WO2019078109A1 - 硬質焼結体及びそれを用いた回転工具 - Google Patents

硬質焼結体及びそれを用いた回転工具 Download PDF

Info

Publication number
WO2019078109A1
WO2019078109A1 PCT/JP2018/038101 JP2018038101W WO2019078109A1 WO 2019078109 A1 WO2019078109 A1 WO 2019078109A1 JP 2018038101 W JP2018038101 W JP 2018038101W WO 2019078109 A1 WO2019078109 A1 WO 2019078109A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
sintered body
sample
rotary tool
hard
Prior art date
Application number
PCT/JP2018/038101
Other languages
English (en)
French (fr)
Inventor
渡邉大智
Original Assignee
株式会社リード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リード filed Critical 株式会社リード
Publication of WO2019078109A1 publication Critical patent/WO2019078109A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • the present invention provides a hard sintered body capable of securing excellent durability even under severe conditions in which a workpiece made of a metal material is processed while being heated to a high temperature, and a sintered body thereof
  • the present invention relates to a rotary tool using a body.
  • the steel material since the steel material has a high melting point as compared with the aluminum alloy, it requires a larger frictional heat to be softened.
  • the deformation resistance at high temperatures is increased by the addition elements such as Cr and Ni, so that very large frictional heats up to 900 ° C. to 1000 ° C. are required to soften. This is much higher than 500-600 ° C., which is the proper temperature for friction stir welding of aluminum alloys.
  • steel materials and superalloys are harder than aluminum alloys, tool wear is more likely to occur.
  • a tempered steel whose hardness has been increased by heat treatment or a stainless steel which has been work hardened by rolling has a Rockwell hardness which exceeds HRC40 (equivalent to Vickers hardness HV390).
  • Patent Document 1 a sintered material containing PCBN (polycrystalline cubic boron nitride) shown in Patent Document 1 is known as one of the most heat resistant tools.
  • PCBN polycrystalline cubic boron nitride
  • Patent Document 2 a material made of a W-based alloy shown in Patent Document 2 is known.
  • W-25% Re has been expected to be popular because it has a good balance of mechanical properties from normal temperature to high temperature among W-based alloys.
  • the hardness is insufficient, it is considered that there is a problem in the wear resistance and it has not been widely used.
  • the Ir alloy is considered to be a very excellent ultra-high temperature material whose hardness hardly changes up to 1400 ° C., and a role as a tool for processing high melting point materials such as Mo and Pt is also expected.
  • the hardness at normal temperature is about HV500 as Vickers hardness, and there is concern about wear resistance particularly when the probe is inserted.
  • Patent Documents 4 and 5 made of a Co-based alloy, and Patent Documents 6, 7 and 8 made of a Ni-based alloy are known as materials having improved L 1 2 phase ( ⁇ ′ phase) to improve high temperature characteristics.
  • the hardness at normal temperature is about HV500 as Vickers hardness, and there is concern about wear resistance particularly when the probe is inserted.
  • Patent Documents 9 and 10 are shown in Patent Documents 9 and 10 as a method for improving the normal temperature hardness, since the hardness is improved but extremely brittle, it is still in the practical stage at present. Has not been reached.
  • Patent documents 11, 12 and 13 show a method of improving mechanical properties at high temperature by containing Mo 5 SiB 2 .
  • the toughness in the room temperature region is considered to be poor and is hardly widespread at present.
  • WC- (Co, Ni) -based alloys widely used as materials having both normal temperature hardness and toughness, and silicon nitride and sialon which are ceramics excellent in heat resistance and toughness. is there.
  • Patent Documents 14, 15, and 16 For WC- (Co, Ni) based alloys, for example, examination of various additives and addition amounts is attempted in Patent Documents 14, 15, and 16. However, due to the presence of a metal bonding phase such as Co or Ni that bonds WC, hardness and creep resistance significantly decrease at temperatures of 800 to 1000 ° C., causing deformation and abnormal wear. It has not been reached. Although the example which tried improvement by coat
  • silicon nitride and sialon are known, for example, in Patent Documents 19 and 20, and although materials are most widely expected at present as materials capable of solving the various technical problems described above, the tool may be broken suddenly It has not reached the full-scale spread.
  • the present invention has been made in view of the above-mentioned circumstances, and the technical problem is that steel materials such as carbon steel and stainless steel, superalloys excellent in heat resistance, etc. require processing at higher temperatures. It can be suitably used as a processing tool for workpieces made of various metallic materials, and not only under room temperature (normal temperature) conditions, but also under severe conditions where the workpiece is processed while being heated to a high temperature
  • An object of the present invention is to provide a hard sintered body capable of securing necessary mechanical properties and durability, and a rotary tool using the sintered body.
  • the present inventor has connected a hard phase composed of one or more carbides and / or carbonitrides including tungsten carbide WC and a metal bonding phase by powder metallurgy.
  • a hard phase composed of one or more carbides and / or carbonitrides including tungsten carbide WC and a metal bonding phase by powder metallurgy.
  • the structure of the metal binder phase that greatly affects the high temperature characteristics
  • development has been carried out aiming to improve the mechanical characteristics and durability under normal temperature and high temperature.
  • the present invention is a hard sintered body having a hard phase composed of one or more carbides and / or carbonitrides containing WC and a metal bonding phase composed of a transition metal and an intermetallic compound containing the transition metal.
  • the metal bonding phase contains Ni and Al, and has a volume ratio of 15% or more and 55% or less with respect to the whole sintered body, and the metal bonding phase is the entire metal bonding phase.
  • it is characterized in that it is composed of L1 2 phase ( ⁇ ′ phase) having a volume ratio of 40% or more and B2 phase ( ⁇ phase) having a volume ratio of 10% or less.
  • At least one of TiC, TiN, Ti (C, N), Cr 3 C 2, TaC, and a solid solution of these with WC in the hard phase is used.
  • the hard sintered body is suitable as a rotating tool for rotating and changing the form of a workpiece made of a metal material.
  • an oxidation resistant coating having an oxidation start temperature of 900 ° C. or more be provided on the surface of the rotary tool.
  • the present invention can be suitably used as a processing tool for a workpiece made of a metal material that requires processing at a higher temperature, and not only at room temperature but also while processing the workpiece being heated to a high temperature It is possible to provide a hard sintered body capable of securing necessary mechanical properties and durability even under such severe conditions, and a rotary tool using the sintered body.
  • Sample No. 1 observed by a scanning electron microscope. It is a reflection electron image of D-1. Sample No. D-2 and sample no. It is an X-ray diffraction profile of C-4. It is a photograph which shows the external appearance of the to-be-processed material surface after processed by "condition 2". It is a photograph which shows the joining state of the workpiece surface after processed by "condition 2" (there is no defect). It is a photograph which shows the joining state of the workpiece surface after processed by "condition 2” (with a defect). Sample No. 2 for which the test was performed according to “condition 2”. It is a figure which shows the cross-sectional shape of D-2. Sample No.
  • the hard sintered body according to the embodiment can be suitably used as a processing tool for a workpiece made of a metal material which requires processing under very high temperature conditions up to 900 ° C. to 1000 ° C.
  • a hard phase composed of one or more carbides and / or carbonitrides including tungsten carbide (WC) and a metal bonding phase composed of transition metals and intermetallic compounds including transition metals are combined by powder metallurgy It is At this time, the metal bonding phase contains Ni and Al, and has a volume ratio of 15% by volume or more and 55% by volume or less with respect to the entire sintered body. Further, the hard phase constitutes the remainder excluding the volume of the metal bonding phase in the entire sintered body.
  • the rotary tool formed with the sintered compact of this invention is described.
  • a tool represented by processing of a Ni-based super alloy or the like exceeds 10000 rpm.
  • the present invention can be similarly applied to a rotating tool for performing cutting, grinding, etc. while softening the material by rotating at high speed.
  • the friction stirring step is a step of generating frictional heat by inserting a rotary tool into a workpiece, and by this step, two articles are joined to each other, or the surface of the workpiece is reformed. It is possible to FIG. 1 is an example of an embodiment for bonding two articles 1A and 1B to each other (a friction stir welding).
  • the rotary tool 3 is formed by integrally projecting a probe 4 having a diameter smaller than that of the shoulder 5 from the center of the substantially flat end face of the cylindrical shoulder 5.
  • the height of the probe 4 from the end face of the shoulder 5 is smaller than the thickness of the workpieces 1A and 1B to be joined to each other.
  • the probe 4 may be omitted depending on the case, for example, in the case of surface modification of the workpiece or in the case of overlapping bonding between dissimilar materials (for example, metal and resin) having greatly different thermal characteristics. It may be a cylindrical rotary tool consisting of only five.
  • the rotary tool 3 is mounted on one end of the joint area 2 in which both end surfaces of the workpieces 1A and 1B are abutted, and the shoulder 5 is the surface of the workpieces 1A and 1B.
  • the probe 4 does not contact the back plate 6, and while inserting a rotation by a motor or the like, it is inserted slowly.
  • frictional heat is generated at the contact portion between the rotary tool 3 and the workpieces 1A and 1B, and the frictional heat softens the workpieces 1A and 1B.
  • the workpieces 1A and 1B are plastically deformed and agitated by the frictional force, and as a result, the workpieces 1A and 1B are joined to each other at the contact portion with the rotary tool 3. Subsequently, when the rotary tool 3 is moved toward the advancing direction 8 which is the other end direction of the joining area 2, the joining advances continuously along the advancing direction 8, and finally the entire joining area 2 It is joined.
  • the bonding by the friction stir process (that is, friction stir welding) is a solid phase bond which is processed at a melting point or lower unlike the conventional welding process involving partial melting of the workpieces 1A and 1B. Therefore, while being able to suppress generation
  • Ni FSSS: 4.3 micrometers, 99.8 weight%), Al (D50: 11 micrometers, 99.8 weight%), B (FSSS: 0.7 micrometers, 95.1% by weight), Co (FSSS: 1.5 ⁇ m, 99.9% by weight), Si (D50: 2.5 ⁇ m, 98% by weight), C (D50: 3.5 ⁇ m, 99.9% by weight), Ti (D 50: 13 ⁇ m, 99.6% by weight), Nb (325 mesh, 99.5% by weight), Ta (325 mesh, 99.5% by weight), Cr (500 mesh, 99.9% by weight), Mo (FSSS: The fine powder is 1.6 ⁇ m, 99.99% by weight), W (FSSS: 0.9 ⁇ m, 99.9% by weight), and all of them use a fine powder commercially available as a single material.
  • the above raw material powders are weighed to obtain a desired composition.
  • the container is sealed with alcohol in a PP container and mixed for 24 hours by a ball mill using cemented carbide balls.
  • the mixed powder is taken out in a separate container and dried, and the coagulated part is reground using a mortar.
  • the mixed powder is packed in a carbon mold and pre-pressurized to perform compacting.
