WO2023173508A1 - 光学膜层及其制作方法、偏光片、显示面板 - Google Patents

光学膜层及其制作方法、偏光片、显示面板 Download PDF

Info

Publication number
WO2023173508A1
WO2023173508A1 PCT/CN2022/084739 CN2022084739W WO2023173508A1 WO 2023173508 A1 WO2023173508 A1 WO 2023173508A1 CN 2022084739 W CN2022084739 W CN 2022084739W WO 2023173508 A1 WO2023173508 A1 WO 2023173508A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
layer
particles
film layer
optical film
Prior art date
Application number
PCT/CN2022/084739
Other languages
English (en)
French (fr)
Inventor
刘刚
杨伟恒
王维
Original Assignee
惠州华星光电显示有限公司
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州华星光电显示有限公司, Tcl华星光电技术有限公司 filed Critical 惠州华星光电显示有限公司
Priority to US17/754,949 priority Critical patent/US20240151877A1/en
Publication of WO2023173508A1 publication Critical patent/WO2023173508A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • This application relates to the field of display technology, specifically to optical film layers and manufacturing methods thereof, polarizers, and display panels.
  • the ambient light reflected by the display screen is called glare.
  • the glare of the display screen will not only greatly reduce the display effect, but also have an adverse impact on the user's visual health.
  • mainstream anti-glare technologies include surface roughening, setting up micro-nano supersurfaces, anti-reflection coatings, optical particles, etc.
  • the main function of optical particles is to generate haze to increase diffuse reflection, and the haze size can be adjusted by controlling particle size and density.
  • the display screen is prone to uneven haze and flash points due to uneven particle distribution and excessively large optical particles.
  • the diffusion particles are only covered in a single layer on the resin surface, the diffusion particles are exposed on the surface of the resin layer and are easily scratched or even peeled off during use, resulting in reduced anti-glare effect and unstable anti-glare effect.
  • This application provides an optical film layer and its production method, polarizer, and display panel to improve the current technical problem that the optical film layer is prone to scratches or even falling off due to the optical particles being exposed on the surface, resulting in unstable anti-glare effect.
  • optical film layer including:
  • a particle layer group is provided in the base layer, and the particle layer group includes a plurality of particle layers;
  • the refractive index of the plurality of particle layers gradually decreases in a direction from the first side of the optical film layer to the second side of the optical film layer.
  • the particle layer group at least includes a first particle layer and a second particle layer
  • the first particle layer is close to the first side of the optical film layer
  • the second particle layer is close to the second side of the optical film layer
  • the first particle layer is located in the base layer, and the second particle layer is located on the surface of the base layer.
  • the first particle layer includes a plurality of first optical particles
  • the second particle layer includes a plurality of second optical particles
  • the first optical particles and the second optical particles have the same refractive index.
  • the size of the first optical particles is smaller than the size of the second optical particles.
  • the first particle layer includes a plurality of first optical particles
  • the second particle layer includes a plurality of second optical particles
  • the size of the first optical particles is the same as the size of the second optical particles.
  • the refractive index of the first optical particles is greater than the refractive index of the second optical particles.
  • the first particle layer includes a plurality of first optical particles
  • the second particle layer includes a plurality of second optical particles
  • the first optical particles and the second optical particles have a hollow shell structure.
  • the first optical particles and the second optical particles are spherical shells with hollow interiors.
  • the refractive index of the first optical particles is the same as the refractive index of the second optical particles.
  • the size of the first optical particles is the same as the size of the second optical particles.
  • the shell thickness of the first optical particles is greater than the shell thickness of the second optical particles.
  • the ratio of the shell thickness of the spherical shell to the radius of the spherical shell is greater than or equal to 1/5.
  • the first particle layer includes a plurality of first optical particles
  • the second particle layer includes a plurality of second optical particles
  • the refractive index of the first optical particles is the same as the refractive index of the second optical particles
  • the size of the first optical particles is the same as the size of the second optical particles.
  • the distribution density of the first optical particles is smaller than the distribution density of the second optical particles.
  • the first particle layer includes a plurality of first optical particles
  • the second particle layer includes a plurality of second optical particles
  • the size of the first optical particles and the second optical particles is smaller than the wavelength of visible light.
  • This application also provides a method for making an optical film layer, which is used to make the above-mentioned optical film layer.
  • the method for making the optical film layer includes:
  • a second base layer is formed on the first base layer, and at least one particle layer is provided in the second base layer;
  • the first base layer and the second base layer are made of the same material to form an integral base layer; in the direction from the first base layer to the second base layer, the refraction of the particle layer rate gradually decreases.
  • This application also provides a polarizer, which includes the above-mentioned optical film layer.
  • This application also provides a display panel, including a panel body and the above-mentioned polarizer, and the polarizer is disposed above the light-emitting surface of the panel body.
  • a particle layer group including multiple particle layers is provided in the base layer, and the refractive index of the multiple particle layers gradually increases along the direction from the first side of the optical film layer to the second side of the optical film layer.
  • the multiple layers of particles can convert specular reflection into diffuse reflection, so that the optical film layer has both high haze and low Reflective characteristics; and a large number of particles embedded inside the base layer can also effectively prevent the particles from being scratched or falling off; in addition, the optical film layer of this application can be prepared through a mature optical particle anti-glare process, so it can also Effectively reduce manufacturing costs.
  • Figure 1 is a schematic structural diagram of the first optical film layer described in this application.
  • Figure 2 is a schematic diagram of the second structure of the optical film layer described in this application.
  • Figure 3 is a schematic diagram of the third structure of the optical film layer described in this application.
  • Figure 4 is a schematic structural diagram of the optical particles described in this application.
  • Figure 5 is a schematic diagram of the fourth structure of the optical film layer described in this application.
  • Figure 6 is a schematic diagram of the relative positions of the second optical particles and the base layer of the present application.
  • Base layer 100 particle layer group 200, first particle layer 210, first optical particles 211, second particle layer 220, second optical particles 221, embedded part 2211, outer convex part 2212, third particle layer 230, Three optical particles231.
  • the ambient light reflected by the display screen is called glare.
  • the glare of the display screen will not only greatly reduce the display effect, but also have an adverse impact on the user's visual health.
  • mainstream anti-glare technologies include surface roughening, setting up micro-nano supersurfaces, anti-reflection coatings, optical particles, etc.
  • the main function of optical particles is to generate haze to increase diffuse reflection.
