WO2023169530A1 - 轮胎磨损检测方法、装置、电子设备和存储介质 - Google Patents

轮胎磨损检测方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023169530A1
WO2023169530A1 PCT/CN2023/080593 CN2023080593W WO2023169530A1 WO 2023169530 A1 WO2023169530 A1 WO 2023169530A1 CN 2023080593 W CN2023080593 W CN 2023080593W WO 2023169530 A1 WO2023169530 A1 WO 2023169530A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
vehicle
tire
tire radius
speed information
Prior art date
Application number
PCT/CN2023/080593
Other languages
English (en)
French (fr)
Inventor
丑小刚
Original Assignee
北京罗克维尔斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京罗克维尔斯科技有限公司 filed Critical 北京罗克维尔斯科技有限公司
Publication of WO2023169530A1 publication Critical patent/WO2023169530A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements

Definitions

  • the present disclosure relates to the field of intelligent control technology, and in particular to a tire wear detection method and device, electronic equipment, storage media, vehicles, computer program products and computer programs.
  • embodiments of the present disclosure provide a tire wear detection method and device, electronic equipment, storage media, vehicles, computer program products and computer programs to realize real-time detection of tires. Detection, improve detection efficiency and detection accuracy.
  • embodiments of the present disclosure provide a tire wear detection method, including:
  • the working condition information at least includes vehicle speed information and rotational speed information
  • the wear degree of the tire is determined based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire radius of the vehicle under initial operating conditions.
  • determining the actual tire radius of the vehicle based on the vehicle speed information and the rotational speed information includes:
  • the actual tire radius of the vehicle is determined based on the vehicle speed information and the angular velocity information.
  • determining the angular velocity information based on the rotational speed information and the circumferential information includes: determining the angular velocity information based on a product of the rotational speed information and the circumferential information;
  • Determining the actual tire radius of the vehicle based on the vehicle speed information and the angular velocity information includes: The quotient of the vehicle speed information and the angular velocity information determines the actual tire radius of the vehicle.
  • determining the wear degree of the tire based on the relationship between the actual tire radius and the preset tire radius includes:
  • the wear rate of the second-level wear is greater than the wear rate of the first-level wear.
  • the first-level wear indicates that the tire is normal, and the second-level wear indicates that the tire is abnormal.
  • the working condition information also includes: rotation angle information and torque information; and
  • Determining the actual tire radius of the vehicle based on the vehicle speed information and the rotational speed information includes:
  • the preset turning angle information is the turning angle information corresponding to the vehicle driving in a straight line
  • the preset torque information is the torque information corresponding to the vehicle driving at a constant speed
  • the method further includes:
  • an early warning message is sent.
  • sending early warning information according to the wear degree of the tire includes:
  • a second early warning message is sent, and the second early warning message is used to remind the driver to perform tire replacement and vehicle condition inspection.
  • an embodiment of the present disclosure provides a tire wear detection device, including:
  • a working condition information acquisition module used to acquire working condition information under vehicle operating conditions, where the working condition information at least includes vehicle speed information and rotational speed information;
  • an actual tire radius determination module configured to determine the actual tire radius of the vehicle based on the vehicle speed information and the rotational speed information
  • a wear degree determination module configured to determine the wear degree of the tire based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire radius of the vehicle under initial operating conditions.
  • an electronic device including:
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the method described in any embodiment of the first aspect.
  • embodiments of the present disclosure provide a computer storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method described in any embodiment of the first aspect is implemented.
  • an embodiment of the present disclosure further provides a vehicle, including a vehicle-mounted system, where the vehicle-mounted system is configured to perform the method described in any embodiment of the first aspect.
  • embodiments of the present disclosure also provide a computer program product, including a computer program.
  • the computer program product is run on a computer, the computer program is executed by a processor to implement any embodiment of the first aspect. the method described in .
  • an embodiment of the present disclosure also provides a computer program.
  • the computer program includes a computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to perform the method described in any embodiment of the first aspect. .
  • the tire wear detection method and device, electronic equipment, storage medium, vehicle, computer program product and computer program provided by the embodiments of the present disclosure can obtain the working condition information of the vehicle in the operating state, where the working condition information at least includes vehicle speed information and rotational speed information. , determine the actual tire radius of the vehicle based on the vehicle speed information and rotational speed information, and determine the tire wear degree based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire of the vehicle under initial operating conditions.
  • Radius that is, by obtaining the working condition information of the vehicle in the running state, determining the actual tire radius of the vehicle in the running state based on the vehicle speed information and rotational speed information of the working condition information, and based on the relationship between the actual tire radius and the preset tire radius , determine the degree of tire wear, determine the actual tire radius of the vehicle based on real-time collected vehicle speed information and rotational speed information during vehicle driving, and compare the relationship between the actual tire radius and the preset tire radius during vehicle driving, Determine the degree of tire wear and realize real-time detection of tires, making the detection efficiency more efficient. In addition, since the entire detection process does not require manual detection, the detection results are also more accurate.
  • Figure 1 is a schematic flow chart of a tire wear detection method provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of another tire wear detection method provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic flow chart of yet another tire wear detection method provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic flow chart of yet another tire wear detection method provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a tire wear detection device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • a tire wear detection method which includes: obtaining the working condition information of the vehicle in a running state, where the working condition information at least includes vehicle speed information and rotational speed information; according to the vehicle speed information and rotational speed information Determine the actual tire radius of the vehicle; determine the degree of tire wear based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire radius of the vehicle under initial operating conditions, that is, by obtaining the vehicle's Working condition information in the running state, based on the vehicle speed information and rotational speed information of the working condition information, the actual tire radius of the vehicle in the running state is determined, and the wear degree of the tire is determined based on the relationship between the actual tire radius and the preset tire radius, Realize that during the driving process of the vehicle, the actual tire radius of the vehicle is determined based on the real-time collected vehicle speed information and rotational speed information, and the relationship between the actual tire radius and the preset tire radius during the vehicle driving process is compared to
  • the tire wear detection method provided by the embodiment of the present disclosure can be applied to terminal equipment.
  • the terminal equipment can be a detection equipment specially used to detect tire wear conditions, or can be executed by a terminal equipment of an existing vehicle, wherein the vehicle
  • the terminal device may be, for example, a vehicle-mounted main control module.
  • Figure 1 is a schematic flow chart of a tire wear detection method provided by the present disclosure. As shown in Figure 1, the method in this embodiment includes: S10 to S30.
  • the working condition information includes at least vehicle speed information and rotational speed information.
  • the tire wear detection method in this embodiment can be directly based on The vehicle’s terminal equipment is tested.
  • vehicle is in a running state, that is, when the vehicle tires are in motion
  • this embodiment obtains the working condition information of the vehicle in the running state, such as vehicle speed information and rotational speed information.