  • the hard sintering according to the present embodiment is performed by firing under a pressure condition of 50 to 70 MPa under a condition where the highest achieved temperature is selected from the range of 1100 to 1400 ° C. in a vacuum atmosphere of at least 10 Pa. Get the body.
  • pressurization at the time of firing not only facilitates the improvement of the density of the sintered body but also promotes the stable formation of the L1 2 phase ( ⁇ ′ phase) required for the metal bonding phase. It is preferable to baking. At this time, the ratio of the L1 2 phase ( ⁇ ′ phase) in the metal bonding phase can be adjusted by increasing or decreasing the ratio of Al in the metal bonding phase. On the other hand, if the maximum temperature reached is lower than 1100 ° C., this does not lead to the formation of the L1 2 phase ( ⁇ ′ phase), and the proportion of the B 2 phase ( ⁇ phase) to be described later increases, which is not desirable. If the temperature is higher than 1400 ° C., the raw material may be melted, which is not desirable.
  • Table 1 shows the composition list of the sintered bodies subjected to the test in the present example.
  • sample no. D-1 to 12 show examples of the present invention.
  • C-1 to 4 show the comparative examples.
  • sample no. D'-2 is the sample No. Derivative example of D-2
  • sample no. D'-3 is the sample No. Derivation examples of D-3 are respectively shown, and all are included in the embodiments of the present invention.
  • WC-Co alloy manufactured in-house, and commercially available VC-50 (CIS classification) alloy, Ni-Ir super alloy and silicon nitride (Si 3 N 4 ) were used as sample Nos. They are shown in N-1 to 4 respectively.
  • the composition of the hard phase is described as a total of 100 as% by mass.
  • the composition of the metal bonding phase is described as a total of 100 as atomic percent.
  • the ratio of the metal bonding phase to the entire sintered body is expressed as volume%.
  • a material having a density ratio of at least 97% or more as a result of evaluation using the Archimedes method with respect to the theoretical density derived by the mixing rule of the composition is used.
  • the particle size of the hard phase to the sintered body and the ratio (volume ratio) of the metal bonding phase can be evaluated using a scanning electron microscope and an electron beam microanalyzer.
  • the reflection electron image of D-1 is shown in FIG.
  • the light gray part is constituted by WC which forms a hard phase
  • the dark gray part is respectively constituted by Ni and Al which form a metal bonding phase.
  • the particle diameter of the hard phase a plurality of arbitrary straight lines are drawn in the observation image according to the cutting method based on the electron microscope image, and the total length of straight lines intersecting the hard phase particles intersects the straight line Evaluation was made using the method of dividing by the total number of particles.
  • the sample No. 1 in FIG. At D-1 the particle size of hard phase particles (WC) was estimated to be 1.2 ⁇ m.
  • the sample No. 4 evaluated by the measurement method similar to it.
  • the particle sizes of D-2 to 12 hard phase particles (WC) were also estimated in the range of 1.0 to 1.5 ⁇ m.
  • the hard phase particles (WC) of the present example are “M” (1.0 to 2.5 ⁇ m) when applied to the second digit classification of the material standards of the Carbide Tools Association Standard (CIS 019 D-2005). Is presumed to have a particle size corresponding to.
  • the ratio (volume ratio) of the metal bonding phase was evaluated using a method of reducing color or binarizing by an image processing method based on an electron microscope image.
  • the volume ratio of the hard phase to the metal bonding phase calculated from the abundance ratio of them shows good agreement with the volume ratio calculated from the compounding ratio at the time of weighing.
  • D-1 it was estimated to be 15% by volume.
  • the volume ratio of the hard phase to the metal bonding phase in D-2 to 12 also showed good agreement with the volume ratio calculated from the compounding ratio at the time of weighing. From this, the volume ratio of the metal bonding phase shown in Table 1 describes the value calculated based on the compounding ratio at the time of weighing.
  • values calculated based on the compounding ratio at the time of weighing are described.
  • Tables 2 and 3 respectively show a list of the structure of the metal bonding phase of the sintered body subjected to the test, the mechanical properties, and the state of the rotary tool 3 after the friction stirring step.
  • the presence or absence of the L1 2 phase ( ⁇ ′ phase) and the B2 phase ( ⁇ phase) in the metal bonding phase in the present invention is defined based on the measurement results by the X-ray diffraction method using a Cu—K ⁇ radiation source. Then, their volume ratio is calculated from the abundance ratio (weight ratio) of each component obtained by using the reference intensity ratio (RIR: Reference Intensity Ratio) in the PDF database based on these diffraction peaks. .
  • RIR Reference Intensity Ratio
  • L1 2 phase (gamma is 'part of the octahedral sites in phase)
  • L1 2 phase in which C atoms are arranged as interstitial atoms (gamma' phase) . Therefore, even if the presence of C atoms was observed in the binding phase by elemental analysis, the present invention is treated as equivalent to L1 2 phase (gamma 'phase).
  • sample No. D-2 and sample no As an example of evaluation using this X-ray diffraction method, sample No. D-2 and sample no.
  • the X-ray diffraction profile of C-4 is shown in FIG.
  • the diffraction peak which can be confirmed by D-2 is only Ni 3 Al which forms WC and L1 2 phase ( ⁇ ′ phase).
  • the diffraction peaks of NiAl forming the B2 phase ( ⁇ phase) can also be confirmed in addition to those diffraction peaks.
  • the sample No. 1 is obtained.
  • D-2 while the L1 2 phase ( ⁇ ′ phase) is equivalent to almost 100% by volume
  • C-4 it is calculated that the L1 2 phase ( ⁇ ′ phase) and the B2 phase ( ⁇ phase) are present at a ratio of 75:25 (volume ratio).
  • the diffraction peak of the (111) plane appears in the range of about 43.5 ° to 43.9 °, and Ni is used as the metal bonding phase. It can be mentioned that it appears at a much lower angle than about 44.0 ° to 44.3 °, which is the range of the diffraction peak of the (111) plane of A1 phase ( ⁇ phase) in WC-Ni base alloy .
  • ⁇ Shoulder A 12 mm diameter cylinder with a radius of curvature of 1 mm on the outer peripheral edge of the end face
  • Probe A spherical crown axially projecting from the center of the end face of shoulder 5 (a part of the spherical surface cut off in a plane intersecting with it) Bottom diameter 4 mm, height 0.8 mm, radius of curvature 1.7 mm
  • a 1 mm-thick rolled plate (hardness evaluation value: HV 230 to 270) made of SUS 430 was used as a workpiece. Then, two of the rolled plates were stacked to have a thickness of 2 mm, and the plate was fixed on the stage of the apparatus by placing it on a back plate 6 having a thickness of 10 mm and being mild steel.
  • the processing test was performed using the following two different conditions.
  • the first condition is that the moving speed of the rotary tool is 100 mm / min, and the processing distance is 100 mm, which is referred to as “condition 1”.
  • the second condition is that the moving speed of the rotary tool is 1000 mm / min, and a total of 1 m is machined at intervals of 200 mm, which is referred to as “condition 2”.
  • condition 1 the moving speed of the rotary tool is 1000 mm / min, and a total of 1 m is machined at intervals of 200 mm
  • condition 1 under “condition 1” and around 920 ° C. under “condition 2” as an approximation by the radiation thermometer.
  • condition 2 the two conditions of “condition 1” and “condition 2” are set for each sample (rotary tool 3) for which a good test result was obtained under “condition 2”. It is in order to evaluate the heat resistance under high temperature conditions by "condition 1".
  • the appearance of the workpiece after processing under “Condition 2” is shown in FIGS.
  • the joint shown in FIG. 4 When the joint shown in FIG. 4 is enlarged, it usually has the appearance shown in FIG. 5, but when a processing defect occurs, a void as shown in FIG. 6 is generated in part or all of the joint. It was considered that there was a processing defect when the generation of this void was recognized.
  • the amount of wear of the probe 4 and the shoulder 5 of the rotary tool 3 after the processing test was evaluated by measuring a change in cross-sectional shape of the rotary tool tip using a stylus type shape measuring instrument.
  • the amount of wear of the probe 4 is represented by the maximum value of the amount of dimensional reduction of its tip
  • the amount of wear of the shoulder 5 is represented by the two-point average value of the portions with the smallest amount of dimensional reduction present at both ends.
  • the gray part shows the cross-sectional shape before the test
  • the black part shows the cross-sectional shape after the test.
  • Sample No. D-2 has a probe wear amount of 0.009 mm and a shoulder wear amount of 0.037 mm
  • N-4 has a probe wear amount of 0.001 mm and a shoulder wear amount of 0.069 m.
  • the quality of the rotating tool 3 is judged by "shoulder deformation” which is largely related to the difference in heat resistance, and "processing defect generated on the surface of the workpiece” which is related to the reliability of bonding. It is determined that the product is a non-defective product exhibiting the effects of the present invention when it is determined that both “shoulder deformation” and “process defect generated on the surface of the workpiece” are “absent”. In particular, with respect to the presence or absence of the "shoulder deformation", it is very important not only because of the superiority or inferiority in the present example, but also because it suggests the superiority or inferiority of the essential heat resistance of the present invention.
  • the diameter T is measured by a projector, and "outside deformed" is determined when the rate of change in outer diameter represented by the ratio of the difference S-T to the outer diameter T exceeds 1.0%. , Outer diameter change rate of FIG. 9 is 6.3%).
  • sample No. 1 which is an example of the present invention.
  • D-1 to 12 each have an outer diameter change rate of "shoulder deformation (creep) under" condition 1 "" of 1.0% or less after the friction stirring step, and related thereto, the probes of these samples It can be seen that the wear amount of shoulder and shoulder tend to be significantly smaller than those of the comparative examples and the conventional materials.
  • sample No. 1 in which the composition of the hard phase and the composition of the metal bonding phase are common.
  • D-1, 2, 3 and sample nos. Compare C-1, 2 As shown in Table 2, the difference between these samples is the ratio (volume%) of the metal bonding phase to the whole sintered body, and in order of decreasing ratio, No. 1 C-1 (8% by volume) ⁇ No. D-1 (15% by volume) ⁇ No. D-2 (30% by volume) ⁇ No. D-3 (55% by volume) ⁇ No. It is C-2 (70% by volume).
  • the rotary tool 3 was crushed in the process of being inserted into the workpiece, and the test could not be continued.
  • D-1 is a silicon nitride No.
  • the fracture toughness was higher than N-4, and good results were obtained even in the friction stir processing test. From the above, the proportion of the metal bonding phase required for the sintered body in the present invention is determined to be at least 15% by volume or more.
  • sample No. 1 which can be considered to be formed only of the metal bonding phase substantially including the L1 2 phase ( ⁇ ′ phase) which does not contain the hard phase.
  • N-3 Ni-Ir super alloy
  • processing defects voids
  • the appearance of the N-3 tool tip is shown in FIG. As can be seen from FIG. 10, there is no evidence of creep deformation of shoulder 5 over a short distance. It is presumed that N-3 has excellent heat resistance despite the absence of a hard phase.
  • the probe 4 is a portion which comes in contact with the shoulder 5 before the frictional heat of the workpiece 5 is sufficiently generated, and it is necessary to slide the workpiece 4 under a large pressure accompanied by plastic deformation of the workpiece from a low temperature state. There is. From this, it can be seen that the presence of a hard phase for increasing the difference in hardness between the workpiece and the rotary tool 3 is essential.