  • the display screen is prone to uneven haze and flash points.
  • the present application provides an optical film layer, including a base layer 100 and a particle layer group 200 disposed in the base layer 100 .
  • the particle layer group 200 includes multiple particle layers.
  • the refractive index of the plurality of particle layers gradually decreases in a direction from the first side of the optical film layer to the second side of the optical film layer.
  • multiple layers of the particle layers form a composite film layer with a gradient refractive index in the base layer 100.
  • the multiple layers of optical particles can form an effective micro-nano structure and convert specular reflection into diffuse reflection.
  • the optical film layer has the characteristics of high haze and low reflection at the same time.
  • a large number of particles are embedded inside the base layer 100, which can also effectively prevent the particles from being scratched or falling off.
  • the optical film layer of the present application can be prepared through a mature optical particle anti-glare process, so the manufacturing cost can also be effectively reduced.
  • the base layer 100 can be a flexible film layer formed by a resin material.
  • the resin material can be an organic optical film layer material such as polyimide, polyethylene terephthalate (PET).
  • the multiple particle layers may be formed by a plurality of optical particles dispersed hierarchically in the material of the base layer 100 , and the optical particles may be glass microbeads or transparent plastic microbeads.
  • the shape of the optical particles may be spherical, cubic, conical, pyramidal, etc., which is not specifically limited in this embodiment. It should be noted that the following embodiments of the present application are only described with the optical particles in a spherical shape as a representative example, and the effects can be deduced by the same principle for optical particles of other shapes.
  • the optical film layer can be disposed on the light-emitting surface of the display panel or display screen, wherein the first side of the optical film layer can be attached to the light-emitting surface of the display panel or display screen, and the The second side of the optical film layer is the side away from the display panel or the light-emitting surface of the display screen.
  • the refractive index of the particle layer can be understood as the overall refractive index of the particle layer composed of multiple optical particles in the same plane.
  • the refractive index of the plurality of particle layers is smaller than the refractive index of the base layer 100 .
  • Figure 1 is a first structural schematic diagram of the optical film layer of the present application.
  • the particle layer group 200 at least includes a first particle layer 210 and a second particle layer 220.
  • the first particle layer 210 is close to the first side of the optical film layer
  • the second particle layer 220 is close to the second side of the optical film layer.
  • the first particle layer 210 is located in the base layer 100
  • the second particle layer 220 is located on the surface of the base layer 100 .
  • the particle layer group 200 is configured to include at least a first particle layer 210 located in the base layer 100 and a second particle layer 220 located on the surface of the base layer 100, so that the optical film layer can be It can have good diffuse reflection effect both internally and on the surface, further improving haze uniformity, and can also effectively reduce the risk of unstable anti-glare effect caused by surface particles falling off.
  • the first particle layer 210 may include a plurality of first optical particles 211
  • the second particle layer 220 may include a plurality of second optical particles 221 .
  • a plurality of first optical particles 211 are randomly dispersed in the base layer 100 to form the first particle layer 210
  • a plurality of second optical particles 221 are randomly dispersed in the base layer 100 to form the Second particle layer 220.
  • the distribution density of the first optical particles 211 in the first particle layer 210 and the distribution density of the second optical particles 221 in the second particle layer 220 may be the same. It should be noted that since the optical particles of the first particle layer 210 and the second particle layer 220 are randomly distributed, “the distribution density is the same” in this embodiment can be understood as: each of the first particle layer 210 has The average distribution density of the first optical particles 211 in the region is substantially the same or similar to the average distribution density of the second optical particles 221 in each region of the second particle layer 220 .
  • the refractive index of the first optical particles 211 and the second optical particles 221 may be the same.
  • the materials of the first optical particles 211 and the second optical particles 221 may be the same.
  • the size of the first optical particles 211 may be smaller than the size of the second optical particles 221 , and the sizes of the first optical particles 211 and the second optical particles 221 are smaller than the wavelength of visible light.
  • the spherical diameter of the first optical particle 211 may be smaller than the spherical diameter of the second optical particle 221 .
  • the proportion of the second optical particles 221 located on the surface of the optical film layer relative to the high refractive index base layer 100 is relatively low, and the overall reflectivity of the first particle layer 210 is greater than the
  • the overall reflectivity of the second particle layer 220 that is, the refractive index of the optical film layer decreases along the direction from the first side of the optical film layer to the second side of the optical film layer, which can show macroscopically It produces an equivalent gradient refractive index effect, thereby effectively reducing the total reflection of the optical film layer and effectively improving the anti-glare effect.
  • Figure 2 is a second structural schematic diagram of the optical film layer of the present application.
  • the size of the first optical particles 211 can be the same as that of the second optical particles 221.
  • the sizes are the same.
  • the shapes and sizes of the first optical particles 211 and the second optical particles 221 may be the same.
  • the shapes and sizes of the first optical particles 211 and the second optical particles 221 are the same, and the distribution density of the first optical particles 211 in the first particle layer 210 is the same as that of the first optical particles 211 and the second optical particles 221 .
  • the refractive index of the first optical particles 211 may be greater than the refractive index of the second optical particles 221 .
  • the refractive index of the optical film layer can also be reduced along the direction from the first side of the optical film layer to the second side of the optical film layer. , to achieve the gradient refractive index effect, achieve the purpose of reducing the total reflection of ambient light by the optical film layer, and effectively improve the anti-glare effect.
  • Figure 3 is a third structural schematic diagram of the optical film layer of the present application.
  • the first optical particles 211 and the second optical particles 221 may be hollow shells. body structure.
  • the first optical particles 211 and the second optical particles 221 are arranged into a hollow shell structure, so that the light is not only transmitted through the hollow shells of the first optical particles 211 and the second optical particles 221
  • the surface is refracted and reflected, and is also refracted and reflected by the air medium inside the hollow shell, which can further improve the uniformity of haze and effectively reduce flash point and other adverse phenomena.
  • the first optical particles 211 and the second optical particles 221 may be spherical shells with hollow interiors to improve the performance of the first optical particles 211 and the second optical particles 221.
  • the fluidity of the second optical particles 221 in the base layer 100 facilitates uniform distribution of the optical particles in the first particle layer 210 and the second particle layer 220 , thereby improving haze uniformity.
