WO2023174480A1 - Kühlmittelregler für ein kühlsystem eines fahrzeugantriebs - Google Patents

Kühlmittelregler für ein kühlsystem eines fahrzeugantriebs Download PDF

Info

Publication number
WO2023174480A1
WO2023174480A1 PCT/DE2023/100187 DE2023100187W WO2023174480A1 WO 2023174480 A1 WO2023174480 A1 WO 2023174480A1 DE 2023100187 W DE2023100187 W DE 2023100187W WO 2023174480 A1 WO2023174480 A1 WO 2023174480A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
connections
connect
control disk
channel ends
Prior art date
Application number
PCT/DE2023/100187
Other languages
English (en)
French (fr)
Inventor
Michael Reuther
Christian Marks
Jonas Baumann
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2023174480A1 publication Critical patent/WO2023174480A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • F16K11/0743Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with both the supply and the discharge passages being on one side of the closure plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling

Definitions

  • the invention relates to a coolant controller for a cooling system of a vehicle drive, comprising a housing with regulated coolant connections and a coolant space and a rotary slide valve with coolant channels arranged in the coolant space, the rotary slide valve having (at least) two rotational positions, in each of which channel ends of a first of the coolant channels have a first one connect a second of the coolant connections, while channel ends of a second of the coolant channels connect a third to a fourth of the coolant connections in the first rotational position and connect the third to a fifth of the coolant connections in the second rotational position.
  • Such a coolant controller is known from US 10 344 877 B2.
  • the coolant channels pass through the rotary valve with respect to its axis of rotation either only radially or both radially and axially, so that the connecting pieces are oriented correspondingly radially or axially away from the housing.
  • the present invention is based on the object of constructively improving a coolant controller of the type mentioned at the beginning.
  • the rotary valve is a control disk with an axial end face, which is penetrated by the channel ends of the coolant channels and which is in sealing sliding contact with the front edges of all regulated coolant connections. Consequently, all regulated coolant connections on the same end face of the control disk are arranged axially opposite one another, so that either the associated connecting pieces can all be oriented axially away from the housing or the coolant connections are connected to channels which run in a coolant distribution plate flanged axially to the housing.
  • the design of the coolant regulator according to the invention enables it to be designed to be comparatively compact overall in the radial direction due to the lack of radial connecting pieces.
  • a regulated coolant connection is to be understood as meaning a coolant connection whose mouth in the coolant space is covered by the regulating disk and whose connection to one of the other coolant connections is established or interrupted via the regulating disk.
  • the coolant regulator can also have an unregulated coolant connection that is not in any rotation position The control disk is covered by this.
  • Figure 1 shows an (opened) housing of the coolant regulator in a perspective view
  • Figure 2 shows the housing according to Figure 1 with the control disk according to Figures 3 and 4 in a perspective cross section;
  • Figure 3 shows the control disk according to Figure 2 in a perspective bottom view
  • Figure 4 shows the control disk according to Figure 2 in a perspective top view
  • Figures 5 show the flow through the coolant regulator in seven different rotational positions of the control disk
  • Figure 6 shows the flow according to Figures 5 in a tabular overview.
  • FIGs 1 to 4 show the components of the coolant controller that are essential for understanding the invention.
  • This includes the housing 1 shown open in Figure 1 and a rotary valve designed as a control disk 2.
  • Figure 2 shows a cross section through the housing 1 and the control disk 2 rotatably mounted therein with a drive shaft 3, which can be adjusted into different rotational positions about its axis of rotation 4 for the purpose of controlling the coolant flow via a rotary drive, not shown.
  • Inside the housing 1 there is a coolant space 5 and six coolant connections A to F opening therein, all of which are connected to connecting pieces for coolant hoses or pipes extending axially from the housing 1 and their flow is regulated.
  • the connecting piece 6 of the coolant connection B can be seen in Figures 1 and 2.
  • a (lower) axial end face 7 of the control disk 2 (see FIG. 3) is in sealing sliding contact with the front edges of the coolant connections A to F, so that their mouth into the coolant space 5 is closed by the control disk 2.
  • the front edges of the coolant connections A to F are formed by shaped seals 8, 9 and 10, which in the exemplary embodiment shown are mounted as six individual parts in the housing 1 (alternatively on the end face 7 of the control disk 2).
  • the shaped seals 8, 9, and 10 are shaped the same in pairs corresponding to the three different sized mouth cross sections of the coolant connections A to F, with the shaped seals 8 and 9 like the cross sections of the first and third coolant connections A and C and the second and fourth coolant connections B and D are kidney-shaped and curved towards the axis of rotation 4 of the control disk 2.
