WO2023176027A1 - 表面処理亜鉛めっき鋼板 - Google Patents
表面処理亜鉛めっき鋼板 Download PDFInfo
- Publication number
- WO2023176027A1 WO2023176027A1 PCT/JP2022/038116 JP2022038116W WO2023176027A1 WO 2023176027 A1 WO2023176027 A1 WO 2023176027A1 JP 2022038116 W JP2022038116 W JP 2022038116W WO 2023176027 A1 WO2023176027 A1 WO 2023176027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- steel sheet
- carbon atoms
- mass
- film
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 134
- 239000010959 steel Substances 0.000 title claims abstract description 134
- 239000000654 additive Substances 0.000 claims abstract description 79
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 57
- -1 aliphatic dicarboxylic acids Chemical class 0.000 claims abstract description 33
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 25
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 150000003973 alkyl amines Chemical class 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 17
- 239000011701 zinc Substances 0.000 claims abstract description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000007747 plating Methods 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 111
- 239000001257 hydrogen Substances 0.000 claims description 111
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 103
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 76
- 239000008397 galvanized steel Substances 0.000 claims description 76
- 238000012360 testing method Methods 0.000 claims description 57
- 230000000996 additive effect Effects 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 31
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 23
- 125000001931 aliphatic group Chemical group 0.000 claims description 18
- 150000001412 amines Chemical class 0.000 claims description 18
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 claims description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 7
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 claims description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000001530 fumaric acid Substances 0.000 claims description 4
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 claims description 4
- 235000006408 oxalic acid Nutrition 0.000 claims description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 4
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 claims description 3
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 3
- SMNNDVUKAKPGDD-UHFFFAOYSA-N 2-butylbenzoic acid Chemical compound CCCCC1=CC=CC=C1C(O)=O SMNNDVUKAKPGDD-UHFFFAOYSA-N 0.000 claims description 3
- LTHNHFOGQMKPOV-UHFFFAOYSA-N 2-ethylhexan-1-amine Chemical compound CCCCC(CC)CN LTHNHFOGQMKPOV-UHFFFAOYSA-N 0.000 claims description 3
- ALKYHXVLJMQRLQ-UHFFFAOYSA-N 3-Hydroxy-2-naphthoate Chemical compound C1=CC=C2C=C(O)C(C(=O)O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-N 0.000 claims description 3
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 claims description 3
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 claims description 3
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 claims description 3
- 239000005711 Benzoic acid Substances 0.000 claims description 3
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 claims description 3
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 claims description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000001361 adipic acid Substances 0.000 claims description 3
- 235000011037 adipic acid Nutrition 0.000 claims description 3
- 229960004050 aminobenzoic acid Drugs 0.000 claims description 3
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 3
- 235000010233 benzoic acid Nutrition 0.000 claims description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 claims description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- FRQONEWDWWHIPM-UHFFFAOYSA-N n,n-dicyclohexylcyclohexanamine Chemical compound C1CCCCC1N(C1CCCCC1)C1CCCCC1 FRQONEWDWWHIPM-UHFFFAOYSA-N 0.000 claims description 3
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920001225 polyester resin Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- 229920005672 polyolefin resin Polymers 0.000 claims description 3
- 229960004889 salicylic acid Drugs 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 abstract description 38
- 239000000203 mixture Substances 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 description 30
- 230000007797 corrosion Effects 0.000 description 30
- 238000004381 surface treatment Methods 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000007788 liquid Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 18
- 238000005336 cracking Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 238000010422 painting Methods 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- HJZKOAYDRQLPME-UHFFFAOYSA-N oxidronic acid Chemical compound OP(=O)(O)C(O)P(O)(O)=O HJZKOAYDRQLPME-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- OXAUNDBQHKIUSD-UHFFFAOYSA-N azanium;titanium;fluoride Chemical compound [NH4+].[F-].[Ti] OXAUNDBQHKIUSD-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- GQJPVGNFTLBCIQ-UHFFFAOYSA-L sodium;zirconium(4+);carbonate Chemical compound [Na+].[Zr+4].[O-]C([O-])=O GQJPVGNFTLBCIQ-UHFFFAOYSA-L 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
Definitions
- the present disclosure relates to a surface-treated galvanized steel sheet.
- Delayed fracture is when a high-strength steel material undergoes static load stress (load stress less than tensile strength) and suddenly brittle fracture occurs without plastic deformation after a certain period of time. It is a phenomenon.
- Delayed fracture is known to be caused by hydrogen penetrating into the steel from the environment (hydrogen embrittlement). Hydrogen can enter through the pickling process during the manufacturing and processing stages of steel sheets, the wet plating process, and the atmosphere. An example of this is corrosion in the environment.
- Non-Patent Document 1 reports that delayed fracture occurs in high-strength steel plates having a tensile strength of 1180 MPa or more.
- Patent Document 1 a technique for suppressing this is known (Patent Document 1). Furthermore, a technology has been proposed (Patent Document 2) that suppresses hydrogen intrusion by forming a zinc-nickel based plating layer with Ni added during plating on the surface of a high-strength steel sheet.
- the purpose of the present disclosure is to solve the problems of the prior art as described above, and to provide a surface treatment that has excellent delayed fracture resistance even in low-temperature environments regardless of the composition of the underlying steel sheet, and that can be manufactured at low cost.
- Our goal is to provide galvanized steel sheets.
- the present inventors have conducted intensive studies and research on suppressing hydrogen intrusion by surface treating steel sheets.
- at least one additive selected from the group consisting of salts of aliphatic dicarboxylic acids and alkyl amines, salts of aliphatic dicarboxylic acids and cycloalkylamines, and salts of aromatic monocarboxylic acids and alkyl amines. It has been found that delayed fracture of a steel plate can be effectively suppressed by forming a film on a galvanized steel plate containing the component in an amount of 10% by mass or more and 50% by mass or less in terms of solid content.
- the present disclosure has been made based on the above findings. That is, the gist of the present disclosure is as follows.
- the coating is a surface-treated galvanized steel sheet containing an additive in an amount of 10% by mass or more and 50% by mass or less in terms of solid content.
- the additive is a salt of an aliphatic dicarboxylic acid having 2 to 8 carbon atoms and an alkylamine having 6 to 18 carbon atoms; and salts of aromatic monocarboxylic acids having 7 to 12 carbon atoms and alkyl amines having 6 to 18 carbon atoms.
- the aliphatic dicarboxylic acid having 2 to 8 carbon atoms is at least one selected from the group consisting of oxalic acid, maleic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, and adipic acid
- the aromatic monocarboxylic acid having 7 to 12 carbon atoms is benzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-nitrobenzoic acid, salicylic acid, p-hydroxybenzoic acid, toluic acid, pt- at least one selected from the group consisting of butylbenzoic acid and ⁇ -oxynaphthoic acid
- the alkylamine having 6 to 18 carbon atoms is selected from the group consisting of octadecylamine, dodecylamine, decylamine, monooctylamine, monohexylamine, monodecanoic amine, monododecanoic amine,
- At least one selected type The surface-treated galvanized steel sheet according to [1] above, wherein the cycloalkylamine having 6 to 18 carbon atoms is cyclohexylamine, dicyclohexylamine, or tricyclohexylamine.
