JP2019048483A - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP2019048483A
JP2019048483A JP2017172380A JP2017172380A JP2019048483A JP 2019048483 A JP2019048483 A JP 2019048483A JP 2017172380 A JP2017172380 A JP 2017172380A JP 2017172380 A JP2017172380 A JP 2017172380A JP 2019048483 A JP2019048483 A JP 2019048483A
Authority
JP
Japan
Prior art keywords
vibration
vehicle
control device
level
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017172380A
Other languages
English (en)
Inventor
峰史 廣瀬
Mineshi Hirose
峰史 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017172380A priority Critical patent/JP2019048483A/ja
Publication of JP2019048483A publication Critical patent/JP2019048483A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】自動運転モードにおいて低μ路に遭遇した際に適切に対応する。【解決手段】加速度センサ5aや空気圧センサ11等により振動を検知し、その振動が所定の条件を満たしているか判定する。満たしている場合には、ホイールへの着雪等による振動であり、低μ路である可能性があるものと推定し、自動運転の自動化率を下げ、上減速度やカーブ前減速量の増加等の制御を行う。【選択図】図1

Description

本発明は、たとえば自動車等の走行を制御する車両制御装置に関する。
車両の自動運転を実現するためには、車両自体の走行状態に加えて、車両の外部環境(走行環境)を把握したうえで、走行状態及び外部環境に応じた自動運転の制御を行うことで車両の内外における安全を確保する必要がある。外部環境のひとつとして、走行路の摩擦係数がある。摩擦係数の低い路面(いわゆる低μ路)では、スキッドやスリップが生じるおそれがあることから、特に自動運転ではそれに合わせた走行の制御を行う必要がある。
国際公開01/098123号明細書
しかしながら、走行する車両から路面の摩擦係数を直接測定することは困難であり、低μ路等の走行環境に応じた走行制御を行うことも困難であった。
本願発明は上記従来例に鑑みて成されたもので、車両の走行状態に基づいて低μ路を検知し、それに応じた制御を行う車両制御装置を提供することを目的とする。
上記目的を達成するために本発明は以下の構成を有する。
すなわち、本発明の一側面によれば、本発明は、自車両の周辺を監視する周辺監視部と、
前記周辺監視部の検出結果をもとに走行制御を行う自動運転制御部と、
前記自車両の走行振動を検出する振動センサとを有し、
前記自動運転制御部は、前記振動センサにより検出した前記走行振動が所定の条件を満たす場合に、当該自動運転制御部の制御内容を変更することを特徴とする車両制御装置にある。
本発明によれば、車両の走行状態に基づいて走行環境を推定し、それに応じた制御を行う車両制御装置を提供することができる。
車両システムの構成を示した説明図である。 自動運転を制御するための構成を示すブロック図である。 自動運転の制御の一部を示すフローチャートである。 自動運転の制御の一部を示すフローチャートである。 自動運転の制御の一部を示すフローチャートである。
[第一実施形態]
●車両用制御装置の構成
図1は、本発明の一実施形態に係る車両用制御装置のブロック図であり、車両1を制御する。図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
図1の制御装置は、制御ユニット2を含む。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20〜29を含む。各ECUは、CPUに代表されるプロセッサ、半導体メモリ等の記憶デバイス、外部デバイスとのインタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、記憶デバイスおよびインタフェース等を複数備えていてもよい。すなわちECUを情報処理装置と呼ぶこともできる。
以下、各ECU20〜29が担当する機能等について説明する。なお、ECUの数や、担当する機能については適宜設計可能であり、本実施形態よりも細分化したり、あるいは、統合することが可能である。
