm以上180rpm以下の範囲内である。
 2次粒子が解砕されたことは、解砕前後の粒度分布を調べることにより把握できる。2次粒子が解砕され、1次粒子が増えることにより、粒度分布(頻度分布)のピーク位置が、粒子サイズの小さい方にシフトする。また、粒度分布のピークが、よりシャープな形状になる。
 1次粒子の破断面の形成が抑制されていることは、解砕前後の酸素量を測定することにより把握できる。解砕前の酸素量は、原料粉末の酸素量である。解砕後の原料粉末の酸素量が解砕前と比べて大幅に増加していなければ、問題は無い。
 2次粒子を1次粒子へ解砕する際に、1次粒子表面にシランカップリング剤を吸着させる工程を行ってもよい。1次粒子表面にシランカップリング剤を吸着させると、溶媒への分散性が向上し、均一な混合に効果的である。シランカップリング剤を吸着させると、1次粒子の表面に酸化膜が形成される。これにより、個々の1次粒子表面の酸素量を、より厳密に制御することが可能となる。この結果、焼結性の均質性を向上させることができる。
 窒化珪素粉末と焼結助剤粉末を混合し、溶媒、バインダなどを添加すると、原料粉末スラリーが得られる。次に、得られた原料スラリーを使って、成型工程を行う。成型工程では、必要に応じて造粒を行い、成形体を調製する。成型工程として、金型プレス、冷間静水圧プレス(CIP)などが挙げられる。成形圧力は100MPa以上であることが好ましい。
 次に、成形体を脱脂する脱脂工程を行う。脱脂工程は、300℃以上700℃以下の範囲内で行うことが好ましい。脱脂工程は、大気中または非酸化性雰囲気中などで実施される。脱脂工程の雰囲気は、特に限定されない。
 次に、脱脂体を焼結する焼結工程を行う。焼結工程は、1600℃以上1900℃以下の範囲内で行うことが好ましい。焼結工程は、常圧焼結、加圧焼結のどちらであってもよい。焼結工程は、非酸化性雰囲気中で行うことが好ましい。非酸化性雰囲気としては、窒素雰囲気またはアルゴン雰囲気が挙げられる。
 焼結過程において、1600℃以上1900℃以下の範囲内へ昇温させる途中、1500℃から加圧を行うことが好ましい。1500℃未満では常圧(0.1MPa)とする。1500℃以上での圧力は、0.2MPa以上が好ましい。また、1500℃から焼結温度までの昇温速度を、20℃/hr以上100℃/hr以下の範囲内に制御することが望ましい。1500℃付近から、α型窒化珪素粉末はβ型に転移し、粒成長していく。β型転移の際に、窒化珪素結晶粒子内の酸素を放出し易い。加圧することにより、窒化珪素結晶粒子から酸素が放出され過ぎないようにすることができる。なお、圧力の上限は特に限定されないが、10MPa以下が好ましい。また、昇温速度の制御は、粒成長の度合いを均質化することに有効である。
 必要に応じ、得られた焼結体に対して、熱間静水圧プレス(HIP)工程を行う。HIP工程は、1500℃以上1900℃の範囲内で行うことが好ましい。HIP工程では、非酸化性雰囲気中にて、30MPa以上の加圧を加えることが好ましい。
 以上の工程により、実施形態にかかる窒化珪素焼結体1を作製することができる。また、窒化珪素焼結体1の摺動面となる個所を研磨加工することにより、耐摩耗性部材が得られる。摺動面となる個所の表面粗さRaは、1μm以下であることが好ましい。
(実施例)
(実施例1~5、比較例1~2)
 平均粒径が2.5μm以下、不純物酸素含有量が2質量%以下、α化率が90%以上の窒化珪素粉末を用意した。次に、焼結助剤を用意した。焼結助剤の成分、窒化珪素粉末の割合、および焼結助剤の割合は、表1に記載した通りである。
Figure JPOXMLDOC01-appb-T000001
 次に、ボールミルを用いて混合工程を行い、窒化珪素粉末と焼結助剤を混合した。ボールミルを用いた混合工程では、有機溶媒として、アルコール類、ケトン類、芳香族から選択される1種以上を用いた。メディア径、回転速度、混合時間は、表2に記載した通りである。実施例3および実施例5では、混合工程の際に、シランカップリング剤を添加した。