- the hydrogen permeation current density iH is determined by connecting a zinc plate and a test steel plate, exposing the zinc plate and one surface of the test steel plate to the solution, and making the one surface a hydrogen permeation surface.
- the other surface of the test steel plate is a hydrogen detection surface provided with a palladium plating film, Measurement is performed using an electrochemical cell installed on the hydrogen detection surface.
- FIG. 3 is a diagram for explaining a method of measuring hydrogen permeation current density.
- FIG. 3 is a diagram for explaining a method of measuring hydrogen permeation current density.
- FIG. 2 is a schematic diagram showing an apparatus for measuring the amount of hydrogen intrusion. It is a figure which shows an example of the measurement result of hydrogen permeation current density.
- FIG. 3 is a diagram for explaining a test piece for evaluating delayed fracture resistance. It is a figure for explaining the dry-wet repeated test for evaluating delayed fracture resistance.
- a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit.
- a surface-treated galvanized steel sheet according to the present disclosure includes a steel sheet having a tensile strength of 1180 MPa or more, a galvanized layer formed on at least one side of the steel sheet, and a film formed on the galvanized layer.
- the surface-treated galvanized steel sheet will be explained in detail.
- the steel sheet that serves as the base steel sheet for the surface-treated galvanized steel sheet will be explained.
- the steel plate is a high-strength steel plate with a tensile strength of 1180 MPa or more. It is preferable that the tensile strength of the steel plate is 1470 MPa or more. Delayed fracture is less likely to occur in steel plates with low tensile strength. The effect of having excellent delayed fracture resistance even in low-temperature environments is expressed even in steel plates with low tensile strength, but it is noticeable in steel plates with a tensile strength of 1180 MPa or more, and in steel plates with a tensile strength of 1470 MPa or more. More prominently expressed.
- the tensile strength of the steel plate is measured as follows. A JIS No. 5 tensile test piece is taken from a steel plate so that the direction perpendicular to rolling is the longitudinal direction (tensile direction), and the tensile strength (TS) is measured by a tensile test in accordance with JIS Z2241 (1998). In addition, when evaluating the tensile strength of a surface-treated galvanized steel sheet (substrate steel sheet), as described later, the galvanized layer and film are removed from the surface-treated galvanized steel sheet and the single steel sheet is separated. The tensile strength of this steel plate may be evaluated, or the tensile strength of the surface-treated galvanized steel plate may be regarded as the tensile strength of the steel plate.
- the steel plate may have the above-mentioned tensile strength, and the composition of the steel plate is not particularly limited.
- C 0.1% by mass to 0.4% by mass
- Si 0% by mass to 2.5% by mass
- Mn 1% by mass to 3.5% by mass
- P 0% by mass to 0.05% by mass.
- S 0% by mass to 0.005% by mass
- the remainder may be composed of Fe and unavoidable impurities.
- Si 0.01% by mass to 2.5% by mass
- Mn 1% by mass to 3.5% by mass
- P 0.0001% by mass.
- the composition of the steel sheet further includes, as arbitrary elements, Cu: 1.0% by mass or less, Ti: 0.2% by mass or less, V: 0.5% by mass or less, and sol. Al: 0.1% by mass or less, Cr: 1.0% by mass or less, Nb: 0.2% by mass or less, W: 0.5% by mass or less, Zr: 0.1% by mass or less, and B: 0.005. Mass % or less, N: 0.0005 mass % to 0.0100 mass %, Ni: 0.01 mass % to 2.00 mass %, Mo: 0.005 mass % to 2.000 mass %, Ca: 0.
- REM 00002 mass% to 0.0050 mass%
- Sb 0.002 mass% to 0.200 mass%
- Sn 0.002 mass% to 0.200 mass%
- It may contain one or more selected from the group consisting of: It is preferable that these optional elements be added in a total amount of about 4% by mass.
- sol Preferably, Al, Cr: 0.01% by mass, Cu, Ti, V, Nb, W, Zr: 0.005% by mass, and B: about 0.0001% by mass.
- steel sheets can be solid solution strengthened by, for example, adding interstitial solid solution elements such as C and N and substitutional solid solution elements such as Si, Mn, P, and Cr. It may be a component composition.
- the steel plate may have a composition that allows precipitation strengthening with carbon/nitrides such as Ti, Nb, V, and Al.
- the composition of the steel plate may include reinforcing elements such as W, Zr, B, Cu, and rare earth elements.
- the steel structure of the steel plate is also not particularly limited.
- Steel sheets can be subjected to various structural or structural modifications singly or in combination. For example, strengthening by recovery annealing at a temperature at which no recrystallization occurs, partial recrystallization strengthening that leaves unrecrystallized regions without complete recrystallization, single-phase bainite or martensite, or ferrite and these transformed structures.
- steel plates include, for example, JFE-CA1180, JFE-CA1320, JFE-CA1470, JFE-CA1180SF, JFE-CA1180Y1, JFE-CA1180Y2 (all manufactured by JFE Steel Corporation), SAFC1180D (Nippon Steel Corporation). (manufactured by Co., Ltd.) can be exemplified. Furthermore, both cold-rolled steel sheets and hot-rolled steel sheets can be used as high-strength steel sheets.
- the thickness of the steel plate is not particularly limited. In one example, the thickness of the steel plate may be 0.8 mm or more and 5 mm or less. The thickness of the steel plate is more preferably 1.2 mm or more and 2.0 mm or less.
- the surface-treated galvanized steel sheet according to the present disclosure has a galvanized layer on at least one side of the steel sheet.
- the galvanized layer may be formed by any plating method such as a hot-dip plating method, an electroplating method, an electroless plating method, or a vapor deposition plating method.
- a plating layer is common.
- the hot-dip galvanized steel sheet includes an alloyed hot-dip galvanized steel sheet obtained by alloying treatment after hot-dip galvanizing.
- the surface-treated galvanized steel sheet according to the present disclosure has a film containing an additive described below on the galvanized layer of the galvanized steel sheet as described above.
- the additives contained in this coating are salts of aliphatic dicarboxylic acids having 2 to 8 carbon atoms and alkyl amines having 6 to 18 carbon atoms, and aliphatic dicarboxylic acids having 2 to 8 carbon atoms and 6 to 6 carbon atoms. -18 cycloalkylamines, and salts of aromatic monocarboxylic acids having 7 to 12 carbon atoms and alkyl amines having 6 to 18 carbon atoms.