  • the refractive index of the first optical particle 211 is the same as the refractive index of the second optical particle 221
  • the size of the first optical particle 211 is the same as the size of the second optical particle 221 .
  • the shell thickness of the first optical particles 211 may be greater than the shell thickness of the second optical particles 221. thickness.
  • the size of the first optical particle 211 or the second optical particle 221 is a spherical shell with a hollow interior.
  • the size of the optical particles 221 refers to the outer surface diameter of the spherical shell.
  • the outer surface of the spherical shell can be understood as the contact surface between the optical particles and the base layer 100 .
  • the change law of the thickness of the housing in this embodiment can also make the refractive index of the optical film layer along the direction from the first side of the optical film layer to the second side of the optical film layer. Reduce, achieve the gradient refractive index effect, achieve the purpose of reducing the total reflection of ambient light by the optical film layer, and effectively improve the anti-glare effect.
  • Figure 4 is a schematic structural diagram of the optical particles of the present application.
  • the shell thickness d of the spherical shell is The ratio to the radius r of the spherical shell is greater than or equal to 1/5, that is, d/r ⁇ 1/5, so that the optical particles have sufficient strength and avoid or reduce the impact of the optical particles on the base layer. It breaks under pressure within 100 seconds, thereby further stabilizing the anti-glare effect.
  • Figure 5 is a fourth structural schematic diagram of the optical film layer of the present application.
  • the refractive index of the first optical particles 211 and the second optical particle 221 On the premise that the refractive index is the same, the shape of the first optical particle 211 is the same as the shape of the second optical particle 221, and the size of the first optical particle 211 is the same as the size of the second optical particle 221, In a top view of the optical film layer, the distribution density of the first optical particles 211 may be smaller than the distribution density of the second optical particles 221 .
  • the distribution density of the optical particles in the second optical film layer close to the second side of the optical film layer is greater, which is formed when ambient light strikes the surface of the second side of the optical film layer. More diffuse reflection, thus effectively improving the flash point phenomenon.
  • the particle layer group 200 also includes at least a third particle layer 230, and the third particle layer 230 is disposed on the first particle layer. 210 and the second particle layer 220.
  • the particle layer group 200 may include three or more particle layers, wherein the fourth particle layer, the fifth particle layer, the sixth particle layer... (not shown in the figure) are along the The optical film layer is stacked in sequence from the first side to the second side of the optical film layer.
  • the refractive index of the third particle layer 230 may be smaller than the refractive index of the first particle layer 210 , and the refractive index of the third particle layer 230 may be larger than the second particle layer 220 refractive index. That is to say, the refractive index of the third particle layer 230 is between the refractive index of the first particle layer 210 and the refractive index of the second particle layer 220 .
  • the refractive index of the fourth particle layer, the fifth particle layer, the sixth particle layer gradually decreases, and is all between the refractive index of the first particle layer 210 between the refractive index and the refractive index of the second particle layer 220 .
  • the refractive index of the third particle layer 230 can be adjusted by changing the shape, size, refractive index and distribution density of the third optical particles 231 .
  • the shape, size, and refraction of the third optical particles 231 can be inferred.
  • the relationship between the ratio and distribution density and the shape, size, refractive index and distribution density of the first optical particles 211 and the second optical particles 221 will not be described again in this embodiment.
  • the refractive index change in the optical film layer is smoother and more uniform, which is conducive to achieving a higher haze level and can effectively reduce the environmental impact.
  • the amount of light reflected further improves the anti-glare effect.
  • the first particle layer 210 includes a plurality of first optical particles 211
  • the second particle layer 220 includes a plurality of second optical particles 221
  • the third The particle layer 230 includes a plurality of third optical particles 231 .
  • the plurality of first optical particles 211 have the same shape, size, and refractive index.
  • the plurality of second optical particles 221 have the same shape, size, and refractive index.
  • the plurality of third optical particles 231 have the same shape, size, and refractive index.
  • the refractive index is the same.
  • the optical particle material properties in each particle layer are made uniform, thereby reducing the uneven refraction or reflection formed inside each particle layer.
  • Figure 6 is a schematic diagram of the relative position of the second optical particles 221 and the base layer 100 of the present application.
  • the second optical particles 221 include an integrally formed embedded
  • the embedded part 2211 is located in the base layer 100 and the outer convex part 2212 protrudes from the surface of the base layer 100 .
  • the volume of the embedded part 2211 is greater than or equal to the volume of the outer convex part 2212, so that a higher fitting tightness is formed between the second optical particles 221 and the base layer 100. degree, the second optical particles 221 are not easy to fall off, and the anti-glare stability is improved.
  • Embodiments of the present application also provide a method for manufacturing an optical film layer, which is used for the optical film layer described in the above embodiments.
  • the method for manufacturing the optical film layer may include:
  • first base layer and the second base layer are made of the same material to form an integral base layer 100 .
  • the first base layer and the second base layer may be made of the same resin material, such as polyimide, polyester material, etc.
  • the refractive index of the particle layer gradually decreases in the direction from the first base layer to the second base layer, so that the refractive index of the multiple particle layers in the overall base layer 100 It has a gradient trend and has an anti-glare effect.
  • An embodiment of the present application also provides a polarizer, which may include the optical film layer described in the above embodiment.
  • An embodiment of the present application also provides a display panel, which may include a panel body and the polarizer described in the above embodiment, and the polarizer is disposed above the light-emitting surface of the panel body.
  • the panel body may include but is not limited to a liquid crystal panel, an OLED panel, an LED panel, etc.
  • a particle layer group 200 including multiple particle layers is provided in the base layer 100, and the shape, size, material, distribution density, etc. of the optical particles in each particle layer are adjusted to make the multi-layer particle layer
  • the refractive index gradually decreases along the direction from the first side of the optical film layer to the second side of the optical film layer, thereby forming a composite film layer with a gradient refractive index.
  • the multi-layer particles can convert specular reflection into diffuse reflection.
  • the optical film layer has the characteristics of high haze and low reflection at the same time.
  • a large number of particles are embedded inside the base layer 100, which can also effectively prevent the particles from being scratched or falling off.
  • the optical film layer of the present application can be prepared through a mature optical particle anti-glare process, so the manufacturing cost can also be effectively reduced.