Figure JPOXMLDOC01-appb-T000002
 ボールミルを用いた混合工程により、原料スラリーを調製した。次に、得られた原料スラリーを使って、スプレー造粒を行う。その造粒粉を用いて、金型プレス成形により成形体を作成した。さらに、冷間静水圧プレスにより、成形体を調製した。成形圧力は、150MPaに設定した。
 次に、成形体を脱脂した。脱脂工程は、300℃以上700℃以下、非酸化性雰囲気で行った。得られた脱脂体に対し、焼結工程を行った。焼結工程において、1500℃から焼結温度までの圧力および昇温速度は、表3に記載した通りである。焼結工程は、非酸化性雰囲気で行った。
Figure JPOXMLDOC01-appb-T000003
 得られた窒化珪素焼結体に対して、HIP処理を行った。HIP処理は、1600℃以上1800℃以下、圧力30MPa以上150MPa以下の範囲内で行った。
 以上の焼結工程により、実施例および比較例に係る窒化珪素焼結体を製造した。窒化珪素焼結体に含まれる窒化珪素結晶粒子の固溶酸素量、窒化珪素結晶粒子の長径の平均値、平均アスペクト比、XRDピークを測定した。
 窒化珪素結晶粒子の固溶酸素量の測定では、任意の断面の20μm×20μmの領域を測定エリアとした。TEM-EDSを用いて個々の固溶酸素量を測定した。また、測定された固溶酸素量の平均値を算出した。TEM-EDSの測定条件は、前述の通りである。長径3μm未満の窒化珪素結晶粒子の固溶酸素量の平均値(A)、長径3μm以上の窒化珪素結晶粒子の固溶酸素量の平均値(B)とし、その差を|(A)-(B)|により求めた。
 また、窒化珪素結晶粒子の長径の平均値、平均アスペクト比の測定では、任意の断面の50μm×50μmの領域を測定エリアとした。長径の平均値および平均アスペクト比は、SEM写真を用いて測定した。SEM写真を用いた方法は、前述の通りである。さらに、XRD分析により、所定の範囲におけるピークの強度比(I42.4°)/(I27.1°+I33.6°+I36.1°)についても分析した。XRD分析の条件は前述の通りである。
 なお、上述した通り、図4~図6は、実施例3に係る窒化珪素焼結体を測定した際の第一のプロット図、第二のプロット図、第三のプロット図をそれぞれ示す。また、図7は、実施例3に係る窒化珪素焼結体のXRDピークの一例を示す。
 実施例1~5および比較例1~2のそれぞれについて、固溶酸素量(wt%)の平均値、個々の固溶酸素量の値の範囲、平均値(A)、平均値(B)、および差|(A)-(B)|の結果を、表4に記載した。長径の平均値、平均アスペクト比、長径の最大値、およびピーク強度比の結果を、表5に記載した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4および表5から分かる通り、実施例に係る窒化珪素基板では、固溶酸素量が0.2wt%以上であった。それに対し、比較例1では、固溶酸素量が0.2wt%未満と少なかった。また、比較例2の固溶酸素量は、0.2wt%以上であった。しかし、長径の平均値が0.1μm以上10μm以下の範囲外であり、且つ平均アスペクト比が1.5以上10以下の範囲外であった。
 次に、各窒化珪素焼結体の3点曲げ強度、破壊靭性値、およびビッカース硬さを測定した。3点曲げ強度は、JIS-R-1601(2008)に準じた方法で測定した。破壊靭性は、JIS-R-1607(2015)のIF法に準じ、新原の式を使って測定した。ビッカース硬さは、JIS-R-1610(2003)に準じ、試験力9.807NのHV1で行った。これらの測定結果を表6に記載した。
Figure JPOXMLDOC01-appb-T000006
 実施例および比較例では、いずれも、3点曲げ強度700MPa以上、破壊靭性値6MPa・m1/2以上であった。ビッカース硬さHV1が1400以上であった。また、熱伝導率を測定したところ、いずれも40W/m・K以下であった。