ECU20は、車両1の自動運転に関わる制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。
ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、あるいは、前輪を自動操舵するための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
ECU22および23は、車両の周囲状況を検知する検知ユニット41〜43の制御および検知結果の情報処理を行う。検知ユニット41は、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析により、物標の輪郭抽出や、道路上の車線の区画線(白線等)を抽出可能である。なお本実施形態では不図示ながら、カメラ41にはマイクロフォンも併せて設けられているものとする。このマイクロフォンは特に、車体の振動に伴って発生する突き上げ音を特定するために、車体に発生する音声を拾ってECU22または23に渡す。あるいは音声は別のECUに処理させてもよい。
検知ユニット42は、ライダ(Light Detection and Ranging(LIDAR)あるいはレーザレーダ)であり(以下、ライダ42と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、ライダ42は5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43は、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、レーダ43は5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に1つずつ設けられている。
ECU22は、カメラ41の一方と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、カメラ41の他方と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。カメラ41、ライダ42、レーダ43など車両周辺の外部環境を監視するための装置を周辺監視装置とも呼ぶ。
ECU24は、ジャイロセンサ5、加速度センサ5a、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動、たとえば車両1の前後軸周りの角速度、或いはそれに加えて上下軸および左右軸周りの角速度を検知する。ジャイロセンサ5の検知結果からECU24は車両1のヨーレート(ヨー角速度)を取得することもできる。ジャイロセンサ5の検知結果や、車輪速等により車両1の進路を判定することができる。加速度センサ5aは、たとえば車両の前後左右上下方向への加速度を検出する3軸加速度センサである。加速度センサ5aは、車両の走行時の振動(走行振動)を検出する振動センサとしても機能する。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。ECU24は、記憶部24aに構築された地図情報のデータベースにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。
ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。上述した外部情報を取得するために、通信装置25aを用いることもできる。
ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車輪速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替える。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。ECU27は、方向指示器(ウィンカ)8を含む灯火器を制御する。
ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、入力デバイス93とともにインストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせてもよい。
ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。ECU29はさらに、たとえばタイヤの空気バルブに組み込まれた空気圧センサ11から空気圧を示す信号を受信し、その値を監視する。空気圧センサ11はすべてのタイヤに組み込まれており、空気圧を示す信号を送信する。本実施形態では、空気圧センサ11はタイヤ1回転の間の空気圧の変化を測定する。例えば100Km/hで走行している車両のタイヤの外周が1.8mであるとすると、タイヤはほぼ15周/秒で回転する。本実施形態では、1回転する間における空気圧の変動を測定するため、たとえば60サンプル/秒から150サンプル/秒程度の頻度で圧力を測定し、その値を送信するのが望ましい。変動の除去が必要であれば、例えばECU29において少なくともタイヤ1回転分の測定値の平均値をとればよい。なお空気圧センサ11としては圧力を直接測定するほか、タイや外部から測定してもよい。