  • the shaped seal 10, which has the smallest cross section, is circular.
  • the sealing sliding contact with the regulating disk 2 can be produced by a single molded seal mounted either in the housing 1 or on the regulating disk 2.
  • the control disk 2 shown as an individual part in Figures 3 and 4 has two coolant channels 11 and 12, the channel ends 11-1 and 11-2 or 12-1 and 12-2 of which pass through the axial end face 7 of the control disk 2.
  • the first coolant channel 11 is a cavity running between one axial end face 7 and the opposite other axial end face 13 of the control disk 2, which is only open at the channel ends 11-1 and 11-2 is.
  • the second coolant channel 12 is open towards the coolant space 5 in that the other axial end face 13 only closes the first coolant channel 11 and is correspondingly recessed in the area of the second coolant channel 12.
  • This connection of the second coolant channel 12 with the coolant space 5 enables a complete flushing around the control disk 2 mounted with a radial gap in the housing 1 and consequently its axial pressure equalization.
  • the opening of the second coolant channel 12 towards the coolant space 5 can alternatively pass through the outer surface 14 of the control disk 2.
  • FIGs 5-1 to 5-7 illustrate the flow logic through the coolant controller in seven different rotational positions of the control disk 2.
  • An overview of this flow logic is shown in Figure 6, which shows in tabular form the connections and flow directions of the interconnected coolant connections A to F depending on the Lists rotation positions No. 1 to No. 7 of the control disk 2 with the associated angle of rotation.
  • the rotating positioner) No. 1 to No. 5 are free of overlap, with the coolant channels 11, 12 only connecting two of the coolant connections A to F with each other.
  • the rotation positions No. 6 and No. 7, however, are not free of overlap.
  • one of the channel ends 12-1 and 12-2 overlaps with two of the coolant connections A to F, so that the coolant channel 12 connects three of the coolant connections A to F with one another and, depending on the angular position of the control disk 2, the mixing ratio of two leading coolant connections quantity controlled.
  • Figure 5-1 In the rotation position No. 1 (0°), the channel ends 11-1 and 11-2 are in circumferential overlap with the first coolant connection A and the second coolant connection B and connect these connections to one another via the first coolant channel 11. At the same time, the channel ends 12-1 and 12-2 of the second coolant channel 12 connect the third coolant connection C to the fourth coolant connection D.
  • Figure 5-2 In rotation position No. 2 (30°), the channel ends 11-1 and 11-2 continue to connect the first coolant connection A with the second coolant connection B. At the same time, the channel ends 12-1 and 12-2 connect the third coolant connection C with the fifth coolant connection E.
  • Figure 5-3 In the rotation position No. 3 (90°), the channel ends 11-1 and 11-2 connect the second coolant connection B with the third coolant connection C. At the same time, the channel ends 12-1 and 12-2 connect the fourth coolant connection D with the first coolant connection A.
  • Figure 5-4 In rotation position No. 4 (120°), the channel ends 11-1 and 11-2 continue to connect the second coolant connection B with the third coolant connection C. At the same time, the channel ends 12-1 and 12-2 connect the fifth coolant connection E with the first coolant connection A.
  • Figure 5-5 In the rotation position No. 5 (60°), the channel ends 11-1 and 11-2 connect the fifth coolant connection F with the third coolant connection C. At the same time, the channel ends 12-1 and 12-2 connect the fourth coolant connection D with the first coolant connection A.
  • Figure 5-6 In the rotation position No. 6 (15°), the channel ends 11-1 and 11-2 connect the first coolant connection A with the second coolant connection B. At the same time, the channel ends 12-1 and 12-2 connect both the fourth and fifth coolant ports D and E to the third coolant port C.
  • Figure 5-7 In the rotation position No. 7 (105°), the channel ends 11-1 and 11-2 connect the second coolant connection B with the third coolant connection C. At the same time, the channel ends 12-1 and 12-2 connect the fourth and fifth Coolant ports D and E with the first coolant port A.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Ein Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs weist ein Gehäuse (1) mit geregelten Kühlmittelanschlüssen (A bis F) und einem Kühlmittelraum (5) mit einen darin angeordneten Drehschieber mit Kühlmittelkanälen (11, 12) auf, wobei der Drehschieber zwei Drehpositionen hat, in denen jeweils Kanalenden (11-1, 11-2) eines ersten der Kühlmittelkanäle (11) einen ersten mit einem zweiten der Kühlmittelanschlüsse (A, B) verbinden, während Kanalenden (12-1, 12-2) eines zweiten der Kühlmittelkanäle (12) in der ersten Drehposition einen dritten mit einem vierten der Kühlmittelanschlüsse (C, D) und in der zweiten Drehposition den dritten mit einem fünften der Kühlmittelanschlüsse (C, E) verbinden. Der Drehschieber soll eine Regelscheibe (2) mit einer axialen Stirnfläche (7) sein, die von den Kanalenden der Kühlmittelkanäle durchsetzt ist und die sich mit stirnseitigen Umrandungen sämtlicher geregelter Kühlmittelanschlüsse in dichtendem Gleitkontakt befindet.