- Galvanized steel sheets are widely used for members that require corrosion resistance in atmospheric environments. This is because zinc has an excellent sacrificial anticorrosion effect.
- a hydrogen generation reaction occurs on the base steel of galvanized steel sheets. Hydrogen intrusion into galvanized steel sheets is largely due to this hydrogen generation reaction. Therefore, the present inventors came up with the idea of suppressing hydrogen intrusion by suppressing the increase in the exposed portion of the base metal, which is a hydrogen generation site, and completed the present disclosure.
- the additives added to the film are classified as adsorption film-type rust preventive additives that exhibit rust preventive properties by adsorbing onto metal surfaces.
- adsorbent film-type rust preventive additives exhibit rust preventive properties by protecting the surface of steel sheets from corrosive environments. The effect of significantly improving this was newly discovered through independent studies by the present inventors. It is believed that the additives with amide groups are eluted from the film and adsorbed to the metal surface, which coats the exposed parts of the steel, which are hydrogen generation sites, and suppresses hydrogen generation, leading to suppression of hydrogen intrusion. It will be done.
- the alkylamine or cycloalkylamine contained in the additive is preferably a primary amine or a secondary amine because it easily forms a salt with a carboxylate.
- the alkylamine having 6 to 18 carbon atoms is selected from the group consisting of octadecylamine, dodecylamine, decylamine, monooctylamine, monohexylamine, monodecanoic amine, monododecanoic amine, and mono-2-ethylhexylamine. At least one selected type is preferred.
- cycloalkylamine having 6 to 18 carbon atoms cyclohexylamine, dicyclohexylamine, and tricyclohexylamine are preferred.
- the above-mentioned alkylamines or cycloalkylamines may be used in combination.
- the aliphatic dicarboxylic acid having 2 to 8 carbon atoms or the aromatic monocarboxylic acid having 7 to 12 carbon atoms contained in the additive affects the ease with which salts are formed with alkylamines and cycloalkylamines. If an aliphatic dicarboxylic acid having 2 to 8 carbon atoms or an aromatic monocarboxylic acid having 7 to 12 carbon atoms is used as the carboxylic acid, salt formation between the carboxylic acid and the amine becomes easy, and the solubility of the amine improves. do.
- the additive is a diamine salt obtained from 1 mole of aliphatic dicarboxylic acid and 2 moles of amine, or a monoamine salt obtained from 1 mole of aliphatic dicarboxylic acid and 1 mole of amine. If the aliphatic dicarboxylic acid has 2 to 8 carbon atoms, the acid strength will be high, making it easier to form an amine salt, and the amine will be more likely to be liberated in the film, improving the solubility of the amine. On the other hand, when the number of carbon atoms in the aliphatic dicarboxylic acid is 9 or more, it becomes difficult to form an amine salt (particularly a diamine salt), and the pH of the component salt tends to decrease.
- the number of carbon atoms of the aliphatic dicarboxylic acid from 2 to 8 includes the number of carbon atoms forming the aliphatic group and the number of carbon atoms forming the carboxylic acid. Therefore, the number of carbon atoms excluding dicarboxylic acid is 0 to 6.
- the number of carbon atoms in the aliphatic dicarboxylic acid is preferably 6 or less.
- the aliphatic group constituting the aliphatic dicarboxylic acid is preferably an alkylene group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. As the alkylene group, an alkylene group having 1 to 4 carbon atoms is more preferable.
- the alkenyl group an alkenyl group having 2 to 4 carbon atoms is more preferable.
- the aliphatic dicarboxylic acid having 2 to 8 carbon atoms may be oxalic acid in which the carbon atoms of a carboxyl group are connected by a single bond.
- the aliphatic dicarboxylic acid having 2 to 8 carbon atoms is preferably at least one selected from the group consisting of oxalic acid, maleic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, and adipic acid.
- an aromatic monocarboxylic acid having 7 to 12 carbon atoms is used. If it is a salt of an aromatic carboxylic acid having 7 to 12 carbon atoms and an amine, the amine salt can be easily formed, and the amine can be easily liberated in the film, improving the solubility of the amine.
- the number of carbon atoms of the aromatic monocarboxylic acid from 7 to 12 includes the number of carbon atoms constituting the aromatic group and the number of carbon atoms constituting the carboxylic acid. Therefore, the number of carbon atoms excluding monocarboxylic acid is 6 to 11.
- the aromatic ring contained in the aromatic monocarboxylic acid is preferably a benzene ring or a naphthalene ring because it is easy to manufacture.
- a substituent such as a methyl group, hydroxyl group, amino group, or nitro group may be bonded to the aromatic ring.
- Aromatic monocarboxylic acids having 7 to 12 carbon atoms include benzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-nitrobenzoic acid, salicylic acid, p-hydroxybenzoic acid, toluic acid, pt- At least one selected from the group consisting of butylbenzoic acid and ⁇ -oxynaphthoic acid is preferred.
- the additive has a hydrogen permeation current density iH t measured by adding 1 g/L of the additive to a solution simulating a corrosive environment, and a hydrogen permeation current density iH 0 measured without adding the additive to the solution. , it is preferable that the following formula (1) is satisfied. iH t /iH 0 ⁇ 0.50...(1)
- the hydrogen permeation current density iH is determined by connecting a zinc plate and a steel plate for testing, exposing one side of the zinc plate and the steel plate for testing to the above solution, and using this one side as the hydrogen penetration surface.
- the other surface of the steel plate is used as a hydrogen detection surface provided with a palladium plating film, and measurement is performed with an electrochemical cell installed on this hydrogen detection surface.
- the surface-treated galvanized steel sheet according to the present disclosure has a coating containing the above-mentioned additives, thereby suppressing the penetration of hydrogen in a corrosive environment and exhibiting excellent delayed fracture resistance. ) By using an additive that satisfies the following, delayed fracture resistance can be further improved.
- FIGS. 1A and 1B An overview of the method for measuring hydrogen permeation current density will be explained using FIGS. 1A and 1B.
- the galvanized layer is preferentially corroded instead of the steel sheet surface.
- electrons generated by corrosion of the galvanized layer react with water to generate hydrogen, which infiltrates into the steel. It is thought that the additives in the film are eluted from the film and coat the exposed surface of the steel sheet, thereby preventing hydrogen from penetrating.
- a sacrificial anticorrosion reaction occurs in the zinc plate 40 in the hydrogen generating tank 20, electrons flow to the electrically conductive steel plate 10 for testing, and a hydrogen generating reaction occurs on one surface 11 of the steel plate 10 for testing.
- hydrogen enters the steel from one surface 11 of the test steel sheet 10, and hydrogen diffuses through the steel toward the other surface 12 of the test steel sheet 10.
- a potential capable of oxidizing hydrogen into hydrogen ions is applied to the other surface 12 (hydrogen detection surface) of the test steel plate 10 facing the hydrogen detection tank 21, hydrogen diffuses and moves to reach the hydrogen detection surface 12.