  • sample No. 1 in which the composition of the hard phase and the proportion of the metal bonding phase are common.
  • D-2, 4, 5, 6 and sample nos. Compare C-3,4. These samples are largely divided into a first pattern in which the amount of Al present in the metal bonding phase is less than approximately 25 atomic percent, and a second pattern in which the amount is higher than that. Ru.
  • the difference in the first pattern is the ratio (volume%) of the intermetallic compound L1 2 phase ( ⁇ ′ phase) caused by the change in the composition (ratio of Al) of the metal bonding phase.
  • No. C-3 (25% by volume)
  • ⁇ No. D-5 (40% by volume)
  • ⁇ No. D-4 (60% by volume)
  • ⁇ No. D-2 has a (- 100 vol%)
  • the proportion of Al in the metal binder phase (atomic%) Gayori larger is greater and more even rate of L1 2 phase (gamma 'phase).
  • No. 1 which is a conventional WC base alloy in which the L1 2 phase ( ⁇ ′ phase) does not exist in the metal bonding phase. Since the outer diameter change rate by shoulder deformation (creep) of each of N-1 and 2 exceeded 1.0%, sample No. 1 of the present invention was obtained. D-1 to 12 and sample Nos. It is judged that heat resistance is poor compared to D'-2, 3.
  • the difference in the second pattern is the ratio (volume%) of the intermetallic compound B2 phase ( ⁇ phase) caused by the change in the composition (ratio of Al) of the metal bonding phase.
  • No. D-2 (0% by volume) ⁇ No. D-6 (10% by volume) ⁇ No. C-4 (25% by volume)
  • the larger the proportion (atomic%) of Al in the metal bonding phase the larger the proportion of the proportion of the B2 phase ( ⁇ phase).
  • D-6 the rate of change in outer diameter due to shoulder deformation (creep) was 1.0% or less, and no processing defects (voids) were observed on the surface of the workpiece.
  • Sample No. 1 in which the proportion of B2 phase ( ⁇ phase) in the metal bonding phase is 25 vol% is higher.
  • C-4 the rotary tool was broken during the process of inserting it into the workpiece, and the test could not be continued. This is attributed to the fact that when the B2 phase ( ⁇ phase) in the metal bonding phase is increased, the hardness is improved while the fracture toughness is significantly reduced.
  • the volume ratio of B2 phase ( ⁇ phase) in the metal bonding phase constituting the sintered body in the present invention needs to be 10 volume% or less. Furthermore, in order to maximize the effects of the present invention, sample no. As in the samples of the other embodiments except D-6, it is more preferable to set the value below the detection limit of the X-ray diffractometer.
  • “less than the detection limit of the X-ray diffraction device” is less than 5% by volume where detection of the presence or absence of stability is difficult even with a high-power X-ray diffraction device of 9 kW class.
  • Sample No. D'-2 has an outer diameter change rate of 1.0% or less due to shoulder deformation (creep), and no processing defects on the surface of the workpiece are observed, so that a good effect is exhibited as an embodiment of the present invention. It is judged that.
  • this sample No. D'-2 is the sample No. It can be seen that the mechanical characteristics such as fracture toughness show a slight decreasing tendency as compared with D-2. From the above, in order to maximize the effects of the present invention, attention should be paid to storage conditions and baking conditions, and the inclusion of oxides is suppressed as much as possible, specifically, more than 3% by volume. It is preferable to prevent the mixing of oxides.
  • sample No. 1 as an example of the present invention.
  • D-1 to 12 and No. 1 as a comparative example.
  • a small amount of B is added to all of C-1 to C-4.
  • sample No. 1 in which the proportion of the binder phase is large is used.
  • Sample No. D'-3 shows an outer diameter change rate of 1.0% or less due to shoulder deformation (creep), and no processing defects on the surface of the workpiece are observed, so that a good effect is exhibited as an embodiment of the present invention. It is determined that On the other hand, for sample no.
  • sample no When two pieces of D-3 and two pieces of D'-3 are prepared and the hardness (HV) at each temperature is measured for each sample, as shown in FIG. Although the normal temperature hardness of D'-3 is slightly higher, sample No. D.-3 is bordered around 600.degree. The superiority with D-3 was reversed, and a significant hardness difference of about 100 was generated at 900 to 1000 ° C.
  • the addition of B contributes to the improvement of the hardness at high temperature of the metal bonding phase including the L1 2 phase ( ⁇ ′ phase). From the above, in order to maximize the effects of the present invention, it is more preferable to add 0.04 atomic% or more of B with respect to the total amount of the metal bonding phase. However, if the proportion of B is excessive, the mechanical properties may be lowered due to the generation of boride. Therefore, the addition of B is preferably about 1 atomic% or less based on the total amount of the metal bonding phase.
  • Ni, Al, and B as necessary to constitute the metal bonding phase.
  • elements other than the above-mentioned Ni, Al, and B as necessary to constitute the metal bonding phase.
  • one or more of Ti, Mo, Si, Co, Cr, W, Ta, Nb, C, Zr, Fe and Cu can be added by addition.
  • Sample No. D-7 shows sample No. It is a sintered body in which a part of Al is mainly substituted with Ti, Mo, and Si based on D-2. Sample No. D-7 shows sample No. The fracture toughness tends to be improved more than D-2. This, Ti and Si are that react with excess C, also Mo is 'by solid solution in the (phase, L1 2 phase (gamma L1 2 phase gamma)' WC and a solid solution in the phase) It is presumed that this is a result of exhibiting the effect of reducing the amount of C.
  • Sample No. Sample No. D-8 It is a sintered body in which a part of Ni and Al is added to replace Co, Cr, Mo, W, Ti, Ta, Nb, C, Zr based on D-2.
  • Sample No. In D-8 the proportion of L1 2 phase ( ⁇ ′ phase) is 50% by volume.
  • the high temperature hardness (HV) at 900 ° C. of D-8 is the same as that of sample No. 6 in which the ratio is 60% by volume. It exceeds the high temperature hardness (HV) at 900 ° C of D-4. Therefore, it is presumed that Co, Cr, Mo, W, Ta, Nb, C, and Zr have the effect of improving the heat resistance of the metal bonding phase including the L1 2 phase ( ⁇ ′ phase).
  • the addition of Cu acts on Ni and Al in the metal bonding phase to stabilize the sintered density. It is useful because it is effective.
  • Ni and 15 atomic% or more of Al are necessarily included in all elements constituting the metal bonding phase, and the total of the remaining constituent elements excluding Ni in the metal bonding phase is 15 atomic% It is preferable to adjust and add it within the range of 35 atomic% or more as a standard.
  • sample No. 1 which is an example of the present invention.
  • D-1 to 12 and sample Nos. D'-2 and no. D'-3 has a room temperature hardness of 84.5 or more in HRA, room temperature flexural strength of 1200 MPa or more, room temperature fracture toughness of 8 MPa ⁇ m 1/2 or more, and a hardness at 900 ° C. of 450 or more in HV All the requirements are satisfied, and these mechanical characteristics are secured in a well-balanced manner.
  • sample Nos. It is understood that C-1 to 4 are lacking in any of the conditions of the mechanical properties.
  • a sintered body that satisfies all the conditions that the room temperature hardness is 84.5 or more in HRA, the room temperature flexural strength 1200 MPa or more, the room temperature toughness 8 MPa ⁇ m 1/2 or more, and the hardness at 900 ° C. is HV 450 or more It becomes a standard of a sintered compact.
  • the sintered body of the present invention gradually turns to yellow-brown under heating conditions at high temperatures ranging from 900 to 1000.degree.
  • the degree of discoloration tends to increase as the amount of binder phase decreases.
  • the result of having analyzed using X-ray diffraction is shown in FIG. According to the analysis results, it is understood that mainly the oxidation of WC is the dominant factor of this discoloration, since the precipitated phases generated in the discolored portion are WO 3 and NiWO 4 .
  • the sintered body of the present invention When the sintered body of the present invention is applied as a rotary tool, it may be considered that the damaged part of the tool is corrected and reused, but this is sometimes an important guideline for reducing the cost of the rotary tool of the present invention. It becomes. Since there is a concern about changes in the properties of the portions where WO 3 and NiWO 4 are generated, it is preferable to remove all the generated WO 3 and NiWO 4 when attempting to carry out correction processing on the damaged portion of the tool for reuse. . In addition, the generation of WO 3 and NiWO 4 occurs notably on the outer peripheral side of the rotary tool which can be exposed to the atmosphere for a long time. Therefore, it is effective to provide oxidation resistance to the outer peripheral side surface portion of the rotary tool and to suppress the formation of WO 3 and NiWO 4 as much as possible.
  • TiC, TiN, Ti (C, N), Cr 3 C 2 , TaC, and solid solutions of these with WC which are additives for suppressing oxidation of the sintered body, are added to this hard phase.
  • WC which are additives for suppressing oxidation of the sintered body
  • One or two or more of them can be contained.
  • a part of WC dissolves in TiC, TiN, Ti (C, N), Cr 3 C 2 , and TaC, so in the sintered body as compared with the case of WC alone.
  • the abundance ratio of W present in As a result, the amount of W contributing to oxidation is reduced, and the oxidation of WC is suppressed.
  • Table 1 shows an example of a sintered body containing the additive that suppresses oxidation as Sample No. D-9 to 12 are shown. These sample Nos. In D-9 to D-12, the volume ratio of the metal bonding phase to the entire sintered body and the composition of the metal bonding phase are the same as those of sample No. This sintered body is the same as D-2 but different in hard phase additive. Therefore, for the sample No. 1 for which the test was performed under “condition 2” shown in FIG. The appearance of the tip of the tool D-2 and the sample No. 2 tested under the same conditions as shown in FIG. As compared with the appearance of the tool tip of D-10, the sample No. 1 with TiC added thereto. D-10 is a sample No. It can be seen that the discoloration of the shoulder outer peripheral side portion 7 is significantly less than that of D-2. From this, it is recognized that the additive such as TiC has an effect of suppressing the oxidation of the sintered body.
  • the rotary tool 3 made of the sintered body of the present embodiment has high resistance to creep deformation as described above, the effect of the coating can be effectively exhibited even by applying an oxidation resistant coating to the surface thereof.
  • An extremely high oxidation inhibition effect can be obtained.
  • the oxidation resistant coating can be formed of, for example, a single layer film or a multilayer film of nitride, carbonitride or oxynitride containing Ti, Si, Al and Cr as main constituent elements.
  • the oxidation start temperature of the coating layer needs to be at least 900 ° C. or more.
  • the tool cost can be extremely reduced with respect to the tool cost, which is an important issue as a rotary tool used in the friction stirring process.
  • the work material made of a metal material has a high temperature reaching 900 to 1000 ° C. while securing high fracture toughness. It can be seen that excellent durability can be obtained over a long period of time, even under severe conditions of processing while being heated.
  • the main raw materials thereof are generally used WC, Ni, and Al, and it is necessary to use an expensive noble metal such as Ir, which is used in the above-mentioned Patent Document 3 and Patent Document 8 etc., as a main component. Also, it is possible to manufacture by a general powder metallurgy method, and the manufacturing cost can also be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】より高温での加工が必要な金属材料から成る被加工材の加工用工具に好適に用いることができ、室温(常温)条件下のみならず、被加工材が高温に加熱されながら加工されるような過酷な条件下においても、必要な機械特性や耐久性を確保することが可能な硬質焼結体、及びその焼結体を用いた回転工具を提供する。 【解決手段】WCを含む単一或いは複数の炭化物及び/又は炭窒化物で構成される硬質相と、遷移金属及び遷移金属を含む金属間化合物からなる金属結合相とを有する焼結体において、金属結合相を、焼結体全体に対して15%以上かつ55%以下の体積比で構成し、Ni及びAlを必須成分として含有させると共に、それらの金属間化合物であるL12相(γ'相)を体積比40%以上、B2相(β相)を体積比10%以下とした。