  • the vehicle speed information when the vehicle is driving can be obtained based on the vehicle GPS (Global Positioning System), and the vehicle tire speed information during the vehicle driving can be obtained based on the ESP (Electronic Stability Program).
  • vehicle GPS Global Positioning System
  • ESP Electronic Stability Program
  • the above embodiments exemplarily represent obtaining vehicle speed information based on vehicle GPS and obtaining vehicle tire rotation speed information based on ESP.
  • different vehicle configurations are different, so the method of obtaining vehicle speed information and rotation speed information is Specific modules are not limited in the embodiments of this disclosure.
  • the vehicle's terminal device obtains the vehicle speed information collected by the vehicle GPS and the vehicle speed information collected by the ESP, and The actual tire radius of the vehicle in the running state is determined based on the obtained vehicle speed information and rotational speed information.
  • the degree of vehicle tire wear is related to the running distance of the vehicle. Therefore, when the vehicle running distance is short, the vehicle tire wear rate is determined based on the obtained vehicle speed information and rotational speed information. The difference between the actual tire radius of the vehicle and the preset tire radius is small. Therefore, as a specific implementation method, by periodically detecting the operating condition information of the vehicle in the operating state, for example, in the initial operating condition of the vehicle Obtain the initial speed information and initial rotation speed information of the vehicle. When the vehicle running distance is greater than or equal to 1000KM, obtain the working condition information of the vehicle in the running state after the running distance is greater than or equal to 1000KM. At this time, the working condition information based on the vehicle running state is obtained. The relationship between the determined actual tire radius and the preset tire radius determines the degree of tire wear.
  • a preset cycle is set. For example, after the vehicle travel distance reaches 1000KM, the speed information and rotational speed information of the vehicles are obtained in sequence, that is, the corresponding driving distances are 1000KM, 2000KM, ..., and 10000KM. The vehicle's speed information and rotational speed information are respectively obtained from the distance, and the actual tire radius of the vehicle is determined based on the vehicle speed information and rotational speed information.
  • the preset tire radius is the tire radius of the vehicle under initial operating conditions.
  • the preset tire radius of the vehicle can be determined by obtaining the tire radius of the vehicle in the initial operating condition.
  • the initial vehicle speed information and initial rotational speed information of the vehicle under initial operating conditions can be obtained, and the preset tire radius of the vehicle is calculated based on the initial vehicle speed information and initial rotational speed information.
  • the vehicle tire pressure is monitored based on the vehicle's TPMS (Tire Pressure Monitoring System).
  • TPMS Transire Pressure Monitoring System
  • the vehicle tire pressure is based on The preset tire radius of the wheel is calculated based on the obtained vehicle speed information and wheel speed information.
  • the embodiment of the present disclosure determines the wear degree of the tire by comparing the relationship between the actual tire radius and the preset tire radius. Since the actual tire radius is determined based on obtaining the working condition information of the vehicle operating status, real-time detection of the tire can be achieved. , the detection efficiency is more efficient. In addition, the tire wear detection method provided by the embodiment of the present application does not require manual detection in the entire detection process, so the detection results are also more accurate.
  • the tire wear detection method provided by the embodiment of the present disclosure obtains the working condition information of the vehicle in a running state, where the working condition information at least includes vehicle speed information and rotational speed information.
  • the actual tire radius of the vehicle is determined based on the vehicle speed information and rotational speed information. According to the actual tire The relationship between the radius and the preset tire radius determines the degree of tire wear.
  • the preset tire radius is the tire radius of the vehicle under the initial operating conditions, that is, by obtaining the operating condition information of the vehicle in the operating state, based on the operating conditions
  • the vehicle speed information and rotational speed information of the vehicle condition information are used to determine the actual tire radius of the vehicle in the running state, and the degree of tire wear is determined based on the relationship between the actual tire radius and the preset tire radius, so as to achieve real-time collection during vehicle driving.
  • the speed information and rotational speed information of the vehicle are used to determine the actual tire radius of the vehicle, and the relationship between the actual tire radius and the preset tire radius during vehicle driving is compared to determine the degree of tire wear, enabling real-time detection of tires, and the detection efficiency is higher It is efficient. In addition, since the entire detection process does not require manual detection, the detection results are also more accurate.
  • FIG. 2 is a schematic flowchart of another tire wear detection method provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the above-mentioned embodiment.
  • a specific implementation manner of step S20 includes: S21 and S22.
  • angular velocity information is determined based on the product of rotational speed information and circumferential information.
  • the vehicle's angular velocity information can be obtained based on the relationship between the angular velocity information, the circumference information and the rotational speed information.
  • the actual tire radius of the vehicle is determined based on a quotient of vehicle speed information and angular velocity information.
  • the actual tire radius of the vehicle can be obtained based on the relationship between the angular velocity information, vehicle speed information and tire radius.
  • the tire wear detection method provided by the embodiment of the present disclosure first determines the angular velocity information based on the rotational speed information and circumferential information. information, and then determine the actual tire radius of the vehicle based on the vehicle speed information and angular velocity information to ensure the accuracy of the determined actual tire radius of the vehicle.
  • FIG 3 is a schematic flow chart of another tire wear detection method provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the above embodiment.
  • another specific implementation of step S20 includes :S23.
  • the preset turning angle information is the turning angle information corresponding to the vehicle driving in a straight line
  • the preset torque information is the torque information corresponding to the vehicle driving at a constant speed
  • the operating condition information also includes: rotation angle information and torque information.
  • the actual tire radius of the vehicle is determined based on the vehicle speed information and the rotational speed information, that is, the determined actual tire radius of the vehicle is related to the vehicle speed information and the rotational speed information.
  • the obtained vehicle speed information and rotational speed information There is a certain error.
  • the tire wear detection method provided by the embodiment of the present disclosure also obtains the working condition information of the vehicle in the operating state and also includes the rotation angle information. and torque information, where the steering angle information reflects the steering angle of the vehicle, and the torque information reflects the operating status of the vehicle.
  • the tire wear detection method provided by the embodiment of the present disclosure responds that the difference between the rotation angle information and the preset rotation angle information is less than or equal to the first difference and The torque information and the preset torque information are less than or equal to the second difference, and the actual tire radius of the vehicle is determined based on the vehicle speed information and the rotational speed information.
  • the difference between the turning angle information and the preset turning angle information refers to the angle at which the vehicle can deviate from straight driving in the running state, where turning the vehicle includes turning left or right. Drive around corners.
  • the difference between the torque information and the preset torque information refers to the extent to which the acceleration of the vehicle traveling a fixed distance can deviate from the uniform speed when the vehicle is running.
  • the acceleration of the vehicle traveling a fixed distance includes acceleration and deceleration.
  • the operating condition information of the vehicle in the operating state for example, obtaining the initial vehicle speed information and the initial rotation speed information of the vehicle in the initial operating condition of the vehicle, when the vehicle operating distance is greater than or equal to 1000KM.