Abstract

一种光学膜层及其制作方法、偏光片、显示面板;光学膜层包括基底层(100)和设置于基底层(100)中的颗粒层组(200),颗粒层组(200)包括多层颗粒层(210,220,230),在光学膜层的第一侧至光学膜层的第二侧的方向上,多层颗粒层(210,220,230)的折射率逐渐减小。

Description

光学膜层及其制作方法、偏光片、显示面板 技术领域
本申请涉及显示技术的领域,具体涉及光学膜层及其制作方法、偏光片、显示面板。
背景技术
显示屏反射的环境光称作眩光,显示屏的眩光不仅会极大地降低显示效果,也会对使用者的视力健康产生不利影响。当前,主流的抗眩光技术包括表面粗化、设置微纳超表面、减反射膜、光学颗粒等。其中,光学颗粒的主要作用是产生雾度来增加漫反射,通过控制颗粒大小和密度等方式来调整雾度大小。随着显示器分辨率的提高,因光学颗粒的颗粒分布不均和颗粒过大,显示屏容易产生雾度不均匀和闪点的现象。
虽然现阶段可以通过在树脂材料里掺杂密度更小的扩散粒子,使扩散粒子均匀浮在树脂材料表面且无需增大颗粒的粒径或者进行颗粒堆叠,从而增加扩散粒子分布的均匀性,有效地提高了雾度的均一性并有效防止闪点现象。但是,但是由于扩散粒子仅在树脂表面单层覆盖,扩散颗粒裸露于树脂层表面,在使用过程中容易发生刮伤甚至脱落,导致防眩光效果降低,防眩光效果不稳定。
技术问题
当前的防眩光膜存在因扩散粒子裸露于树脂层表面容易刮伤甚至脱落导致的防眩光效果不稳定的技术问题。
技术解决方案
本申请提供一种光学膜层及其制作方法、偏光片、显示面板,以改善当前光学膜层因光学颗粒裸露于表面容易发生刮伤甚至脱落而导致防眩光效果不稳定的技术问题。
为解决上述技术问题,本申请提供的技术方案如下:
本申请提供一种光学膜层,包括:
基底层;
颗粒层组,设置于所述基底层中,所述颗粒层组包括多层颗粒层;
在所述光学膜层的第一侧至所述光学膜层的第二侧的方向上,多层所述颗粒层的折射率逐渐减小。
在本申请的光学膜层中,所述颗粒层组至少包括第一颗粒层和第二颗粒层;
其中,所述第一颗粒层靠近所述光学膜层的第一侧,所述第二颗粒层靠近所述光学膜层的第二侧。
在本申请的光学膜层中,所述第一颗粒层位于所述基底层内,所述第二颗粒层位于所述基底层的表面。
在本申请的光学膜层中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒。
在本申请的光学膜层中,所述第一光学颗粒和所述第二光学颗粒的折射率相同。
在本申请的光学膜层中,所述第一光学颗粒的尺寸小于所述第二光学颗粒的尺寸。
在本申请的光学膜层中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
其中,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
在本申请的光学膜层中,所述第一光学颗粒的折射率大于所述第二光学颗粒的折射率。
在本申请的光学膜层中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
其中,所述第一光学颗粒和所述第二光学颗粒为空心壳体结构。
在本申请的光学膜层中,所述第一光学颗粒和所述第二光学颗粒为内部空心的球状壳体。
在本申请的光学膜层中,所述第一光学颗粒的折射率与所述第二光学颗粒的折射率相同。
在本申请的光学膜层中,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
在本申请的光学膜层中,所述第一光学颗粒的壳体厚度大于所述第二光学颗粒的壳体厚度。
在本申请的光学膜层中,所述球状壳体的壳体厚度与所述球状壳体的半径的比值大于或等于1/5。
在本申请的光学膜层中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
其中,所述第一光学颗粒的折射率与所述第二光学颗粒的折射率相同,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
在本申请的光学膜层中,在所述光学膜层的俯视图内,所述第一光学颗粒的分布密度小于所述第二光学颗粒的分布密度。
在本申请的光学膜层中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
其中,所述第一光学颗粒、所述第二光学颗粒的尺寸小于可见光的波长。
本申请还提供一种光学膜层的制作方法,用于制作上述光学膜层,所述光学膜层的制作方法包括:
在衬底上形成第一基底层,所述第一基底层内设置有至少一层颗粒层;
在所述第一基底层上形成第二基底层,所述第二基底层内设置有至少一层颗粒层;
剥离所述衬底,形成光学膜层;
其中,所述第一基底层与所述第二基底层的材料相同,以形成整体的基底层;在所述第一基底层至所述第二基底层的方向上,所述颗粒层的折射率逐渐减小。
本申请还提供一种偏光片,所述偏光片包括上述光学膜层。
本申请还提供一种显示面板,包括面板本体和上述偏光片,所述偏光片设置于所述面板本体的出光面的上方。
有益效果
本申请通过在基底层内设置包括有多层颗粒层的颗粒层组,且多层颗粒层的折射率沿所述光学膜层的第一侧至所述光学膜层的第二侧的方向逐渐减小,使多层所述颗粒层在所述基底层内形成折射率渐变的复合膜层,多层粒子可以将镜面反射转化为漫反射,使所述光学膜层同时具备高雾度和低反射的特性;而且大量的颗粒镶嵌在基底层内部,也可有效防止粒子被刮伤或脱落;此外,本申请的所述光学膜层可以通过成熟的光学颗粒防眩光工艺进行制备,因此还可有效降低制造成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请所述光学膜层的第一种结构示意图;
图2是本申请所述光学膜层的第二种结构示意图;
图3是本申请所述光学膜层的第三种结构示意图;
图4是本申请所述光学颗粒的一种结构示意图;
图5是本申请所述光学膜层的第四种结构示意图;
图6是本申请所述第二光学颗粒与所述基底层的相对位置示意图。
附图标记说明:
基底层100、颗粒层组200、第一颗粒层210、第一光学颗粒211、第二颗粒层220、第二光学颗粒221、内嵌部2211、外凸部2212、第三颗粒层230、第三光学颗粒231。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
显示屏反射的环境光称作眩光,显示屏的眩光不仅会极大地降低显示效果,也会对使用者的视力健康产生不利影响。当前,主流的抗眩光技术包括表面粗化、设置微纳超表面、减反射膜、光学颗粒等。其中,光学颗粒的主要作用是产生雾度来增加漫反射,但因光学颗粒的颗粒分布不均和颗粒过大,显示屏容易产生雾度不均匀和闪点的现象。
虽然现阶段可以通过在树脂材料里掺杂密度更小的扩散粒子,使扩散粒子均匀浮在树脂材料表面且无需增大颗粒的粒径或者进行颗粒堆叠,从而增加扩散粒子分布的均匀性,有效地提高雾度的均一性并有效防止闪点现象。但是,但是由于扩散粒子仅在树脂表面单层覆盖,扩散颗粒裸露于树脂层表面,在使用过程中容易发生刮伤甚至脱落,导致防眩光效果降低,防眩光效果不稳定。此外,单层的光学颗粒由于无法形成有效的微纳结构,也难以实现反射量的降低。本申请基于上述技术问题提出了以下方案。
请参阅图1至图6,本申请提供一种光学膜层,包括基底层100和设置于所述基底层100中的颗粒层组200,所述颗粒层组200包括多层颗粒层。在所述光学膜层的第一侧至所述光学膜层的第二侧的方向上,多层所述颗粒层的折射率逐渐减小。
本申请通过以上设置,使多层所述颗粒层在所述基底层100内形成折射率渐变的复合膜层,多层的光学颗粒可以形成有效的微纳结构,将镜面反射转化为漫反射,使所述光学膜层同时具备高雾度和低反射的特性。而且,大量的颗粒镶嵌在基底层100内部,也可有效防止粒子被刮伤或脱落。此外,本申请的所述光学膜层可以通过成熟的光学颗粒防眩光工艺进行制备,因此还可有效降低制造成本。
在本实施例中,所述基底层100可以为通过树脂材料成型的柔性膜层,树脂材料可以为聚酰亚胺、聚对苯二甲酸乙二酯(PET)等有机光学膜层材料。
在本实施例中,多层所述颗粒层可以由多个光学颗粒层次地分散在所述基底层100材料中形成,所述光学颗粒可以为玻璃微珠或透明塑料微珠等。
在本实施例中,所述光学颗粒的形状可以为球形、立方体形、圆锥体形、棱锥体等形状,本实施例对此不作具体限制。需要说明的是,本申请的以下实施例仅以光学颗粒为球形为代表进行说明,其他形状的光学颗粒与此同理可推知其效果。
在本实施例中,所述光学膜层可以设置在显示面板或显示屏的出光面上,其中,所述光学膜层的第一侧可以与显示面板或显示屏的出光面贴合,所述光学膜层的第二侧为远离显示面板或显示屏的出光面的一侧。
在本实施例中,“所述颗粒层的折射率”可以理解为处于同一平面内的多个光学颗粒所构成的颗粒层的整体折射率。
在本实施例中,多层所述颗粒层的折射率小于所述基底层100的折射率。
以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参阅图1,图1是本申请所述光学膜层的第一种结构示意图,在本申请的光学膜层中,所述颗粒层组200至少包括第一颗粒层210和第二颗粒层220,所述第一颗粒层210靠近所述光学膜层的第一侧,所述第二颗粒层220靠近所述光学膜层的第二侧。所述第一颗粒层210位于所述基底层100内,所述第二颗粒层220位于所述基底层100的表面。
本实施例通过将所述颗粒层组200设置为至少包括位于所述基底层100内的第一颗粒层210和位于所述基底层100表面的第二颗粒层220,使所述光学膜层的内部和表面都可具有良好的漫反射效果,进一步提高雾度均一性,而且也可有效降低因表面颗粒脱落而造成的防眩光效果不稳定的风险。
请参阅图1,在本申请的光学膜层中,所述第一颗粒层210可以包括多个第一光学颗粒211,所述第二颗粒层220可以包括多个第二光学颗粒221。多个所述第一光学颗粒211随机分散在所述基底层100内以形成所述第一颗粒层210,多个所述第二光学颗粒221随机分散在所述基底层100内以形成所述第二颗粒层220。
在本实施例中,所述第一颗粒层210内的所述第一光学颗粒211的分布密度与所述第二颗粒层220内的所述第二光学颗粒221的分布密度可以相同。需要说明的是,由于所述第一颗粒层210和所述第二颗粒层220的光学颗粒为随机分布,本实施例中的“分布密度相同”可以理解为:所述第一颗粒层210各个区域内的第一光学颗粒211的平均分布密度与所述第二颗粒层220各个区域内的第二光学颗粒221的平均分布密度基本相同或相近。
在本实施例中,所述第一光学颗粒211和所述第二光学颗粒221的折射率可以相同,换言之,所述第一光学颗粒211和所述第二光学颗粒221的材料可以相同。
在本实施例中,所述第一光学颗粒211的尺寸可以小于所述第二光学颗粒221的尺寸,而且所述第一光学颗粒211、所述第二光学颗粒221的尺寸小于可见光的波长。以所述第一光学颗粒211和所述第二光学颗粒221为球形颗粒为例,所述第一光学颗粒211的球径可以小于所述第二光学颗粒221的球径。
本实施例通过以上设置,使位于所述光学膜层表面的第二光学颗粒221相对于高折射率的基底层100的占比相对较低,所述第一颗粒层210的整体反射率大于所述第二颗粒层220的整体反射率,即所述光学膜层的折射率沿着所述光学膜层的第一侧至所述光学膜层的第二侧的方向减小,宏观上能够表现出等效的渐变折射率效果,从而有效降低光学膜层的反射总量,有效提升防眩光效果。
请参阅图2,图2是本申请所述光学膜层的第二种结构示意图,在本申请的光学膜层中,所述第一光学颗粒211的尺寸可以与所述第二光学颗粒221的尺寸相同,换言之,所述第一光学颗粒211和所述第二光学颗粒221的形状、大小可以相同。
在本实施例中,在所述第一光学颗粒211和所述第二光学颗粒221的形状、大小都相同,且所述第一颗粒层210内的第一光学颗粒211的分布密度与所述第二颗粒层220内的第二光学颗粒221的分布密度相同的前提下,所述第一光学颗粒211的折射率可以大于所述第二光学颗粒221的折射率。