Description

Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs
Die Erfindung betrifft einen Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs, aufweisend ein Gehäuse mit geregelten Kühlmittelanschlüssen und einem Kühlmittelraum und einen im Kühlmittelraum angeordneten Drehschieber mit Kühlmittelkanälen, wobei der Drehschieber (zumindest) zwei Drehpositionen hat, in denen jeweils Kanalenden eines ersten der Kühlmittelkanäle einen ersten mit einem zweiten der Kühlmittelanschlüsse verbinden, während Kanalenden eines zweiten der Kühlmittelkanäle in der ersten Drehposition einen dritten mit einem vierten der Kühlmittelanschlüsse und in der zweiten Drehposition den dritten mit einem fünften der Kühlmittelanschlüsse verbinden.
Ein derartiger Kühlmittelregler ist aus der US 10 344 877 B2 bekannt. Die Kühlmittelkanäle durchsetzen den Drehschieber bezüglich dessen Drehachse entweder nur radial oder sowohl radial als auch axial, so dass die Anschlussstutzen entsprechend radial bzw. auch axial vom Gehäuse abgehend orientiert sind.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Kühlmittelregler der eingangs genannten Art konstruktiv zu verbessern.
Diese Aufgabe wird dadurch gelöst, dass der Drehschieber eine Regelscheibe mit einer axialen Stirnfläche ist, die von den Kanalenden der Kühlmittelkanäle durchsetzt ist und die sich mit stirnseitigen Umrandungen sämtlicher geregelter Kühlmittelanschlüsse in dichtendem Gleitkontakt befindet. Folglich sind alle geregelten Kühlmittelanschlüsse derselben Stirnfläche der Regelscheibe axial gegenüberliegend angeordnet, so dass entweder auch die zugehörigen Anschlussstutzen sämtlich axial vom Gehäuse abgehend orientiert sein können oder die Kühlmittelanschlüsse mit Kanälen verbunden sind, die in einer axial am Gehäuse angeflanschten Kühlmittelverteilerplatte verlaufen. Trotz des vergleichsweise großen Durchmessers der Regelscheibe als solche ermöglicht die erfindungsgemäße Konstruktion des Kühlmittelreglers, dass dieser mangels radial abgehender Anschlussstutzen radial insgesamt vergleichsweise kompakt bauend ausgeführt wird.
Unter einem geregelten Kühlmittelanschluss ist vorliegend ein Kühlmittelanschluss zu verstehen, dessen Mündung im Kühlmittelraum von der Regelscheibe verdeckt ist und dessen Verbindung mit einem der anderen Kühlmittelanschlüsse über die Regelscheibe hergestellt oder unterbrochen wird. Das bedeutet umgekehrt, dass der Kühlmittelregler auch einen ungeregelten Kühlmittelanschluss haben kann, der in keiner Drehposition der Regelscheibe von dieser verdeckt ist.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Patentansprüche.
Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung und aus den Zeichnungen, in denen ein Ausführungsbeispiel eines erfindungsgemäßen Kühlmittelreglers eines mehrere Teilkreisläufe umfassenden Kühlsystems eines batterieelektrischen Fahrzeugantriebs teilweise schematisch oder vereinfacht dargestellt ist. Es zeigen:
Figur 1 ein (geöffnetes) Gehäuse des Kühlmittelreglers in perspektivischer Ansicht;
Figur 2 das Gehäuse gemäß Figur 1 mit Regelscheibe gemäß den Figuren 3 und 4 in perspektivischem Querschnitt;
Figur 3 die Regelscheibe gemäß Figur 2 in perspektivischer Untersicht;
Figur 4 die Regelscheibe gemäß Figur 2 in perspektivischer Draufsicht;