 次に、耐摩耗性試験を行った。試料には、直径3/8インチ(9.525mm)のベアリングボールを用いた。表面粗さRa0.01μmに研磨されたベアリングボールを用意した。。耐摩耗性試験では、スラスト型転がり摩耗試験装置を用いた。軸受鋼SUJ2からなる板状部材を用意した。板状部材上にベアリングボールを配置し、表7に記載した試験条件で耐摩耗性試験を行った。
Figure JPOXMLDOC01-appb-T000007
 1回の試験は、ベアリングボールを3個配置して行った。実施例および比較例に係るベアリングボールを、それぞれ9個ずつ試験した。いずれのベアリングボールの表面にも割れまたは欠けが発生しなかった場合、試験結果を“OK”とした。1個でもベアリングボール表面に割れまたは欠けが生じた場合、試験結果を“NG”とした。それらの結果を表8に記載した。
Figure JPOXMLDOC01-appb-T000008
 さらに、直径1-3/16インチ(30.16mm)の試料を用意し、同様の耐摩耗性試験を行った。それらの結果を表9に記載した。
Figure JPOXMLDOC01-appb-T000009
 表8及び表9から分かる通り、実施例および比較例に係るベアリングボールは、試験条件1では同等の性能を示していた。また、実施例に係るベアリングボールは、試験条件2であっても優れた特性を示していた。特に、1-3/16インチのような大型ボールであっても、実施例に係るベアリングボールは、優れた耐久性を示した。それに対し、比較例に係るベアリングボールの性能は、試験条件2では低下した。このため、固溶酸素量などを制御することが、荷重に対する耐久性を向上させるために有効な方法であることが分かった。
 本発明の実施形態は、以下の構成を含む。
(付記1)
 窒化珪素結晶粒子および粒界相を備えた窒化珪素焼結体であって、
 任意の断面の20μm×20μmの領域において、前記窒化珪素結晶粒子の固溶酸素量の平均値は0.2wt%以上であり、
 任意の断面の50μm×50μmの領域において、前記窒化珪素結晶粒子の長径の平均値は0.1μm以上10μm以下、前記窒化珪素結晶粒子のアスペクト比の平均値は1.5以上10以下である、窒化珪素焼結体。
(付記2)
 20μm×20μmの前記領域に存在するそれぞれの窒化珪素結晶粒子の固溶酸素量が0.2wt%以上1.5wt%以下である、付記1記載の窒化珪素焼結体。
(付記3)
 20μm×20μmの前記領域において、長径が3μm未満の前記窒化珪素結晶粒子の固溶酸素量の平均値と、長径が3μm以上の前記窒化珪素結晶粒子の固溶酸素量の平均値と、の差が0.1wt%以下である、付記1ないし付記2のいずれか1項に記載の窒化珪素焼結体。
(付記4)
 前記粒界相を1質量%以上20質量%以下含有している、付記1ないし付記3のいずれか1項に記載の窒化珪素焼結体。
(付記5)
 任意の断面の300μm×300μmの領域において、前記窒化珪素結晶粒子の長径の最大値が25μm以下である、付記1ないし付記4のいずれか1項に記載の窒化珪素焼結体。
(付記6)
 任意の断面をXRD分析したとき、42.4±0.3°に検出される最強ピーク強度をI42.4°とし、β-Si結晶に応じた27.1±0.3°、33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI27°、I33°、I36°とした場合に、(I42°)/(I27°+I33°+I36°)の値が0.005以上0.030以下である、付記1ないし付記5のいずれか1項に記載の窒化珪素焼結体。
(付記7)
 破壊靭性値が6MPa・m1/2以上である、付記1ないし付記6のいずれか1項に記載の窒化珪素焼結体。
(付記8)
 付記1ないし付記7のいずれか1項に記載の窒化珪素焼結体が用いられた耐摩耗性部材。
(付記9)
 ベアリングボール、ころ、ローラ、摩擦攪拌接合用ツール部材から選択される1種である、付記8記載の耐摩耗性部材。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…窒化珪素焼結体
2…窒化珪素結晶粒子
3…粒界相
4…ベアリングボール
5…内輪
6…外輪
10…ベアリング

