WO2023168973A1 - 一种锂电池正极材料及其制备方法 - Google Patents

一种锂电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2023168973A1
WO2023168973A1 PCT/CN2022/131115 CN2022131115W WO2023168973A1 WO 2023168973 A1 WO2023168973 A1 WO 2023168973A1 CN 2022131115 W CN2022131115 W CN 2022131115W WO 2023168973 A1 WO2023168973 A1 WO 2023168973A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
cathode material
battery cathode
nitrate
lithium
Prior art date
Application number
PCT/CN2022/131115
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023168973A1 publication Critical patent/WO2023168973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and particularly relates to a lithium battery cathode material and a preparation method thereof.
  • the key materials that affect the performance of lithium-ion batteries mainly include positive electrode materials, negative electrode materials, electrolytes, etc.
  • the cathode material is currently the main factor limiting battery performance, and it is also the main factor accounting for the high cost of lithium-ion batteries, accounting for nearly 40%.
  • Cathode materials are the most critical raw materials for lithium-ion batteries and are the main factors affecting the performance of lithium batteries.
  • the currently commercialized cathode materials mainly include lithium cobalt oxide, lithium manganate, ternary materials and lithium iron phosphate.
  • ternary materials have outstanding advantages in terms of cost and comprehensive performance, and have gradually become the mainstream product of cathode materials.
  • the main ternary materials include lithium nickel cobalt aluminate and lithium nickel cobalt manganate. Cobalt plays an important role in stabilizing the structure of the ternary cathode material.
  • due to the limited global reserves of metallic cobalt and its high price the number of ternary materials has increased to a large extent.
  • the synthesis methods of ternary materials mainly include: solid phase method, coprecipitation method, and solution-gel method.
  • the solid phase method has a simple process and low cost, but has poor electrochemical stability, uneven particle distribution, and inconsistent crystal morphology. Regular; the co-precipitation process is relatively simple and is the current mainstream process.
  • the main technical route for synthesis is to obtain the precursor through the co-precipitation method, and then perform a heat treatment process to obtain the final product.
  • the material particles are spherical, and the compaction density is not high;
  • the existing solution-gel method mostly uses citric acid and ammonia water, the process is complex and inconvenient to operate, and the product has a large number of micropores, which will escape during the drying process. There are many gases and organic substances, and shrinkage occurs, making the shape and size inconsistent.
  • the existing sol-gel method is used to prepare low-cobalt or cobalt-free cathode materials, the resulting porous structure has uneven pore sizes, and is prone to shrinkage and collapse during the drying and sintering processes, affecting low-cobalt or even cobalt-free cathode materials. crystal structure and electrical properties.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a lithium battery cathode material and a preparation method thereof.
  • the lithium battery cathode material has good electrical properties.
  • the lithium battery cathode material is composed of single-crystal-like agglomerates, and the D50 of the agglomerates is 1.0-5.0 ⁇ m.
  • the quasi-single crystal is in the form of a sheet or a block, and the D50 of the quasi-single crystal is 0.1-1.5 ⁇ m.
  • Another object of the present invention is to provide a method for preparing the above-mentioned lithium battery cathode material:
  • a method for preparing a lithium battery cathode material as described above including the following steps:
  • the concentration of the silicic acid emulsion prepared in step (1) is 0.01-0.1 mol/L based on SiO2
  • the amount of urea added in step (3) is 3-5 times the molar amount of nitrate in liquid B.
  • the evaporation temperature in step (4) is 80-90°C.
  • the sintering treatment in step (4) includes primary sintering, briquetting and secondary sintering.
  • the primary sintering process in step (4) includes heating the gel at a heating rate of 5-10°C/min until the gel is burned. After the combustion is completed, a constant temperature treatment is performed.
  • the temperature of the constant temperature treatment is 600. -800°C, constant temperature treatment time is 4-6h.
  • the secondary sintering process is performed at a constant temperature for 12-24 hours, and the constant temperature is 900-1100°C.