与上述分析同理地,本实施例通过以上设置,也可使所述光学膜层的折射率沿着所述光学膜层的第一侧至所述光学膜层的第二侧的方向减小,实现渐变折射率效果,达到降低光学膜层对环境光的反射总量的目的,有效提升防眩光效果。
请参阅图3,图3是本申请所述光学膜层的第三种结构示意图,在本申请的光学膜层中,所述第一光学颗粒211和所述第二光学颗粒221可以为空心壳体结构。
本实施例通过将所述第一光学颗粒211和所述第二光学颗粒221设置为空心壳体结构,使光线不仅在所述第一光学颗粒211和所述第二光学颗粒221的空心壳体表面进行折射与反射,还经过空心壳体内部的空气介质进行折射与反射,从而可以进一步提高雾度的均一性,有效减少闪点等不良现象。
请参阅图3,在本申请的光学膜层中,所述第一光学颗粒211和所述第二光学颗粒221可以为内部空心的球状壳体,以提高所述第一光学颗粒211和所述第二光学颗粒221在所述基底层100内的流动性,便于实现所述第一颗粒层210与所述第二颗粒层220内的光学颗粒均匀分布,进而提高雾度均一性。
在本实施例中,在所述第一光学颗粒211的折射率与所述第二光学颗粒221的折射率相同、所述第一光学颗粒211的尺寸与所述第二光学颗粒221的尺寸相同及所述第一光学颗粒211的分布密度与所述第二光学颗粒221的分布密度相同的前提下,所述第一光学颗粒211的壳体厚度可以大于所述第二光学颗粒221的壳体厚度。
需要说明的是,在本实施例中,当所述第一光学颗粒211或所述第二光学颗粒221为内部空心的球状壳体时,所述第一光学颗粒211的尺寸或所述第二光学颗粒221的尺寸指的是球状壳体的外表面直径。所述球状壳体的外表面可以理解为所述光学颗粒与所述基底层100的接触表面。
与上述原理类似地,本实施例中的壳体厚度变化规律也可使所述光学膜层的折射率沿着所述光学膜层的第一侧至所述光学膜层的第二侧的方向减小,实现渐变折射率效果,达到降低光学膜层对环境光的反射总量的目的,有效提升防眩光效果。
请参阅图4,图4是本申请所述光学颗粒的一种结构示意图,在本申请的光学膜层中,当所述光学颗粒为球状壳体时,所述球状壳体的壳体厚度d与所述球状壳体的半径r的比值大于或等于1/5,即d/r≥1/5,以使所述光学颗粒具备足够的强度,避免或减少所述光学颗粒在所述基底层100内受压破碎,从而进一步稳定防眩光效果。
请参阅图5,图5是本申请所述光学膜层的第四种结构示意图,在本申请的光学膜层中,在所述第一光学颗粒211的折射率与所述第二光学颗粒221的折射率相同、所述第一光学颗粒211的形状与所述第二光学颗粒221的形状相同及所述第一光学颗粒211的尺寸与所述第二光学颗粒221的尺寸相同的前提下,在所述光学膜层的俯视图内,所述第一光学颗粒211的分布密度可以小于所述第二光学颗粒221的分布密度。
本实施例通过以上设置,使靠近所述光学膜层第二侧的所述第二光学膜层内的光学颗粒的分布密度更大,环境光射向光学膜层第二侧的表面时形成的漫反射更多,从而有效改善闪点现象。
请参阅图1、2、3和5,在本申请的光学膜层中,所述颗粒层组200至少还包括第三颗粒层230,所述第三颗粒层230设置于所述第一颗粒层210与所述第二颗粒层220之间。
在本实施例中,所述颗粒层组200可以包括三层及三层以上的颗粒层,其中,第四颗粒层、第五颗粒层、第六颗粒层……(图中未示出)沿所述光学膜层的第一侧至所述光学膜层的第二侧的方向依次叠层设置。
在本实施例中,所述第三颗粒层230的折射率可以小于所述第一颗粒层210的折射率,以及,所述第三颗粒层230的折射率可以大于所述第二颗粒层220的折射率。也就是说,所述第三颗粒层230的折射率介于所述第一颗粒层210的折射率与所述第二颗粒层220的折射率之间。
更进一步地,在本实施例中,所述第四颗粒层、所述第五颗粒层、第六颗粒层……的折射率逐渐减小,且均介于所述第一颗粒层210的折射率与所述第二颗粒层220的折射率之间。
在本实施例中,根据上述可知,所述第三颗粒层230的折射率可以通过改变第三光学颗粒231的形状、尺寸、折射率及分布密度等方式进行调整。根据所述第三颗粒层230的折射率与所述第一颗粒层210的折射率、所述第二颗粒层220的折射率关系,可以推知所述第三光学颗粒231的形状、尺寸、折射率及分布密度与所述第一光学颗粒211、第二光学颗粒221的形状、尺寸、折射率及分布密度的大小关系,本实施例在此不做赘述。
本实施例通过在基底层100内设置三层及三层以上的颗粒层,使所述光学膜层内的折射率变化更加平缓均匀,有利于实现更高的雾度水平,同时可有效降低环境光的反射量,进一步改善防眩光效果。
请参阅图5,在本申请的光学膜层中,所述第一颗粒层210包括多个第一光学颗粒211,所述第二颗粒层220包括多个第二光学颗粒221,所述第三颗粒层230包括多个第三光学颗粒231。多个所述第一光学颗粒211的形状、尺寸、折射率相同,多个所述第二光学颗粒221的形状、尺寸、折射率相同,多个所述第三光学颗粒231的形状、尺寸、折射率相同。
本实施例通过以上设置,使每层所述颗粒层内的光学颗粒材料性质均一,从而减少每层颗粒层内部所形成的折射或反射不均现象。
请参阅图6,图6是本申请所述第二光学颗粒221与所述基底层100的相对位置示意图,在本申请的光学膜层中,所述第二光学颗粒221包括一体成型的内嵌部2211和外凸部2212,所述内嵌部2211位于所述基底层100内,所述外凸部2212凸出于所述基底层100的表面。在本实施例中,所述内嵌部2211的体积大于或等于所述外凸部2212的体积,以使所述第二光学颗粒221与所述基底层100之间形成较高的嵌合牢度,第二光学颗粒221不易脱落,提高防眩光稳定性。
本申请实施例还提供一种光学膜层的制作方法,用于以上实施例所述的光学膜层,所述光学膜层的制作方法可以包括:
S100、在衬底上形成第一基底层,所述第一基底层内设置有至少一层颗粒层;
S200、在所述第一基底层上形成第二基底层,所述第二基底层内设置有至少一层颗粒层;
S300、剥离所述衬底,形成光学膜层。
在本实施例中,所述第一基底层与所述第二基底层的材料相同,以形成整体的基底层100。所述第一基底层与所述第二基底层的材料可以为相同的树脂材料,如聚酰亚胺、聚酯材料等。
