WO2023174414A1 - 新型非对称性紫外曝光方法 - Google Patents
新型非对称性紫外曝光方法 Download PDFInfo
- Publication number
- WO2023174414A1 WO2023174414A1 PCT/CN2023/082211 CN2023082211W WO2023174414A1 WO 2023174414 A1 WO2023174414 A1 WO 2023174414A1 CN 2023082211 W CN2023082211 W CN 2023082211W WO 2023174414 A1 WO2023174414 A1 WO 2023174414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultraviolet
- curable material
- asymmetric
- exposure method
- ultraviolet curable
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2004—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
Definitions
- the present invention belongs to the field of metal mesh touch sensors, and more specifically, relates to an asymmetric UV exposure method that can be applied to optically transparent substrates (regardless of whether they have UV blocking functions).
- Metal mesh touch sensors based on flexible substrates have attracted widespread attention due to their superior flexibility, excellent optical performance, and low manufacturing cost.
- the current mainstream GF2 (touch grid is distributed on the upper and lower sides of the same substrate) structure requires the formation of unique micro patterns on each side of the substrate without interference with each other, which requires technical support in materials and processes.
- the usual implementation methods are: first, through two or more repeated exposure and development processes, followed by etching or wet metal plating process; second, through double-sided simultaneous exposure process, then development and wet metal plating process, but This process requires that the optically transparent substrate has a UV blocking function (for example, the blocking rate of a certain UV band is greater than 90%) to ensure that UV light from one side will not penetrate the substrate and interfere with the pattern on the other side.
- a UV blocking function for example, the blocking rate of a certain UV band is greater than 90%
- An asymmetric UV exposure method which includes applying UV curable coating #1 (hereinafter referred to as coating #1) on one side of an optically transparent substrate, and applying UV curable coating #2 (hereinafter referred to as coating #1) Coating #2) is applied on the other side of the optically transparent substrate, and both sides of the optically transparent substrate are simultaneously exposed to UV light, wherein coating #1 is on a different surface than coating #2 There is an ultraviolet absorption peak at the wavelength.
- Coating #2 is cured using UV light of 365nm or higher wavelength, while Coating #1 is cured using 314nm.
- high-wavelength curing photoinitiators may also have a certain degree of absorption at low wavelengths. Therefore, low-wavelength coatings may also cause high-wavelength coatings to be damaged under lower exposure energy. A certain amount of curing occurs, so in order to avoid the impact, asymmetric exposure can usually be implemented by reducing the exposure energy of the low-wavelength photoresist and reducing the amount of photoinitiator in the high-wavelength photoresist formula or adjusting the type of photoinitiator in the high-wavelength photoresist formula.
- the object of the present invention is to overcome the above-mentioned defects of the prior art and further improve the asymmetric ultraviolet exposure method, thereby further reducing the impact of different ultraviolet lights on both sides on the coating on the other side in the asymmetric ultraviolet exposure method. Influence.
- the present invention provides an asymmetric ultraviolet exposure method, which includes applying a first ultraviolet curable material on one side of an optically transparent substrate, and applying a second ultraviolet curable material on one side of the optically transparent substrate. on the other side of the optically transparent substrate, and simultaneously expose both sides of the optically transparent substrate to ultraviolet light, wherein the ultraviolet absorption peak of the first ultraviolet curable material is lower than the The ultraviolet light has an ultraviolet absorption peak of the second ultraviolet curable material, the ultraviolet light has a wavelength corresponding to the ultraviolet absorption peak of the ultraviolet curable material on the corresponding side, and the second ultraviolet curable material includes an ultraviolet absorber.
- the ultraviolet absorption peak of the first ultraviolet curable material is lower than the ultraviolet absorption peak of the second ultraviolet curable material, this is only used to distinguish two different ultraviolet curable materials.
- the numbers of the curing materials are interchanged, it means that the UV absorption peak of the second UV curable material is lower than the UV absorption peak of the first UV curable material.
- the first ultraviolet curable material and the second ultraviolet curable material are The wavelength difference between the UV absorption peaks of the second UV curable material may be at least 10 nm, such as 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 80 nm or 100 nm, etc.
- the type of the ultraviolet curable material is not particularly limited, and can be a photoresist common in the art.
- the first UV curable material and the second UV curable material are each independently selected from the group consisting of positive photoresists and negative photoresists.
- both the first ultraviolet curable material and the second ultraviolet curable material can be positive photoresists; both the first ultraviolet curable material and the second ultraviolet curable material can be Both are negative photoresists; or one of the first UV curable material and the second UV curable material is a positive photoresist, and the other is a negative photoresist.
- the type of photoresist can be further selected according to actual needs.
- the positive photoresist may preferably include a resin material that is soluble in the developer after exposure
- the negative photoresist may preferably include a resin material that is insoluble in the developer after exposure.
- the developer is usually an aqueous solution containing an alkaline compound and a surfactant.
- the alkaline compound can be an inorganic or organic alkaline compound. These inorganic and organic alkaline compounds can be used alone or in combination of two or more; as a surfactant
- As an agent at least one selected from the group consisting of nonionic surfactants, anionic surfactants and cationic surfactants can be used. These surfactants can be used alone or in combination of two or more.
- the first UV curable material and the second UV curable material each include a photoinitiator (also known as a sensitizer or photosensitizer, etc.) to allow the first UV curable material and
- the second UV curable material has UV absorption peaks at different wavelengths.
- the wavelength difference between the UV absorption peaks of the first UV curable material and the second UV curable material can be induced by using two different lights having UV absorption peaks at different wavelengths. agent to achieve. Therefore, the first UV curable material and the second UV curable material of the present invention typically comprise different photoinitiators.
- the type of photoinitiator of the present invention is not particularly limited, and can be a common photoinitiator in the art.
- the photoinitiators of the first UV curable material and the second UV curable material are each independently selected from the group consisting of acetophenone compounds, benzophenone compounds, and triazines. of the group consisting of compounds, thioxanthone compounds, and oxime ester compounds At least one.
- acetophenones may include 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 2-(4-methylbenzyl)-2- (Dimethylamino)-1-(4-morpholinophenyl)butan-1-one, etc.
- benzophenones may include benzophenone, methyl o-benzoyl benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethyl benzophenone, etc.