  • the pressure of the briquetting process is 5-10MPa, and the pressing time is 1-2 minutes.
  • a lithium battery includes the lithium battery cathode material as described above.
  • the lithium battery cathode material of the present invention contains a low cobalt content
  • its first discharge specific capacity can reach 266mAh/g and above
  • its first coulombic efficiency can reach 93.3% and above.
  • the specific capacity after 300 discharges is still 243mAh/g and above, and the battery’s capacity retention rate after the 300th discharge can reach 91.35% and above, with high first Coulombic efficiency and excellent electrical properties;
  • the preparation method of the lithium battery cathode material of the present invention is to prepare a silicic acid emulsion and use hydrothermal evaporation to make each metal ion and urea form a crystalline gel using nano-silicic acid particles as crystal nuclei, and The gel is sintered once under specific parameters to allow the nitrate in the gel to react with urea, and then the product of the primary sintering is briquetteed, and finally sintered twice under specific parameters to produce a lithium battery positive electrode with uniform morphology and size.
  • the primary particles of the material i.e., single-crystal particles
  • the primary particles of the material can grow up during a single sintering, preventing the formation of nano-scale particles that are too small (the particle size of nano-scale particles is too small and extremely dangerous).
  • silica dehydrates first to form silica, and in the secondary sintering stage , it will form silicate crystals with metal ions, which can further improve the strength of the material, making the material less likely to fragment and collapse when used as a cathode material, thereby improving the material's cycle performance and solving the problem of the material's easy collapse affecting the material's cycle performance.
  • the preparation method of lithium battery cathode material of the present invention adopts gel combustion method to prepare cathode material.
  • Combustion can reduce the particle size of primary particles and avoid producing large pieces of granular material (the particles form large pieces and serve as cathode materials). material, it has a low specific surface area, which is not conducive to the infiltration of electrolyte, and the specific capacity and cycle performance of the material are not ideal).
  • the primary particle size of the material is jointly controlled. The particle size ensures that the cathode material has a high specific surface area, thereby improving the specific capacity and cycle performance of the cathode material;
  • the preparation method of lithium battery cathode material of the present invention can increase the tap density of the material by further compacting the combustion material, thereby increasing the specific capacity of the cathode material.
  • Figure 1 is an SEM image of the lithium battery cathode material in Example 1 of the present invention.
  • a lithium battery cathode material its general chemical formula is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ⁇ 0.1SiO 2 ; as shown in Figure 1, its morphology is a uniform single-crystal-like agglomerate, and the D50 of the agglomerate is 3.5 ⁇ m; the single-crystal-like morphology is block-like, and its D50 is 0.6 ⁇ m.
  • the preparation method of the above-mentioned lithium battery cathode material includes the following steps:
  • a lithium battery includes the lithium battery cathode material as described above.
  • a lithium battery cathode material whose general chemical formula is LiNi 0.85 Co 0.05 Mn 0.1 O 2 ⁇ 0.05Al 2 O 3 ⁇ 0.05SiO 2 ; its morphology is a single-crystal-like agglomerate, and the D50 of the agglomerate is 4.3 ⁇ m; The morphology of the quasi-single crystal is block-like, with a D50 of 1.3 ⁇ m.
  • the preparation method of the above-mentioned lithium battery cathode material includes the following steps:
  • a lithium battery includes the lithium battery cathode material as described above.
  • a lithium battery cathode material whose general chemical formula is LiNi 0.95 Co 0.05 O 2 ⁇ 0.1Al 2 O 3 ⁇ 0.1SiO 2 ; its morphology is a single-crystal-like agglomerate, and the D50 of the agglomerate is 3.8 ⁇ m; it is similar to a single crystal The morphology of the crystal is flaky, and its D50 is 1.0 ⁇ m.
  • the preparation method of the above-mentioned lithium battery cathode material includes the following steps:
  • a lithium battery includes the lithium battery cathode material as described above.
  • a method for preparing positive electrode materials for lithium batteries including the following steps:
  • the combustion material is heated at a constant temperature of 900°C for 12 hours under an oxygen atmosphere to obtain the lithium battery cathode material.