Claims (9)

  1.  窒化珪素結晶粒子および粒界相を備えた窒化珪素焼結体であって、
     任意の断面の20μm×20μmの領域において、前記窒化珪素結晶粒子の固溶酸素量の平均値は0.2wt%以上であり、
     任意の断面の50μm×50μmの領域において、前記窒化珪素結晶粒子の長径の平均値は0.1μm以上10μm以下、前記窒化珪素結晶粒子のアスペクト比の平均値は1.5以上10以下である、窒化珪素焼結体。
  2.  20μm×20μmの前記領域に存在するそれぞれの前記窒化珪素結晶粒子の固溶酸素量が0.2wt%以上1.5wt%以下である、請求項1記載の窒化珪素焼結体。
  3.  20μm×20μmの前記領域において、長径が3μm未満の前記窒化珪素結晶粒子の固溶酸素量の平均値と、長径が3μm以上の前記窒化珪素結晶粒子の固溶酸素量の平均値と、の差が0.1wt%以下である、請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  4.  前記粒界相を1質量%以上20質量%以下含有している、請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  5.  任意の断面の300μm×300μmの領域において、前記窒化珪素結晶粒子の長径の最大値が25μm以下である、請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  6.  任意の断面をXRD分析したとき、42.4±0.3°に検出される最強ピーク強度をI42.4°とし、β-Si結晶に応じた27.1±0.3°、33.6±0.3°、36.1±0.3°に検出される最強ピーク強度をI27°、I33°、I36°とした場合に、(I42°)/(I27°+I33°+I36°)の値が0.005以上0.030以下である、請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  7.  破壊靭性値が6MPa・m1/2以上である、請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。
  8.  請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体が用いられた耐摩耗性部材。
  9.  ベアリングボール、ころ、ローラ、摩擦攪拌接合用ツール部材から選択される1種である、請求項8記載の耐摩耗性部材。
PCT/JP2023/007996 2022-03-16 2023-03-03 窒化珪素焼結体およびそれを用いた耐摩耗性部材 WO2023176500A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380010379.1A CN117083256A (zh) 2022-03-16 2023-03-03 氮化硅烧结体及使用了其的耐磨性构件
JP2023552579A JP7472408B2 (ja) 2022-03-16 2023-03-03 窒化珪素焼結体およびそれを用いた耐摩耗性部材
US18/460,797 US20240025811A1 (en) 2022-03-16 2023-09-05 Silicon nitride sintered body and wear-resistant member using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040884 2022-03-16
JP2022040884 2022-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/460,797 Continuation US20240025811A1 (en) 2022-03-16 2023-09-05 Silicon nitride sintered body and wear-resistant member using the same