- the triazine compound may include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloro Methyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(3,4-dimethoxy methylphenyl)vinyl]-1,3,5-triazine and 2,4-bis(trichloromethyl)-6-2-(4-diethylamino-2-methylphenyl)vinyl ]-1,3,5-triazine, etc.
- thioxanthone compound may include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone Tonone, etc.
- oxime ester compound may include o-ethoxycarbonyl- ⁇ -oxyimino-1-phenylpropan-1-one, 1,2-octanedione, 1-(4-phenylthio)benzene base and 2-(o-benzoyl oxime), etc.
- the method of the present invention includes adding ultraviolet absorbers to the second ultraviolet curable material.
- Agent that is, adding UV absorbers to UV curable materials with high UV absorption peaks.
- UV absorbers can absorb part of the wavelength band in the UV spectrum depending on the type.
- the ultraviolet absorber in order to reduce the impact of low-wavelength light on one side of the first ultraviolet curable material on the second ultraviolet curable material, the ultraviolet absorber should be able to absorb the low-wavelength light. Therefore, in a preferred embodiment, the ultraviolet absorber can absorb a wavelength band below the ultraviolet absorption peak of the first ultraviolet curable material + 10 nm, or can absorb a wavelength band having the second ultraviolet curable material. The UV absorption peak is in the wavelength band below -10nm.
- the ultraviolet absorber can be salicylates, benzophenones, benzotriazoles, or Substitute acrylonitrile or triazine UV absorbers.
- the UV absorber may be present in an amount of 0.5-5 wt% (eg 1 wt%, 2 wt%, 3 wt% or 4 wt%) based on the total weight of the second UV curable material. %wait).
- the transparent optical film may be a substrate with excellent transparency, mechanical strength, and thermal stability
- the optically transparent substrate may be made of at least one selected from the following: polyethylene Ester resins such as polyethylene terephthalate (PET), polyethylene naphthalate and polybutylene terephthalate; cellulose resins such as diacetyl cellulose and triacetic acid Cellulose, etc.; acrylic resins such as poly(methyl)acrylate and poly(ethylmeth)acrylate, etc.; styrenic resins such as polystyrene and acrylonitrile styrene copolymer, etc.; polyolefin resins such as poly(meth)acrylate, etc.
- the optically transparent substrate is made of PET, COP, CPI, or other flexible or rigid materials.
- the UV blocking function of the optically transparent substrate is not necessary to allow more choices of the optically transparent substrate. Therefore, in a preferred embodiment, the optically transparent substrate may be a substrate without a UV blocking function.
- the UV transmittance of the optically transparent substrate is higher than 90% (eg, 99%, etc.).
- the present invention also provides a UV curable material for use in the asymmetric UV exposure method according to the above, which includes a UV absorber.
- the UV curable material used especially the second UV curable material with a high UV absorption peak, should contain a UV absorber, so that achieve the technical effects claimed by the present invention.
- the UV absorber may be a salicylate, benzophenone, benzotriazole, substituted acrylonitrile or triazine UV absorber.
- the UV absorber may be present in an amount of 0.5-5 wt% (eg 1 wt%, 2 wt%, 3 wt% or 4 wt%) based on the total weight of the second UV curable material. %wait).
- the formula of the ultraviolet curable material of the present invention may specifically include, for example: solvent, photoinitiator, leveling agent, Resins, monomers and UV absorbers, and optionally, such as plasticizers, polymerization inhibitors, etc., but are not limited thereto.
- the present invention also provides a metal mesh touch sensor, which is manufactured according to the above-mentioned asymmetric ultraviolet exposure method.
- the advantages of the technical solution of the present invention are at least: (1) no UV blocking function is required in the optically transparent substrate; (2) allowing more choices for optically transparent substrates; (3) both suitable for positive UV curable light resist, and is suitable for negative UV-curable photoresists; (4) products manufactured using it, such as flexible devices, have improved optical properties; and (5) compared to the previous double-sided UV exposure method, further reducing the The effect of different ultraviolet light on one side on the coating on the other side, especially the effect of ultraviolet light on one side with low ultraviolet absorption peak on the material with light ultraviolet absorption peak on the other side.
- Figure 1 shows the detection results of the photoresist coating pattern obtained in Test Example 1;
- Figure 2 shows the detection results of copper growth obtained in Test Example 1
- Figure 3 shows the detection results of the photoresist coating pattern obtained in Test Example 2.
- FIG. 4 shows the detection results of copper growth obtained in Test Example 2.
- UV curable material 1 (UV absorption peak is 314nm, no UV absorber) is prepared as follows: weigh 65.5 parts of ethyl lactate in a stainless steel or plastic container, and then add 20 parts of polyester acrylate oligomer (Shado Mar CN293) and 10 parts of dipentaerythritol hexaacrylate (DPHA) into the above solvent, turn on the high shear mixer to 6000rpm, weigh 2 parts of 2-methyl-1-(4-methylthiophenyl)-2 -Morpholine-1-propanone (907), 1 part of di(2-ethylhexyl) phthalate, and 0.01 part of p-hydroxyanisole (MEHQ) were added to the solution in the previous step, and stirred at 6000 rpm for 1 hour, and weighed Add 1.49 parts of BYK-333 to the solution in the previous step and continue stirring for 10 minutes. Filter the solution using a 1 ⁇ m filter element and store it in a light-shielding bottle.