●運転支援システムの構成
図2に車両1の自動運転等を制御する運転支援システムを機能ブロックで構成した例を示す。各機能ブロックは図1に示したECUやセンサ類、駆動デバイスなどと、ECUで実行されるプログラム等により実現される。制御ユニット2は例えばコンピューターとそれが実行するプログラム及びメモリを中心として構成されてもよい。以下、制御ユニット2を中心とした自動運転のための制御構成を簡単に説明する。
図2において、制御ユニット2には、走行駆動力出力装置72、ブレーキ装置76、ステアリング装置74が、駆動用装置の制御系として接続されている。また、ユーザーインターフェイスデバイスとして、音声出力装置91や表示装置92を含む出力デバイスおよび入力デバイス93が接続されている。さらに、加速度センサ5aや空気圧センサ11等を含む各種センサ、GPS受信機24b、レーダ42、カメラ41、ライダ43、通信ユニット24c、25aが接続され、それぞれのデバイスからの信号を制御ユニット2に入力する。
制御ユニット2には、状態に応じてブレーキやステアリング、駆動力等を制御して自動運転を実現するための自動運転制御部112が含まれる。自動運転制御部112には、自車位置認識部102、自車状態認識部101、外部環境認識部103が接続され、それぞれが認識した情報が入力される。自動運転制御部112は、車両制御部とも呼ぶ。
制御ユニット2においては、自車状態認識部101は、たとえばジャイロセンサ5から入力されるヨーレート、方向あるいは加速度センサ5aから入力される加速度などの信号に基づいて、車両1自身の状態を特定する。自車位置認識部102は、たとえばGPS信号から特定される自車位置と地図情報132とを照合して、地図上における自車位置を特定する。たとえば地図上の位置毎に関連づけて登録されている交通影響情報を特定することができる。
外部環境認識部103は、カメラ41やレーダ42、ライダ43で検知した車両の外部環境に関する画像等の情報を処理して外部環境を認識することができる。外部環境には、たとえばリスクと呼ばれる障害物や、安全に走行可能な走行可能領域が含まれる。また障害物は単に障害物として認識されるのみならず、その種類についても認識される。また自車の状態から外部環境を特定することもある。例えば、本実施形態では、車両の信号(特にホイールの信号)に基づいて、低μ路である可能性を判定している。この場合には、たとえば加速度センサ5aや空気圧センサ11等からの信号が、外部環境認識部103にも入力される。
自動運転制御部112は、行動計画決定部1121と走行制御部1122とを含む。行動計画決定部1121は、たとえば決定された走行経路に沿って走行すべく、自車位置認識部102および外部環境認識部103から入力される情報等を用いて、走行や操舵、制動などの行動を決定する。走行制御部1122は、決定された行動計画にしたがってブレーキ装置76やステアリング装置74、エンジンやモータ等の走行駆動力出力装置72を制御する。自動運転制御部112は、例えば図3乃至図5に示すような制御を行う。
記憶部24aはメモリあるいはストレージであり、運転制御のために用いられる地図情報132等を格納している。また指定された目的地までの走行経路等も記憶できる。
以上のように、自動運転システムの中心となる制御ユニット2は、車両1の各デバイスを、センサや通信により取得した外部環境情報などに基づいて制御することで、自動運転を実現する。また、不図示のナビゲーションシステムにより、現在地を示し、また目的地への道案内をすることもできる。
●自動運転レベル
本実施形態における自動運転制御の説明の前に、自動運転のレベルについて簡単に説明する。本実施形態では、自動運転は、自動化率に応じて4段階にレベル分けされている。レベル1は、駆動、制動、操舵のうちいずれかを自動運転システムが行う段階である。レベル2は、駆動、制動、操舵のうちの複数を自動運転システムが行う段階である。たとえば、高速道路における先行車への追従や車線の維持などがレベル2に含まれる。レベル3は、限られた環境、例えば高速道路において、駆動、制動、操舵の全てを自動運転システムが行う段階である。ただしシステムが対応できない状況が生じると、運転者への運転の引き渡し(テイクオーバー)が行われるため、運転者は、自動運転であってもテイクオーバーに備えなければならない。レベル4は、運転者が運転に一切関与せず、自動運転システムにより完全な自動運転が実現される段階である。運転者はタクシーの乗客のように、運転に関与することなく乗車できる。以上はおおまかな分類であり、自動化する操作などに応じてさらにレベルが細分化されていてもよい。たとえば、レベル2のサブレベルとして、レベル2B1やレベル2Eなどがある。いずれのレベルでも、自動運転システムによる制御の対象は変わらないが、運転者への要求水準が相異なる。レベル2Eでは、いわゆるアイズオン要求があり、運転者は運転状況を監視している必要がある。またレベル2B1ではいわゆるハンズオン要求があり、運転者はステアリングホイールを持ち、直ちにテイクオーバーに応じるべく準備する必要がある。いずれにしても、或るレベルから他のレベルに移行すれば、移行後のレベルに応じて、自動運転システムが行わなくなった操作を運転者が行い、逆に、自動運転システムが行うようになった操作を運転者が行う必要がなくなる。レベルの遷移にともない、運転者の注意を喚起するための報知が成される。