  • a lithium battery includes the lithium battery cathode material as described above.
  • a method for preparing positive electrode materials for lithium batteries including the following steps:
  • the gel material is kept at a constant temperature of 900°C for 18 hours under an oxygen atmosphere to obtain a lithium battery cathode material.
  • a lithium battery includes the lithium battery cathode material as described above.
  • the tap density of the lithium battery cathode material of the present invention is between 2.06-2.22g/ cm3 .
  • the first discharge specific capacity of the button battery made of the lithium battery cathode material of the present invention can reach 266mAh/g and Above, the highest can reach 284mAh/g; the first coulombic efficiency of the button battery made of the lithium battery cathode material of the present invention can reach 93.3% and above, and the highest can reach 95.6%; the button battery made of the lithium battery cathode material of the present invention
  • the specific capacity after the 300th discharge is still 243mAh/g and above, and the highest can reach 261mAh/g; the capacity retention rate of the button battery made of the lithium battery cathode material of the present invention after the 300th discharge can reach 91.35% and above, the highest can reach 92.42%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂电池正极材料及其制备方法,所述锂电池正极材料的化学通式为LiNi xCo yMn zO 2·aAl 2O 3·bSiO 2,其中x+y+z=1,0.80≤x≤0.95,0≤y≤0.2,0≤z≤0.2,0≤a≤0.1,0<b≤0.1。该锂电池正极材料制成的电池的首次库仑效率能达到93.3%及以上,具有较高的首次库伦效率和优异的电学性能。

Description

一种锂电池正极材料及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,特别涉及一种锂电池正极材料及其制备方法。
背景技术
随着新能源汽车的大力发展,锂离子电池产业已经进入快速发展阶段。影响锂离子电池性能的关键材料主要有正极材料、负极材料、电解液等。其中,正极材料是目前限制电池性能的主要因素,同时也是占锂离子电池成本较高的主要因素,接近40%。