Description

硬質焼結体及びそれを用いた回転工具
 本発明は、特に、金属材料から成る被加工材が高温に加熱されながら加工されるような過酷な条件下においても、優れた耐久性を確保することが可能な硬質焼結体及びその焼結体を用いた回転工具に関する。
 近年、工具として高い耐熱性が要求される用途が飛躍的に増えている。その代表的な例として、超合金の切削・旋削加工や摩擦攪拌接合(Friction Stir Welding)がある。特に摩擦攪拌接合は、アルミニウム合金からなる自動車の車体フレームや鉄道車両の構体の製造方法として広く普及しているが、最も広く利用されている炭素鋼やステンレス鋼等の鉄鋼材料や耐熱性に優れた超合金への普及は未だ進んでいない。
 その理由として、第一に、鉄鋼材料は、アルミニウム合金と比較して融点が高いため、軟化させるためにより大きな摩擦熱を必要とすることが挙げられる。特にステンレス鋼や超合金の場合は、CrやNi等の添加元素によって高温下での変形抵抗が大きくなるため、軟化させるために900℃~1000℃に至る非常に大きな摩擦熱を必要とする。これは、アルミニウム合金の摩擦攪拌接合の適正温度とされる500~600℃よりもはるかに高い。また、第二に、鉄鋼材料や超合金はアルミニウム合金と比較して硬いため、工具の摩耗がより発生し易いことが挙げられる。熱処理によって硬度が高められた調質鋼や、圧延によって加工硬化したステンレス鋼では、ロックウェル硬度でHRC40(ビッカース硬度HV390相当)を超える硬度を有する。
 これらの技術課題を解決するために、非常に多くの試みがなされてきた。現在、最も耐熱性に優れた工具の一つとして、特許文献1で示されたPCBN(多結晶立方晶窒化ホウ素)を含有した焼結材料が公知である。しかしながら、この材料はカケやチッピングが発生しやすいことから普及には至っていない。
 また、特許文献2で示されたW基合金からなる材料が公知である。特に、W-25%ReはW基合金の中でも常温から高温に至るまでの機械特性のバランスが良いことから普及が期待されてきた。しかしながら、硬度が不足していることから耐磨耗性に課題があるとされており普及には至っていない。
 また、特許文献3で示されたIr基合金からなる材料が公知である。Ir合金は、1400℃に至るまでほとんど硬さが変化しない非常に優れた超高温材料とされ、MoやPt等の高融点材料を加工するための工具としての役割も期待されている。しかしながら、常温下での硬さはビッカース硬さとしてHV500程度であり、特にプローブ挿入時の耐摩耗性に関して不安がある。
 また、L1相(γ’相)を形成して高温特性を改善した材料として、Co基合金からなる特許文献4,5や、Ni基合金からなる特許文献6,7,8が公知である。しかしながら、常温下での硬さはビッカース硬さとしてHV500程度であり、特にプローブ挿入時の耐摩耗性に関して不安がある。常温硬さを改善するための方法として、TiCやTiBを添加した材料が特許文献9,10で示されているが、硬さは向上するものの非常に脆いことから、現時点では未だ実用段階には至っていない。
 添加物として耐熱性の高いモリブデンの金属間化合物を含有させる方法も公知である。特許文献11,12,13では、MoSiBを含有させることにより、高温における機械特性を改善する方法が示されている。しかしながら、室温領域での靭性に乏しいとされ現時点ではほとんど普及していない。
 最も普及が期待されているのは、常温硬さと靭性とを兼ね備えた材料として広く利用されているWC-(Co,Ni)基合金と耐熱性と靭性に優れたセラミックスである窒化珪素及びサイアロンである。
 WC-(Co,Ni)基合金については、例えば、特許文献14,15,16において様々な添加材や添加量の検討が試みられている。しかしながら、WCを結合するCoやNi等の金属結合相の存在により、800~1000℃の温度では硬度の低下やクリープ耐性の低下が著しく、変形や異常摩耗が生じるため、本格的な普及には至っていない。異常摩耗の対策として、表面に硬質層を被覆することによって改善を試みた例が特許文献17,18に示されているが、一方でクリープ耐性は改善されない。
 また、窒化珪素及びサイアロンは、例えば特許文献19,20において公知であり、前述の各種技術課題を解決し得る材料として、現状最も普及が期待されているものの、突発的に工具が破砕することがあり本格的な普及には至っていない。
特表2003-532543号公報 特開2004-358556号公報 特開2006-320958号公報 国際公開第2007/032293号パンフレット 特開2013-121621号公報 特開2009-255170号公報 特開2014-014822号公報 特開2014-173163号公報 再表2013/058338号公報 特開2014-169471号公報 特開2008-114258号公報 特開2014-012883号公報 国際公開第2014/112151号パンフレット 特開2005-199281号公報 特開2009-214170号公報 特開2010-260065号公報 特表2011-504808号公報 特開2012-139694号公報 特開2011-098842号公報 国際公開第2016/047376号パンフレット
 本発明は、前述のような事情に鑑みてなされたものであり、その技術的課題は、炭素鋼やステンレス鋼等の鉄鋼材料や耐熱性に優れた超合金等、より高温での加工が必要な金属材料から成る被加工材の加工用工具に好適に用いることができ、室温(常温)条件下のみならず、被加工材が高温に加熱されながら加工されるような過酷な条件下においても、必要な機械特性や耐久性を確保することが可能な硬質焼結体、及びその焼結体を用いた回転工具を提供することにある。
 前述の技術的課題を解決するため、本発明者は、炭化タングステンWCを含む単一或いは複数の炭化物及び/又は炭窒化物で構成される硬質相と、金属結合相とが粉末冶金法によって結合された焼結体において、高温特性に大きな影響を与える金属結合相の組織に着目し、常温及び高温下での機械特性や耐久性の向上を目指して開発を進めてきた。その結果、金属結合相の組織が所定の条件を満たすときに、前述の技術的課題に対して極めて優れた硬質焼結体及び回転工具が得られることを見出し、本発明に至った。
 本発明は、WCを含む単一或いは複数の炭化物及び/又は炭窒化物で構成される硬質相と、遷移金属及び遷移金属を含む金属間化合物から成る金属結合相とを有する硬質焼結体であって、前記金属結合相は、Ni及びAlを含み、前記焼結体全体に対して15%以上かつ55%以下の体積比を有し、更に、該金属結合相は、該金属結合相全体に対して40%以上の体積比のL1相(γ’相)と、10%以下の体積比のB2相(β相)とで構成されていることを特徴としている。
 前記硬質焼結体において、好ましくは、前記硬質相に、TiC,TiN,Ti(C,N),Cr2,TaC,及びこれらとWCとの固溶体のうち何れか1つ或いは2つ以上を含んでいる。
 なお、前記硬質焼結体は、金属材料から成る被加工材の形態を回転しながら変化させるための回転工具として好適である。
 前記回転工具の表面には、酸化開始温度900℃以上の耐酸化性被覆が施されることがより好適である。
 前記回転工具の一例として、摩擦攪拌工程に用いられる回転工具が挙げられる。
 本発明によれば、より高温での加工が必要な金属材料から成る被加工材の加工用工具に好適に用いることができ、室温条件下のみならず、被加工材が高温に加熱されながら加工されるような過酷な条件下においても、必要な機械特性や耐久性を確保することが可能な硬質焼結体、及びその焼結体を用いた回転工具を提供することができる。
摩擦攪拌工程により2つの被加工材を接合する方法を示す概念図である。 走査型電子顕微鏡によって観察された試料No.D-1の反射電子像である。 試料No.D-2及び試料No.C-4のX線回折プロファイルである。 「条件2」によって加工した後の被加工材表面の外観を示す写真である。 「条件2」によって加工した後の被加工材表面の接合状態を示す写真である(欠陥なし)。 「条件2」によって加工した後の被加工材表面の接合状態を示す写真である(欠陥あり)。 「条件2」によって試験を実施した試料No.D-2の断面形状を示す図である。 「条件2」によって試験を実施した試料No.N-4(窒化珪素(Si))の断面形状を示す図である。 ショルダに変形が生じた回転工具先端部の外観を示す写真である。 「条件1」によって試験を実施した試料No.N-3(Ni-Ir超合金)の工具先端部の外観を示す写真である。 試料No.D-3と試料No.D’-3の高温硬さの変化を示すグラフである。 焼結体に発生した変色部のX線回折プロファイルである。 「条件2」によって試験を実施した試料No.D-2の工具先端部の外観を示す写真である。 「条件2」によって試験を実施した試料No.D-10の工具先端部の外観である。
 本発明に係る硬質焼結体及びそれを用いた回転工具の実施形態及び実施例について、以下に詳細に説明する。但し、本発明は、以下の実施形態や実施例の範囲に限定して解釈されるものではない。
 前記実施形態としての硬質焼結体は、900℃~1000℃に至る非常に高温条件下での加工が必要な金属材料から成る被加工材の加工用工具に好適に用いることができるもので、炭化タングステン(WC)を含む単一或いは複数の炭化物及び/又は炭窒化物で構成される硬質相と、遷移金属及び遷移金属を含む金属間化合物からなる金属結合相とが粉末冶金法によって結合されたものである。このとき、前記金属結合相は、Ni及びAlを含み、前記焼結体全体に対して15体積%以上かつ55体積%以下の体積比を有している。また、前記硬質相は、焼結体全体において前記金属結合相の体積を除いた残余を成している。
 次に、図1に基づいて、本発明の焼結体によって形成された回転工具の一実施形態について説明する。なお、本実施形態では、前記焼結体を摩擦攪拌工程に用いられる回転工具に適用した場合について説明するが、例えば、Ni基超合金等の加工に代表されるような、工具を10000rpmを超える高速で回転させることにより材料を軟化させながら切削加工や研削加工等を行うための回転工具に対しても、同様に適用することが可能である。
 摩擦攪拌工程とは、回転工具を被加工材に挿入することによって摩擦熱を発生させる工程であり、この工程によって、2個の物品を互いに接合したり、被加工材の表面を改質したりすることが可能となる。図1は、2個の物品1A,1Bを互いに接合(摩擦攪拌接合)するための実施形態の例である。