- UV curable material 2 (UV absorption band is 365-405nm, no UV absorber) is prepared as follows: weigh 65.5 parts of ethyl lactate in a stainless steel or plastic container, and then add 19.5 parts of polyester acrylate oligomer ( Sartomer CN293) and 9.5 parts of dipentaerythritol hexaacrylate (DPHA) into the above solvent, turn on the high shear mixer to 6000rpm, weigh 2 parts of 2-isopropylthiaxantrone, 0.5 part of 4-dimethyl Add ethyl aminobenzoate (EDAB), 1 part of di(2-ethylhexyl) phthalate, and 0.01 part of p-hydroxyanisole (MEHQ) to the solution in the previous step, stir at 6000 rpm for 1 hour, and weigh out Add 1.49 parts of BYK-333 to the solution in the previous step and continue stirring for 10 minutes. Filter the solution using a 1 ⁇ m filter element and store it in a light-
- UV curable material 3 (UV absorption band is 365-405nm, containing UV absorber) is prepared as follows: weigh 65.5 parts of ethyl lactate in a stainless steel or plastic container, and then add 19 parts of polyester acrylate oligomer ( Sartomer CN293) and 9 parts of dipentaerythritol hexaacrylate (DPHA) into the above solvent, turn on the high-shear mixer to 6000rpm, weigh 2.0 parts of 2-isopropylthiaxantrone, 0.5 parts of 4-dimethyl Add ethyl aminobenzoate (EDAB), 1 part Shanghai Lianzhi Chemical UV Absorber 164, 1 part di(2-ethylhexyl) phthalate, 0.01 part p-hydroxyanisole (MEHQ) to the solution in the previous step , keep stirring at 6000 rpm for 1 hour, weigh 1.49 parts of BYK-333 into the solution in the previous step, and continue stirring for 10 minutes. Filter the solution using a 1
- UV curable material 4 (UV absorption band is 365-405nm, no UV absorber) is prepared as follows: weigh 65.5 parts of ethyl lactate in a stainless steel or plastic container, and then add 18.25 parts of polyester acrylate oligomer ( Sartomer CN293) and 8.25 parts of dipentaerythritol hexaacrylate (DPHA) to In the above solvent, turn on the high shear mixer to 600 rpm, weigh 4 parts of 2-isopropylthiaxantrone, 1 part of ethyl 4-dimethylaminobenzoate (EDAB), and 1 part of di(dimethylaminobenzoate) phthalate.
- polyester acrylate oligomer Sartomer CN293
- DPHA dipentaerythritol hexaacrylate
- UV curable material 5 (UV absorption band is 365-405nm, containing UV absorber) is prepared as follows: weigh 65.5 parts of solvent in a stainless steel or plastic container, and then add 17.75 parts of polyester acrylate oligomer (Shado Mar CN293) and 7.75 parts of dipentaerythritol hexaacrylate (DPHA) and 17.75 parts of resin into the above solvent, turn on the high shear mixer to 6000rpm, weigh 4 parts of 2-isopropylthiaxantrone, 1 part of 4-di Ethyl methylaminobenzoate (EDAB), 1 part Shanghai Lianzhi Chemical UV Absorber 3638, 1 part di(2-ethylhexyl) phthalate, 0.01 part p-hydroxyanisole (MEHQ) to the previous step solution , keep stirring at 6000 rpm for 1 hour, weigh 1.49 parts of BYK-333 into the solution in the previous step, and continue stirring for 10 minutes. Filter the solution using a 1
- the photoresist coating pattern and metal mesh were obtained by using a dimpled coating wire bar to coat one surface of the flexible substrate with a UV curable material to form a photoresist coating, and then Dry in an oven at a temperature of 65°C for 100s to obtain a coating with a thickness of 700nm; apply a layer of palladium nanoparticle catalyst coating on the top of the photoresist film and bake at 75°C for 30s; then apply a layer of isolation
- the functional protective coating of water and oxygen is baked in an 80°C oven for 30 seconds; then contact exposure is performed using ultraviolet light with a wavelength matching the photoresist and a mask with a designed line width of 2 ⁇ m.
- the substrate After exposure, the substrate is rinsed with an alkaline developer for 30 seconds to remove the water-soluble protective coating and uncured photoresist coating.
- the resulting photoresist coating pattern after development is observed under a microscope.
- the obtained sample was immersed in the electroless copper plating solution for 96 seconds to grow a copper grid, and the copper grid was observed under a microscope. growth status.
- Test Example 1 Effect of containing UV absorber at different wavelengths and exposure energies
- UV curable materials 1, 2, and 3 are respectively coated on the surface of the substrate, and the photoresist coating pattern and metal grid are prepared by the above method under four sets of conditions, wherein the four sets of conditions are respectively in the exposure machine
- the exposure energy at the low wavelength of 314nm is 5mj, 7mj, and 11mj
- the exposure energy at the high wavelength of 365nm is 11mj.
- the results of the photoresist coating pattern and metal grid are shown in Figures 1 and 2.
- A3 and C4 have good copper on the lines after copper plating, that is, the addition of the UV absorber does not interfere with the copper on the grid.
- Test Example 2 Effect of containing UV absorber at different wavelengths and photoinitiator dosages
- UV curable materials 2, 4, and 5 are respectively coated on the surface of the substrate, and the photoresist coating patterns and metal grids are prepared by the above method under three sets of conditions, wherein the three sets of conditions are respectively in the exposure machine.
- the exposure energy at the low wavelength of 365nm is 11mj
- the exposure energy at the high wavelength of 405nm is 50mj and 100mj.
- the results of the photoresist coating pattern and metal grid are shown in Figures 3 and 4.
- the high-exposure photoresist with added UV absorber can be completely cured at both low energy and higher energy.
- A1 and C2 have good copper on the lines after copper plating, that is, the addition of the UV absorber does not interfere with the copper on the grid.
- adding UV absorbers to high-wavelength photoresists can effectively eliminate the impact of low-wavelength ultraviolet light on high-wavelength photoresists, and can expand the amount and type of photoinitiators for high-wavelength photoresists.