正极材料是锂离子电池最为关键的原材料,是锂电池性能的主要影响因素,现在商业化的正极材料主要有钴酸锂、锰酸锂、三元材料和磷酸铁锂。其中三元材料在成本和综合性能方面有着较为突出的优势,已经逐渐成为正极材料的主流产品。三元材料主要有镍钴铝酸锂和镍钴锰酸锂材料,其中钴在三元正极材料中有稳定结构的重要作用,但由于全球金属钴储量有限,价格昂贵,很大程度上增加了锂离子电池正极材料的原料成本及应用成本。因此电池生产厂商为了控制生产成本,会降低三元材料中钴含量的比例,但一般情况下降低钴含量后晶体结构容易坍塌,进而影响锂离子在充放电过程中脱嵌的可逆性,导致出现极低的首次库伦效率,电学性能较差。
同时,三元材料的合成方法主要包括:固相法、共沉淀法、溶液-凝胶法,固相法工艺简单,成本较低,但电化学稳定性差、颗粒分布不均匀,晶体型貌不规整;共沉淀法工艺相对简单,是目前的主流工艺,其合成主要技术路线为通过共沉淀法得到前驱体,随后再进行热处理过程得到最终产品,但工序较多,共沉淀废水对环境有污染,物料颗粒呈球形,压实密度不高;现有的溶液-凝胶法多采用柠檬酸和氨水,工序较复杂,不方便操作,产品存在大量微孔,在干燥过程中又将会逸出许多气体及有机物,并产生收缩,使形貌和尺寸不一致。且现有的溶胶-凝胶法制备低钴、无钴正极材料时,得到的多孔结构孔径不均匀,且在干燥和烧结过程中,容易产生收缩和坍塌等,影响低钴甚至无钴正极材料的晶体结构和电学性能。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种锂电池正极材料及其制备方法,该锂电池正极材料具有较好的电学性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种锂电池正极材料,所述锂电池正极材料的化学通式为LiNi xCo yMn zO 2·aAl 2O 3·bSiO 2,其中x+y+z=1,0.80≤x≤0.95,0≤y≤0.2,0≤z≤0.2,0≤a≤0.1,0<b≤0.1。
优选的,所述锂电池正极材料由类单晶的团聚体组成,所述团聚体的D50为1.0-5.0μm。
优选的,所述类单晶为片状或块状,所述类单晶的D50为0.1-1.5μm。
本发明的另一个目的在于提供一种上述锂电池正极材料的制备方法:
一种如上所述锂电池正极材料的制备方法,包括以下步骤:
(1)配制硅酸乳液,并调节pH至2-3,得到液体A;
(2)向液体A中加入硝酸锂、硝酸镍、硝酸钴、硝酸锰及硝酸铝得到液体B,其中硝酸锂、硝酸镍、硝酸钴、硝酸锰及硝酸铝的加入量按照元素摩尔比为Li:Ni:Co:Mn:Al:Si=1:x:y:z:2a:b;
(3)向液体B中加入尿素,得到液体C;
(4)将液体C蒸干后得到凝胶物,将所述凝胶物烧结处理,得到锂电池正极材料。
优选的,步骤(1)中配制得到的硅酸乳液以SiO 2计浓度为0.01-0.1mol/L,步骤(3)中加入尿素的量为液体B中硝酸根摩尔量的3-5倍。
优选的,步骤(4)中蒸干温度为80-90℃。
优选的,步骤(4)中的烧结处理包括一次烧结、压块及二次烧结。
优选的,步骤(4)一次烧结的过程包括将所述凝胶物以5-10℃/min的升温速率进行升温直至凝胶物燃烧,燃烧结束后,进行恒温处理,恒温处理的温度为600-800℃,恒温处理时间为4-6h。
优选的,所述二次烧结的过程为恒温下处理12-24h,恒温的温度为900-1100℃。
优选的,所述压块过程的压力为5-10MPa,压制时间为1-2min。
一种锂电池,包括如上所述的锂电池正极材料。
本发明的有益效果是:
(1)本发明的锂电池正极材料在含有较低钴含量的前提下,在制成电池后其首次放电比容量能达到266mAh/g及以上,首次库仑效率能达到93.3%及以上,电池第300次放电比容量仍然在243mAh/g及以上,电池第300次放电后的容量保持率能达到91.35%及以上,具有较高的首次库伦效率和优异的电学性能;
(2)本发明的锂电池正极材料的制备方法,通过制取硅酸乳液,采用水热蒸发的方式,使各金属离子与尿素共同以纳米硅酸颗粒为晶核形成结晶体凝胶,并对凝胶在特定参数下进行一次烧结,使凝胶中的硝酸根与尿素反应,而后对一次烧结的产物进行压块,最后在特定参数下二次烧结制得形貌和尺寸均匀的锂电池正极材料,其通过以纳米硅酸为晶核,在一次烧结时可使材料的一次颗粒即类单晶颗粒长大,不至于形成纳米级的过小的微粒(纳米级微粒粒径太小,极易团聚,后期还需进行专门的破碎和过筛处理),不需要进行专门的破碎和过筛处理,同时,随着温度的升高,硅酸脱水首先形成二氧化硅,在二次烧结阶段,则会与金属离子形成硅酸盐晶体,可进一步提升材料的强度,使材料在作为正极材料使用时不易碎裂和坍塌,从而提升材料的循环性能,解决了材料易崩塌影响材料循环性能的问题;