 回転工具3は、円柱状のショルダ5における略平坦な端面の中央から、該ショルダ5よりも小径のプローブ4を一体に突設することにより形成される。前記ショルダ5の端面からのプローブ4の高さは、互いに接合する被加工材1A,1Bの厚みよりも小さく形成される。なお、被加工材の表面改質を行う場合や熱特性の大きく異なる異種材料間(例えば、金属と樹脂)で重ね接合を行う場合等、場合に応じて、該プローブ4が省略されて前記ショルダ5のみから成る円柱状の回転工具としても良い。
 次に、この回転工具3を用いて、上記被加工材1A,1Bにおける互いに対向する端面同士を摩擦攪拌接合する方法について説明する。まず、図1に示すように、該被加工材1A,1Bの両端面が当接させられた接合領域2の一端に、前記回転工具3を、ショルダ5が該被加工材1A,1Bの表面に接触するがプローブ4がバックプレート6に接触しない深さまで、モータ等で回転させながらゆっくりと挿入する。すると、回転工具3と被加工材1A,1Bとの接触部で摩擦熱が発生し、その摩擦熱によって被加工材1A,1Bが軟化する。そして、その軟化と共に、被加工材1A,1Bは摩擦力によって塑性変形を起こして攪拌され、その結果、被加工材1A,1Bは回転工具3との接触部で互いに接合される。続いて、その回転工具3を接合領域2の他端方向である進行方向8に向けて移動させていくと、進行方向8に沿って連続的に接合が進み、最終的に接合領域2全体が接合される。
 このように、摩擦攪拌工程による接合(すなわち、摩擦攪拌接合)は、被加工材1A,1Bの部分的な溶融を伴う従来の溶接工程と異なり融点以下で処理される固相接合である。そのため、被加工材の歪みの発生を抑えることができると共に、粗大な結晶粒の発生がなく強度や耐食性に優れるという利点を有する。
 次に、本発明に係る硬質焼結体及びそれによって形成された回転工具の実施例について説明する。
 まず、硬質焼結体を製造する方法について説明する。
 前記硬質相を形成する原料粉末としては、WC(FSSS:1.0μm、99.8重量%)、TiC(FSSS:1.9μm、99.0重量%)、TiCN(FSSS:1.4μm、TiC/TiN=7/3、98.9重量%)、TaC(FSSS:0.9μm、99.6重量%)、MoC(FSSS:1.8μm、99.5重量%)、Cr(FSSS:1.6μm、99.7重量%)であり、何れも単一材料として市販されている微粉末を用いている。
 また、前記金属結合相を形成する原料粉末としては、Ni(FSSS:4.3μm、99.8重量%)、Al(D50:11μm、99.8重量%)、B(FSSS:0.7μm、95.1重量%)、Co(FSSS:1.5μm、99.9重量%)、Si(D50:2.5μm、98重量%),C(D50:3.5μm、99.9重量%),Ti(D50:13μm、99.6重量%),Nb(325mesh、99.5重量%),Ta(325mesh、99.5重量%),Cr(500mesh、99.9重量%),Mo(FSSS:1.6μm、99.99重量%),W(FSSS:0.9μm、99.9重量%)であり、何れも単一材料として市販されている微粉末を用いている。
 以上の原料粉末を所望の組成となるように秤量する。次に、PP製容器にアルコールと共に封入し、超硬球を用いたボールミルによって24時間混合する。次に、混合粉を別容器に取り出し乾燥させ、凝集部を乳鉢を用いて再粉砕する。次に、混合粉をカーボン製の型に詰めて予備加圧を加えて圧粉成形を行う。次に、少なくとも10Pa未満の真空雰囲気中で最高到達温度が1100~1400℃の範囲から選択された条件で、50~70MPaの加圧条件にて焼成することにより、本実施例に係る硬質焼結体が得られる。なお、焼成時の加圧は、焼結体の密度の向上を容易にするだけでなく、金属結合相に必要なL1相(γ’相)の安定した生成を助長するため、無加圧焼成よりも好ましい。このとき、金属結合相におけるL1相(γ’相)の割合は、該金属結合相におけるAlの割合の増減により調節することができる。また、前記最高到達温度が1100℃よりも低いと、このL1相(γ’相)の形成に至らず、後述するB2相(β相)の割合が増えてしまうため望ましくなく、その一方で、1400℃よりも高いと、原料が溶融してしまう虞があるため望ましくない。
 本実施例において試験に供した焼結体の組成一覧を表1に示す。ここで、試料No.D-1~12は本発明の実施例を示しており、試料No.C-1~4はその比較例を示している。また、試料No.D’-2は前記試料No.D-2の派生例、試料No.D’-3は前記試料No.D-3の派生例をそれぞれ示しており、何れも本発明の実施例に含まれる。更に、従来例として、内製のWC-Co合金、並びに、市販のVC-50(CIS分類)合金、Ni-Ir超合金及び窒化珪素(Si)を、試料No.N-1~4にそれぞれ示している。ここで、硬質相の組成は、質量%として合計100となるように表記されている。また、金属結合相の組成は、原子%として合計100となるように表記されている。その上で、焼結体全体に対する金属結合相の割合を、体積%として表記している。なお、本実施例の全ての材料は、組成の混合則によって導出される理論密度に対して、アルキメデス法を用いて評価した結果が少なくとも97%以上の密度比に達したものを用いている。
Figure JPOXMLDOC01-appb-T000001
 ここで、焼結体に対する硬質相の粒径や金属結合相の割合(体積比)は、走査型電子顕微鏡及び電子線マイクロアナライザーを用いて評価することが可能である。走査型電子顕微鏡によって観察された試料No.D-1の反射電子像を図2に示す。図2では、明るい灰色部は硬質相を形成するWCによって、濃い灰色部は金属結合相を形成するNiとAlによってそれぞれ構成されている。
硬質相の粒径に関しては、電子顕微鏡像を基に、切断法に準じて、観察像に任意の直線を複数本引き、硬質相粒子と交わる直線の長さの総和を、直線と交わる硬質相粒子の総数で除して求める方法を用いて評価した。その結果、図2の試料No.D-1では、硬質相粒子(WC)の粒径は1.2μmと見積もられた。また、それと同様の測定方法によって評価された試料No.D-2~12の硬質相粒子(WC)の粒径についても、何れも1.0~1.5μmの範囲で見積もられた。このことから、本実施例の硬質相粒子(WC)は、超硬工具協会規格(CIS019D-2005)の材料規格の2桁目の分類に当てはめると、「M」(1.0~2.5μm)に相当する粒径を有するものと推察される。
 また、前記金属結合相の割合(体積比)に関しては、電子顕微鏡像を基に、画像処理法によって減色或いは2値化する方法を用いて評価した。その結果、それらの存在比から算出される硬質相と金属結合相との体積比は、秤量時の配合比から算出される体積比と良い一致を示し、試料No.D-1では15体積%と見積もられた。また、それと同様の測定方法によって評価された試料No.D-2~12における硬質相と金属結合相との体積比についても、秤量時の配合比から算出される体積比と良い一致を示した。このことから、表1に示す金属結合相の体積比は、秤量時の配合比を基に算出した値を記載している。また、硬質相及び金属結合相の組成に関しても、秤量時の配合比を基に算出した値を記載している。
次に、試験に供した焼結体が有する金属結合相の組織、機械特性、及び摩擦攪拌工程後の回転工具3の状態をまとめた一覧をそれぞれ表2,3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明における金属結合相内のL1相(γ’相)及びB2相(β相)の有無は、Cu-Kα線源を用いたX線回折法による測定結果に基づき定義される。そして、それらの体積比は、これらの回折ピークを基にPDFデータベース中の参照強度比(RIR:Reference Intensity Ratio)を利用することによって得られる各々の成分の存在比(重量比)から算出される。ここで、局所的にみると、硬質相を形成するWC等が結合相へ固溶することによりC原子が侵入し、一部がE2相になると考えられる。一方で、結合相全体でみると、L1相(γ’相)中の八面体位置の一部に、C原子が侵入型原子として配置されたL1相(γ’相)であるとみなせる。そのため、元素分析により結合相中にC原子の存在が認められても、本発明ではL1相(γ’相)に相当するものとして扱っている。
 このX線回折法を用いた評価の例として、試料No.D-2及び試料No.C-4のX線回折プロファイルを図3に示す。ここで、試料No.D-2で確認できる回折ピークはWCとL1相(γ’相)を形成するNiAlのみであるが、試料No.C-4では、それらの回折ピーク加えて、B2相(β相)を形成するNiAlの回折ピークも確認できる。そして、結合相中の存在比を上述した参照強度比から算出すると、試料No.D-2では、L1相(γ’相)がほぼ100体積%相当であるのに対して、試料No.C-4では、L1相(γ’相)とB2相(β相)とが75:25(体積比)の割合で存在すると算出される。
 なお、本実施例における焼結体のL1相(γ’相)には、Cu-Kα線源を用いた測定において、A1相(γ相)にはない24.8°付近の(100)面の回折ピークの発現が認められる。また、本実施例における焼結体の構造的な特徴としては、(111)面の回折ピークが約43.5°~43.9°の範囲で発現しており、Niを金属結合相としたWC-Ni基合金におけるA1相(γ相)の(111)面の回折ピークの範囲である約44.0°~44.3°よりも、かなり低角側に発現していることが挙げられる。
 また、表2において、室温における硬さ(HRA)は、ロックウェル硬さ試験機によって、表中「強度」で示される曲げ強度は、インストロン型万能試験機を用いた3点曲げ試験によって評価を実施している。そして、破壊靭性は、ビッカース圧子による評価法である圧子圧入法(IF:Indentation Fracture法)を用いて評価している。各々の評価は、焼結体を長さ40mm・幅5mm・厚み1.5mmの角棒状に加工し、更に両面を3~5μmのダイヤモンドを用いて鏡面加工を施した試料にて行っている。更に、高温硬さ(HV)は、高温ビッカース硬さ測定システム(AVK-HF)を用いて評価している。ここで、圧子と試料との温度差に伴う硬さ測定値の誤差を低減させるため、各温度における測定前に、5分以上、試料面と圧子とを接触させ続けることによって、圧子を加熱した後に測定を行っている。