  • the working condition information of the vehicle in the running state after the running distance is greater than or equal to 1000KM is obtained.
  • the relationship between the actual tire radius and the preset tire radius determined based on the working condition information of the vehicle running state is determined to determine the wear degree of the tire. .
  • the difference between the vehicle's turning angle information and the preset turning angle information may not necessarily satisfy the first difference, and/or the difference between the vehicle's torque information and the preset torque information may not necessarily satisfy the second difference.
  • Difference at this time, in order to ensure the accuracy of the actual tire radius of the vehicle obtained, after the vehicle running distance is greater than or equal to 1000KM, the difference between the vehicle's corner information and the preset corner information selected between 1000KM and 2000KM satisfies the The difference between the vehicle's torque information and the preset torque information satisfies the vehicle's speed information and rotational speed information under the second difference working condition, and so on, to obtain the actual tire radius of the vehicle with different detection periods.
  • the selected vehicle operating condition is when the difference between the corner information and the preset corner information is less than or equal to the first
  • the difference value and the difference value between the torque information and the preset torque information is less than or equal to the initial operating condition corresponding to the second difference value, ensuring the accuracy of the obtained preset tire radius.
  • Figure 4 is a schematic flowchart of yet another tire wear detection method provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the above embodiment.
  • the method further includes: S40.
  • an early warning message is sent to ensure that the driver can detect it in time. Vehicle tire wear problems and improve driving safety.
  • early warning information is sent based on the degree of tire wear, including:
  • a second early warning message is sent, and the second early warning message is used to remind the driver to replace the tire and check the vehicle condition.
  • the degree of tire wear includes primary wear and secondary wear, where the wear rate of primary wear is less than the wear rate of secondary wear.
  • First-level wear indicates that the vehicle is in good condition, and the driver can drive according to his or her own requirements. Plan the route reasonably and time to check the vehicle condition.
  • Second-level wear indicates that the vehicle's tires are seriously worn and prone to traffic accidents. Set up a driver's frame for tire replacement.
  • the first warning message is sent to remind the driver to perform tire rotation and vehicle condition inspection based on the second warning information, wherein the presence of a single tire with secondary wear may be because The vehicle turns frequently, resulting in serious wear of the left or right wheels, or there may be problems with the vehicle's condition.
  • a second warning message is sent to remind the driver to replace the tires and Carry out vehicle condition inspection.
  • the above embodiments exemplarily indicate that the actual tire radius of the vehicle is determined based on vehicle speed information and rotational speed information.
  • the vehicle includes multiple tires. Therefore, while the vehicle speed information is determined, Therefore, when the wear rates of different tires are different, the corresponding tire rotation speed information is different, so based on the vehicle speed information and rotation speed
  • the actual tire radii determined by the information may be the actual tire radii corresponding to different tires respectively.
  • the specific implementation method of determining the wear process of the tire includes:
  • the wear rate of the second-level wear is greater than the wear rate of the first-level wear.
  • the first-level wear indicates that the tire is normal, and the second-level wear indicates that the tire is abnormal.
  • the wear degree of the tire is determined, and in response to the difference between the actual tire radius and the preset tire radius being less than the preset threshold, it is determined that the tire is First-level wear, in response to the difference between the actual tire radius and the preset tire radius being greater than or equal to the preset threshold, the tire is determined to be second-level wear.
  • FIG. 5 is a schematic structural diagram of a tire wear detection device provided by an embodiment of the present disclosure.
  • the tire wear detection device includes: a working condition information acquisition module 510, an actual tire radius determination module 520 and a wear degree determination module 530 .
  • the working condition information acquisition module 510 is used to acquire the working condition information of the vehicle in a running state, where the working condition information at least includes vehicle speed information and rotational speed information.
  • the actual tire radius determination module 520 is used to determine the actual tire radius of the vehicle based on vehicle speed information and rotational speed information.
  • the wear degree determination module 530 is used to determine the wear degree of the tire based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire radius of the vehicle under initial operating conditions.
  • the working condition information acquisition module acquires the working condition information of the vehicle in a running state, where the working condition information at least includes vehicle speed information and rotational speed information, and the actual tire radius determination module determines the actual tire radius based on the vehicle speed information and rotational speed information.
  • the wear degree determination module determines the tire wear degree based on the relationship between the actual tire radius and the preset tire radius, where the preset tire radius is the tire radius of the vehicle under initial operating conditions, that is, By obtaining the working condition information of the vehicle in the running state, the actual tire radius of the vehicle in the running state is determined based on the vehicle speed information and rotational speed information of the working condition information, and the tire is determined based on the relationship between the actual tire radius and the preset tire radius.
  • the wear degree of the vehicle can be determined based on the vehicle speed information and rotational speed information collected in real time while the vehicle is driving, and the relationship between the actual tire radius and the preset tire radius during the vehicle driving can be compared to determine the tire radius.
  • the degree of wear can be realized in real time, and the detection efficiency is more efficient. In addition, since the entire detection process does not require manual detection, the detection results are also more accurate.
  • the actual tire radius determination module includes: an angular velocity information determination unit and an actual tire radius Determine the unit.
  • the angular velocity information determining unit is used to determine the angular velocity information based on the rotational speed information and the circumferential information.
  • the actual tire radius determination unit is used to determine the actual tire radius of the vehicle according to the vehicle speed information and the angular velocity information.
  • a specific implementable manner of the angular velocity information determination unit includes:
  • the angular velocity information is determined based on the product of the rotational speed information and the circumferential information.
  • a specific implementable manner of the actual tire radius determination unit includes:
  • the actual tire radius of the vehicle is determined based on the quotient of vehicle speed information and angular velocity information.
  • a specific implementable manner of the wear degree determination module includes:
  • the wear rate of the second-level wear is greater than the wear rate of the first-level wear.
  • the first-level wear indicates that the tire is normal, and the second-level wear indicates that the tire is abnormal.
  • another specific implementation of the actual tire radius determination module includes:
  • the actual tire radius of the vehicle is determined based on the vehicle speed information and the rotational speed information.
  • the preset turning angle information is the turning angle information corresponding to the vehicle driving in a straight line
  • the preset torque information is the torque information corresponding to the vehicle driving at a constant speed.
  • the tire wear detection device further includes:
  • the early warning module is used to send early warning information based on the degree of tire wear.
  • a specific implementation method of the early warning module includes:
  • a second early warning message is sent, and the second early warning message is used to remind the driver to replace the tire and check the vehicle condition.
  • the device provided by the embodiments of the present disclosure can execute the method provided by any embodiment of the present disclosure, and has corresponding functional modules and beneficial effects for executing the method.
  • An embodiment of the present disclosure also provides an electronic device, including: one or more processors, and a storage device for storing One or more programs are stored, and when the one or more programs are executed by the one or more processors, the steps of the above method embodiments are implemented.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 6 shows a block diagram of an exemplary electronic device suitable for implementing the embodiment of the present disclosure.