在本实施例中,在所述第一基底层至所述第二基底层的方向上,所述颗粒层的折射率逐渐减小,以使整体的基底层100中多层颗粒层的折射率呈渐变趋势,起到防眩光效果。
本申请实施例还提供一种偏光片,所述偏光片可以包括上述实施例所述的光学膜层。
本申请实施例还提供一种显示面板,所述显示面板可以包括面板本体和上述实施例所述的偏光片,所述偏光片设置于所述面板本体的出光面的上方。其中,所述面板本体可以包括但不限于液晶面板、OLED面板、LED面板等。
本申请通过在基底层100内设置包括有多层颗粒层的颗粒层组200,并通过调整每层颗粒层内的光学颗粒的形状、尺寸、材料、分布密度等方式,使多层颗粒层的折射率沿所述光学膜层的第一侧至所述光学膜层的第二侧的方向逐渐减小,进而形成折射率渐变的复合膜层,多层粒子可以将镜面反射转化为漫反射,使所述光学膜层同时具备高雾度和低反射的特性。而且大量的颗粒镶嵌在基底层100内部,也可有效防止粒子被刮伤或脱落。此外,本申请的所述光学膜层可以通过成熟的光学颗粒防眩光工艺进行制备,因此还可有效降低制造成本。
以上对本申请实施例所提供的一种光学膜层进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种光学膜层,包括:
    基底层;
    颗粒层组,设置于所述基底层中,所述颗粒层组包括多层颗粒层;
    在所述光学膜层的第一侧至所述光学膜层的第二侧的方向上,多层所述颗粒层的折射率逐渐减小。
  2. 根据权利要求1所述的光学膜层,其中,所述颗粒层组至少包括第一颗粒层和第二颗粒层;
    其中,所述第一颗粒层靠近所述光学膜层的第一侧,所述第二颗粒层靠近所述光学膜层的第二侧。
  3. 根据权利要求2所述的光学膜层,其中,所述第一颗粒层位于所述基底层内,所述第二颗粒层位于所述基底层的表面。
  4. 根据权利要求3所述的光学膜层,其中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒。
  5. 根据权利要求4所述的光学膜层,其中,所述第一光学颗粒和所述第二光学颗粒的折射率相同。
  6. 根据权利要求5所述的光学膜层,其中,所述第一光学颗粒的尺寸小于所述第二光学颗粒的尺寸。
  7. 根据权利要求3所述的光学膜层,其中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
    其中,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
  8. 根据权利要求7所述的光学膜层,其中,所述第一光学颗粒的折射率大于所述第二光学颗粒的折射率。
  9. 根据权利要求3所述的光学膜层,其中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
    其中,所述第一光学颗粒和所述第二光学颗粒为空心壳体结构。
  10. 根据权利要求9所述的光学膜层,其中,所述第一光学颗粒和所述第二光学颗粒为内部空心的球状壳体。
  11. 根据权利要求10所述的光学膜层,其中,所述第一光学颗粒的折射率与所述第二光学颗粒的折射率相同。
  12. 根据权利要求11所述的光学膜层,其中,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
  13. 根据权利要求12所述的光膜层,其中,所述第一光学颗粒的壳体厚度大于所述第二光学颗粒的壳体厚度。
  14. 根据权利要求13所述的光学膜层,其中,所述球状壳体的壳体厚度与所述球状壳体的半径的比值大于或等于1/5。
  15. 根据权利要求3所述的光学膜层,其中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
    其中,所述第一光学颗粒的折射率与所述第二光学颗粒的折射率相同,所述第一光学颗粒的尺寸与所述第二光学颗粒的尺寸相同。
  16. 根据权利要求14所述的光学膜层,其中,在所述光学膜层的俯视图内,所述第一光学颗粒的分布密度小于所述第二光学颗粒的分布密度。
  17. 根据权利要求3所述的光学膜层,其中,所述第一颗粒层包括多个第一光学颗粒,所述第二颗粒层包括多个第二光学颗粒;
    其中,所述第一光学颗粒、所述第二光学颗粒的尺寸小于可见光的波长。
  18. 一种光学膜层的制作方法,用于制作如权利要求1所述的光学膜层,包括:
    在衬底上形成第一基底层,所述第一基底层内设置有至少一层颗粒层;
    在所述第一基底层上形成第二基底层,所述第二基底层内设置有至少一层颗粒层;
    剥离所述衬底,形成光学膜层;
    其中,所述第一基底层与所述第二基底层的材料相同,以形成整体的基底层;在所述第一基底层至所述第二基底层的方向上,所述颗粒层的折射率逐渐减小。
  19. 一种偏光片,包括如权利要求1所述的光学膜层。
  20. 一种显示面板,包括面板本体和如权利要求11所述的偏光片,所述偏光片设置于所述面板本体的出光面的上方。
PCT/CN2022/084739 2022-03-18 2022-04-01 光学膜层及其制作方法、偏光片、显示面板 WO2023173508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,949 US20240151877A1 (en) 2022-03-18 2022-04-01 Optical film layer and manufacturing method thereof, polarizer, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210270051.0 2022-03-18
CN202210270051.0A CN114690289A (zh) 2022-03-18 2022-03-18 光学膜层及其制作方法、偏光片、显示面板