 本実施例における回転工具3は、放電加工及び切断・研削等の機械加工を用いて以下の形状に成形したものを使用している。
 ・ショルダ:端面の外周縁部を曲率半径1mmのR加工を施した直径12mmの円柱
 ・プローブ:ショルダ5の端面中央から軸方向に突設した球冠(球面をそれと交わる平面で切りとった部分)であり、底部直径4mm、高さ0.8mm、曲率半径1.7mm
 図1に示す回転工具3を用いた摩擦攪拌工程による加工試験においては、被加工材として、SUS430からなる厚み1mmの圧延板(硬さ評価値:HV230~270)を使用した。そして、この圧延板を2枚重ねて2mm相当の厚みとしたうえで、軟鋼性で厚み10mmのバックプレート6上に乗せることにより、装置のステージに固定した。
 そして、設定荷重1ton、最大挿入深さ1.5mm、工具回転数1800rpm、Arガスフロー25L/minを共通の設定条件としたうえで、以下の2つの異なる条件を用いて加工試験を実施した。1つ目の条件は、回転工具の移動速度を100mm/min、加工距離100mmとし、これを「条件1」とした。2つ目の条件は、回転工具の移動速度を1000mm/min、距離200mm刻みで合計1mを加工する条件とし、これを「条件2」とした。このとき、被加工材と回転工具外周との間に発生する摩擦熱は、放射温度計による概算として「条件1」において1050℃前後、「条件2」において920℃前後と見積もられた。なお、ここで「条件1」及び「条件2」の2つ条件を設定しているのは、「条件2」の下で良好な試験結果が得られた各試料(回転工具3)につき、より高温条件下における耐熱性を「条件1」によって評価するためである。
 ここで、被加工材表面の加工状態に関する例として、「条件2」にて加工した後の被加工材の外観を図4~6に示す。図4に示した接合部を拡大すると、通常は図5に示す外観を有するが、加工欠陥が発生すると、接合部の一部或いは全体に図6に示すような空孔が発生する。この空孔の発生が認められた場合に、加工欠陥有りとした。
 加工試験後の回転工具3のプローブ4及びショルダ5の摩耗量は、触針式形状測定器を用いて回転工具先端の断面形状の変化を計測することによって評価した。プローブ4の摩耗量はその先端部の寸法減少量の最大値で表し、ショルダ5の摩耗量はその両端部に存在する寸法減少量の最も少ない部位の2点平均値で表した。例えば、「条件2」によって試験を実施した試料No.D-2及び試料No.N-4の断面形状をそれぞれ示した図7,8において、灰色部が試験前の断面形状を示し、黒色部が試験後の断面形状を示している。この場合、試料No.D-2はプローブ摩耗量0.009mm,ショルダ摩耗量0.037mmであり、試料No.N-4はプローブ摩耗量0.001mm,ショルダ摩耗量0.069mである。
 回転工具3の良否は、耐熱性の差異に大きく関わる「ショルダ変形」と、接合の信頼性に関わる「被加工材表面に発生した加工欠陥」で判断している。「ショルダ変形」と「被加工材表面に発生した加工欠陥」の両方が「無し」と判断された場合に本発明の効果を奏する良品であると判定している。特に「ショルダ変形」の有無に関しては、本実施例における優劣に留まらず、本発明の本質的な耐熱性の優劣を示唆しているため非常に重要である。
 ここで、ショルダ変形(クリープ)に関して、分かりやすい極端な例として、表1に記載しない内製のWC-20Co合金によって作製した回転工具を使用し、「条件1」の下で試験を実施した後の外観を図9に示す。この外観から明らかな通り、摩擦熱によりショルダ上端部が大きく潰れて、その外周側面が外側に膨出するため、その外径が大きく変化していることが判る。そこで、ここでの試験においては、ショルダの上端部における最大外径Sと、そこから軸方向基端側(プローブ4が突設された端面とは逆側)に1mm離れた部位におけるショルダの外径Tとを投影機で測定し、それらの差S-Tと前記外径Tとの比で表される外径変化率が1.0%を超えた場合に「変形有り」としている(なお、図9の外径変化率は6.3%である)。
 上記の表3に示すように、本発明の実施例である試料No.D-1~12は、摩擦攪拌工程後における『「条件1」でのショルダ変形(クリープ)』の外径変化率が何れも1.0%以下であり、それに関連して、これら試料のプローブ及びショルダの摩耗量が、比較例及び従来材の例に示した各材料よりも有意に少ない傾向を示していることが判る。
 そこでまず、硬質相の組成かつ金属結合相の組成が共通している試料No.D-1,2,3及び試料No.C-1,2について比較する。表2に示されるように、これら試料の違いは、焼結体全体に対する金属結合相の割合(体積%)であり、割合が少ない順に、No.C-1(8体積%)<No.D-1(15体積%)<No.D-2(30体積%)<No.D-3(55体積%)<No.C-2(70体積%)となっている。
 金属結合相の割合が8体積%と少ない試料No.C-1では、回転工具3が被加工材へ挿入している途中の段階で破砕してしまい、試験の継続が不可能であった。これは、金属結合相の割合を低減させることによって極めて優れた高温硬さを示す一方、破壊靭性が5MPa・m1/2であり、セラミックスである窒化珪素No.N-4と比較しても有意に低いことに起因する。それに対して、金属結合相の割合が15体積%に達した試料No.D-1は、窒化珪素No.N-4を超える破壊靭性を有し、摩擦攪拌による加工試験でも良好な結果が得られた。以上のことから、本発明における焼結体に必要な金属結合相の割合は少なくとも15体積%以上と定められる。
 但し、金属結合相の割合を増やすほど、破壊靭性は向上する一方で高温硬さは低減する。金属結合相の割合が55体積%の試料No.D-3まではショルダ変形(クリープ)による外径変化率は1.0%以下であったが、金属結合相の割合が70体積%と多い試料No.C-2では、摩擦攪拌による加工後のプローブ4及びショルダ5の摩耗量が大きく、ショルダ変形(クリープ)による外径変化率も1.0%を超えて1.3%に達する。以上から、耐熱性の確保のために、本発明における焼結体に必要な金属結合相の割合は55体積%以下と定められる。
 なお、硬質相が含まれていない、実質的にL1相(γ’相)を含む金属結合相のみで形成されているとみなせる市販の試料No.N-3(Ni-Ir超合金)では、「条件1」及び「条件2」の何れにおいても、被加工材の接合開始後すぐに被加工材の表面に加工欠陥(空孔)が発生したため、何れも50mmで試験を中断した。使用後の回転工具は、プローブ4が完全に消失していた。「条件1」によって試験を実施した試料No.N-3の工具先端部の外観を図10に示す。この図10から分かるように、短い距離ながらショルダ5のクリープ変形の痕跡がないことから、この試料No.N-3は、硬質相が存在しないにもかかわらず優れた耐熱性を有しているものと推察される。しかしながら、プローブ4は、ショルダ5と被加工材との摩擦熱が十分に発生するより前に接触する部位であり、低い温度の状態から被加工材の塑性変形を伴う大きな圧力で摺動させる必要がある。このことから、被加工材と回転工具3との硬度差をより大きくするための硬質相の存在が必要不可欠であることが分かる。
 次に、硬質相の組成と金属結合相の割合が共通している試料No.D-2,4,5,6と試料No.C-3,4とを比較する。これらの試料は、金属結合相に存在するAlの量が、大凡25原子%を境として、それよりも少ない場合の第1パターンと、それよりも多い場合の第2パターンとに、大きく二分される。
 まず、前記第1パターンにおける違いは、金属結合相の組成(Alの割合)の変化に起因した金属間化合物L1相(γ’相)の割合(体積%)である。その割合が少ない順に、No.C-3(25体積%)<No.D-5(40体積%)<No.D-4(60体積%)<No.D-2(~100体積%)となっており、金属結合相におけるAlの割合(原子%)がより大きいほど、L1相(γ’相)の割合もより大きくなっている。
 金属結合相中のL1相(γ’相)の割合が25体積%と少ない試料No.C-3では、摩擦攪拌による加工後のプローブ4及びショルダ5の摩耗量がやや大きく、ショルダ変形(クリープ)による外径変化率も1.0%を超えて2.5%に達しており、また、被加工材の表面にも微細な加工欠陥(空孔)が発現している。それに対して、L1相(γ’相)の割合が40体積%以上の試料No.D-2,4,5では、何れもショルダ変形(クリープ)による外径変化率が1.0%以下を示し、被加工材の表面の加工欠陥(空孔)も見られない。以上のことから、耐熱性の確保のために、本発明における焼結体に必要な金属結合相中のL1相(γ’相)の割合は40体積%以上と定められる。
 なお、金属結合相中にL1相(γ’相)が存在しない従来のWC基合金であるNo.N-1,2は、何れもショルダ変形(クリープ)による外径変化率が1.0%を超えていることから、本発明の試料No.D-1~12及び試料No.D’-2,3と比較して耐熱性に乏しいと判断される。
 次に、前記第2パターンにおける違いは、金属結合相の組成(Alの割合)の変化に起因した金属間化合物B2相(β相)の割合(体積%)である。その割合が少ない順に、No.D-2(0体積%)<No.D-6(10体積%)<No.C-4(25体積%)となっており、金属結合相におけるAlの割合(原子%)がより大きいほど、B2相(β相)の割合の割合もより大きくなっている。
 金属結合相中のB2相(β相)の割合が10体積%である試料No.D-6では、ショルダ変形(クリープ)による外径変化率が1.0%以下を示し、被加工材の表面にも加工欠陥(空孔)は見られなかった。それに対して、金属結合相中のB2相(β相)の割合がより多い25体積%である試料No.C-4では、回転工具を被加工材へ挿入している途中の段階で破砕してしまい、試験の継続が不可能であった。これは、金属結合相中のB2相(β相)が増えると、硬さが向上する一方、破壊靭性が著しく低下することに起因している。以上のことから、本発明における焼結体を構成する金属結合相中のB2相(β相)の体積比は、10体積%以下とする必要があるといえる。更に、本発明の効果を最大限に発揮させるためには、試料No.D-6を除いた他の実施例の試料のように、X線回折装置の検出限界未満とすることがより好ましい。ここで、X線回折装置の検出限界未満とは、9kW級の高出力X線回折装置であっても安定した有無の検出が困難となる5体積%未満とする。