- any combination of various embodiments of the present invention can also be carried out. As long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optical Filters (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Materials For Photolithography (AREA)
- Polymerisation Methods In General (AREA)
Abstract
一种非对称性紫外曝光方法及其中使用的紫外可固化材料,以及使用它制造的金属网格传感器,方法包括将第一紫外可固化材料施加在光学透明基材的一侧上,将第二紫外可固化材料施加在光学透明基材的另一侧上,并且将光学透明基材的两侧同时分别曝光于紫外光,其中,第一紫外可固化材料的紫外吸收峰低于第二紫外可固化材料的紫外吸收峰,紫外光分别具有与对应侧的紫外可固化材料的紫外吸收峰相对应的波长,并且第二紫外可固化材料包含紫外吸收剂,可以进一步降低非对称性紫外曝光方法中两侧不同的紫外光对另一侧的涂层带来的影响。
Description
本申请要求于2022年03月18日提交中国专利局、申请号为2022102717403、发明名称为“一种新型非对称性紫外曝光方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明属于金属网格触控传感器领域,更具体地,涉及一种可以应用于光学透明基材(不管是否有紫外阻隔功能)的非对称性紫外曝光方法。
基于柔性基材的金属网格触控传感器因具备优越的柔性、优异的光学性能和较低的制造成本等优点而广受关注。目前主流的GF2(触控网格在同一基材的上下两侧分布)结构要求在基材的每一侧形成独特的微图案,并且相互不存在干涉,这需要材料及工艺的技术支撑。通常的实现方式一是通过两个或者多个重复的曝光、显影制程后再进行蚀刻或者湿法镀金属工艺;二是通过双面同时曝光工艺制程后再进行显影及湿法镀金属工艺,但该工艺要求光学透明基材具有紫外阻隔功能(例如某个紫外波段的阻隔率大于90%),以保证来自一侧的紫外光不会穿透基材干涉另一侧的图案。
但是上述的技术方案中,要么存在工艺复杂,产品良率低,生产成本高等问题;要么基板的可用选项非常有限,不仅需要基材供应商配合开发,并且通常会牺牲基板的光学性能,例如较低的透光率和较高的雾度,这对于拓展金属网格触控传感器更广泛的应用是不利的。
本申请人在之前的一篇专利(PCT申请号为PCT/CN2021/100610)中公开
了一种非对称性紫外曝光方法,其包括将紫外可固化涂层#1(以下简称涂层#1)施加在光学透明基板的一侧上,并将紫外可固化涂层#2(以下简称涂层#2)施加在所述光学透明基板的另一侧上,并且将所述光学透明基板的两侧同时曝光于紫外光,其中所述涂层#1与所述涂层#2在不同的波长处具有紫外吸收峰。优选地,涂层#2使用365nm或者以上更高波长的紫外光固化,而涂层#1使用314nm固化。
但经过申请人的进一步研究,一般的高波长固化用光引发剂在低波长的波长处也可能存在一定程度的吸收,所以低波长涂层在较低的曝光能量下也可能使高波长涂层发生一定的固化,因此为了避免影响,通常可以通过降低低波长光阻的曝光能量及减少高波长光阻配方中光引发剂量或调整高波长光阻配方中光引发种类来实施非对称曝光。然而,降低低波长涂层的曝光能量或降低高波长中光引发剂的量可能导致固化不足,使得光阻涂层固化后在基材表面粘附力降低,从而带来新的问题,因此对非对称性紫外曝光工艺的进一步开发及改进仍存在挑战。
发明内容
本发明的目的在于克服现有技术的上述缺陷,对非对称性紫外曝光方法进行进一步改进,从而进一步降低非对称性紫外曝光方法中两侧不同的紫外光对另一侧的涂层带来的影响。
为了实现上述目的,在一方面,本发明提供了一种非对称性紫外曝光方法,其包括将第一紫外可固化材料施加在光学透明基材的一侧上,将第二紫外可固化材料施加在所述光学透明基材的另一侧上,并且将所述光学透明基材的两侧同时分别曝光于紫外光,其中,所述第一紫外可固化材料的紫外吸收峰低于所
述第二紫外可固化材料的紫外吸收峰,所述紫外光分别具有与对应侧的紫外可固化材料的紫外吸收峰相对应的波长,并且所述第二紫外可固化材料包含紫外吸收剂。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。还应当理解,诸如在通常使用的字典中定义的那些术语应该被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且不会以理想化或过度形式化的含义来解释,除非在此明确地定义。
应当理解,尽管术语“第一”,“第二”等在本文中可以用于描述各种元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个元件与另一个元件区分开。例如,在不脱离本发明范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
具体地,在本发明中,虽然限定了所述第一紫外可固化材料的紫外吸收峰低于所述第二紫外可固化材料的紫外吸收峰,但这仅用于区分两种不同的紫外可固化材料,当两者的编号进行互换时,即为所述第二紫外可固化材料的紫外吸收峰低于所述第一紫外可固化材料的紫外吸收峰。
根据本发明,为了使得所述第一紫外可固化材料于所述第二紫外可固化材料在紫外吸收峰上尽可能地区分开,在一个优选的实施方式中,所述第一紫外可固化材料与所述第二紫外可固化材料的紫外吸收峰之间的波长差异可以为至少10nm,例如20nm、30nm、40nm、50nm、60nm、80nm或100nm等。
根据本发明,对所述紫外可固化材料的种类没有特别限制,并且可以为本领域中常见的光刻胶。在一个实施方式中,所述第一紫外可固化材料和所述第二紫外可固化材料各自独立地选自由正性光刻胶和负性光刻胶组成的组。换句
话说,所述第一紫外可固化材料和所述第二紫外可固化材料两者可以均为正性光刻胶;所述第一紫外可固化材料和所述第二紫外可固化材料两者可以均为负性光刻胶;或者所述第一紫外可固化材料和所述第二紫外可固化材料中的一者为正性光刻胶,且另一者为负性光刻胶。
此外,所述光刻胶的类型可以根据实际需要进一步选择。在一个实施方式中,所述正性光刻胶可以优选地包含曝光后可溶于显影液的树脂材料,并且所述负光刻胶可以优选地包含曝光后不溶于显影液的树脂材料。所述显影液通常是含有碱性化合物和表面活性剂的水溶液,碱性化合物可以是无机或有机碱性化合物,这些无机和有机碱性化合物可以单独使用或两种以上组合使用;而作为表面活性剂,可以使用选自由非离子表面活性剂、阴离子表面活性剂和阳离子表面活性剂所组成的组中的至少一种,这些表面活性剂可以单独使用,也可以两种以上组合使用。