- the hydrogen is oxidized to hydrogen ions.
- the hydrogen penetration behavior can be quantified.
- an additive to the solution in the hydrogen generation tank 20 that causes the sacrificial anticorrosion reaction, it is possible to investigate the effect of the additive on the hydrogen penetration behavior into the test steel plate 10.
- FIG. 2 is a schematic diagram showing an intruded hydrogen amount measuring device 100 used for measuring hydrogen permeation current density.
- One surface 11 of the test steel plate 10 is exposed to a solution simulating the corrosive environment in the hydrogen generation tank 20 to serve as a hydrogen penetration surface 11, and the other surface of the test steel plate 10 serves as a hydrogen detection surface 12.
- the hydrogen detection surface 12 is provided with a palladium plating film 50 to prevent reactions other than the oxidation reaction of hydrogen from occurring as much as possible.
- an electrochemical cell for measuring anode current is installed on the hydrogen detection surface 12. Any electrochemical cell can be used as long as it can measure the anode current at the hydrogen detection surface 12.
- the electrochemical cell is a hydrogen detection tank 21, and includes an electrolyte, a container containing the electrolyte, and a reference electrode 23 installed inside the container.
- a counter electrode 24 is provided.
- the additive contained in the film is preferably an additive whose iH t /iH 0 satisfies the following formula (1).
- iH t /iH 0 ⁇ 0.50...(1) That is, if the hydrogen permeation current density iH t measured when the additive is added under the same conditions is less than half of the hydrogen permeation current density iH 0 measured without adding the additive to the solution, It can be evaluated that it is an additive that can suitably reduce hydrogen intrusion into steel.
- iH t /iH 0 of the additive is more preferably 0.40 or less, even more preferably 0.30 or less.
- iH t /iH 0 is preferably low, and the lower limit is not particularly limited, but may be 0.01 or more in one example.
- the hydrogen generation tank 20 is assembled so that the zinc plate 40 and the test steel plate 10 face each other with the hydrogen generation tank 20 in between.
- the temperatures of the hydrogen generation tank 20 and the hydrogen detection tank 21 are adjusted to 10° C. using a temperature adjustment device such as a water bath.
- the thickness of the test steel plate 10 is 0.5 mm.
- the hydrogen detection surface 12 of the test steel plate 10 in contact with the hydrogen detection tank 21 is plated with palladium of about 100 nm in order to prevent reactions other than the hydrogen oxidation reaction from occurring as much as possible.
- the hydrogen detection tank 21 is filled with a 0.1M NaOH aqueous solution that has been degassed with nitrogen as an electrolyte.
- a potentiostat 30 is connected to the reference electrode 23 and counter electrode 24 attached to the test steel plate 10 and the hydrogen detection tank 21, and anodic polarization is started at a constant potential of 0 to 0.2 V vs. SHE. After the anode current attenuates to 0.1 ⁇ A/cm 2 or less, 5 wt. % NaCl aqueous solution. The additive is contained in the NaCl aqueous solution at a concentration of 1 g/L.
- the zinc plate 40 and the test steel plate 10 are connected with a copper wire or the like to establish electrical continuity, and a sacrificial corrosion protection reaction is started. After starting the sacrificial corrosion protection reaction, when the current becomes sufficiently stable, that is, after 48 hours have passed from the start of the sacrificial corrosion protection reaction, the hydrogen permeation current density iH t and iH 0 are evaluated.
- FIG. 3 shows an example of the measurement results of hydrogen permeation current density.
- a diamine salt of fumaric acid and monooctylamine is used as the additive.
- the hydrogen permeation current density iH 0 when the additive is not contained in the solution in the hydrogen generation tank 20 and the hydrogen permeation current density iH t when the additive is contained in the solution in the hydrogen generation tank 20 Each measurement was performed twice, and the average value was determined.
- the first measurement result is shown as N1
- the second measurement result is shown as N2.
- the hydrogen permeation current density iH 0 when the additive is not included in the solution in the hydrogen generation tank 20 is 0.35 ⁇ A/cm 2
- the hydrogen permeation current density iH 0 when the additive is included in the solution in the hydrogen generation tank 20 is iH t was 0.07 ⁇ A/cm 2 .
- Table 1 shows the iH t /iH 0 of various additives.
- additives satisfying formula (1) include X1-60, 62-68, 70-76, 78-84, 86-92, 94-100, 102-108, 110-116, 118-124, 126 to 149 are mentioned.
- the film contains the above-mentioned additives in an amount of 10% by mass or more and 50% by mass or less in terms of solid content.
- the content of the additive in the film (ratio to the mass of the film) is set to 10% by mass or more. It is thought that as the content of additives in the film increases, the area where component alkylamines and cycloalkylamines having amide groups are adsorbed onto the steel sheet surface increases, improving delayed fracture resistance. On the other hand, if the content exceeds 50% by mass, the strength of the film itself may decrease, so the content of the additive should be 50% by mass or less.
- the coating preferably contains 15% by mass or more, more preferably 20% by mass or more of the additive in terms of solid content. Further, the film preferably contains additives in an amount of 40% by mass or less, more preferably 30% by mass or less, in terms of solid content. In addition, when the film consists of multiple layers, the total content of additives contained in the multiple layers is 10% by mass or more and 50% by mass or less in terms of solid content.
- the coating may include an organic resin.
- the organic resin one or more selected from the group consisting of epoxy resin, acrylic resin, urethane resin, ethylene resin, phenol resin, polyester resin, fluororesin, polyolefin resin, and epoxy ester resin is preferably used. This is because these organic resins act as a barrier layer that protects the steel sheet from corrosion factors, suppressing corrosion that accompanies hydrogen generation reactions, and also have the function of preventing peeling of the galvanized layer during processing.
- the above organic resins can also be used in combination of two or more. It is also possible to form a film consisting of multiple layers using two or more types of resins from among the above organic resins.
- the film is preferably a film consisting of two or more layers.
- the coating consists of two layers: a lower coating on a galvanized steel sheet and an upper coating on the lower coating. Both the upper layer film and the lower layer film may contain an additive, or only one of them may contain an additive.
- the lower layer film is preferably a film that has excellent conductivity without reducing corrosion resistance.
- the lower layer film contains a water-soluble zirconium compound (a), a tetraalkoxysilane (b), a compound having an epoxy group (c), a chelating agent (d), and a vanadate compound (e). , a metal compound (f) containing at least one member selected from the group consisting of Ti, Al, and Zn in a range that satisfies the following conditions (I) to (IV), and has a pH of 8 to 10. It is desirable that the surface treatment liquid (A) obtained by coating the surface of a galvanized steel sheet and drying it is used.