  • the electronic device shown in FIG. 6 is only an example and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.
  • electronic device 600 is embodied in the form of a general computing device.
  • the components of electronic device 600 may include, but are not limited to: one or more processors 610, system memory 620, and a bus 630 connecting different system components (including system memory 620 and processors).
  • Bus 630 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics accelerated port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, the Industry Standard Architecture (ISA) bus, the Micro Channel Architecture (MAC) bus, the Enhanced ISA bus, the Video Electronics Standards Association (VESA) local bus, and the Peripheral Component Interconnect ( PCI) bus.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Electronic device 600 typically includes a variety of computer system readable media. These media can be any media that can be accessed by electronic device 600, including volatile and nonvolatile media, removable and non-removable media.
  • System memory 620 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 640 and/or cache memory 650. Electronic device 600 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 660 may be used to read and write to non-removable, non-volatile magnetic media (commonly referred to as "hard drives").
  • Disk drives may be provided for reading and writing from removable non-volatile disks (e.g., "floppy disks"), and for reading and writing from removable non-volatile optical disks (e.g., CD-ROMs, DVD-ROMs, or other optical media).
  • CD-ROM drive may be connected to bus 630 through one or more data media interfaces.
  • System memory 620 may include at least one program product having a set (eg, at least one) program module configured to perform the functions of various embodiments of the present disclosure.
  • a program/utility 680 having a set of (at least one) program modules 670 may be stored, for example, in system memory 620. Data, each of these examples or some combination may include an implementation of a network environment.
  • Program modules 670 generally perform functions and/or methods in the described embodiments of the present disclosure.
  • the processor 610 executes at least one program among a plurality of programs stored in the system memory 620 to perform various functional applications and information processing, such as implementing the method embodiments provided by the embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the steps of the above method embodiments are implemented.
  • the computer-readable medium may be a computer-readable medium Read signal media or computer-readable storage media.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections having one or more conductors, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional Procedural programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or wide area network (WAN) domain, or it can be connected to an external computer (e.g., using an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • An embodiment of the present disclosure also provides a vehicle, including a vehicle-mounted system, and the vehicle-mounted system is configured to perform the steps of the above method embodiment.
  • An embodiment of the present disclosure also provides a computer program product, which includes a computer program.
  • the computer program product is run on a computer, the computer program is caused to be executed by the processor to implement the steps of the above method embodiment.
  • An embodiment of the present disclosure also provides a computer program.
  • the computer program includes a computer program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

一种轮胎磨损检测方法及装置、电子设备、存储介质、车辆、计算机程序产品和计算机程序。轮胎磨损检测方法包括:获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息;根据车速信息和转速信息确定车辆的实际轮胎半径;根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径。

Description

轮胎磨损检测方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请要求在2022年03月09日在中国提交的中国专利申请号202210224950.7的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及智能控制技术领域,尤其涉及一种轮胎磨损检测方法及装置、电子设备、存储介质、车辆、计算机程序产品和计算机程序。