根据本发明,所述第一紫外可固化材料和所述第二紫外可固化材料各自包含光引发剂(也称为敏化剂或感光剂等),以便允许所述第一紫外可固化材料和所述第二紫外可固化材料在不同的波长处具有紫外吸收峰。在一个实施方式中,所述第一紫外可固化材料与所述第二紫外可固化材料的紫外吸收峰之间的波长差异可以通过使用在不同的波长下具有紫外吸收峰的两种不同的光引发剂来实现。因此,本发明的所述第一紫外可固化材料和所述第二紫外可固化材料通常包含不同的光引发剂。
进一步地,对本发明的光引发剂的种类没有特别限制,并且可以为本领域中常见的光引发剂。在一个优选的实施方式中,所述第一紫外可固化材料和所述第二紫外可固化材料的光引发剂各自独立地为选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的
至少一种。苯乙酮类化合物的具体实例可以包括2-羟基-2-甲基-1-苯基丙-1-酮、二乙氧基苯乙酮和2-(4-甲基苄基)-2-(二甲基氨基)-1-(4-吗啉代苯基)丁-1-酮等。二苯甲酮类化合物的具体实例可以包括二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4'-甲基二苯基硫醚和2,4,6-三甲基二苯甲酮等。三嗪类化合物的具体实例可以包括2,4-双(三氯甲基)-6-(4-甲氧基苯基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-(4-甲氧基萘基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-[2-(3,4-二甲氧基苯基)乙烯基]-1,3,5-三嗪和2,4-双(三氯甲基)-6-2-(4-二乙基氨基-2-甲基苯基)乙烯基]-1,3,5-三嗪等。噻吨酮类化合物的具体实例可以包括2-异丙基噻吨酮、2,4-二乙基噻吨酮、2,4-二氯噻吨酮和1-氯-4-丙氧基噻吨酮等。肟酯类化合物的具体实例可以包括邻乙氧基羰基-α-氧基亚氨基-1-苯基丙-1-酮、1,2-辛二酮、1-(4-苯硫基)苯基和2-(邻苯甲酰肟)等。
根据本发明,为了进一步降低非对称性紫外曝光方法中两侧不同的紫外光对另一侧的涂层带来的影响,本发明的方法包括在所述第二紫外可固化材料中加入紫外吸收剂,也就是在紫外吸收峰高的紫外可固化材料中加入紫外吸收剂。通常地,紫外吸收剂根据种类的不同能够吸收紫外光谱中的一部分波段。
根据本发明需要,为了降低第一紫外可固化材料一侧的低波长光对第二紫外可固化材料的影响,紫外吸收剂应当能够将所述低波长光进行吸收。因此,在一个优选的实施方式中,所述紫外吸收剂能够吸收具有所述第一紫外可固化材料的紫外吸收峰+10nm的波长以下的波段,或者能够吸收具有所述第二紫外可固化材料的紫外吸收峰-10nm的波长以下的波段。
根据本发明,对所述紫外吸收剂的种类和用量没有特别限制,只要能够达到吸收来自第一紫外可固化材料一侧的低波长光的效果即可。因此,在一个实施方式中,所述紫外吸收剂可以为水杨酸酯类、二苯甲酮类、苯并三唑类、取
代丙烯腈类或三嗪类紫外吸收剂。在另一个实施方式中,基于所述第二紫外可固化材料的总重量,所述紫外吸收剂的含量可以为0.5-5重量%(例如1重量%、2重量%、3重量%或4重量%等)。
根据本发明,所述透明光学薄膜可以为具有优异的透明性、机械强度、热稳定性的基板,并且作为具体示例,所述光学透明基板可以由选自以下中的至少一种制成:聚酯类树脂例如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯等;纤维素类树脂例如二乙酰基纤维素和三乙酸纤维素等;丙烯酸类树脂例如聚(甲基)丙烯酸甲酯和聚(甲基)丙烯酸乙酯等;苯乙烯类树脂例如聚苯乙烯和丙烯腈苯乙烯共聚物等;聚烯烃类树脂例如聚乙烯、聚丙烯、环基或降冰片烯-聚烯烃和乙烯-聚丙烯共聚物等;氯乙烯类树脂;酰胺类树脂例如尼龙和芳族聚酰胺等;聚醚醚酮类树脂;聚苯硫醚类树脂;乙烯醇类树脂;聚偏二氯乙烯类树脂;乙烯醇缩丁醛类树脂;环氧类树脂,或一些其他新兴材料、例如环烯烃聚合物(COP)和透明聚酰亚胺(CPI)等。在一个优选的实施方式中,所述光学透明基板由PET、COP、CPI、或者其他柔性或刚性材料制成。
根据本发明的非对称性紫外曝光方法的优点,光学透明基板的紫外阻隔功能不是必需的,以允许所述光学透明基板的更多选择。因此,在一个优选的实施方式中,所述光学透明基板可以为不具有紫外阻隔功能的基板,例如,所述光学透明基材的紫外透过率高于90%(例如99%等)。
在另一方面,本发明还提供了一种用于根据上述的非对称性紫外曝光方法中的紫外可固化材料,其包含紫外吸收剂。
与上述的非对称性紫外曝光方法相对应的,其中所使用的紫外可固化材料,特别是具有高紫外吸收峰的第二紫外可固化材料中应当包含紫外吸收剂,从而
达到本发明所声称的技术效果。
与上述的非对称性紫外曝光方法类似的,对所述紫外吸收剂的种类和用量没有特别限制,只要能够达到吸收来自第一紫外可固化材料一侧的低波长光的效果即可。因此,在一个实施方式中,所述紫外吸收剂可以为水杨酸酯类、二苯甲酮类、苯并三唑类、取代丙烯腈类或三嗪类紫外吸收剂。在另一个实施方式中,基于所述第二紫外可固化材料的总重量,所述紫外吸收剂的含量可以为0.5-5重量%(例如1重量%、2重量%、3重量%或4重量%等)。
更具体地,根据本领域对紫外可固化材料中的一些常规组分的配制方法,相应地,本发明的紫外可固化材料的配方可以例如具体地包括:溶剂、光引发剂、流平剂、树脂、单体和紫外吸收剂,以及任选地,例如塑化剂,阻聚剂等,但不限于此。
在另一方面,本发明还提供了一种金属网格触控传感器,其通过根据上述非对称性紫外曝光方法制造。
本发明的技术方案的优点至少在于:(1)在光学透明基材中不需要紫外阻隔功能;(2)允许光学透明基材的更多选择;(3)既适用于正性紫外可固化光刻胶,又适用于负性紫外可固化光刻胶;(4)使用其制造的产品诸如柔性设备具有改善的光学性能;以及(5)相比于先前的双面紫外曝光方法进一步降低了两侧不同的紫外光对另一侧的涂层,特别是低紫外吸收峰一侧的紫外光对另一侧的具有光紫外吸收峰的材料带来的影响。
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图
中:
图1示出了测试例1中得到的光阻涂层图案的检测结果;
图2示出了测试例1中得到的铜生长情况的检测结果;
图3示出了测试例2中得到的光阻涂层图案的检测结果;以及
图4示出了测试例2中得到的铜生长情况的检测结果。
以下对本发明的实施例进行详细说明。应当理解的是,此处所描述的具体实施例仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