- the thickness of the film is not particularly limited. In order to better function as a barrier layer against a corrosive environment, the thickness of the film is preferably 0.3 ⁇ m or more. On the other hand, in the case of steel plates for automobiles, there is a process of assembling the steel plates together by spot welding after being processed into a predetermined shape by press working. At this time, if the coating is too thick, the current during welding may not flow, resulting in poor welding, so if spot welding is used to join steel plates, the coating thickness should be 4.0 ⁇ m or less. It is preferable. In addition, in a film consisting of multiple layers, the total film thickness of the multiple layers is defined as the film thickness of the film.
- the method of cross-sectional processing is not particularly limited, and examples thereof include FIB (Focused Ion Beam) processing.
- a film is formed by applying a surface treatment liquid containing the above additive to at least one side of the above-mentioned base material, the galvanized steel sheet, and drying it.
- the surface treatment liquid contains the above additive and the above organic resin.
- the method of applying the surface treatment liquid to the surface of the galvanized steel sheet is not particularly limited, and may be any of a coating method (bar coating), a spray method, and a dipping method (and roll squeezing).
- the method of heating and drying after applying the surface treatment liquid is also not particularly limited, and an induction heater or the like may be used.
- the heating temperature is preferably a temperature below the decomposition temperature of the additive component.
- the heating temperature after applying the surface treatment liquid is preferably 180°C or lower, more preferably 160°C or lower, and even more preferably 140°C or lower.
- This surface-treated galvanized steel sheet has excellent delayed fracture resistance that effectively suppresses delayed fracture due to the formation of a film containing specific components on its surface.
- the properties are independent of the composition of the underlying steel sheet, and there are advantages that can be obtained even in a low-temperature environment.
- the present surface-treated galvanized steel sheet does not use expensive materials such as bismuth for the surface coating, so it can be manufactured at low cost. Therefore, it can be suitably applied to automobiles and building materials, and weight reduction is possible by using it for these applications.
- Additional information regarding the case of evaluating the tensile strength of surface-treated galvanized steel sheets (base steel sheets).
- the galvanized layer and film are removed from the surface-treated galvanized steel sheet to separate the single steel sheet, and this steel sheet is evaluated.
- Tensile strength may be evaluated.
- the film and galvanized layer can be removed, for example, by immersing the surface-treated galvanized steel sheet in 10% by mass hydrochloric acid at 30° C. for 60 seconds.
- the method for removing the galvanized layer and film may be any method other than those described above as long as it does not affect the tensile strength of the steel sheet.
- the tensile strength of the steel sheet, the tensile strength of the galvanized steel sheet, and the tensile strength of the surface-treated galvanized steel sheet are usually the same.
- the value of the tensile strength of the steel sheet may be replaced by the tensile strength of the galvanized steel sheet or the tensile strength of the surface-treated galvanized steel sheet. That is, the surface-treated galvanized steel sheet according to the present disclosure has a tensile strength of 1180 MPa or more.
- the base steel sheet contains C: 0.22% by mass, Si: 1.2% by mass, Mn: 3.0% by mass, P: 0.007% by mass, and S: 0.0005% by mass.
- This alloyed hot-dip galvanized steel sheet has a coating weight of 44 g/m 2 per side and an Fe content of the alloyed galvanized layer of 14% by mass.
- This alloyed hot-dip galvanized steel sheet was immersed in toluene and subjected to ultrasonic cleaning for 5 minutes to remove the rust-preventive oil, and was used as a test material.
- Preparation of surface-treated galvanized steel sheet The obtained additive crystals were filtered and dried, and then mixed with an organic resin at a mass ratio shown in Table 2 to obtain a surface treatment solution.
- the following A1 to A4 were used as organic resins, and a surface treatment liquid containing one of the organic resins and a predetermined additive (in some comparative examples, a surface treatment liquid containing only an organic resin) was applied to the surface of the test material. .
- the method of applying the surface treatment liquid was as shown in Table 2. Thereafter, a film was formed on the test material by heating with an induction heater so that the final board temperature was 140° C., and a surface-treated galvanized steel sheet was obtained.
- A1 Epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., product name: jER1009)
- A2 Acrylic resin (manufactured by DIC Corporation, product name: 40-418EF)
- A3 Urethane resin (manufactured by Dainippon Toyo Co., Ltd., product name: V Top RC Clear)
- A4 Fluororesin (manufactured by Asahi Glass Co., Ltd., product name: Lumiflon LF552)
- test piece for delayed fracture resistance evaluation was obtained.
- the thus prepared test piece for evaluating delayed fracture resistance was subjected to a dry-wet cycle test simulating corrosion in a low-temperature environment as shown in FIG. 5 for a maximum of 28 days.
- the test temperature was kept constant (10° C.)
- one humidity cycle consisted of a total of four steps: a dry step with a relative humidity of 30%, a wet step with a relative humidity of 90%, and a humidity increase/decrease step.
- the test was conducted by switching each step every 2 hours and repeating one cycle of 8 hours.
- twice a week means that the treatment is performed with an interval of 3 or 4 days after the first treatment. For example, if the first process is performed on Monday, the second process will be performed on Thursday and Friday. Repeat this from now on.
- cracking days the number of days until cracking occurred.
- three specimens of each galvanized steel sheet of the invention example and comparative example were tested, and the delayed fracture resistance was evaluated using the average number of cracking days according to the following criteria.
- the number of cracking days of 29 days indicates that no cracking occurred in the results of this example.
- the symbols ⁇ , ⁇ , ⁇ and ⁇ mean good to bad in this order.
- Number of days for cracking is 29 days or more ⁇ : Number of days for cracking is 20 days or more, less than 29 days ⁇ : Number of days for cracking is 10 days or more, less than 20 days ⁇ : Number of days for cracking is less than 10 days
- the film thickness of the electrodeposition coating was 15 ⁇ m, and the film thickness was measured using a commercially available electromagnetic film thickness meter. After painting, an X cut (crossing angle of 60° to 90°) was made on the test piece using a cutter knife to reach the coating of the surface-treated galvanized steel sheet, and a salt spray test as specified in JIS Z2371 was conducted for 840 hours. After the test, the maximum rust width was measured from the cross-cut of the painted test piece, and the corrosion resistance was evaluated. Corrosion resistance was evaluated as follows by calculating the maximum rust width A of each test piece, assuming that the maximum rust width of a galvanized steel sheet without a coating is 1. ⁇ : A ⁇ 0.8 ⁇ : 0.8 ⁇ A ⁇ 0.95 ⁇ : 0.95 ⁇ A ⁇ 1.2 ⁇ : 1.2 ⁇ A
- No. No. 1 (comparative example) is a galvanized steel sheet without a film formed thereon (a comparative example of a galvanized steel sheet as is), but cracking occurred at an early stage, indicating that the delayed fracture resistance was low.