背景技术
现有的轮胎检测方法基本是通过对“胎面磨损标志”进行观察或者使用手工量具对轮胎花纹深度进行测量的方式来实现。这两种检测方式都需要依靠人为操作,容易错漏,影响检测准确度,且工作量大,无法实现高效测量。可见,现有的轮胎检测方法检测准确度低、检测效率低。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开的实施例提供了一种轮胎磨损检测方法及装置、电子设备、存储介质、车辆、计算机程序产品和计算机程序,实现对轮胎进行实时检测,提高检测效率和检测精度。
第一方面,本公开实施例提供了一种轮胎磨损检测方法,包括:
获取车辆运行状态下的工况信息,其中,所述工况信息至少包括车速信息和转速信息;
根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径;和
根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,所述预设轮胎半径为所述车辆在初始运行工况下的轮胎半径。
在一些实施例中,所述根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,包括:
根据所述转速信息和圆周信息确定角速度信息;和
根据所述车速信息和所述角速度信息确定所述车辆的实际轮胎半径。
在一些实施例中,所述根据所述转速信息和圆周信息确定角速度信息,包括:根据所述转速信息和圆周信息的乘积确定所述角速度信息;并且
所述根据所述车速信息和所述角速度信息确定所述车辆的实际轮胎半径,包括:根据 所述车速信息和所述角速度信息的商值确定所述车辆的实际轮胎半径。
在一些实施例中,所述根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,包括:
响应于所述实际轮胎半径与所述预设轮胎半径的差值小于预设阈值,确定轮胎为一级磨损;和
响应于所述实际轮胎半径与所述预设轮胎半径的差值大于或等于预设阈值,确定轮胎为二级磨损,
其中,所述二级磨损的磨损率大于所述一级磨损的磨损率,所述一级磨损表示所述轮胎正常,所述二级磨损表示所述轮胎异常。
在一些实施例中,所述工况信息还包括:转角信息和扭矩信息;并且
所述根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,包括:
基于所述转角信息与预设转角信息的差值小于或等于第一差值且所述扭矩信息与预设扭矩信息的差值小于或等于第二差值,根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,
其中,所述预设转角信息为车辆处于直线行驶对应的转角信息,所述预设扭矩信息为所述车辆处于匀速行驶对应的扭矩信息。
在一些实施例中,所述方法还包括:
根据所述轮胎的磨损程度,发送预警信息。
在一些实施例中,所述根据所述轮胎的磨损程度,发送预警信息,包括:
响应于存在至少两个轮胎为二级磨损,发送第一预警信息,所述第一预警信息用于提醒驾驶员进行轮胎换位;
响应于存在单个轮胎为二级磨损,发送第二预警信息,所述第二预警信息用于提醒驾驶员进行轮胎更换及车辆车况检查。
第二方面,本公开实施例提供一种轮胎磨损检测装置,包括:
工况信息获取模块,用于获取车辆运行状态下的工况信息,其中,所述工况信息至少包括车速信息和转速信息;
实际轮胎半径确定模块,用于根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径;和
磨损程度确定模块,用于根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,所述预设轮胎半径为所述车辆在初始运行工况下的轮胎半径。
第三方面,本公开实施例提供一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面任一实施例中所述的方法。
第四方面,本公开实施例提供一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面任一实施例中所述的方法。
第五方面,本公开实施例还提供一种车辆,包括车载系统,该车载系统用于执行如第一方面任一实施例中所述的方法。
第六方面,本公开实施例还提供一种计算机程序产品,包括计算机程序,当所述计算机程序产品在计算机上运行时,使得所述计算机程序被处理器执行实现如第一方面任一实施例中所述的方法。
第七方面,本公开实施例还提供一种计算机程序,该计算机程序包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行如第一方面任一实施例中所述的方法。
本公开实施例提供的技术方案与相关技术相比具有如下优点:
本公开实施例提供的轮胎磨损检测方法及装置、电子设备、存储介质、车辆、计算机程序产品和计算机程序,获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息,根据车速信息和转速信息确定车辆的实际轮胎半径,根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径,即通过获取车辆处于运行状态下的工况信息,基于工况信息的车速信息和转速信息确定车辆在运行状态下的实际轮胎半径,并根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现在车辆行驶过程中,基于实时采集的车速信息和转速信息确定车辆的实际轮胎半径,并比较车辆行驶过程中的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现对轮胎进行实时检测,检测效率更为高效,此外,由于整个检测过程无需手动检测,因此检测结果也更为准确。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种轮胎磨损检测方法的流程示意图;
图2是本公开实施例提供的另一种轮胎磨损检测方法的流程示意图;
图3是本公开实施例提供的又一种轮胎磨损检测方法的流程示意图;
图4是本公开实施例提供的又一种轮胎磨损检测方法的流程示意图;
图5是本公开实施例提供的一种轮胎磨损检测装置的结构示意图;
图6是本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
基于相关技术存在的问题,本公开实施例提供一种轮胎磨损检测方法,包括:获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息;根据车速信息和转速信息确定车辆的实际轮胎半径;根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径,即通过获取车辆处于运行状态下的工况信息,基于工况信息的车速信息和转速信息确定车辆在运行状态下的实际轮胎半径,并根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现在车辆行驶过程中,基于实时采集的车速信息和转速信息确定车辆的实际轮胎半径,并比较车辆行驶过程中的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现对轮胎进行实时检测,检测效率更为高效,此外,由于整个检测过程无需手动检测,因此检测结果也更为准确。
本公开实施例提供的轮胎磨损检测方法可应用于终端设备上,该终端设备可为专门用于对轮胎磨损情况进行检测的检测设备,也可以为现有车辆的终端设备来执行,其中,车辆的终端设备例如可以是车载主控模块。下面以几个具体的实施例对本公开的技术方案做详细描述。
图1为本公开提供的一种轮胎磨损检测方法的流程示意图,如图1所示,本实施例的方法包括:S10至S30。
S10、获取车辆运行状态下的工况信息。
在一些实施例中,工况信息至少包括车速信息和转速信息。
为了实现对轮胎的磨损情况进行高效检测,本实施例的轮胎磨损检测方法可直接基于 车辆的终端设备进行检测。当车辆处于运行状态下时,即车辆轮胎处于运动状态时,本实施例通过获取车辆运行状态下的工况信息,例如车速信息和转速信息。
具体的,可基于车载GPS(全球定位系统,Global Positioning System)获取车辆行驶时的车速信息,基于ESP(车身电子稳定系统,Electronic Stability Program)获取车辆行驶过程中车辆轮胎的转速信息。
需要说明的是,上述实施例示例性表示基于车载GPS获取车辆的车速信息以及基于ESP获取车辆轮胎的转速信息,在具体的实施方式中,不同车辆配置不同,因此获取车辆车速信息以及转速信息的具体模块本公开实施例不对此进行限定。
S20、根据车速信息和转速信息确定车辆的实际轮胎半径。
当车载GPS采集到车辆处于运动状态时的车速信息,ESP采集到车辆处于运动状态的转速信息后,车辆的终端设备获取车载GPS采集的车辆的车速信息以及ESP采集到的车辆的转速信息,并根据获取到的车速信息和转速信息确定车辆的处于运行状态下的实际轮胎半径。
需要说明的是,由于车辆轮胎在车辆处于运行状态下时会发生磨损现象,车辆轮胎磨损程度与车辆的运行距离有关,因此,当车辆运行距离较短,基于获取的车速信息和转速信息确定的车辆的实际轮胎半径与预设轮胎半径之间的差值较小,因此,作为一种具体的可实施方式,通过周期性检测车辆运行状态下的工况信息,例如,在车辆初始运行工况下获取车辆的初始车速信息和初始转速信息,在车辆运行距离大于或等于1000KM时,获取车辆运行距离大于或等于1000KM之后处于运行状态下的工况信息,此时基于车辆运行状态的工况信息确定的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度。