Figuren 5 den Durchfluss durch den Kühlmittelregler in sieben verschiedenen Drehpositionen der Regelscheibe;
Figur 6 den Durchfluss gemäß den Figuren 5 in tabellarischer Übersicht.
Die Figuren 1 bis 4 zeigen die für das Verständnis der Erfindung wesentlichen Komponenten des Kühlmittelreglers. Dieser umfasst das in Figur 1 geöffnet dargestellte Gehäuse 1 und einen als Regelscheibe 2 ausgeführten Drehschieber. Figur 2 zeigt einen Querschnitt durch das Gehäuse 1 und die darin drehbar gelagerte Regelscheibe 2 mit einer Antriebswelle 3, die zwecks Regelung des Kühlmitteldurchflusses über einen nicht dargestellten Drehantrieb in verschiedene Drehpositionen um ihre Drehachse 4 verstellbar ist. Im Innern des Gehäuses 1 verlaufen ein Kühlmittelraum 5 und sechs darin mündende Kühlmittelanschlüsse A bis F, die sämtlich mit axial vom Gehäuse 1 abgehenden Anschlussstutzen für Kühlmittelschläuche oder -rohre verbunden und bezüglich ihres Durchflusses geregelt sind. In den Figuren 1 und 2 ist der Anschlussstutzen 6 des Kühlmittelanschlusses B erkennbar. Eine (untere) axiale Stirnfläche 7 der Regelscheibe 2 (s. Fig. 3) befindet sich in dichtendem Gleitkontakt mit stirnseitigen Umrandungen der Kühlmittelanschlüsse A bis F, so dass jeweils deren Mündung in den Kühlmittelraum 5 durch die Regelscheibe 2 verschlossen ist. Die stirnseitigen Umrandungen der Kühlmittelanschlüsse A bis F sind durch Formdichtungen 8, 9 und 10 gebildet, die im dargestellten Ausführungsbeispiel als sechs Einzelteile ins Gehäuse 1 (alternativ auf der Stirnfläche 7 der Regelscheibe 2) montiert sind. Die Formdichtungen 8, 9, und 10 sind zu den drei unterschiedlich großen Mündungsquerschnitten der Kühlmittelanschlüsse A bis F korrespondierend paarweise gleich geformt, wobei die Formdichtungen 8 und 9 wie die Querschnitte des ersten und dritten Kühlmittelanschlusses A und C bzw. des zweiten und vierten Kühlmittelanschlusses B und D nierenförmig und zur Drehachse 4 der Regelscheibe 2 hin gekrümmt sind. Die den kleinsten Querschnitt aufweisende Formdichtung 10 ist kreisrund. Alternativ zu den drei Paaren einzelner Formdichtungen 8, 9 und 10 kann der dichtende Gleitkontakt mit der Regelscheibe 2 durch eine einzige entweder im Gehäuse 1 oder auf der Regelscheibe 2 montierte Formdichtung hergestellt sein.
Die in den Figuren 3 und 4 als Einzelteil dargestellte Regelscheibe 2 hat zwei Kühlmittelkanäle 11 und 12, deren Kanalenden 11-1 und 11-2 bzw. 12-1 und 12-2 die axiale Stirnfläche 7 der Regelscheibe 2 durchsetzen. Wie es in Zusammenschau der Figuren 2 bis 4 deutlich wird, ist der erste Kühlmittelkanal 11 ein zwischen der einen axialen Stirnfläche 7 und der gegenüberliegenden anderen axialen Stirnfläche 13 der Regelscheibe 2 verlaufender Hohlraum, der lediglich an den Kanalenden 11-1 und 11-2 offen ist. Demgegenüber ist der zweite Kühlmittelkanal 12 zum Kühlmittelraum 5 hin dadurch offen, dass die andere axiale Stirnfläche 13 lediglich den ersten Kühlmittelkanal 11 verschließt und im Bereich des zweiten Kühlmittelkanals 12 entsprechend ausgespart ist. Diese Verbindung des zweiten Kühlmittelkanals 12 mit dem Kühlmittelraum 5 ermöglicht eine vollständige Umspülung der mit Radialspalt im Gehäuse 1 gelagerten Regelscheibe 2 und folglich deren axialen Druckausgleich. Die Öffnung des zweiten Kühlmittelkanals 12 zum Kühlmittelraum 5 hin kann alternativ die Außenmantelfläche 14 der Regelscheibe 2 durchsetzen.