●振動検出時の運転制御
本実施形態では、路面の摩擦係数が低い状況の可能性を、路面等を直接観察することなく、車両の状態、特に車両の振動に基づいて推定する。たとえば、ホイール内に雪が付着するとホイールバランスが失われ、車輪の回転に伴う振動が発生することがある。また、ホイールハウス内に雪が付着すると、ホイールと接触してこれも振動を引き起こすことがある。このように、特に積雪路においては、雪が原因となる走行時の振動が発生することがある。自動運転システムによる運転中の車両に一定の条件を満たす振動が発生した場合には本実施形態では、自動運転レベルを下げる。これは、たとえば、ホイールやホイールハウスへの着雪等により振動が生じた可能性がある場合に、運転者による状況に即した安全な運転を促すためである。
なおこの振動に基づく走行環境の推定は、他の方法による走行環境の特定を排除するものではなく、カメラで撮影した画像や、通信によって取得した気象情報などに基づいて走行環境を特定することを併せておこなってもよい。たとえばホイールアンバランスに起因する可能性のある振動を検出し、かつ、外気温が所定温度(たとえば0度)以下である場合に初めて低μ路と判定してもよい。以下に自動運転における本実施形態の手順を示す。以下の手順は例えばECU20などにより実行される。機能ブロックの上では、自動運転制御部112により(走行状態の特定については自車状態認識部101により)実行される。
図3、図4、図5は、自動運手システムが車両の運転を制御する自動運転モードにおける制御手順のうち、本実施形態に係る部分を示すフローチャートである。たとえば運転者がナビゲーションシステムを用いて目的地を設定すると、行動計画決定部1121などにより現在地から目的地までの経路が決定され、車両を発信させると自動運転モードによる車両の運転が開始される。図3(A)は自動運転モードにおける制御の一部を示す。図3(A)の手順は自動走行モードで走行中は、例えば所定時間周期で実行される。
図3(A)ではまず走行環境を特定する(S310)。詳細は図3(B)、図4(A)で説明するが、本実施形態では、特定する走行環境として低μ路(あるいは寒冷地)を対象としているが、もちろん実際の走行においては他の要素も走行環境として特定される。走行環境が特定されると、その走行環境が低μ路あるいは寒冷地であるか判定する(S320)。低μ路あるいは寒冷地であると判定されると、自動運転制御部112による自動運転の制御内容を変更する(S330)。この詳細は図4(B)で説明する。その後、変更した自動運転の制御内容を調整する(S340)。この調整の内容については図5で説明する。
さて、S310の走行環境の特定では、図3(B)が実行される。まず振動状態に基づく走行環境が特定される(S350)。ここでは特定の条件を満たす振動を、特定の走行環境、本例では低μの積雪路面であると特定する。この詳細は図4(A)で説明する。次にカメラやライダ等の周辺監視装置により取得した情報に基づいて走行環境を特定する(S360)。ここではたとえば道路が一様に白ければ積雪、道路に光の反射があり、かつ外気温が氷点下であれば凍結路面などと判定する。積雪路面も凍結路面もいずれも低μ路である。次に通信によりサーバ等から取得した気象情報などに基づいて、積雪や凍結があることを判定する(S370)。気象情報は、たとえば車両の現在地における積雪や凍結を示す情報そのものを含んでよく、その場合には、気象情報が走行環境を示しているといえる。このようにして本例では3種の情報それぞれから走行環境を特定し、いずれかが低μ路または寒冷地を示しているか判定する(S380)。ステップS350乃至ステップS370で特定した走行環境のいずれかが低μ路または寒冷地を示していれば、現在地を低μ路または寒冷地であると特定する(S390)。特定した走行環境はのちの参照のために記憶部24a等に記憶しておく。