为保证可以对轮胎的磨损程度进行实时检测,通过设定预设周期,例如,车辆行驶距离满足1000KM后获取依次车辆的车速信息和转速信息,即1000KM、2000KM、...、10000KM对应的行驶距离分别获取车辆的车速信息和转速信息,并基于车速信息和转速信息确定车辆的实际轮胎半径。
S30、根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度。
在一些实施例中,预设轮胎半径为车辆在初始运行工况下的轮胎半径。
具体的,当车辆处于初始运行工况时,车辆的轮胎未发生磨损,通过获取车辆在初始运行工况下的轮胎半径,可以确定车辆的预设轮胎半径。
在一种具体的实施方式中,可以获取车辆在初始运行工况下的初始车速信息和初始转速信息,基于初始车速信息和初始转速信息计算得到车辆的预设轮胎半径。
在另一种具体的实施方式中,基于车辆的TPMS(轮胎压力监测系统,Tire Pressure Monitoring System)监测车辆轮胎胎压,当车辆轮胎胎压处于正常胎压范围内时,此时基 于获取的车速信息和轮速信息计算得到车轮的预设轮胎半径。
本公开实施例通过比较实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,由于实际轮胎半径基于获取车辆运行状态的工况信息确定的,因此,可以实现对轮胎进行实时检测,检测效率更为高效,此外,本申请实施例提供的轮胎磨损检测方法,整个检测过程无需手动检测,因此检测结果也更为准确。
本公开实施例提供的轮胎磨损检测方法,获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息,根据车速信息和转速信息确定车辆的实际轮胎半径,根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径,即通过获取车辆处于运行状态下的工况信息,基于工况信息的车速信息和转速信息确定车辆在运行状态下的实际轮胎半径,并根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现在车辆行驶过程中,基于实时采集的车速信息和转速信息确定车辆的实际轮胎半径,并比较车辆行驶过程中的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现对轮胎进行实时检测,检测效率更为高效,此外,由于整个检测过程无需手动检测,因此检测结果也更为准确。
图2是本公开实施例提供的另一种轮胎磨损检测方法的流程示意图。本公开实施例是在上述实施例的基础上,如图2所示,步骤S20的一种具体可实现方式包括:S21和S22。
S21、根据转速信息和圆周信息确定角速度信息。
在一些实施例中,根据转速信息和圆周信息的乘积确定角速度信息。
在具体的实施方式中,当基于ESP获取车辆的转速信息后,基于角速度信息、圆周信息与转速信息之间的关系,可以获取车辆的角速度信息。
在一个实施例中,角速度信息与转速信息之间的关系表达式为:ω=2πn,其中,ω为角速度信息,n为转速信息,2π为圆周信息。
需要说明的是,当转速信息的单位为rpm(转/分),角速度信息的单位为w/s(弧度/秒),则角速度信息与转速信息之间的另一种关系表达式为ω=2πn/60。
S22、根据车速信息和角速度信息确定车辆的实际轮胎半径。
在一些实施例中,根据车速信息和角速度信息的商值确定车辆的实际轮胎半径。
在具体的实施方式中,当基于GPS获取车辆的车速信息后,基于角速度信息、车速信息与轮胎半径之间的关系,可以获取车辆的实际轮胎半径。
在一个实施例中,角速度信息、车速信息与轮胎半径之间的关系表达式为:v=ωr,其中,ω为角速度信息,r为轮胎半径。
本公开实施例提供的轮胎磨损检测方法,首先根据转速信息和圆周信息确定角速度信 息,然后基于车速信息和角速度信息确定车辆的实际轮胎半径,保证确定的车辆的实际轮胎半径的准确性。
图3是本公开实施例提供的又一种轮胎磨损检测方法的流程示意图,本公开实施例是在上述实施例的基础上,如图3所示,步骤S20的另一种具体可实施方式包括:S23。
S23、响应于转角信息与预设转角信息的差值小于或等于第一差值且扭矩信息与预设扭矩信息的差值小于或等于第二差值,根据车速信息和转速信息确定车辆的实际轮胎半径。
在一些实施例中,预设转角信息为车辆处于直线行驶对应的转角信息,预设扭矩信息为车辆处于匀速行驶对应的扭矩信息。
在一些实施例中,工况信息还包括:转角信息和扭矩信息。
由上述实施例可知,车辆的实际轮胎半径基于车速信息和转速信息确定,即确定的车辆的实际轮胎半径与车速信息和转速信息有关,在不同的运行工况下,获取的车速信息和转速信息存在一定的误差,为保证基于车速信息和转速信息确定的车辆的实际轮胎半径的准确度更高,本公开实施例提供的轮胎磨损检测方法,获取车辆运行状态下的工况信息还包括转角信息和扭矩信息,其中,转角信息反映车辆的转向角度,扭矩信息反映车辆的运行状态。为保证基于车速信息和转速信息确定的车辆的实际轮胎半径的准确性,本公开实施例提供的轮胎磨损检测方法,响应于转角信息与预设转角信息的差值小于或等于第一差值且扭矩信息与预设扭矩信息小于或等于第二差值,根据车速信息和转速信息确定车辆的实际轮胎半径。
需要说明的是,上述实施例中,转角信息与预设转角信息的差值指的是车辆在运行状态下车辆行驶可偏离直线行驶的角度,其中,车辆转弯行驶包括向左转弯行驶或向右转弯行驶。扭矩信息与预设扭矩信息的差值指的是车辆在运行状态下车辆行驶固定距离的加速度可偏离匀速行驶的大小,其中,行驶固定距离的加速度包括加速和减速。
作为一种具体的可实施方式,通过周期性检测车辆运行状态下的工况信息,例如,在车辆初始运行工况下获取车辆的初始车速信息和初始转速信息,在车辆运行距离大于或等于1000KM时,获取车辆运行距离大于或等于1000KM之后处于运行状态下的工况信息,此时基于车辆运行状态的工况信息确定的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度。由于车辆运行距离大于或等于1000KM之时车辆的转角信息与预设转角信息的差值不一定满足第一差值,和/或车辆的扭矩信息与预设扭矩信息的差值不一定满足第二差值,此时,为保证获取的车辆的实际轮胎半径的准确性,在车辆运行距离大于或等于1000KM后,在1000KM~2000KM之间选取车辆的转角信息与预设转角信息的差值满足第一差值且车辆的扭矩信息与预设扭矩信息的差值满足第二差值工况下车辆的车速信息和转速信息,以此类推,依次获取不同不同检测周期车辆的实际轮胎半径。
此外,若基于车辆初始运行状态的初始车速信息和初始转速信息确定车辆的预设轮胎半径,此时,选取的车辆运行工况为在转角信息与预设转角信息的差值小于或等于第一差值且扭矩信息与预设扭矩信息的差值小于或等于第二差值对应的初始运行工况,保证获取的预设轮胎半径的准确性。
图4是本公开实施例提供的又一种轮胎磨损检测方法的流程示意图。本公开实施例是在上述实施例的基础上,如图4所示,该方法还包括:S40。
S40、根据轮胎的磨损程度,发送预警信息。
为保证驾驶员可以即使获取轮胎的磨损程度进而避免非必要事故的发生,当根据实际轮胎半径与预设轮胎半径之间的关系确定轮胎的磨损程度后,发送预警信息,保证驾驶员能够及时发现车辆轮胎的磨损问题,提高驾驶安全性。
具体的,根据轮胎的磨损程度,发送预警信息,包括:
响应于存在至少两个轮胎为二级磨损,发送第一预警信息,第一预警信息用于提醒驾驶员进行轮胎换位;
响应于存在单个轮胎为二级磨损,发送第二预警信息,第二预警信息用于提醒驾驶员进行轮胎更换及车辆车况检查。
在具体的实施方式中,轮胎的磨损程度包括一级磨损和二级磨损,其中一级磨损的磨损率小于二级磨损的磨损率,一级磨损表示车辆车况较好,驾驶员可以根据自己行驶路径合理规划时间进行车辆车况的检查,二级磨损表示车辆轮胎磨损较为严重,容易出现交通事故,建立驾驶员镜框进行轮胎更换。
此外,响应于车辆的轮胎磨损为二级磨损,对应不同的轮胎出现二级磨损现象,发送的预警信息不同。
具体的,响应于存在单个轮胎为二级磨损,发送第一预警信息,以实现基于第二预警信息提醒驾驶员进行轮胎换位及车辆车况检查,其中,存在单个轮胎为二级磨损可能是因为车辆转弯频率较大,造成左侧车轮或右侧车轮磨损严重,也可能是车辆车况存在问题,为保证车辆左右两侧轮胎地面附着力一致,发送第二预警信息以提醒驾驶员进行轮胎更换并进行车辆车况检查。此外,另一种情况,响应于至少两个轮胎为二级磨损,例如单轴(前轴或后轴)轮胎磨损时,其中前轴轮胎磨损可能是由于车辆为前驱车,使得车辆前轴轮胎磨损较为严重,此时,响应于确定存在至少两个轮胎为二级磨损,发送第一预警信息以提醒驾驶员进行轮胎更换。
需要说明的是,上述实施例中示例性表示基于车速信息和转速信息确定车辆的实际轮胎半径,在具体的实施方式中,车辆包括的轮胎为多个,因此,而车辆的车速信息确定的,因此,当不同轮胎的磨损率不同,对应的轮胎的转速信息不同,因此基于车速信息和转速 信息确定的实际轮胎半径可以分别为不同轮胎对应的实际轮胎半径,在进行实际轮胎半径与预设轮胎半径比对时,依次比较不同轮胎对应的实际轮胎半径与预设轮胎半径之间的关系。
作为一种可实施方式,根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程的具体实施方式包括:
响应于实际轮胎半径与预设轮胎半径的差值小于预设阈值,确定轮胎为一级磨损;
响应于实际轮胎半径与预设轮胎半径的差值大于或等于预设阈值,确定轮胎为二级磨损;