Die Figuren 5-1 bis 5-7 illustrieren die Durchflusslogik durch den Kühlmittelregler in sieben verschiedenen Drehpositionen der Regelscheibe 2. Eine Übersicht dieser Durchflusslogik zeigt Figur 6, die in tabellarischer Form die Verbindungen und Durchflussrichtungen der miteinander verbundenen Kühlmittelanschlüsse A bis F in Abhängigkeit von den Drehpositionen Nr. 1 bis Nr. 7 der Regelscheibe 2 mit zugehörigem Drehwinkel listet. Die Dreh- positioner) Nr. 1 bis Nr. 5 sind überschneidungsfrei, wobei die Kühlmittelkanäle 11, 12 jeweils nur zwei der Kühlmittelanschlüsse A bis F miteinander verbinden. Die Drehpositionen Nr. 6 und Nr. 7 sind hingegen nicht überschneidungsfrei. In diesen Positionen überschneidet sich eines der Kanalenden 12-1 und 12-2 mit zwei der Kühlmittelanschlüsse A bis F, so dass der Kühlmittelkanal 12 drei der Kühlmittelanschlüsse A bis F miteinander verbindet und in Abhängigkeit der Winkelposition der Regelscheibe 2 das Mischungsverhältnis aus zwei vorlaufenden Kühlmittelanschlüssen mengenregelt.
Figur 5-1: In der Drehposition Nr. 1 (0°) befinden sich die Kanalenden 11-1 und 11-2 in umfänglicher Überdeckung mit dem ersten Kühlmittelanschluss A und dem zweiten Kühlmittelanschluss B und verbinden diese Anschlüsse über den ersten Kühlmittelkanal 11 miteinander. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 des zweiten Kühlmittelkanals 12 den dritten Kühlmittelanschluss C mit dem vierten Kühlmittelanschluss D.
Figur 5-2: In der Drehposition Nr. 2 (30°) verbinden die Kanalenden 11-1 und 11-2 unverändert den ersten Kühlmittelanschluss A mit dem zweiten Kühlmittelanschluss B. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 den dritten Kühlmittelanschluss C mit dem fünften Kühlmittelanschluss E.
Figur 5-3: In der Drehposition Nr. 3 (90°) verbinden die Kanalenden 11-1 und 11-2 den zweiten Kühlmittelanschluss B mit dem dritten Kühlmittelanschluss C. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 den vierten Kühlmittelanschluss D mit dem ersten Kühlmittelanschluss A.
Figur 5-4: In der Drehposition Nr. 4 (120°) verbinden die Kanalenden 11-1 und 11-2 unverändert den zweiten Kühlmittelanschluss B mit dem dritten Kühlmittelanschluss C. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 den fünften Kühlmittelanschluss E mit dem ersten Kühlmittelanschluss A.
Figur 5-5: In der Drehposition Nr. 5 (60°) verbinden die Kanalenden 11-1 und 11-2 den fünften Kühlmittelanschluss F mit dem dritten Kühlmittelanschluss C. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 den vierten Kühlmittelanschluss D mit dem ersten Kühlmittelanschluss A.
Figur 5-6: In der Drehposition Nr. 6 (15°) verbinden die Kanalenden 11-1 und 11-2 den ersten Kühlmittelanschluss A mit dem zweiten Kühlmittelanschluss B. Gleichzeitig verbin- den die Kanalenden 12-1 und 12-2 sowohl den vierten als auch den fünften Kühlmittelanschluss D und E mit dem dritten Kühlmittelanschluss C.
Figur 5-7: In der Drehposition Nr. 7 (105°) verbinden die Kanalenden 11-1 und 11-2 den zweiten Kühlmittelanschluss B mit dem dritten Kühlmittelanschluss C. Gleichzeitig verbinden die Kanalenden 12-1 und 12-2 den vierten und fünften Kühlmittelanschluss D und E mit dem ersten Kühlmittelanschluss A.