实施例
实施例1
紫外可固化材料1(紫外吸收峰为314nm,无紫外吸收剂)如下配制:在不锈钢或者塑料容器中称取65.5份的乳酸乙酯,然后再添加20份聚酯丙烯酸酯齐聚物(沙多玛CN293)和10份二季戊四醇六丙烯酸酯(DPHA)至上述溶剂中,开启高剪切搅拌机至转速6000rpm,称取2份2-甲基-1-(4-甲硫基苯基)-2-吗啉-1-丙酮(907),1份邻苯二甲酸二(2-乙基己基)酯,0.01份对羟基苯甲醚(MEHQ)至上一步溶液中,保持6000rpm转速搅拌1小时,称取1.49份毕克BYK-333至上一步溶液中,继续搅拌10分钟。使用1μm滤芯过滤溶液,保存在遮光瓶中,
避光、低温保存。
实施例2
紫外可固化材料2(紫外吸收波段为365-405nm,无紫外吸收剂)如下配制:在不锈钢或者塑料容器中称取65.5份的乳酸乙酯,然后再添加19.5份聚酯丙烯酸酯齐聚物(沙多玛CN293)和9.5份二季戊四醇六丙烯酸酯(DPHA)至上述溶剂中,开启高剪切搅拌机至转速6000rpm,称取2份2-异丙基硫杂蒽酮,0.5份4-二甲氨基苯甲酸乙酯(EDAB),1份邻苯二甲酸二(2-乙基己基)酯,0.01份对羟基苯甲醚(MEHQ)至上一步溶液中,保持6000rpm转速搅拌1小时,称取称取1.49份毕克BYK-333至上一步溶液中,继续搅拌10分钟。使用1μm滤芯过滤溶液,保存在遮光瓶中,避光、低温保存。
实施例3
紫外可固化材料3(紫外吸收波段为365-405nm,含紫外吸收剂)如下配制:在不锈钢或者塑料容器中称取65.5份的乳酸乙酯,然后再添加19份聚酯丙烯酸酯齐聚物(沙多玛CN293)和9份二季戊四醇六丙烯酸酯(DPHA)至上述溶剂中,开启高剪切搅拌机至转速6000rpm,称取2.0份2-异丙基硫杂蒽酮,0.5份4-二甲氨基苯甲酸乙酯(EDAB),1份上海联志化工紫外吸收剂164,1份邻苯二甲酸二(2-乙基己基)酯,0.01份对羟基苯甲醚(MEHQ)至上一步溶液中,保持6000rpm转速搅拌1小时,称取1.49份毕克BYK-333至上一步溶液中,继续搅拌10分钟。使用1μm滤芯过滤溶液,保存在遮光瓶中,避光、低温保存。
实施例4
紫外可固化材料4(紫外吸收波段为365-405nm,无紫外吸收剂)如下配制:在不锈钢或者塑料容器中称取65.5份的乳酸乙酯,然后再添加18.25份聚酯丙烯酸酯齐聚物(沙多玛CN293)和8.25份二季戊四醇六丙烯酸酯(DPHA)至
上述溶剂中,开启高剪切搅拌机至转速600rpm,称取4份2-异丙基硫杂蒽酮,1份4-二甲氨基苯甲酸乙酯(EDAB),1份邻苯二甲酸二(2-乙基己基)酯,0.01份对羟基苯甲醚(MEHQ)至上一步溶液中,保持6000RPM转速搅拌1小时,称取1.49份毕克BYK-333至上一步溶液中,继续搅拌10分钟。使用1μm滤芯过滤溶液,保存在遮光瓶中,避光、低温保存。
实施例5
紫外可固化材料5(紫外吸收波段为365-405nm,含紫外吸收剂)如下配制:在不锈钢或者塑料容器中称取65.5份的溶剂,然后再添加17.75份聚酯丙烯酸酯齐聚物(沙多玛CN293)和7.75份二季戊四醇六丙烯酸酯(DPHA)17.75份树脂至上述溶剂中,开启高剪切搅拌机至转速6000rpm,称取4份2-异丙基硫杂蒽酮,1份4-二甲氨基苯甲酸乙酯(EDAB),1份上海联志化工紫外吸收剂3638,1份邻苯二甲酸二(2-乙基己基)酯,0.01份对羟基苯甲醚(MEHQ)至上一步溶液中,保持6000rpm转速搅拌1小时,称取1.49份毕克BYK-333至上一步溶液中,继续搅拌10分钟。使用1μm滤芯过滤溶液,保存在遮光瓶中,避光、低温保存。
在以下测试例中,通过以下方法得到光阻涂层图案及金属网格:使用微凹涂布线棒在柔性基材的一个表面上涂覆紫外可固化材料以形成光阻涂层,然后在烘箱中于65℃的温度下干燥100s,以得到厚度为700nm的涂层;在光刻胶膜的顶部涂覆一层钯纳米颗粒催化剂涂层,75℃烘烤30s;然后再涂一层隔绝水氧的功能保护涂层,于80℃烘箱中烘烤30s;之后使用与光阻匹配波长的紫外光及设计线宽2μm的光罩进行接触式曝光。曝光后,在使用碱性显影液冲洗基材30s,以去除水溶性保护涂层及未固化的光阻涂层,显微镜下观察所得显影后光阻涂层图案。所得样品浸入化学镀铜液中96s以生长铜网格,在显微镜下观察铜网格
的生长情况。
测试例1在不同波长及曝光能量下对是否含紫外吸收剂的影响
将紫外可固化材料1、2、3分别涂覆于基材表面,并通过上述方法分别在四组条件下制备光阻涂层图案及金属网格,其中所述四组条件分别为在曝光机下314nm低波长下曝光能量5mj、7mj、11mj,以及365nm高波长下曝光能量11mj,所述光阻涂层图案及金属网格的结果如图1和图2所示。
参照图1,A1与B1结果对比可见,低波长曝光能量较低时,低波长紫外光并没有对高波长用光阻产生影响;B1与B2、B3结果对比可见,随着低波长曝光能量升高,高波长光阻开始产生图案,说明高波长用光阻中未加紫外吸收剂时,低波长可选用的曝光能量范围较窄;
B2与C2、C3结果对比可见,高波长用光阻中增加紫外吸收剂后,有效消除来自对面透过的低波长紫外光的影响,并且低波长可选的曝光能量范围变宽,即在低波长曝光能量较高的情况下,也可以实现双面非对称曝光。
A4、B4、C4对比结果可见,高波长用光阻中添加紫外吸收剂,未对光阻本身固化产生不良影响,并且在高波长光阻能量可以固化的能量下,不会对低波长用光阻产生影响。
参照图2,A3和C4在镀铜后线条上铜良好,即紫外吸收剂的加入并不干涉网格上铜情况。
测试例2在不同波长及光引发剂用量下对是否含紫外吸收剂的影响
将紫外可固化材料2、4、5分别涂覆于基材表面,并通过上述方法分别在三组条件下制备光阻涂层图案及金属网格,其中所述三组条件分别为在曝光机下365nm低波长下曝光能量11mj,以及405nm高波长下曝光能量50mj、100mj,所述光阻涂层图案及金属网格的结果如图3和图4所示。
参照图3,A1、B1、C1结果对比可见,低波长紫外光在较低能量下也可对对面高波长用光阻产生影响;高波长用光阻光引发剂增加后,低波长紫外光对其影响效果更为明显;但是在增加了光引发剂用量的高波长用光阻中添加紫外吸收剂后,可以有效消除低波长紫外光对高波长用光阻的影响;并且随着低波长曝光能量的增加,高波长光阻也不会产生图案。
A3、A2、B2结果对比可见,同样的光阻引发剂配方下,存在高波长紫外光对低波长产生影响的现象,降低高波长的曝光能量同样能减轻对低波长光阻的影响,但是会导致高波长光阻自身固化不足;增加高波长用光阻中光引发剂用量可以实现较低能量固化良好,也不会对低波长用光阻产生影响,但是存在上述B1中高波长用光阻光引发剂增加后,低波长紫外光对其影响效果更为明显的问题;
C2与B2、C3与B3对比,添加了紫外吸收剂的高曝光用光阻在低能量和较高能量下均能固化完全。