Publications (1)

Publication Number Publication Date
WO2023173508A1 true WO2023173508A1 (zh) 2023-09-21

Family

ID=82138785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084739 WO2023173508A1 (zh) 2022-03-18 2022-04-01 光学膜层及其制作方法、偏光片、显示面板

Country Status (3)

Country Link
US (1) US20240151877A1 (zh)
CN (1) CN114690289A (zh)
WO (1) WO2023173508A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209068A1 (en) * 2003-04-16 2004-10-21 Chyi-Hung Lin Method for forming anti-glaring and anti-reflecting film
US20080193680A1 (en) * 2007-02-09 2008-08-14 Toppan Printing Co., Ltd. Antiglare film and method of manufacturing the same
CN102073073A (zh) * 2010-11-19 2011-05-25 明基材料有限公司 抗眩涂布层
CN106772747A (zh) * 2016-12-26 2017-05-31 深圳市光科全息技术有限公司 一种光学膜及其制作方法
CN111580191A (zh) * 2020-05-09 2020-08-25 惠州市华星光电技术有限公司 表面处理方法、抗眩光涂层及显示装置
CN112114392A (zh) * 2020-10-29 2020-12-22 杰士龙新材料科技(江苏)有限公司 防眩光板
CN112327394A (zh) * 2020-11-12 2021-02-05 苏州诺菲纳米科技有限公司 高耐磨、低闪点的防眩光膜
CN112375243A (zh) * 2020-11-12 2021-02-19 苏州诺菲纳米科技有限公司 一种高耐磨、低闪点的防眩光膜及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE391303T1 (de) * 1999-09-28 2008-04-15 Fujifilm Corp Antireflexbeschichtung, damit versehene polarisationsplatte, und bildanzeigegerät mit der antireflexbeschichtung oder mit der polarisationsplatte
TW557363B (en) * 2002-10-15 2003-10-11 Optimax Tech Corp Anti-glare film
TW200617532A (en) * 2004-10-01 2006-06-01 Samsung Electronics Co Ltd Optical film, backlight assembly having the same and display device having the same
JP2006251666A (ja) * 2005-03-14 2006-09-21 Fuji Photo Film Co Ltd 光学フイルム、偏光板、及びそれらを用いた画像表示装置
CN101118291B (zh) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 扩散片
CN101339260A (zh) * 2008-07-11 2009-01-07 宁波高新区激智科技有限公司 一种光学扩散薄膜及使用该光学扩散薄膜的液晶显示装置
JP2010078888A (ja) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd 光学フィルム
JP2010107616A (ja) * 2008-10-02 2010-05-13 Jsr Corp 光拡散性粒子およびその製造方法、光拡散性樹脂組成物並びにその応用
JP2011039332A (ja) * 2009-08-12 2011-02-24 Fujifilm Corp 光学フィルム、その製造方法、偏光板及び画像表示装置
CN102436019A (zh) * 2011-10-29 2012-05-02 合肥乐凯科技产业有限公司 一种光学上扩散膜及使用该光学上扩散膜的液晶显示背光源
KR20150079051A (ko) * 2013-12-31 2015-07-08 주식회사 효성 방현성이 향상된 방현 필름
CN104267453A (zh) * 2014-10-17 2015-01-07 山东胜通光学材料科技有限公司 一种高反射率的光学膜及其制造方法
CN107531842A (zh) * 2015-04-17 2018-01-02 3M创新有限公司 具有变化折射率的颗粒
CN206818900U (zh) * 2017-04-24 2017-12-29 宁波东旭成新材料科技有限公司 一种高透过率高雾度光学扩散膜
CN207281323U (zh) * 2017-10-16 2018-04-27 苏州普强电子科技有限公司 一种电脑外壳用高透光率光学扩散膜
CN108594339B (zh) * 2018-04-28 2019-09-27 深圳市华星光电技术有限公司 减反膜、显示装置及其制备方法
JP2020042137A (ja) * 2018-09-10 2020-03-19 凸版印刷株式会社 光学フィルム、光学バリアフィルム、及び波長変換フィルム
CN211180274U (zh) * 2019-12-26 2020-08-04 四川欣富瑞科技发展有限公司 光学扩散膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209068A1 (en) * 2003-04-16 2004-10-21 Chyi-Hung Lin Method for forming anti-glaring and anti-reflecting film
US20080193680A1 (en) * 2007-02-09 2008-08-14 Toppan Printing Co., Ltd. Antiglare film and method of manufacturing the same
CN102073073A (zh) * 2010-11-19 2011-05-25 明基材料有限公司 抗眩涂布层
CN106772747A (zh) * 2016-12-26 2017-05-31 深圳市光科全息技术有限公司 一种光学膜及其制作方法
CN111580191A (zh) * 2020-05-09 2020-08-25 惠州市华星光电技术有限公司 表面处理方法、抗眩光涂层及显示装置
CN112114392A (zh) * 2020-10-29 2020-12-22 杰士龙新材料科技(江苏)有限公司 防眩光板
CN112327394A (zh) * 2020-11-12 2021-02-05 苏州诺菲纳米科技有限公司 高耐磨、低闪点的防眩光膜
CN112375243A (zh) * 2020-11-12 2021-02-19 苏州诺菲纳米科技有限公司 一种高耐磨、低闪点的防眩光膜及其制备方法

Also Published As

Publication number Publication date
US20240151877A1 (en) 2024-05-09
CN114690289A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US6199989B1 (en) Optical plate having reflecting function and transmitting function
CN111756896B (zh) 玻璃壳体组件及其制作方法和电子设备
TWI547736B (zh) 複合光學膜及應用其之背光模組
TWI343501B (zh)
CN101858570B (zh) 一种高效光扩散材料及其制作方法与应用
CN101191853B (zh) 光学板
JP2014520357A (ja) 光管理フィルム
WO2023159660A1 (zh) 防眩减反射膜、偏光片及显示面板
CN114384623B (zh) 偏光片、显示面板及显示装置
WO2021012443A1 (zh) 触控显示装置
WO2023173508A1 (zh) 光学膜层及其制作方法、偏光片、显示面板
US11867996B2 (en) Surface finishing method, anti-glare coating, and display device having same
US8256932B2 (en) Light diffusion plate and backlight module using the same
CN109814187B (zh) 一种光学反射膜
WO2023070751A1 (zh) 光学膜片和显示装置
WO2022000690A1 (zh) 显示装置
JP3130740U (ja) 光拡散シート
WO2022247749A1 (zh) 抗眩光膜及其制造方法,显示设备
KR100650150B1 (ko) 투과율이 향상된 확산판
CN114035378B (zh) 显示装置
CN210109370U (zh) 一种增强高雾的薄型扩散片和护边装置
CN216957478U (zh) 抗黏连透明导电性薄膜
CN114815372B (zh) 显示面板与显示装置
CN211043712U (zh) 一种曲面扩散板
CN115145077A (zh) 一种新型光学膜片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17754949

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931536

Country of ref document: EP

Kind code of ref document: A1