Claims

Patentansprüche
1. Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs, aufweisend ein Gehäuse (1) mit geregelten Kühlmittelanschlüssen (A bis F) und einem Kühlmittelraum (5) und einen im Kühlmittelraum (5) angeordneten Drehschieber mit Kühlmittelkanälen (11, 12), wobei der Drehschieber zwei Drehpositionen hat, in denen jeweils Kanalenden (11-1 , 11-2) eines ersten der Kühlmittelkanäle (11) einen ersten mit einem zweiten der Kühlmittelanschlüsse (A, B) verbinden, während Kanalenden (12-1, 12-2) eines zweiten der Kühlmittelkanäle (12) in der ersten Drehposition einen dritten mit einem vierten der Kühlmittelanschlüsse (C, D) und in der zweiten Drehposition den dritten mit einem fünften der Kühlmittelanschlüsse (C, E) verbinden, dadurch gekennzeichnet, dass der Drehschieber eine Regelscheibe (2) mit einer axialen Stirnfläche (7) ist, die von den Kanalenden (11-1 , 11-2, 12-1, 12-2) der Kühlmittelkanäle (11, 12) durchsetzt ist und die sich mit stirnseitigen Umrandungen sämtlicher geregelter Kühlmittelanschlüsse (A bis F) in dichtendem Gleitkontakt befindet.
2. Kühlmittelregler nach Anspruch 1, dadurch gekennzeichnet, dass einer der Kühlmittelkanäle (12) an der Außenmantelfläche (14) der Regelscheibe (2) oder an deren anderer axialer Stirnfläche (13) zum Kühlmittelraum (5) hin offen ist.
3. Kühlmittelregler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die stirnseitigen Umrandungen des ersten, zweiten und dritten Kühlmittelanschlusses (A, B, C) nierenförmig und zur Drehachse (4) der Regelscheibe (2) hin gekrümmt sind.
4. Kühlmittelregler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch genau sechs geregelte Kühlmittelanschlüsse (A bis F), deren stirnseitige Umrandungen mit drei voneinander verschiedenen Formen paarweise gleich geformt sind.
5. Kühlmittelregler nach Anspruch 4, gekennzeichnet durch drei Paare Formdichtungen (8, 9, 10).
PCT/DE2023/100187 2022-03-14 2023-03-13 Kühlmittelregler für ein kühlsystem eines fahrzeugantriebs WO2023174480A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022105908.1A DE102022105908B4 (de) 2022-03-14 2022-03-14 Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs
DE102022105908.1 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023174480A1 true WO2023174480A1 (de) 2023-09-21

Family

ID=85706920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100187 WO2023174480A1 (de) 2022-03-14 2023-03-13 Kühlmittelregler für ein kühlsystem eines fahrzeugantriebs