- No. 3 ⁇ No. Steel plate No. 161 is an example in which a surface treatment liquid containing an additive and an epoxy resin (A1) is applied to the surface of an alloyed hot-dip galvanized steel plate using a coating method (bar coating) to form a film.
- No. Steel plate No. 2 is an example in which a surface treatment liquid of epoxy resin (A1) to which no additives were added was similarly applied to form a film.
- No. 1 whose content of additives is within the range of the present disclosure.
- Steel plates No. 4 to 164 all have excellent delayed fracture resistance and also have good corrosion resistance after painting.
- No. 164 ⁇ No. Steel plate No. 167 is an example of the invention in which the type of organic resin was changed, but all of them have excellent delayed fracture resistance and also have good corrosion resistance after painting.
- Example 2 In the same manner as in Example 1, alloyed hot-dip galvanized steel sheets were manufactured as test materials.
- this lower layer film is a film (base film) that becomes the base of the upper layer film described later.
- Surface treatment liquid B Component (a): Sodium zirconium carbonate 20% by mass Component (b): Tetraethoxysilane 1.68% by mass Component (c): Polyethylene glycol diglycidyl ether 0.43% by mass Component (d): 1-hydroxymethane-1,1-diphosphonic acid (9) + tartaric acid (1) 1.22% by mass Component (e): Sodium metavanadate 0.34% by mass Component (f): titanium ammonium fluoride 0.07% by mass
- No. No. 1 (comparative example) is a plated steel sheet without a coating formed thereon (a comparative example of an alloyed hot-dip galvanized steel sheet as is), but cracking occurred at an early stage, indicating that the delayed fracture resistance was low.
- No. 2 ⁇ No. Steel sheet No. 35 is an example of a surface-treated galvanized steel sheet in which a lower layer film and an upper layer film are formed on a hot-dip galvanized steel sheet. No. 2, whose content of additives is within the range of the present disclosure. Steel plates No. 5 to 35 all have excellent delayed fracture resistance and also have good corrosion resistance after painting.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
前記鋼板の少なくとも片面に形成された亜鉛めっき層と、
前記亜鉛めっき層上に形成された皮膜とを有し、
前記皮膜は、添加剤を固形分換算で10質量%以上50質量%以下含有する、表面処理亜鉛めっき鋼板。
ここで、前記添加剤は、炭素数2~8の脂肪族ジカルボン酸と炭素数6~18のアルキルアミンとの塩;炭素数2~8の脂肪族ジカルボン酸と炭素数6~18のシクロアルキルアミンとの塩;及び炭素数7~12の芳香族モノカルボン酸と炭素数6~18のアルキルアミンとの塩からなる群から選ばれる少なくとも1種である。
前記炭素数7~12の芳香族モノカルボン酸が、安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、p-ニトロ安息香酸、サリチル酸、p-ヒドロキシ安息香酸、トルイル酸、p-t-ブチル安息香酸、及びβ-オキシナフトエ酸からなる群から選ばれる少なくとも1種であり、
前記炭素数6~18のアルキルアミンが、オクタデシルアミン、ドデシルアミン、デシルアミン、モノオクチルアミン、モノヘキシルアミン、モノデカノイックアミン、モノドデカノイックアミン、及びモノ-2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種であり、
前記炭素数6~18のシクロアルキルアミンが、シクロヘキシルアミン、ジシクロヘキシルアミン、トリシクロヘキシルアミンである、前記[1]に記載の表面処理亜鉛めっき鋼板。
iHt/iH0≦0.50・・・(1)
ここで、前記水素透過電流密度iHは、亜鉛板と試験用鋼板とを導通させ、前記亜鉛板と前記試験用鋼板の一方の面とを前記溶液に晒して前記一方の面を水素侵入面とし、
前記試験用鋼板の他方の面を、パラジウムめっき皮膜を備える水素検出面とし、
前記水素検出面に設置した電気化学セルで測定する。
iHt/iH0≦0.50・・・(1)
ここで、水素透過電流密度iHは、亜鉛板と試験用鋼板とを導通させ、亜鉛板と試験用鋼板の一方の面とを上記溶液に晒してこの一方の面を水素侵入面とし、試験用鋼板の他方の面を、パラジウムめっき皮膜を備える水素検出面とし、この水素検出面に設置した電気化学セルで測定する。
iHt/iH0≦0.50・・・(1)
すなわち、添加剤を溶液に添加せずに測定した水素透過電流密度iH0に対して、同じ条件の下添加剤を添加したときに測定された水素透過電流密度iHtが半分以下であれば、好適に鋼中への水素侵入を低減し得る添加剤であると評価できる。添加剤のiHt/iH0は、より好ましくは0.40以下、さらに好ましくは0.30以下である。iHt/iH0は低いことが好ましく、下限は特に限定されないが、一例においては0.01以上であり得る。
質量比azr/bが1.0以上であれば、より耐食性に優れた表面処理亜鉛めっき鋼板を得ることができる。また、質量比azr/bが6.0以下であれば、表面処理亜鉛系めっき鋼板の導通性がより好適である。
質量比b/csが0.1以上であれば、より耐食性に優れた表面処理亜鉛めっき鋼板を得ることができる。また、質量比b/csが1.6以下であれば、皮膜の密着性がより良好である。
質量比b/dsが0.3以上かつ2.0以下であれば、より耐食性に優れた表面処理亜鉛めっき鋼板を得ることができる。
質量比ev/dsが0.03以上であれば、より耐食性に優れた表面処理亜鉛めっき鋼板を得ることができる。また、質量比ev/dsが1.0以下であれば、表面処理液(A)へのバナジン酸化合物(e)の溶解がより容易である。
亜鉛めっき鋼板としては、下地鋼板がC:0.22質量%、Si:1.2質量%、Mn:3.0質量%、P:0.007質量%、S:0.0005質量%を含有し、残部がFe及び不可避的不純物からなる成分組成を有し、かつ引張強度が1580MPa、板厚が1.4mmで、合金化溶融亜鉛めっき層を鋼板の表裏両面に有する合金化溶融亜鉛めっき鋼板を用いた。この合金化溶融亜鉛めっき鋼板は、めっき付着量が片面当たり44g/m2、合金化亜鉛めっき層のFe含有率が14質量%である。この合金化溶融亜鉛めっき鋼板をトルエンに浸漬して、5分間超音波洗浄を行うことにより防錆油を除去し、供試材とした。