(3)本发明的锂电池正极材料的制备方法,采用凝胶燃烧法制备正极材料,燃烧可降低一次颗粒的粒径,不至于产生大块状的颗粒材料(颗粒结成大块在作为正极材料时,其具有较低的比表面积,不利于电解液的浸润,材料的比容量和循环性能均不理想),通过纳米硅酸晶核结晶与燃烧法相结合的方式,共同控制材料一次颗粒的粒径,从而保证正极材料具有较高的比表面积,从而提升正极材料的比容量和循环性能;
(4)本发明的锂电池正极材料的制备方法,通过将燃烧料进一步压块,可提升材料的振实密度,从而提升正极材料的比容量。
附图说明
图1为本发明实施例1的锂电池正极材料的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种锂电池正极材料,其化学通式为LiNi 0.8Co 0.1Mn 0.1O 2·0.1SiO 2;如图1所示,其形貌为均匀的类单晶的团聚体,团聚体的D50为3.5μm;类单晶的形貌为块状,其D50为0.6μm。
上述锂电池正极材料的制备方法,包括如下步骤:
(1)配制浓度(以SiO 2计)为0.01mol/L的硅酸乳液,并加入硝酸调节pH至2,得到液体A;
(2)按照元素摩尔比Li:Ni:Co:Mn:Si=1:0.8:0.1:0.1:0.1向液体A中加入硝酸锂、硝酸镍、硝酸钴、硝酸锰,待完全溶解后,得到液体B;
(3)向液体B中加入3倍硝酸根摩尔量的尿素,得到液体C;
(4)将液体C在80℃下蒸干,得到凝胶物;
(5)在空气氛围下,将凝胶物以5℃/min的速率进行升温,直至凝胶物燃烧;
(6)燃烧结束后,在600℃下恒温6h,得到燃烧料;
(7)将燃烧料收集至匣钵中,并在10MPa的压力下压块1min;
(8)将压好的匣钵置于辊道窑中,在通入氧气氛围下,在900℃下恒温12h,得到锂电池正极材料。
一种锂电池,包括如上所述的锂电池正极材料。
实施例2:
一种锂电池正极材料,其化学通式为LiNi 0.85Co 0.05Mn 0.1O 2·0.05Al 2O 3·0.05SiO 2;其形貌为类单晶的团聚体,团聚体的D50为4.3μm;类单晶的形貌为块状,其D50为1.3μm。
上述锂电池正极材料的制备方法,包括如下步骤:
(1)配制浓度(以SiO 2计)为0.05mol/L的硅酸乳液,并加入硝酸调节pH至3,得到液体A;
(2)按照元素摩尔比Li:Ni:Co:Mn:Al:Si=1:0.85:0.05:0.1:0.1:0.05向液体A中加入硝酸锂、硝酸镍、硝酸钴、硝酸锰、硝酸铝,待完全溶解后,得到液体B;
(3)向液体B中加入4倍硝酸根摩尔量的尿素,得到液体C;
(4)将液体C在90℃下蒸干,得到凝胶物;
(5)在氧气氛围下,将凝胶物以10℃/min的速率进行升温,直至凝胶物燃烧;
(6)燃烧结束后,在700℃下恒温5h,得到燃烧料;
(7)将燃烧料收集至匣钵中,并在8MPa的压力下压块2min;
(8)将压好的匣钵置于辊道窑中,在通入氧气氛围下,在1000℃下恒温18h,得到锂电池正极材料。
一种锂电池,包括如上所述的锂电池正极材料。
实施例3:
一种锂电池正极材料,其化学通式为LiNi 0.95Co 0.05O 2·0.1Al 2O 3·0.1SiO 2;其形貌为类单晶的团聚体,团聚体的D50为3.8μm;类单晶的形貌为片状,其D50为1.0μm。
上述锂电池正极材料的制备方法,包括如下步骤:
(1)配制浓度(以SiO 2计)为0.01mol/L的硅酸乳液,并加入硝酸调节pH至2.5,得到液体A;
(2)按照元素摩尔比Li:Ni:Co:Al:Si=1:0.95:0.05:0.2:0.1向液体A中加入硝酸锂、硝酸镍、硝酸钴、硝酸铝,待完全溶解后,得到液体B;
(3)向液体B中加入5倍硝酸根摩尔量的尿素,得到液体C;
(4)将液体C在85℃下蒸干,得到凝胶物;
(5)在空气氛围下,将凝胶物以7℃/min的速率进行升温,直至凝胶物燃烧;
(6)燃烧结束后,在800℃下恒温4h,得到燃烧料;
(7)将燃烧料收集至匣钵中,并在5MPa的压力下压块1.5min;
(8)将压好的匣钵置于辊道窑中,在通入氧气氛围下,在1100℃下恒温12h,得到锂电池正极材料。