図3(B)のステップS350では、図4(A)に示す手順で走行環境が特定される。ここでは車体の振動がホイールアンバランスに起因した特定の振動であるかが判定される。振動は、加速度センサ5aや車輪速センサ7c、空気圧センサ11、不図示のマイクロフォン(たとえばカメラ41に併設されたマイク)からの入力信号に基づいて例えば自車状態認識部101によって検出される。たとえば、加速度センサ5aは振動の加速度を検知でき、自車状態認識部101では加速度を示す信号から、振動の方向、振れ幅(振動レベルと呼ぶ)、周期などを検出できる。ここで問題とするのは、特に上下方向の振動成分であればよい。これは他のセンサ信号から振動を検出する場合も同様である。また空気圧センサ11は、ホイール1回転あたり複数回空気圧をサンプリングしてそれをECUに送信する。自車状態認識部101では検出した空気圧の変動を振動として検知する。たとえば空気圧の変動の大きさを振動レベル、変動の周期を振動周期として検出できる。また車輪速センサ7cも、車輪1回転あたり複数回の測定を行う。そしてたとえば車輪速の急激な変動(いわゆる暴れ)から振動が検出される。さらに、マイクで取得した音声信号から、自車状態認識部101が突き上げ音を示す周期的な特定のパターンを検出する。このパターンの周期が振動の周期に、音の大きさが振動レベルに対応する。このようにして、たとえば車両の上下方向の振動について、振動レベルと周期とを特定する。検出する振動は上述した各センサのいずれか一つでもよいし、複数を組み合わせて検出してもよい。
このようにして検出された振動について、まず振動レベルが所定の基準値を超えているか判定する(S400)。超えていなければ調整レベルを0として処理を終了する(S450)。調整レベルとは、自動運転モードの制御の内容を変更するための、変更の程度を示している。調整レベルが0であるとは、自動運転の走行制御の制御内容を変更しないことを示す。
一方振動レベルが基準値を超えていると判定した場合には、振動周期が所定の第1周期以下であるか判定する(S410)。第1周期以下と判定した場合、調整レベルに1を設定し、そのときの振動レベルを記憶しておく(S440)。振動周期が第1周期を超えていると判定した場合には、振動レベルが第1しきい値(閾値)レベル以下であるか判定する(S420)。第1しきい値レベルは、ステップS400における基準値よりも大きい。振動レベルが第1しきい値レベル以下であると判定した場合には、調整レベルに1を設定し、そのときの振動レベルを記憶しておく(S440)。振動レベルが第1しきい値レベルを超えていると判定した場合には、調整レベルに2を設定し、そのときの振動レベルを記憶しておく(S430)。ステップS430またはステップS440で調整レベルが1以上に設定されると、ステップS320では現在地が低μ路と判定(あるいは推定)される。
さて、図3のステップS320で低μ路または寒冷地であると判定した場合には図4(B)の手順が実行される。まず調整レベルが判定される(S465)。調整レベルが0の場合には何も行わず処理を終了する。調整レベルが1の場合には、現在の自動運転のレベルを1段階引き下げる(S470)。すなわち、自動化率を1段階引き下げる。たとえば現在レベル3であればレベル2Eに、レベル2Eであればレベル2B1に変更する。レベル3からレベル2Eへの変更により、完全自動運転からアイズオン(運転者による監視)を運転者に要求するレベルに走行制御が変更される。レベル2Eからレベル2B1への変更により、アイズオン要求からハンズオン(運転者によるハンドル等の保持)要求へと変更される。また、走行制御の内容としてさらに、上限車速と車線変更制限とカーブ前減速量とを1段階引き下げる(S475)。引き下げによりカーブ減速量は大きくなる。車線変更制限の引き下げとは、たとえば、自動運転モードにおける車線変更を行わないものとしたり、あるいは、車線変更できる速度などの引き下げを伴ってよい。上限車速とは自動運転モードにおける速度制限である。またこれらのうちいずれかであってもよい。
一方、調整レベルが2の場合、現在の自動運転のレベルを2段階引き下げる(S480)。すなわち、自動化率を2段階引き下げる。たとえば現在レベル3であればレベル2B1に、レベル2Eであればレベル1に変更する。レベル2Eからレベル1への変更により、アイズオン要求から手動運転へと変更される。また、走行制御の内容としてさらに、上限車速と車線変更制限とカーブ前減速量とを2段階引き下げる(S485)。これはステップS475における引き下げよりも、1段階大きく、制限が厳しくなる。ただし、車線変更の制限については、制限が、車線変更を行わないというものである場合には、ステップS485における制限は、ステップS475における制限と変わることはない。以上のようにして、自動運転モードにおける走行制御の制御内容を変更する。
このように自動運転レベルを含む自動運転の制御内容を変更するのは、或る程度の振動が発生しても、その振動周期が短かったり、あるいは振動レベルが低かったりする(すなわち振幅が小さい)場合には、そうでない場合に比べて、制限の程度を小さく抑えている。これは、振動周期が第1周期よりも長く、かつ振動レベルが第1しきい値レベルよりも大きい場合には、より慎重に対応する状況にあると判断できるためである。