 以上の結果は、金属結合相中に含まれるAlの割合が、結合相の組織に占めるL1相(γ’相)及びB2相(β相)の割合に対して大きな影響を与えていることを示唆する。すなわち、金属結合相中に含まれるAlの割合を増減させることにより、結合相の組織に占めるL1相(γ’相)及びB2相(β相)の割合を調節することができることが分かる。
 ところで、金属結合相を形成する原料粉末であるAlは極めて酸化しやすいことから、不純物として焼結体中に酸化物が混入することを防ぐことは極めて困難である。極端な例であるが、焼結体中の全Al量の20%相当が酸化した場合、試料No.D-2では大よそ3体積%に相当する酸化物が混入することになる。酸化物の混入に対する影響を検討するため、試料No.D-2の組成を基に原料粉末の全Al量の20%相当をAlに置換した試料No.D’-2を作製した。なお、この場合のAlの混入量は2.6モル%に相当し、金属成分としてのAlの減少量は4.5原子%に相当する。
 試料No.D’-2は、ショルダ変形(クリープ)による外径変化率が1.0%以下を示し、被加工材の表面の加工欠陥も見られないため、本発明の実施例として良好な効果を奏すると判断される。一方で、この試料No.D’-2は、試料No.D-2と比較して、破壊靭性等の機械特性において若干の低下傾向を示していることが分かる。以上のことから、本発明の効果を最大限に発揮させるためには、保管状態や焼成条件に留意し、出来得る限り酸化物の混入を抑制すること、具体的には、3体積%を超える酸化物の混入を防ぐことが好ましい。
 また、本発明の実施例としての試料No.D-1~12、及び比較例としてのNo.C-1~4には、全てBが微量添加されている。以下、Bが微量添加されている理由について、結合相の割合が多い試料No.D-3を基に、同じ組成でBのみ添加されていない試料No.D’-3と比較して述べる。
 試料No.D’-3は、ショルダ変形(クリープ)による外径変化率が1.0%以下を示し、被加工材の表面の加工欠陥も見られないため、本発明の実施例として良好な効果を奏していると判断される。一方で、試料No.D-3及びD’-3をそれぞれ2個ずつ用意し、各々の試料について各温度における硬さ(HV)を測定すると、図11に示すように、Bが添加されていない試料No.D’-3の方が常温硬さは若干高いが、600℃付近を境に試料No.D-3との優劣が逆転し、900~1000℃では数値にして100程度の有意な硬度差が生じた。すなわち、Bの添加は、L1相(γ’相)を含む金属結合相の高温時の硬さの向上に寄与することが分かる。以上のことから、本発明の効果を最大限に発揮させるためには、金属結合相の総量に対して0.04原子%以上のBを添加することがより好ましい。但し、Bの割合が過剰になると硼化物の発生による機械特性の低下が懸念されるため、Bの添加は、金属結合相の総量に対して1原子%以下を目安にすることが好ましい。
 更に、金属結合相を構成する元素として、必要に応じて、前述したNi,Al,B以外の元素を加えることも可能である。例えば、Ti,Mo,Si,Co,Cr,W,Ta,Nb,C,Zr,Fe及びCuのうち何れか1つ或いは2つ以上を添加により含有させることができる。
 試料No.D-7は、試料No.D-2を基に、主にAlの一部をTi,Mo,Siに置換するように添加した焼結体である。試料No.D-7は、試料No.D-2よりも破壊靭性が向上する傾向を有する。これは、TiやSiは余剰なCと反応することで、またMoはL1相(γ’相)内に固溶することで、L1相(γ’相)内に固溶するWC及び/或いはCの量を低減させる効果を発現した結果であるものと推察される。
 試料No.D-8は、試料No.D-2を基に、Ni及びAlの一部をCo,Cr,Mo,W,Ti,Ta,Nb,C,Zrに置換するように添加した焼結体である。試料No.D-8は、L1相(γ’相)の割合が50体積%であるが、このNo.D-8の900℃における高温硬さ(HV)は、同割合が60体積%である試料No.D-4の900℃における高温硬さ(HV)を上回る。したがって、Co,Cr,Mo,W,Ta,Nb,C,Zrは、L1相(γ’相)を含む金属結合相の耐熱性を向上させる効果を有しているものと推察される。
 また、本発明の耐熱性や機械特性に直接的に寄与しないため表中には例示していないが、Cuの添加は金属結合相中のNiとAlに作用して焼結密度を安定化させる効果があるため、有用である。
 なお、金属結合相中のL1相(γ’相)の割合を確保するために、Bを始めとするTi,Mo,Si,Co,Cr,W,Ta,Nb,C,Zr,Fe及びCu等、金属結合相中における必須成分のNi及びAlを除く添加物は、金属結合相中のL1相(γ’相)の割合が低い試料No.D-5及び試料No.D-8の組成範囲内を目安にして調整し、添加することが好ましい。より具体的には、金属結合相を構成する全元素中にNi及び15原子%以上のAlを必ず含ませ、かつ、金属結合相中におけるNiを除いた残りの構成元素の合計が15原子%以上35原子%以下の範囲内になることを目安にして調整し、添加することが好ましい。
 以上のように、表2に示した各試料の機械特性によれば、本発明の実施例である試料No.D-1~12、並びに、試料No.D’-2及びNo.D’-3は、室温硬さがHRAで84.5以上、室温曲げ強度が1200MPa以上、室温破壊靭性が8MPa・m1/2以上、かつ900℃における硬さがHVで450以上という条件を全て充足しており、これら各機械特性をバランス良く確保している。それに対して、比較例の試料No.C-1~4は、それら機械特性の条件の何れかが欠けていることが分かる。よって、室温硬さがHRAで84.5以上、室温曲げ強度1200MPa以上、室温靭性8MPa・m1/2以上、かつ900℃における硬さがHV450以上という条件を全て充足する焼結体が、好ましい焼結体の目安になる。
 ところで、本発明の焼結体は、900~1000℃に及ぶ高温での加熱条件下では徐々に黄褐色に変色していく。変色の度合いは結合相量が減少するほど強くなる傾向にある。変色の原因について、X線回折を用いて分析した結果を図12に示す。この分析結果によれば、変色部分に発生した析出相はWOとNiWOであることから、主にWCの酸化が、この変色の支配的な要因であることが分かる。
 本発明の焼結体を回転工具として適用した場合、工具の損傷部位を修正して再利用する場合が考えられるが、これは、時に本発明の回転工具のコストを低減させるための重要な指針となる。WOとNiWOの発生した部位は特性の変化が懸念されるため、工具の損傷部位に修正加工を施して再利用しようとした場合、発生したWOとNiWOを全て除去することが好ましい。また、WOとNiWOの発生は、主に大気に長期間晒されうる回転工具の外周側面部で顕著に発生する。よって、回転工具の外周側面部に耐酸化性を付与し、WOとNiWOの生成をできる限り抑制することが有効である。
 そこで、この硬質相には、必要に応じて焼結体の酸化を抑制するための添加物であるTiC,TiN,Ti(C,N),Cr,TaC及びこれらとWCとの固溶体のうち何れか一つ或いは2つ以上を含有させることができる。そして、これらの添加物の添加によって、WCの一部がTiC,TiN,Ti(C,N),Cr,TaCに固溶するため、WC単独の場合と比較して焼結体中に存在するWの存在比が少なくなる。その結果、酸化に寄与するWの量が低減してWCの酸化が抑制される。
 表1には、酸化を抑制する前記添加物を含有する焼結体の例が試料No.D-9~12として示されている。これら試料No.D-9~12は、焼結体全体に対する金属結合相の体積比と金属結合相の組成とが試料No.D-2と同一であり、硬質相の添加物が相違する焼結体である。そこで、図13に示す「条件2」によって試験を実施した試料No.D-2の工具先端部の外観と、図14に示す同条件で試験を実施した試料No.D-10の工具先端部の外観とを比較すると、TiCを添加した試料No.D-10は、試料No.D-2よりもショルダ外周側面部7の変色が有意に少ないことが分かる。このことから、前記TiC等の添加物には、焼結体の酸化を抑制する効果があると認められる。
 また、本実施形態の焼結体から成る回転工具3は、上述のようにクリープ変形に対する耐性が高いため、その表面に耐酸化性被覆を施すことでも、該皮膜の効果を有効に発揮させて極めて高い酸化抑制効果を得ることができる。耐酸化性被覆は、例えば、Ti,Si,Al,Crを主要な構成元素として含む窒化物、炭窒化物或いは酸窒化物の単層膜或いは多層膜によって構成することができる。このとき、被覆層の酸化開始温度は少なくとも900℃以上であることが必要である。
 この場合、回転工具3の表面、特にショルダ5の外周側面7の表面に耐酸化性被膜を施すと有効である。通常の摩擦攪拌工程の使用環境においては、このショルダ5の外周側面7が攪拌に直接寄与することはないため、耐酸化性が確保されている限り、該外周側面7の被覆層の厚みが損耗することなく維持される。更に、回転工具3の先端形状を修正した後も、ショルダ5の外周側面7は修正の必要が無いため、被覆層はそのまま維持される。つまり、ショルダ外周側面7の耐酸化性被覆層は、回転工具3の先端形状の修正に関わらず、恒久的に維持される。よって、摩擦攪拌工程に用いる回転工具として重要な課題である工具コストに対して、極めて高い削減効果を発揮する。
 以上の通り、本発明の実施例であるところの硬質焼結体及びそれを用いた回転工具は、高い破壊靭性を確保しながら、金属材料からなる被加工材が900~1000℃に至る高温に加熱されながら加工される過酷な条件下においても、長期にわたり優れた耐久性を得ることができることが分かる。更に、その主な原料は一般的に用いられるWC,Ni,Alであり、上記特許文献3及び特許文献8等で使用される例えばIrのような高価な貴金属を主要成分として使用する必要性がなく、しかも一般的な粉末冶金法で製作することが可能であり、製造コストを抑制することもできる。
 以上、本発明に係る硬質焼結体及びそれを用いた回転工具ついて説明してきたが、本発明は上記の実施形態に限定されることなく、特許請求の範囲の趣旨を逸脱しない範囲で様々な設計変更が可能であることは言うまでもない。
 1A,1B 被加工材
 2 接合領域
 3 回転工具
 4 プローブ
 5 ショルダ
 6 バックプレート
 7 ショルダの外周側面
 8 回転工具の進行方向