得られた添加剤の結晶をろ過・乾燥後に表2に示す質量比にて有機樹脂と混合し、表面処理液を得た。有機樹脂として下記A1~A4を用い、いずれかの有機樹脂と所定の添加剤とを含む表面処理液(比較例の一部では有機樹脂のみを含む表面処理液)を供試材表面に塗布した。表面処理液の塗布方法は表2に示すとおりにした。その後、到達板温が140℃となるようにインダクションヒーターで加熱することで供試材上に皮膜を成膜し、表面処理亜鉛めっき鋼板を得た。
A1:エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名:jER1009)
A2:アクリル樹脂(DIC(株)製、商品名:40-418EF)
A3:ウレタン樹脂(大日本塗料(株)製、商品名:VトップRCクリヤー)
A4:フッ素樹脂(旭硝子(株)製、商品名:ルミフロン LF552)
発明例及び比較例の亜鉛めっき鋼板を、それぞれ幅32mm×長さ110mmのサイズにせん断した後、せん断時の残留応力を除去するために幅が30mmとなるまで研削加工を施し、試験片を作製した。この試験片に対して、3点曲げ試験機を用いて曲げ半径が10mmとなるように90°曲げ加工を施し、図4に示すように、ボルト2とナット3とを用いた拘束後(ボルト2及びナット3で締め付けて試験片形状を固定した後)のフランジ端の内側間隔が、拘束前のフランジ端の内側間隔に対して13.8mm狭くなるように試験片1の形状を固定し、耐遅れ破壊性評価用試験片を得た。このようにして作製した耐遅れ破壊性評価用試験片に対して、低温環境での腐食を模擬した図5に示すサイクルの乾湿繰り返し試験を行い、最大28日間試験を実施した。このサイクルでは、試験温度一定(10℃)とし、湿度サイクルは相対湿度30%のDryステップ、相対湿度90%のWetステップと湿度増減ステップの計4ステップを1サイクルとした。各ステップは2hごとに切り替え、1サイクル8hを繰り返して試験を行った。また、週2回Dryステップ開始時に純水で洗浄後に27wt%(付着塩分量:片面あたり10000mg/m2)の食塩水を耐遅れ破壊性評価用試験片に噴霧することで塩化物を付与した。ここで週2回とは1回目の処理後に3日若しくは4日の間を空けて処理することを指す。例えば、月曜に1回目の処理を行った場合2回目の処理は木曜日及び金曜日となる。以後これを繰り返す。
◎:割れ日数が29日以上
〇:割れ日数が20日以上、29日未満
△:割れ日数が10日以上、20日未満
×:割れ日数が10日未満
発明例及び比較例の亜鉛めっき鋼板を、それぞれ150mm×70mmのサイズにせん断して平板試験片とし、耐食性評価用試験片とした。この耐食性評価用試験片に、日本パーカライジング(株)製「パルボンド」を用い、標準条件(35℃、120秒)で浸漬による化成処理を施して化成処理試験片とした。次いで、化成処理試験片に関西ペイント(株)製の電着塗料「GT-100」を用いた電着塗装と焼付処理とを行なって、塗装後試験片とした。電着塗装の塗膜厚は15μmとし、市販の電磁膜厚計を用いて塗膜厚の測定を行った。塗装後試験片にカッターナイフを用いて表面処理亜鉛めっき鋼板の皮膜に達するXカット(交差角60°~90°)を入れ、JIS Z2371で定められた塩水噴霧試験を840時間行なった。試験後の塗装後試験片のクロスカットから最大さび幅を計測し、耐食性の評価を行った。耐食性は、皮膜を有さない亜鉛めっき鋼板の最大さび幅を1とした場合の各試験片の最大さび幅Aを算出し、以下のように評価した。
◎:A≦0.8
○:0.8<A≦0.95
△:0.95<A≦1.2
×:1.2<A
実施例1と同様に、供試材となる合金化溶融亜鉛めっき鋼板を製造した。
<下層皮膜の成膜>
実施例1に記載した方法により得られた添加剤の結晶をろ過し、乾燥した後に、表3に示す質量比にて下記組成を有する表面処理液Bと混合し、添加剤を混合した表面処理液を得た。なお、成分(d)については、1-ヒドロキシメタン-1,1-ジホスホン酸と酒石酸との混合比率(質量%)が9:1である。この表面処理液を供試材表面にバーコートにより塗布した後、到達板温が140℃となるようにインダクションヒーターで加熱することにより、供試材上に下層皮膜を成膜した。なお、この下層皮膜は、後述する上層皮膜の下地となる皮膜(下地皮膜)である。
表面処理液B:
成分(a):炭酸ジルコニウムナトリウム 20質量%
成分(b):テトラエトキシシラン 1.68質量%
成分(c):ポリエチレングリコールジグリシジルエーテル 0.43質量%
成分(d):1-ヒドロキシメタン-1,1-ジホスホン酸(9)+酒石酸(1) 1.22質量%
成分(e):メタバナジン酸ナトリウム 0.34質量%
成分(f):チタンフッ化アンモニウム 0.07質量%
実施例1に記載した方法により得られた添加剤の結晶をろ過・乾燥後に、表3に示す質量比にて有機樹脂と混合し、表面処理液を得た。有機樹脂としては下記A1またはA5を用い、いずれかの有機樹脂と所定の添加剤とを含む表面処理液(比較例の一部では有機樹脂のみを含む表面処理液)を、下層皮膜成膜後の供試材表面にバーコートにより塗布した。その後、到達板温が140℃となるようにインダクションヒーターで加熱することにより、下層皮膜成膜後の供試材上に上層皮膜を成膜し、二層皮膜を有する表面処理亜鉛めっき鋼板を得た。
A1:エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名:jER1009)
A5:エポキシエステル樹脂(DIC(株)製 商品名:ウォーターゾールEFD-5560)
10 試験片
11 水素侵入面
12 水素検出面
20 水素発生槽
21 水素検出槽
23 参照電極
24 対極
30 ポテンショスタット
40 亜鉛板
50 パラジウムめっき皮膜
1 試験片
2 ボルト
3 ナット
Claims (5)
- 引張強さが1180MPa以上である鋼板と、
前記鋼板の少なくとも片面に形成された亜鉛めっき層と、
前記亜鉛めっき層上に形成された皮膜とを有し、
前記皮膜は、添加剤を固形分換算で10質量%以上50質量%以下含有する、表面処理亜鉛めっき鋼板。
ここで、前記添加剤は、炭素数2~8の脂肪族ジカルボン酸と炭素数6~18のアルキルアミンとの塩;炭素数2~8の脂肪族ジカルボン酸と炭素数6~18のシクロアルキルアミンとの塩;及び炭素数7~12の芳香族モノカルボン酸と炭素数6~18のアルキルアミンとの塩からなる群から選ばれる少なくとも1種である。 - 前記炭素数2~8の脂肪族ジカルボン酸が、シュウ酸、マレイン酸、フマル酸、マロン酸、コハク酸、グルタル酸、及びアジピン酸からなる群から選ばれる少なくとも1種であり、
前記炭素数7~12の芳香族モノカルボン酸が、安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、p-ニトロ安息香酸、サリチル酸、p-ヒドロキシ安息香酸、トルイル酸、p-t-ブチル安息香酸、及びβ-オキシナフトエ酸からなる群から選ばれる少なくとも1種であり、
前記炭素数6~18のアルキルアミンが、オクタデシルアミン、ドデシルアミン、デシルアミン、モノオクチルアミン、モノヘキシルアミン、モノデカノイックアミン、モノドデカノイックアミン、及びモノ-2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種であり、
前記炭素数6~18のシクロアルキルアミンが、シクロヘキシルアミン、ジシクロヘキシルアミン、トリシクロヘキシルアミンである、請求項1に記載の表面処理亜鉛めっき鋼板。 - 腐食環境を模した溶液に前記添加剤を1g/L添加して測定した水素透過電流密度iHtと、前記添加剤を前記溶液に添加せずに測定した水素透過電流密度iH0とが、下記式(1)を満たす、請求項1又は2に記載の表面処理亜鉛めっき鋼板。
iHt/iH0≦0.50・・・(1)
ここで、前記水素透過電流密度iHは、亜鉛板と試験用鋼板とを導通させ、前記亜鉛板と前記試験用鋼板の一方の面とを前記溶液に晒して前記一方の面を水素侵入面とし、
前記試験用鋼板の他方の面を、パラジウムめっき皮膜を備える水素検出面とし、
前記水素検出面に設置した電気化学セルで測定する。 - 前記亜鉛めっき層と前記皮膜との間に、下地皮膜を有する、請求項1から3のいずれか1項に記載の表面処理亜鉛めっき鋼板。