さて、図3のステップS340では、図5のフローの処理が実行される。ステップS340では、ステップS330で自動運転の制御内容を変更した結果、あらためて振動を検出して制御内容の変更による効果を検証する。まず所定時間待機し(S510)、その後ステップS430またはS440で記憶した振動レベルと現在の振動レベルとの差を予め定めた所定の値と比較する(S520)。差が所定値以下と判定した場合には、制御内容の変更によって振動は軽減されていない。その場合には、ホイールやホイールハスへの着雪による振動ではなく、路面の状態などの外部要因で生じた振動の可能性があるものと判断して、自動運転の制御内容を、図4(B)で変更を行う前の状態へと戻す(S530)。この手順により、検知した振動に応じて行った自動運転の運転内容の変更により振動が軽減されない場合には、元の高いレベルの自動運転に戻す。それとともに走行モードにおける制限についても元のとおりに軽減する。
以上の構成及び手順により、本実施形態の車両あるいは該車両が備えた車両制御装置によれば、振動を検出して検出した振動が所定の条件に該当するか判定する。そして、該当するのであれば、その原因がホイールやホイールハウスへの着雪による可能性があるものと推定し、自動運転を制御する走行制御装置の制御内容を、自動運転の自動化率を下げるように変更する。さらに、自動運転における制限をより厳しく設定する。このようにすることで、低μ路の可能性がある走行環境においても、運転者への操作のテイクオーバーを迅速に行うことができ、また、走行制御装置の制御内容の変更により振動レベルが変わらないのであれば、振動の原因は自車にあるのではないと判断して制御内容を元に戻す。これにより、より高い自動運転モードの自動化率を維持することができ、操作性の向上に寄与する。
<その他の実施形態>
上述した実施形態では、図4(B)の手順で、調整レベルが0でない場合には自動化率を下げ、かつ、自動運転の所定の項目について、制限を厳格化している。これに対して、いずれか一方のみを行うようにしてもよい。
また、図4(A)の手順で検出した振動の周期及び振動レベルが条件を満たすか判定している。これに対して、たとえば検出した振動の周期が、車輪の回転周期と一致しているか判定し、一致していれば振動はホイールのアンバランスに起因すると判定してもよい。車輪の回転周期は、測定した車輪速およびホイール径などから特定できる。振動原因がホイールアンバランスにあると判定された場合には、その原因が雪の付着に原因があるものと推定してもよい。その場合には、現在の走行路が低μ路である可能性があるので、自動化率を下げ、上減速度等の制限をより厳しく再設定してよい。検出した振動の周期が、車輪の回転周期と一致していないなら、振動の原因は自車以外にあると推定し、自動運転をそのまま継続してもよい。
また、図3(B)においては、走行環境の特定を、3つのソースから取得した情報に基づいて行っているが、たとえばステップS360、S370を行わずに、振動のみに基づいて走行環境を特定してもよい。
●実施形態のまとめ
以上説明した本実施形態をまとめると以下のとおりである。
(1)
自車両の周辺を監視する周辺監視部と、
前記周辺監視部の検出結果をもとに走行制御を行う自動運転制御部と、
前記自車両の走行振動を検出する振動センサとを有し、
前記自動運転制御部は、前記振動センサにより検出した前記走行振動が所定の条件を満たす場合に、当該自動運転制御部の制御内容を変更することを特徴とする車両制御装置。
この構成により、車両異常振動を検出して、走行制御を変更することが可能となる。たとえば、ホイールアンバランスを検知して自動運転を制限することができる。
(2)
(1)に記載の車両制御装置であって、
車外と通信するための通信部をさらに有し、
前記周辺監視部もしくは前記通信部により現在の走行環境が低μ路もしくは寒冷地であることを検出し、
前記自動運転制御部はさらに、前記周辺監視部もしくは前記通信部にて現在の走行環境が低μ路もしくは寒冷地であることが検出された場合にも、当該自動運転制御部の制御内容を変更することを特徴とする車両制御装置。
この構成により、振動の原因が雪付きなどの寒冷地に特有の事象による振動であることを特定できる。
(3)
(1)または(2)に記載の車両制御装置であって、
前記走行制御装置は、前記振動センサで検出した前記走行振動の周期が第1周期以下、または、前記走行振動の振動レベルが第1しきい値以下であるか否かを判定し、
前記走行制御装置は、前記制御内容の変更として、前記走行振動の周期が前記第1周期以下、または、前記走行振動の振動レベルが第1しきい値以下であると判定した場合には、自動運転の自動化率を第1自動化率から第2自動化率(たとえばLv3→2E:アイズオン要求、2E→2B1:ハンズオン要求)へ変更し、前記走行振動の周期が第1周期より大きく、かつ、前記走行振動の振動レベルが第1しきい値より大きいと判定した場合には、前記自動化率を前記第1自動化率から第3自動化率(たとえばLv3→2B1,2E→1:手動)へ変更することを含むことを特徴とする車両制御装置。
この構成により、振動周期や振動レベルの相違に対して異なる対応を行うことが可能となる。これは、振動レベル/振動周期に応じて振る舞いを変更することで田正される。
(4)
(1)乃至(3)のいずれか一項に記載の車両制御装置であって、
前記走行制御装置はさらに、前記制御内容の変更として、走行時の上限車速制限と、レーンチェンジ制限と、カーブ前減速量の増加とを行うことを特徴とする車両制御装置。