Publications (1)

Publication Number Publication Date
WO2023176500A1 true WO2023176500A1 (ja) 2023-09-21

Family

ID=88023013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007996 WO2023176500A1 (ja) 2022-03-16 2023-03-03 窒化珪素焼結体およびそれを用いた耐摩耗性部材

Country Status (4)

Country Link
US (1) US20240025811A1 (ja)
JP (1) JP7472408B2 (ja)
CN (1) CN117083256A (ja)
WO (1) WO2023176500A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (ja) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk 窒化ケイ素粉末
JPH09295868A (ja) * 1996-04-26 1997-11-18 Sumitomo Electric Ind Ltd 窒化珪素系セラミックス摺動材料及びその製造方法
JP2002097005A (ja) * 2000-09-20 2002-04-02 Hitachi Metals Ltd 窒化ケイ素質粉末、窒化ケイ素質粉末の製造方法、窒化ケイ素質焼結体、窒化ケイ素質焼結体の製造方法および回路基板
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP5362758B2 (ja) 2000-03-16 2013-12-11 株式会社東芝 耐摩耗性部材
WO2016047376A1 (ja) 2014-09-25 2016-03-31 株式会社東芝 窒化珪素焼結体製摩擦攪拌接合ツール部材およびそれを用いた摩擦攪拌接合装置
JP2018024548A (ja) * 2016-08-09 2018-02-15 住友電気工業株式会社 窒化ケイ素焼結体およびその製造方法
JP6400478B2 (ja) 2012-10-30 2018-10-03 株式会社東芝 耐磨耗性部材
JP2022071426A (ja) 2020-10-28 2022-05-16 株式会社東芝 窒化物系セラミックス焼結体中の固溶酸素の測定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (ja) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk 窒化ケイ素粉末
JPH09295868A (ja) * 1996-04-26 1997-11-18 Sumitomo Electric Ind Ltd 窒化珪素系セラミックス摺動材料及びその製造方法
JP5362758B2 (ja) 2000-03-16 2013-12-11 株式会社東芝 耐摩耗性部材
JP2002097005A (ja) * 2000-09-20 2002-04-02 Hitachi Metals Ltd 窒化ケイ素質粉末、窒化ケイ素質粉末の製造方法、窒化ケイ素質焼結体、窒化ケイ素質焼結体の製造方法および回路基板
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP6400478B2 (ja) 2012-10-30 2018-10-03 株式会社東芝 耐磨耗性部材
WO2016047376A1 (ja) 2014-09-25 2016-03-31 株式会社東芝 窒化珪素焼結体製摩擦攪拌接合ツール部材およびそれを用いた摩擦攪拌接合装置
JP2018024548A (ja) * 2016-08-09 2018-02-15 住友電気工業株式会社 窒化ケイ素焼結体およびその製造方法
JP2022071426A (ja) 2020-10-28 2022-05-16 株式会社東芝 窒化物系セラミックス焼結体中の固溶酸素の測定方法

Also Published As

Publication number Publication date
US20240025811A1 (en) 2024-01-25
CN117083256A (zh) 2023-11-17
JP7472408B2 (ja) 2024-04-22
JPWO2023176500A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
JP5752189B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP6400478B2 (ja) 耐磨耗性部材
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
JP5886337B2 (ja) 耐摩耗性部材およびそれを用いた耐摩耗性機器
JP5100201B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
WO2015163059A1 (ja) 表面被覆窒化硼素焼結体工具
US7521388B2 (en) Wear resistant member comprised of silicon nitride and process for producing the same
JP5944910B2 (ja) 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング
JP2024019273A (ja) 窒化珪素焼結体製摺動部材の製造方法
JP5289053B2 (ja) 摺動部材とそれを用いた軸受
JP2004076049A (ja) 超微粒超硬合金
WO2023176500A1 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
WO2018168735A1 (ja) 硬質焼結体
CN115667185A (zh) 氮化硅烧结体、采用其的耐磨损性部件及氮化硅烧结体的制造方法
JP5349525B2 (ja) 転動体
JP7482316B2 (ja) 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
JP2019123903A (ja) 高熱伝導性を有する耐熱性wc基複合材料およびその製造方法
JP2000072553A (ja) 窒化珪素質耐摩耗性部材及びその製造方法
WO2022210533A1 (ja) 窒化珪素焼結体、耐摩耗性部材、及び窒化珪素焼結体の製造方法
JP2022026799A (ja) 酸化誘起型自己治癒セラミックス製造用の原料粉末の製造方法、及び酸化誘起型自己治癒セラミックス製造用の原料粉末
JP2008230922A (ja) 窒化珪素焼結体とそれを用いた摺動部材
JPH11139876A (ja) 窒化ケイ素系切削工具及びその製造方法
WO2019078109A1 (ja) 硬質焼結体及びそれを用いた回転工具
JP2020132978A (ja) Cr合金ターゲット
JP2009167458A (ja) 耐欠損性に優れた表面被覆wc基超硬合金製切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023552579

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380010379.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23757826

Country of ref document: EP

Kind code of ref document: A1