Claims (5)

  1.  WCを含む単一或いは複数の炭化物及び/又は炭窒化物で構成される硬質相と、遷移金属及び遷移金属を含む金属間化合物から成る金属結合相とを有する硬質焼結体であって、
     前記金属結合相は、Ni及びAlを含み、前記焼結体全体に対して15%以上かつ55%以下の体積比を有しており、
     更に、該金属結合相は、該金属結合相全体に対して40%以上の体積比のL1相(γ’相)と、10%以下の体積比のB2相(β相)とで構成されている、
    ことを特徴とする硬質焼結体。
  2.  前記硬質相に、TiC、TiN、Ti(C,N)、Cr、TaC、及びこれらとWCとの固溶体のうち何れか1つ或いは2つ以上を含む、請求項1に記載の硬質焼結体。
  3.  請求項1に記載の硬質焼結体によって形成されている、
    ことを特徴とする回転工具。
  4.  請求項3に記載の回転工具の表面に、酸化開始温度900℃以上の耐酸化性被覆が施されている回転工具。
  5.  摩擦攪拌工程に用いられる、請求項3に記載の回転工具。
PCT/JP2018/038101 2017-10-19 2018-10-12 硬質焼結体及びそれを用いた回転工具 WO2019078109A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202722A JP2019073786A (ja) 2017-10-19 2017-10-19 硬質焼結体及びそれを用いた回転工具
JP2017-202722 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019078109A1 true WO2019078109A1 (ja) 2019-04-25

Family

ID=66173594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038101 WO2019078109A1 (ja) 2017-10-19 2018-10-12 硬質焼結体及びそれを用いた回転工具

Country Status (2)

Country Link
JP (1) JP2019073786A (ja)
WO (1) WO2019078109A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105911A (ja) * 1985-11-05 1987-05-16 Sumitomo Electric Ind Ltd 硬質ダイヤモンド塊体およびその製造方法
JPH07502070A (ja) * 1990-10-10 1995-03-02 ベイルナイト インコーポレイテッド アルミナセラミック・金属の物品
US5905937A (en) * 1998-01-06 1999-05-18 Lockheed Martin Energy Research Corporation Method of making sintered ductile intermetallic-bonded ceramic composites
JP2002194474A (ja) * 2000-12-22 2002-07-10 Ngk Spark Plug Co Ltd 炭化タングステン系超硬基複合材料焼結体
JP2006144089A (ja) * 2004-11-22 2006-06-08 Tungaloy Corp 超微粒子超硬合金
CN101323925A (zh) * 2008-06-25 2008-12-17 华南理工大学 一种以Ni3Al为粘结相的碳化钨材料及其制备方法
JP2009543696A (ja) * 2006-01-31 2009-12-10 ワールドワイド ストラテジー ホールディングス リミテッド 高性能摩擦撹拌接合ツール
CN101880810A (zh) * 2010-07-08 2010-11-10 株洲特利亚硬质合金有限公司 一种含铝化镍和硼铜基的硬质合金及其制造方法
CN102140603A (zh) * 2011-03-24 2011-08-03 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN102154582A (zh) * 2011-05-27 2011-08-17 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN102162058A (zh) * 2011-04-07 2011-08-24 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
JP2011200872A (ja) * 2010-03-24 2011-10-13 Osaka Prefecture Univ 摩擦攪拌加工装置及び摩擦攪拌加工方法
CN102560215A (zh) * 2012-02-17 2012-07-11 中南大学 一种Ni3Al粘结的超细晶碳化钨基硬质合金及制备方法
CN105907997A (zh) * 2016-06-02 2016-08-31 华南理工大学 原位自生纳米Al2O3增韧WC-Ni3Al复合材料及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105911A (ja) * 1985-11-05 1987-05-16 Sumitomo Electric Ind Ltd 硬質ダイヤモンド塊体およびその製造方法
JPH07502070A (ja) * 1990-10-10 1995-03-02 ベイルナイト インコーポレイテッド アルミナセラミック・金属の物品
US5905937A (en) * 1998-01-06 1999-05-18 Lockheed Martin Energy Research Corporation Method of making sintered ductile intermetallic-bonded ceramic composites
JP2002194474A (ja) * 2000-12-22 2002-07-10 Ngk Spark Plug Co Ltd 炭化タングステン系超硬基複合材料焼結体
JP2006144089A (ja) * 2004-11-22 2006-06-08 Tungaloy Corp 超微粒子超硬合金
JP2009543696A (ja) * 2006-01-31 2009-12-10 ワールドワイド ストラテジー ホールディングス リミテッド 高性能摩擦撹拌接合ツール
CN101323925A (zh) * 2008-06-25 2008-12-17 华南理工大学 一种以Ni3Al为粘结相的碳化钨材料及其制备方法
JP2011200872A (ja) * 2010-03-24 2011-10-13 Osaka Prefecture Univ 摩擦攪拌加工装置及び摩擦攪拌加工方法
CN101880810A (zh) * 2010-07-08 2010-11-10 株洲特利亚硬质合金有限公司 一种含铝化镍和硼铜基的硬质合金及其制造方法
CN102140603A (zh) * 2011-03-24 2011-08-03 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN102162058A (zh) * 2011-04-07 2011-08-24 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN102154582A (zh) * 2011-05-27 2011-08-17 株洲硬质合金集团有限公司 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN102560215A (zh) * 2012-02-17 2012-07-11 中南大学 一种Ni3Al粘结的超细晶碳化钨基硬质合金及制备方法
CN105907997A (zh) * 2016-06-02 2016-08-31 华南理工大学 原位自生纳米Al2O3增韧WC-Ni3Al复合材料及其制备方法

Also Published As

Publication number Publication date
JP2019073786A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6330387B2 (ja) 焼結体およびその製造方法
JP6343888B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
WO2014208447A1 (ja) サーメットおよびその製造方法並びに切削工具
JP5152770B1 (ja) 強靭超硬合金の製造方法
JP6740862B2 (ja) 硬質材料および摩擦撹拌接合用ツール
JP5971616B2 (ja) 硬質材料、硬質材料の製造方法、切削工具及び摩擦撹拌接合用ツール
JP6048522B2 (ja) 焼結体および切削工具
JP2011235410A (ja) 耐熱合金の切削加工で優れた耐欠損性を発揮するwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP6615108B2 (ja) 高温耐酸化性のレアメタルフリー硬質焼結体およびその製造方法
JP2015203116A (ja) チップソー用炭窒化チタン基サーメット
JP6098882B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
WO2019078109A1 (ja) 硬質焼結体及びそれを用いた回転工具
JP6928196B2 (ja) 立方晶窒化硼素焼結体
WO2015141757A1 (ja) サーメット工具
JP2004263251A (ja) 7a族元素含有超硬合金
JP2019183201A (ja) 焼結体および回転ツール
JP7508155B1 (ja) 軽量硬質合金の製造方法
JP2007162065A (ja) 被覆超硬合金部材及び希土類元素含有超硬合金の製造方法
WO2022208766A1 (ja) 超硬合金及び金型
JP7087596B2 (ja) 切削工具
JP5826138B2 (ja) 強靱超硬合金及び被覆超硬合金
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP6304615B1 (ja) 工具
WO2024096134A1 (ja) 軽量硬質合金及び軽量硬質合金部材
JP2005068479A (ja) ホウ素含有超硬合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867461

Country of ref document: EP

Kind code of ref document: A1