其中,二级磨损的磨损率大于一级磨损的磨损率,一级磨损表示轮胎正常,二级磨损表示所述轮胎异常。
通过比对实际轮胎半径与预设轮胎半径的差值与预设阈值之间的关系,确定轮胎的磨损程度,响应于实际轮胎半径与预设轮胎半径的差值小于预设阈值,确定轮胎为一级磨损,响应于实际轮胎半径与预设轮胎半径的差值大于或等于预设阈值,确定轮胎为二级磨损。
图5是本公开实施例提供的一种轮胎磨损检测装置的结构示意图,如图5所示,轮胎磨损检测装置包括:工况信息获取模块510、实际轮胎半径确定模块520和磨损程度确定模块530。
工况信息获取模块510用于获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息。
实际轮胎半径确定模块520用于根据车速信息和转速信息确定车辆的实际轮胎半径。
磨损程度确定模块530用于根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径。
本公开实施例提供的轮胎磨损检测装置,工况信息获取模块获取车辆运行状态下的工况信息,其中,工况信息至少包括车速信息和转速信息,实际轮胎半径确定模块根据车速信息和转速信息确定车辆的实际轮胎半径,磨损程度确定模块根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,预设轮胎半径为车辆在初始运行工况下的轮胎半径,即通过获取车辆处于运行状态下的工况信息,基于工况信息的车速信息和转速信息确定车辆在运行状态下的实际轮胎半径,并根据实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现在车辆行驶过程中,基于实时采集的车速信息和转速信息确定车辆的实际轮胎半径,并比较车辆行驶过程中的实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,实现对轮胎进行实时检测,检测效率更为高效,此外,由于整个检测过程无需手动检测,因此检测结果也更为准确。
在一些实施例中,实际轮胎半径确定模块包括:角速度信息确定单元和实际轮胎半径 确定单元。
角速度信息确定单元用于根据转速信息和圆周信息确定角速度信息。
实际轮胎半径确定单元用于根据所述车速信息和所述角速度信息确定所述车辆的实际轮胎半径。
在一些实施例中,角速度信息确定单元的一种具体可实现方式包括:
根据转速信息和圆周信息的乘积确定角速度信息。
在一些实施例中,实际轮胎半径确定单元的一种具体可实现方式包括:
根据车速信息和角速度信息的商值确定车辆的实际轮胎半径。
在一些实施例中,磨损程度确定模块的一种具体可实现方式包括:
响应于实际轮胎半径与预设轮胎半径的差值小于预设阈值,确定轮胎为一级磨损;
响应于实际轮胎半径与预设轮胎半径的差值大于或等于预设阈值,确定轮胎为二级磨损;
其中,二级磨损的磨损率大于一级磨损的磨损率,一级磨损表示轮胎正常,二级磨损表示轮胎异常。
在一些实施例中,实际轮胎半径确定模块另一种具体可实施方式包括:
响应于转角信息与预设转角信息的差值小于或等于第一差值且扭矩信息与预设扭矩信息的差值小于或等于第二差值,根据车速信息和转速信息确定车辆的实际轮胎半径,
其中,预设转角信息为车辆处于直线行驶对应的转角信息,预设扭矩信息为所述车辆处于匀速行驶对应的扭矩信息。
在一些实施例中,轮胎磨损检测装置还包括:
预警模块,用于根据轮胎的磨损程度,发送预警信息。
在一些实施例中,预警模块的一种具体可实现方式包括:
响应于存在至少两个轮胎为二级磨损,发送第一预警信息,第一预警信息用于提醒驾驶员进行轮胎换位;
响应于存在单个轮胎为二级磨损,发送第二预警信息,第二预警信息用于提醒驾驶员进行轮胎更换及车辆车况检查。
本公开实施例所提供的装置可执行本公开任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本公开的保护范围。
本公开实施例还提供一种电子设备,包括:一个或多个处理器,和存储装置,用于存 储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时实现上述方法实施例的步骤。
图6为本公开实施例提供的一种电子设备的结构示意图,图6示出了适于用来实现本公开实施例实施方式的示例性电子设备的框图。图6显示的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图6所示,电子设备600以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:一个或者多个处理器610,系统存储器620,连接不同系统组件(包括系统存储器620和处理器)的总线630。
总线630表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
电子设备600典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备600访问的介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器620可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)640和/或高速缓存存储器650。电子设备600可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统660可以用于读写不可移动的、非易失性磁介质(通常称为“硬盘驱动器”)。可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM、DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线630相连。系统存储器620可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本公开实施例各实施例的功能。
具有一组(至少一个)程序模块670的程序/实用工具680,可以存储在例如系统存储器620中,这样的程序模块670包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块670通常执行本公开实施例所描述的实施例中的功能和/或方法。
处理器610通过运行存储在系统存储器620中的多个程序中的至少一个程序,从而执行各种功能应用以及信息处理,例如实现本公开实施例所提供的方法实施例。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例的步骤。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可 读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)域连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本公开实施例还提供一种车辆,包括车载系统,车载系统用于执行上述方法实施例的步骤。
本公开实施例还提供一种计算机程序产品,包括计算机程序,当所述计算机程序产品在计算机上运行时,使得所述计算机程序被处理器执行实现上述方法实施例的步骤。
本公开实施例还提供一种计算机程序,该计算机程序包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述方法实施例的步骤。
需要说明的是,前述对轮胎磨损检测方法和装置实施例的解释说明也适用于上述实施例中的电子设备、存储介质、车辆、计算机程序产品和计算机程序,此处不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存 在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (13)

  1. 一种轮胎磨损检测方法,其特征在于,包括:
    获取车辆运行状态下的工况信息,其中,所述工况信息至少包括车速信息和转速信息;
    根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径;和
    根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,所述预设轮胎半径为所述车辆在初始运行工况下的轮胎半径。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,包括:
    根据所述转速信息和圆周信息确定角速度信息;和
    根据所述车速信息和所述角速度信息确定所述车辆的实际轮胎半径。
  3. 根据权利要求2所述的方法,其特征在于,
    所述根据所述转速信息和圆周信息确定角速度信息,包括:根据所述转速信息和所述圆周信息的乘积确定所述角速度信息;并且
    所述根据所述车速信息和所述角速度信息确定所述车辆的实际轮胎半径,包括:根据所述车速信息和所述角速度信息的商值确定所述车辆的实际轮胎半径。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,包括:
    响应于所述实际轮胎半径与所述预设轮胎半径的差值小于预设阈值,确定轮胎为一级磨损;
    响应于所述实际轮胎半径与所述预设轮胎半径的差值大于或等于预设阈值,确定轮胎为二级磨损,
    其中,所述二级磨损的磨损率大于所述一级磨损的磨损率,所述一级磨损表示所述轮胎正常,所述二级磨损表示所述轮胎异常。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述工况信息还包括:转角信息和扭矩信息;