これにより、走行振動が生じている際のリスク発生を抑制することが可能となる。
(5)
(1)乃至(4)のいずれか一項に記載の車両制御装置であって、
前記振動センサは、加速度センサと、車輪速センサと、空気圧センサと、マイクとの少なくともいずれかを含み、当該少なくとも何れかにより検出した信号に基づいて振動を検出することを特徴とする車両制御装置。
この構成により、様々な構成を持つ振動センサにて振動を正しく検出することができる。
(6)
(1)乃至(5)のいずれか一項に記載の車両制御装置であって、
前記走行制御装置は、該走行制御装置の制御内容を変更した後、前記振動センサで検出される振動レベルに所定の変化がなかった場合に、前記走行制御装置の制御内容を変更前の状態へ戻すことを特徴とする車両制御装置。
この構成により、走行振動の原因が自車両にはない可能性があるときには、制御を戻し、自動化率を元に戻すことが可能となる。
20−29 ECU、11 空気圧センサ、5a 加速度センサ、24c 通信ユニット、41 カメラ

Claims (6)

  1. 自車両の周辺を監視する周辺監視部と、
    前記周辺監視部の検出結果をもとに走行制御を行う自動運転制御部と、
    前記自車両の走行振動を検出する振動センサとを有し、
    前記自動運転制御部は、前記振動センサにより検出した前記走行振動が所定の条件を満たす場合に、当該自動運転制御部の制御内容を変更することを特徴とする車両制御装置。
  2. 請求項1に記載の車両制御装置であって、
    車外と通信するための通信部をさらに有し、
    前記周辺監視部もしくは前記通信部により現在の走行環境が低μ路もしくは寒冷地であることを検出し、
    前記自動運転制御部はさらに、前記周辺監視部もしくは前記通信部にて現在の走行環境が低μ路もしくは寒冷地であることが検出された場合にも、当該自動運転制御部の制御内容を変更することを特徴とする車両制御装置。
  3. 請求項1または2に記載の車両制御装置であって、
    前記走行制御装置は、前記振動センサで検出した前記走行振動の周期が第1周期以下、または、前記走行振動の振動レベルが第1しきい値以下であるか否かを判定し、
    前記走行制御装置は、前記制御内容の変更として、前記走行振動の周期が前記第1周期以下、または、前記走行振動の振動レベルが第1しきい値以下であると判定した場合には、自動運転の自動化率を第1自動化率から第2自動化率へ変更し、前記走行振動の周期が第1周期より大きく、かつ、前記走行振動の振動レベルが第1しきい値より大きいと判定した場合には、前記自動化率を前記第1自動化率から第3自動化率へ変更することを含むことを特徴とする車両制御装置。
  4. 請求項1乃至3のいずれか一項に記載の車両制御装置であって、
    前記走行制御装置はさらに、前記制御内容の変更として、走行時の上限車速制限と、レーンチェンジ制限と、カーブ前減速量の増加とを行うことを特徴とする車両制御装置。
  5. 請求項1乃至4のいずれか一項に記載の車両制御装置であって、
    前記振動センサは、加速度センサと、車輪速センサと、空気圧センサと、マイクとの少なくともいずれかを含み、当該少なくとも何れかにより検出した信号に基づいて振動を検出することを特徴とする車両制御装置。
  6. 請求項1乃至5のいずれか一項に記載の車両制御装置であって、
    前記走行制御装置は、該走行制御装置の制御内容を変更した後、前記振動センサで検出される振動レベルに所定の変化がなかった場合に、前記走行制御装置の制御内容を変更前の状態へ戻すことを特徴とする車両制御装置。
JP2017172380A 2017-09-07 2017-09-07 車両制御装置 Pending JP2019048483A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172380A JP2019048483A (ja) 2017-09-07 2017-09-07 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172380A JP2019048483A (ja) 2017-09-07 2017-09-07 車両制御装置

Publications (1)

Publication Number Publication Date
JP2019048483A true JP2019048483A (ja) 2019-03-28

Family

ID=65904914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172380A Pending JP2019048483A (ja) 2017-09-07 2017-09-07 車両制御装置

Country Status (1)

Country Link