一种锂电池,包括如上所述的锂电池正极材料。
对比例1:
一种锂电池正极材料的制备方法,包括如下步骤:
(1)按照元素摩尔比Li:Ni:Co:Mn=1:0.8:0.1:0.1向纯水中加入硝酸锂、硝酸 镍、硝酸钴、硝酸锰、硝酸铝,待完全溶解后,得到液体B;
(2)向液体B中加入3倍硝酸根摩尔量的尿素,得到液体C;
(3)将液体C在80℃下蒸干,得到凝胶物;
(4)在空气氛围下,将凝胶物以5℃/min的速率进行升温,直至凝胶物燃烧;
(5)燃烧结束后,在600℃下恒温6h,得到燃烧料;
(6)将燃烧料在通入氧气氛围下,在900℃下恒温12h,得到锂电池正极材料。
一种锂电池,包括如上所述的锂电池正极材料。
对比例2:
一种锂电池正极材料的制备方法,包括如下步骤:
(1)按照元素摩尔比Li:Ni:Co:Mn:Al=1:0.85:0.05:0.1:0.1向纯水中加入乙酸锂、乙酸镍、乙酸钴、乙酸锰、乙酸铝,待完全溶解后,得到液体B;
(2)向液体B中加入理论量的柠檬酸,维持温度80℃,反应30min;
(3)反应结束后,加入氨水调节pH为9.0;
(4)在85℃下蒸干,得到凝胶物;
(5)将凝胶物在通入氧气氛围下,在900℃下恒温18h,得到锂电池正极材料。
一种锂电池,包括如上所述的锂电池正极材料。
试验例:
采用激光粒度仪和振实密度仪对实施例1-3和对比例1-2所制得的锂电池正极材料测试,并按照正极材料:乙炔黑:PVDF=85:10:5,以锂片为参比电极制备CR2025型纽扣电池,在3.0-4.3V电压窗口,1C电流密度下,对纽扣电池进行充放电性能测试,测试结果如表1:
表1:电池性能测试结果
Figure PCTCN2022131115-appb-000001
Figure PCTCN2022131115-appb-000002
由表1可知,本发明的锂电池正极材料的振实密度在2.06-2.22g/cm 3之间,本发明的锂电池正极材料制成的纽扣电池的首次放电比容量能达到266mAh/g及以上,最高能达到284mAh/g;本发明的锂电池正极材料制成的纽扣电池的首次库仑效率能达到93.3%及以上,最高能达到95.6%;本发明的锂电池正极材料制成的纽扣电池第300次放电比容量仍然在243mAh/g及以上,最高能达到261mAh/g;本发明的锂电池正极材料制成的纽扣电池第300次放电后的容量保持率能达到91.35%及以上,最高能达到92.42%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种锂电池正极材料,其特征在于:所述锂电池正极材料的化学通式为LiNi xCo yMn zO 2·aAl 2O 3·bSiO 2,其中x+y+z=1,0.80≤x≤0.95,0≤y≤0.2,0≤z≤0.2,0≤a≤0.1,0<b≤0.1。
  2. 根据权利要求1所述的一种锂电池正极材料,其特征在于:所述锂电池正极材料由类单晶的团聚体组成,所述团聚体的D50为1.0-5.0μm。
  3. 根据权利要求2所述的一种锂电池正极材料,其特征在于:所述类单晶为片状或块状,所述类单晶的D50为0.1-1.5μm。
  4. 一种如权利要求1至3任一项所述锂电池正极材料的制备方法,其特征在于:包括以下步骤:
    (1)配制硅酸乳液,并调节pH至2-3,得到液体A;
    (2)向液体A中加入硝酸锂、硝酸镍、硝酸钴、硝酸锰及硝酸铝得到液体B,其中硝酸锂、硝酸镍、硝酸钴、硝酸锰及硝酸铝的加入量按照元素摩尔比为Li:Ni:Co:Mn:Al:Si=1:x:y:z:2a:b;
    (3)向液体B中加入尿素,得到液体C;
    (4)将液体C蒸干后得到凝胶物,将所述凝胶物烧结处理,得到锂电池正极材料。
  5. 根据权利要求4所述的一种锂电池正极材料的制备方法,其特征在于:步骤(1)中配制得到的硅酸乳液以SiO 2计浓度为0.01-0.1mol/L,步骤(3)中加入尿素的量为液体B中硝酸根摩尔量的3-5倍。
  6. 根据权利要求4所述的一种锂电池正极材料的制备方法,其特征在于:步骤(4)中的烧结处理包括一次烧结、压块及二次烧结。
  7. 根据权利要求6所述的一种锂电池正极材料的制备方法,其特征在于:步骤(4)一次烧结的过程包括将所述凝胶物以5-10℃/min的升温速率进行升温直至凝胶物燃烧,燃烧结束后,进行恒温处理,恒温处理的温度为600-800℃,恒温处理时间为4-6h。