    所述根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,包括:
    响应于所述转角信息与预设转角信息的差值小于或等于第一差值且所述扭矩信息与预设扭矩信息的差值小于或等于第二差值,根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径,
    其中,所述预设转角信息为车辆处于直线行驶对应的转角信息,所述预设扭矩信息为所述车辆处于匀速行驶对应的扭矩信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述轮胎的磨损程度,发送预警信息。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述轮胎的磨损程度,发送预警信息,包括:
    响应于存在至少两个轮胎为二级磨损,发送第一预警信息,所述第一预警信息用于提醒驾驶员进行轮胎换位;和
    响应于存在单个轮胎为二级磨损,发送第二预警信息,所述第二预警信息用于提醒驾驶员进行轮胎更换及车辆车况检查。
  8. 一种轮胎磨损检测装置,其特征在于,包括:
    工况信息获取模块,用于获取车辆运行状态下的工况信息,其中,所述工况信息至少包括车速信息和转速信息;
    实际轮胎半径确定模块,用于根据所述车速信息和所述转速信息确定所述车辆的实际轮胎半径;和
    磨损程度确定模块,用于根据所述实际轮胎半径与预设轮胎半径之间的关系,确定轮胎的磨损程度,其中,所述预设轮胎半径为所述车辆在初始运行工况下的轮胎半径。
  9. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至7中任一项所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的方法。
  11. 一种车辆,包括车载系统,所述车载系统用于执行如权利要求1至7中任一项所述的方法。
  12. 一种计算机程序产品,包括计算机程序,当所述计算机程序产品在计算机上运行时,使得所述计算机程序被处理器执行如权利要求1至7中任一项所述的方法。
  13. 一种计算机程序,该计算机程序包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
PCT/CN2023/080593 2022-03-09 2023-03-09 轮胎磨损检测方法、装置、电子设备和存储介质 WO2023169530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210224950.7 2022-03-09
CN202210224950.7A CN116766834A (zh) 2022-03-09 2022-03-09 轮胎磨损检测方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023169530A1 true WO2023169530A1 (zh) 2023-09-14

Family

ID=87936101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080593 WO2023169530A1 (zh) 2022-03-09 2023-03-09 轮胎磨损检测方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116766834A (zh)
WO (1) WO2023169530A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912566A (zh) * 2005-08-09 2007-02-14 住友橡胶工业株式会社 利用gps速度信息检测轮胎内压降低的方法
JP2008247126A (ja) * 2007-03-29 2008-10-16 Sumitomo Rubber Ind Ltd タイヤ摩耗警報方法
WO2014195605A1 (fr) * 2013-06-04 2014-12-11 Renault S.A.S Procédé et dispositif d'estimation d'un état d'usure d'au moins un pneu de véhicule automobile
CN105691121A (zh) * 2016-04-01 2016-06-22 苏州车邦智能科技有限公司 基于obd的胎压监测方法及装置
CN109249934A (zh) * 2018-09-30 2019-01-22 广州小鹏汽车科技有限公司 一种轮胎磨损参数计算方法、系统及装置
CN113291105A (zh) * 2020-02-21 2021-08-24 上海为彪汽配制造有限公司 一种轮胎磨损监测方法及系统
CN114953857A (zh) * 2021-08-23 2022-08-30 长城汽车股份有限公司 轮胎状态监测方法、装置、控制器、存储介质及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912566A (zh) * 2005-08-09 2007-02-14 住友橡胶工业株式会社 利用gps速度信息检测轮胎内压降低的方法
JP2008247126A (ja) * 2007-03-29 2008-10-16 Sumitomo Rubber Ind Ltd タイヤ摩耗警報方法
WO2014195605A1 (fr) * 2013-06-04 2014-12-11 Renault S.A.S Procédé et dispositif d'estimation d'un état d'usure d'au moins un pneu de véhicule automobile
CN105691121A (zh) * 2016-04-01 2016-06-22 苏州车邦智能科技有限公司 基于obd的胎压监测方法及装置
CN109249934A (zh) * 2018-09-30 2019-01-22 广州小鹏汽车科技有限公司 一种轮胎磨损参数计算方法、系统及装置
CN113291105A (zh) * 2020-02-21 2021-08-24 上海为彪汽配制造有限公司 一种轮胎磨损监测方法及系统
CN114953857A (zh) * 2021-08-23 2022-08-30 长城汽车股份有限公司 轮胎状态监测方法、装置、控制器、存储介质及车辆

Also Published As

Publication number Publication date
CN116766834A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP4823642B2 (ja) Gps情報を用いたタイヤ内圧低下警報方法および装置、ならびにタイヤ内圧低下警報プログラム
US20160109331A1 (en) Tire contact state estimation method
CN110285978A (zh) 车辆的动力参数测试方法、装置、存储介质及电子设备
WO2018023699A1 (zh) 一种胎压传感器定位方法及装置
JP2008024119A (ja) タイヤ空気圧低下警報方法、装置およびプログラム
JP2009227034A (ja) タイヤ空気圧低下検出方法及び装置、並びにタイヤ減圧判定のプログラム
JP7019841B2 (ja) タイヤ損傷検出システム及び方法
WO2023025007A1 (zh) 车辆避让方法、装置、车载设备及存储介质
CN105523084B (zh) 一种基于三轴加速度传感器检测车辆转弯角度的方法
US20190186962A1 (en) Quality of Service for a Vehicular Plug-and-Play Ecosystem
JP7028994B2 (ja) タイヤ損傷検出システム及び方法
WO2023169530A1 (zh) 轮胎磨损检测方法、装置、电子设备和存储介质
CN105584303B (zh) 轮胎压力减小检测设备和方法
JP2013086736A (ja) タイヤ空気圧低下検出方法、装置及びプログラム
JP5204861B2 (ja) タイヤ空気圧低下検出方法、装置及びプログラム
JP2019048483A (ja) 車両制御装置
JP4800025B2 (ja) 車両の荷重状態推定方法およびタイヤ空気圧低下警報方法
WO2023213000A1 (zh) 一种基于车辆的障碍物定位方法、装置、车辆及存储介质
JP5002203B2 (ja) タイヤ動荷重半径の基準値初期化方法
KR102647445B1 (ko) 자율주행 차량 평가 시스템 및 방법
CN106427416A (zh) 车辆的胎压检测方法、系统及车辆
CN108871810A (zh) 一种汽车车轮制动性能动态监测方法及系统
JP5893306B2 (ja) 応答遅れ評価方法
CN106289308A (zh) 车辆轮胎转数的测量方法、系统及出租车计价装置
US20210146945A1 (en) Method of calculating stopping distance and related devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766107

Country of ref document: EP

Kind code of ref document: A1