JP (1) JP2019048483A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046494A (zh) * 2020-09-11 2020-12-08 中国第一汽车股份有限公司 一种车辆控制方法、装置、设备及存储介质
WO2021025034A1 (ja) * 2019-08-05 2021-02-11 住友重機械工業株式会社 建設機械、建設機械の表示装置、及び、建設機械の管理装置
JP2021018181A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018181A (ja) * 2019-07-22 2021-02-15 株式会社Zmp 走行車両の自動走行システム
JP7329215B2 (ja) 2019-07-22 2023-08-18 株式会社Zmp 走行車両の自動走行システム
WO2021025034A1 (ja) * 2019-08-05 2021-02-11 住友重機械工業株式会社 建設機械、建設機械の表示装置、及び、建設機械の管理装置
CN114026296A (zh) * 2019-08-05 2022-02-08 住友重机械工业株式会社 施工机械、施工机械的显示装置及施工机械的管理装置
US20220154424A1 (en) * 2019-08-05 2022-05-19 Sumitomo Heavy Industries, Ltd. Construction machine, display apparatus of construction machine, and management apparatus of construction machine
CN114026296B (zh) * 2019-08-05 2023-09-08 住友重机械工业株式会社 施工机械、施工机械的显示装置及施工机械的管理装置
JP7445665B2 (ja) 2019-08-05 2024-03-07 住友重機械工業株式会社 建設機械、建設機械の表示装置、及び、建設機械の管理装置
CN112046494A (zh) * 2020-09-11 2020-12-08 中国第一汽车股份有限公司 一种车辆控制方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
US10429848B2 (en) Automatic driving system
US10424127B2 (en) Controller architecture for monitoring health of an autonomous vehicle
US9824588B2 (en) Electronic device, control method for electronic device, and control program for electronic device
US11150649B2 (en) Abnormality detection device
CN109789777B (zh) 非预期脉冲变化碰撞检测器
JP6985203B2 (ja) 挙動予測装置
JP6592051B2 (ja) 車両制御装置
US9315191B2 (en) Driving assistance device
JP6326985B2 (ja) 自律運転制御装置、車両、コンピュータプログラム、及び自律運転制御方法
CN105984342A (zh) 行驶控制装置
US20190130198A1 (en) Traveling control device
US11318963B2 (en) Vehicle control apparatus, vehicle, and vehicle control method
JP7081423B2 (ja) 情報処理システム
US20200189619A1 (en) Vehicle and control device and control method of the vehicle
JPWO2019003294A1 (ja) 車両制御装置
JP2019048483A (ja) 車両制御装置
US10839678B2 (en) Vehicle identifying device
JP7310424B2 (ja) 車両走行システム
JP2021077012A (ja) 運転支援装置
JP2022186227A (ja) 情報処理サーバ、情報処理サーバの処理方法、プログラム
JP2021142907A (ja) 車両追従走行システム、車両制御装置、車両、および制御方法
US11654955B2 (en) Vehicle and control apparatus of vehicle
US20240096143A1 (en) Information processing device, vehicle, and information processing method
JP7363062B2 (ja) 走行環境異常判定システム
JP2022186232A (ja) 情報処理サーバ、情報処理サーバの処理方法、プログラム