- 前記皮膜が、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、エチレン樹脂、フェノール樹脂、ポリエステル樹脂、フッ素樹脂、ポリオレフィン樹脂、及びエポキシエステル樹脂からなる群から選ばれる1種以上を含む、請求項1から4のいずれか1項に記載の表面処理亜鉛めっき鋼板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023506127A JP7287590B1 (ja) | 2022-03-17 | 2022-10-12 | 表面処理亜鉛めっき鋼板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-043226 | 2022-03-17 | ||
JP2022043226 | 2022-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176027A1 true WO2023176027A1 (ja) | 2023-09-21 |
Family
ID=88023177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038116 WO2023176027A1 (ja) | 2022-03-17 | 2022-10-12 | 表面処理亜鉛めっき鋼板 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023176027A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054186A1 (ja) * | 2012-10-03 | 2014-04-10 | Jfeスチール株式会社 | 金属内部への侵入水素量の測定装置 |
JP2015209585A (ja) | 2014-04-30 | 2015-11-24 | 新日鐵住金株式会社 | 耐遅れ破壊化成処理鋼材及びそれを用いた構造体 |
JP2019026893A (ja) | 2017-07-31 | 2019-02-21 | Jfeスチール株式会社 | 耐遅れ破壊特性と耐食性に優れた高強度鋼板 |
JP2020521880A (ja) * | 2017-06-01 | 2020-07-27 | ポスコPosco | 水素遅れ破壊抵抗性に優れた熱間プレス成形部材用鋼板及びその製造方法 |
WO2021065485A1 (ja) * | 2019-10-04 | 2021-04-08 | 日鉄鋼板株式会社 | 表面処理鋼材 |
-
2022
- 2022-10-12 WO PCT/JP2022/038116 patent/WO2023176027A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014054186A1 (ja) * | 2012-10-03 | 2014-04-10 | Jfeスチール株式会社 | 金属内部への侵入水素量の測定装置 |
JP2015209585A (ja) | 2014-04-30 | 2015-11-24 | 新日鐵住金株式会社 | 耐遅れ破壊化成処理鋼材及びそれを用いた構造体 |
JP2020521880A (ja) * | 2017-06-01 | 2020-07-27 | ポスコPosco | 水素遅れ破壊抵抗性に優れた熱間プレス成形部材用鋼板及びその製造方法 |
JP2019026893A (ja) | 2017-07-31 | 2019-02-21 | Jfeスチール株式会社 | 耐遅れ破壊特性と耐食性に優れた高強度鋼板 |
WO2021065485A1 (ja) * | 2019-10-04 | 2021-04-08 | 日鉄鋼板株式会社 | 表面処理鋼材 |
Non-Patent Citations (1)
Title |
---|
TOJI ET AL.: "Evaluation of Hydrogen Embrittlement for High Strength Steel Sheets", TETSU-TO-HAGANE, vol. 95, no. 12, 2009, pages 887 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6802430B2 (en) | Corrosion-resistant fuel tank and fuel-filler tube for motor vehicle | |
US10584407B2 (en) | Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same | |
US9187814B2 (en) | Hot-dip aluminum alloy plated steel having excellent shear cut edge corrosion resistance and processed part corrosion resistance, and method of manufacturing the same | |
JP5000039B2 (ja) | 耐食性に優れた錫めっき系またはアルミめっき系表面処理鋼材 | |
KR101941806B1 (ko) | 연료 탱크용 강판 | |
US20100261024A1 (en) | Surface-treated metal material excellent in resistance against galvanic corrosion and joined article of dissimilar materials including the surface-treated metal material | |
Rai et al. | Effect of magnesium on corrosion behavior of hot-dip Zn-Al-Mg coating | |
WO2023176027A1 (ja) | 表面処理亜鉛めっき鋼板 | |
JP7287590B1 (ja) | 表面処理亜鉛めっき鋼板 | |
JP3133231B2 (ja) | 加工性・耐食性・溶接性に優れた燃料タンク用防錆鋼板 | |
KR20240152884A (ko) | 표면 처리 아연 도금 강판 | |
JP2018188707A (ja) | 引張強度が1180MPa以上である耐遅れ破壊性に優れた鋼板 | |
JP5669352B2 (ja) | 異種金属接触腐食に対する防食性に優れた異材接合体 | |
WO2017051477A1 (ja) | 鋼板 | |
JP7239008B2 (ja) | 亜鉛めっき鋼板 | |
JP2024031589A (ja) | 耐遅れ破壊特性に優れた亜鉛系めっき鋼板及びその製造方法 | |
JP2009120943A (ja) | 耐酸化性及びスポット溶接性に優れたアルミニウム系合金めっき鋼板 | |
JPS61246058A (ja) | 燃料容器用高耐食性塗装鋼板 | |
JP2002173756A (ja) | めっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 | |
JP2024144074A (ja) | 耐遅れ破壊性に優れた高強度鋼板 | |
JPH06346277A (ja) | 耐遅れ破壊性に優れた高張力冷延鋼板 | |
JPH06264260A (ja) | 水酸化亜鉛系防食皮膜が形成された高耐食性材料 | |
Sano et al. | Development of anti-corrosion steel sheet containing copper for automobile body parts | |
WO2015018783A1 (en) | Structure for use in a corrosive environment | |
JPH1025542A (ja) | 燃料タンク用錫めっき鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023506127 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22932290 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022932290 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022932290 Country of ref document: EP Effective date: 20240904 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401005949 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247030909 Country of ref document: KR |