参照图4,A1和C2在镀铜后线条上铜良好,即紫外吸收剂的加入并不干涉网格上铜情况。
综上,在高波长用光阻中添加紫外吸收剂可以有效消除低波长紫外光对高波长用光阻的影响,并且可以扩宽高波长光阻的光引发剂用量及种类。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (15)
- 一种非对称性紫外曝光方法,其包括:将第一紫外可固化材料施加在光学透明基材的一侧上,将第二紫外可固化材料施加在所述光学透明基材的另一侧上,并且将所述光学透明基材的两侧同时分别曝光于紫外光,其中,所述第一紫外可固化材料的紫外吸收峰低于所述第二紫外可固化材料的紫外吸收峰,所述紫外光分别具有与对应侧的紫外可固化材料的紫外吸收峰相对应的波长,并且所述第二紫外可固化材料包含紫外吸收剂。
- 根据权利要求1所述的非对称性紫外曝光方法,其中,所述第一紫外可固化材料与所述第二紫外可固化材料的紫外吸收峰之间的波长差异为至少10nm。
- 根据权利要求1~2任一所述的非对称性紫外曝光方法,其中,所述紫外吸收剂能够吸收具有所述第一紫外可固化材料的紫外吸收峰+10nm的波长以下的波段,或者能够吸收具有所述第二紫外可固化材料的紫外吸收峰-10nm的波长以下的波段。
- 根据权利要求1~3任一所述的非对称性紫外曝光方法,其中,所述紫外吸收剂为水杨酸酯类、二苯甲酮类、苯并三唑类、取代丙烯腈类或三嗪类紫外吸收剂。
- 根据权利要求1~4任一所述的非对称性紫外曝光方法,其中,基于所述第二紫外可固化材料的总重量,所述紫外吸收剂的含量为0.5-5重量%。
- 根据权利要求1~5任一所述的非对称性紫外曝光方法,其中,所述第一紫外可固化材料和所述第二紫外可固化材料各自独立地选自正性光刻胶和负性光刻胶。
- 根据权利要求1~6任一所述的非对称性紫外曝光方法,其中,所述第一 紫外可固化材料和所述第二紫外可固化材料各自包含光引发剂。
- 根据权利要求7所述的非对称性紫外曝光方法,其中,所述第一紫外可固化材料和所述第二紫外可固化材料的光引发剂各自独立地为选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。
- 根据权利要求7~8任一所述的非对称性紫外曝光方法,其中,通过使用在不同的波长下具有紫外吸收峰的两种不同的光引发剂来实现所述第一紫外可固化材料与所述第二紫外可固化材料的紫外吸收峰之间的波长差异。
- 根据权利要求1~9任一所述的非对称性紫外曝光方法,其中,所述光学透明基材由PET、COP、CPI或者其他柔性或刚性材料制成。
- 根据权利要求1~10任一所述的非对称性紫外曝光方法,其中,所述光学透明基材的紫外透过率高于90%。
- 一种用于根据权利要求1~11任一项所述的非对称性紫外曝光方法中的紫外可固化材料,其包含紫外吸收剂。
- 根据权利要求12所述的紫外可固化材料,其中,所述紫外吸收剂为水杨酸酯类、二苯甲酮类、苯并三唑类、取代丙烯腈类或三嗪类紫外吸收剂。
- 根据权利要求12~13任一所述的紫外可固化材料,其中,基于所述紫外可固化材料的总重量,所述紫外吸收剂的含量为0.5-5重量%。
- 一种金属网格触控传感器,其通过根据权利要求1~11中任一项所述的非对称性紫外曝光方法制造。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210271740.3A CN114721229B (zh) | 2022-03-18 | 2022-03-18 | 一种新型非对称性紫外曝光方法 |
CN202210271740.3 | 2022-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023174414A1 true WO2023174414A1 (zh) | 2023-09-21 |
Family
ID=82236791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082211 WO2023174414A1 (zh) | 2022-03-18 | 2023-03-17 | 新型非对称性紫外曝光方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114721229B (zh) |
WO (1) | WO2023174414A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114721229B (zh) * | 2022-03-18 | 2023-07-28 | 浙江鑫柔科技有限公司 | 一种新型非对称性紫外曝光方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561729A (zh) * | 2008-04-15 | 2009-10-21 | 宸鸿光电科技股份有限公司 | 触控电路的透明基板双面导电膜的制法 |
CN106687892A (zh) * | 2015-01-13 | 2017-05-17 | 日本写真印刷株式会社 | 触摸输入传感器的制造方法以及感光性导电膜 |
CN110554789A (zh) * | 2018-05-30 | 2019-12-10 | 凯姆控股有限公司 | 双面电极及其图案化方法 |
CN110609631A (zh) * | 2018-06-15 | 2019-12-24 | 凯姆控股有限公司 | 触控面板及其制作方法 |
CN113867108A (zh) * | 2021-09-23 | 2021-12-31 | 浙江鑫柔科技有限公司 | 一种基于光学透明基材进行双面图案化的方法 |
CN113900535A (zh) * | 2020-04-14 | 2022-01-07 | 未来科技基金有限责任公司 | 用于光刻制造双侧触摸传感器的方法 |
CN114721229A (zh) * | 2022-03-18 | 2022-07-08 | 浙江鑫柔科技有限公司 | 一种新型非对称性紫外曝光方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX169037B (es) * | 1988-03-29 | 1993-06-17 | Rohm & Haas | Procedimiento para preparar revestimientos fotocurados |
JP5674399B2 (ja) * | 2010-09-22 | 2015-02-25 | 富士フイルム株式会社 | 重合性組成物、感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法 |