Country Status (2)

Country Link
DE (1) DE102022105908B4 (de)
WO (1) WO2023174480A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2364697A (en) * 1931-08-31 1944-12-12 Lee G Daniels Valve
US2451678A (en) * 1945-04-04 1948-10-19 Automatic Pump & Softener Corp Multiple port valve structure
NL1010425C1 (nl) * 1998-10-29 2000-05-03 Itho B V Warmtepompsysteem.
US10344877B2 (en) 2015-12-01 2019-07-09 Tesla Motors, Inc. Multi-port valve with multiple operation modes
CN111350840A (zh) * 2020-04-17 2020-06-30 浙江银轮机械股份有限公司 电动阀
CN113154088A (zh) * 2021-04-27 2021-07-23 浙江银轮机械股份有限公司 多通阀

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950576A (en) 1998-06-30 1999-09-14 Siemens Canada Limited Proportional coolant valve
JP2001141093A (ja) 1999-11-10 2001-05-25 Chiyoda Kucho Kiki Kk 四路切換弁
DE202016004427U1 (de) 2016-07-20 2017-10-23 Voss Automotive Gmbh Massenstromregel- oder Ventileinheit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2364697A (en) * 1931-08-31 1944-12-12 Lee G Daniels Valve
US2451678A (en) * 1945-04-04 1948-10-19 Automatic Pump & Softener Corp Multiple port valve structure
NL1010425C1 (nl) * 1998-10-29 2000-05-03 Itho B V Warmtepompsysteem.
US10344877B2 (en) 2015-12-01 2019-07-09 Tesla Motors, Inc. Multi-port valve with multiple operation modes
CN111350840A (zh) * 2020-04-17 2020-06-30 浙江银轮机械股份有限公司 电动阀
CN113154088A (zh) * 2021-04-27 2021-07-23 浙江银轮机械股份有限公司 多通阀

Also Published As

Publication number Publication date
DE102022105908A1 (de) 2023-09-14
DE102022105908B4 (de) 2024-05-08

Similar Documents

Publication Publication Date Title
EP2229550A1 (de) Abgasrückführventil für ein kraftfahrzeug
DE102013209582A1 (de) Drehschieberkugel für ein Thermomanagementmodul
DE102004010373A1 (de) Axialkolbenmaschine
DE69930856T2 (de) Kugelhahn
DE3728190C2 (de) Drehschieber zur Ladungswechselsteuerung einer Brennkraftmaschine
DE102022105908B4 (de) Kühlmittelregler für ein Kühlsystem eines Fahrzeugantriebs
EP1505281B1 (de) Saugmodul
DE2430527A1 (de) Klappenventil
EP4045824A1 (de) Fluidventil
DE3338596C2 (de)
DE102021112436B4 (de) Kühlmittelregler eines Kühlsystems eines Fahrzeugantriebs
DE912395C (de) Drehschieberartiges Abschlussorgan an Luftfuehrungskanaelen von Lueftungsanlagen
DE102017200886A1 (de) Lagerdichtungsanordnung für elektronisches Drosselklappensteuerventil
DE102022114672A1 (de) Mehrwegeventil
EP3301290A1 (de) Kanalsystem für eine verbrennungskraftmaschine
DE202022102205U1 (de) Elektronisches Ventil
DE102007020926A1 (de) Luftansaugkanal
DE10007072B4 (de) Mehrwegeventil und System mit einem derartigen Mehrwegeventil
DE4122926A1 (de) Drehdurchfuehrung
WO2016202711A1 (de) Turbolader für ein kraftfahrzeug
DE8903372U1 (de) Verbrennungsluftgebläse für eine Kraftfahrzeug-Zusatzheizung
DE954757C (de) Pumpenaggregat, bestehend aus zwei Schleuderpumpen mit einem gemeinsamen Gehaeuse
DE422047C (de) Spritzvergaser
DE19930724B4 (de) Ventil
DE102023111387A1 (de) Pumpengerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23712151

Country of ref document: EP

Kind code of ref document: A1