CN113906348B (zh) * | 2021-02-09 | 2024-03-12 | 浙江鑫柔科技有限公司 | 一种非对称性uv曝光方法 |
CN113845805A (zh) * | 2021-10-18 | 2021-12-28 | 浙江鑫柔科技有限公司 | 一种光刻胶保护材料以及使用其形成金属网格的方法 |
-
2022
- 2022-03-18 CN CN202210271740.3A patent/CN114721229B/zh active Active
-
2023
- 2023-03-17 WO PCT/CN2023/082211 patent/WO2023174414A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561729A (zh) * | 2008-04-15 | 2009-10-21 | 宸鸿光电科技股份有限公司 | 触控电路的透明基板双面导电膜的制法 |
CN106687892A (zh) * | 2015-01-13 | 2017-05-17 | 日本写真印刷株式会社 | 触摸输入传感器的制造方法以及感光性导电膜 |
CN110554789A (zh) * | 2018-05-30 | 2019-12-10 | 凯姆控股有限公司 | 双面电极及其图案化方法 |
CN110609631A (zh) * | 2018-06-15 | 2019-12-24 | 凯姆控股有限公司 | 触控面板及其制作方法 |
CN113900535A (zh) * | 2020-04-14 | 2022-01-07 | 未来科技基金有限责任公司 | 用于光刻制造双侧触摸传感器的方法 |
CN113867108A (zh) * | 2021-09-23 | 2021-12-31 | 浙江鑫柔科技有限公司 | 一种基于光学透明基材进行双面图案化的方法 |
CN114721229A (zh) * | 2022-03-18 | 2022-07-08 | 浙江鑫柔科技有限公司 | 一种新型非对称性紫外曝光方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114721229A (zh) | 2022-07-08 |
CN114721229B (zh) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI514082B (zh) | A photosensitive member, a method for forming a resist pattern, and a method for manufacturing a printed circuit board | |
JP2010504543A5 (zh) | ||
WO2023174414A1 (zh) | 新型非对称性紫外曝光方法 | |
CN104834184B (zh) | 感光性元件 | |
TW201437752A (zh) | 感光性樹脂組成物、硬化膜、畫素形成方法、固體攝影元件、彩色濾光片、液晶顯示裝置及紫外線吸收劑 | |
TW201235777A (en) | Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing printed wiring board | |
TWI677757B (zh) | 感光性樹脂組合物 | |
TW200948886A (en) | Curable composition, color filter, method for producing the same and solid-state image pickup devices | |
TWI591434B (zh) | Photosensitive device, method of forming photoresist pattern using the same, manufacturing method of printed circuit board, and printed circuit board | |
JP2014071306A (ja) | 硬化性樹脂組成物、転写材料、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、液晶表示装置、有機el表示装置並びにタッチパネル表示装置 | |
JP5813325B2 (ja) | 黒色重合性組成物、及び、黒色層の作製方法 | |
CN112368642A (zh) | 感光性树脂组合物和抗蚀图案的形成方法 | |
JP2011186208A (ja) | 感光性樹脂組成物 | |
CN118131567A (zh) | 感光性树脂组合物、感光性元件、抗蚀剂图案的形成方法及印刷线路板的制造方法 | |
TWI425313B (zh) | A photosensitive resin composition, a photosensitive member, a method for forming a resist pattern, and a method for manufacturing a printed wiring board | |
TWI811423B (zh) | 感光性樹脂組合物及抗蝕圖案之形成方法 | |
WO2018100730A1 (ja) | 感光性エレメント、レジストパターンの形成方法、及び、プリント配線板の製造方法 | |
KR20160112644A (ko) | 착색 감광성 수지 조성물 및 이를 이용하는 컬러 필터 | |
CN113906348B (zh) | 一种非对称性uv曝光方法 | |
JP6919226B2 (ja) | 感光性樹脂組成物、感光性エレメント及びレジストパターンの形成方法 | |
JP2019133143A (ja) | 感光性樹脂積層体及びレジストパターンの製造方法 | |
CN115916529A (zh) | 转印膜、层叠体的制造方法、电路配线的制造方法及电子器件的制造方法 | |
TW202133701A (zh) | 導電性圖案之製造方法、觸控感測器、電磁波遮蔽材、天線、配線基板、導電性加熱元件及結構體 | |
CN115280239A (zh) | 转印膜、感光性材料、图案形成方法、电路基板的制造方法、触摸面板的制造方法 | |
CN115298615A (zh) | 感光性树脂组合物、感光性元件及配线基板的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23769916 Country of ref document: EP Kind code of ref document: A1 |