  8. 根据权利要求6所述的一种锂电池正极材料的制备方法,其特征在于:所述二次烧结的过程为恒温下处理12-24h,恒温的温度为900-1100℃。
  9. 根据权利要求6所述的一种锂电池正极材料的制备方法,其特征在于: 所述压块过程的压力为5-10MPa,压制时间为1-2min。
  10. 一种锂电池,其特征在于:包括权利要求1-3任一项所述的锂电池正极材料。
PCT/CN2022/131115 2022-03-08 2022-11-10 一种锂电池正极材料及其制备方法 WO2023168973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210227056.5A CN114695872A (zh) 2022-03-08 2022-03-08 一种锂电池正极材料及其制备方法
CN202210227056.5 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023168973A1 true WO2023168973A1 (zh) 2023-09-14

Family

ID=82136707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131115 WO2023168973A1 (zh) 2022-03-08 2022-11-10 一种锂电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114695872A (zh)
WO (1) WO2023168973A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695872A (zh) * 2022-03-08 2022-07-01 广东邦普循环科技有限公司 一种锂电池正极材料及其制备方法
CN115490276B (zh) * 2022-09-23 2024-01-05 广东邦普循环科技有限公司 一种表面改性的正极材料前驱体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717976A (zh) * 2018-05-24 2018-10-30 广东邦普循环科技有限公司 一种高密度动力型镍钴锰酸锂正极材料的制备方法
CN108987728A (zh) * 2018-08-27 2018-12-11 桑顿新能源科技有限公司 高镍锂离子电池正极材料及其制备方法与锂离子电池
CN112310351A (zh) * 2019-07-26 2021-02-02 武汉中原长江科技发展有限公司 一种具有双氧化物复合包覆层的富锂锰基正极材料及其制备方法
CN114695872A (zh) * 2022-03-08 2022-07-01 广东邦普循环科技有限公司 一种锂电池正极材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910539A (zh) * 2017-11-27 2018-04-13 中南大学 一种硅酸锂包覆的镍钴铝酸锂正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717976A (zh) * 2018-05-24 2018-10-30 广东邦普循环科技有限公司 一种高密度动力型镍钴锰酸锂正极材料的制备方法
CN108987728A (zh) * 2018-08-27 2018-12-11 桑顿新能源科技有限公司 高镍锂离子电池正极材料及其制备方法与锂离子电池
CN112310351A (zh) * 2019-07-26 2021-02-02 武汉中原长江科技发展有限公司 一种具有双氧化物复合包覆层的富锂锰基正极材料及其制备方法
CN114695872A (zh) * 2022-03-08 2022-07-01 广东邦普循环科技有限公司 一种锂电池正极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIE RONG YING, WAN CHUN RONG, JIANG CHANG YIN: "Surface modification of LiNi0.8Co0.2O2 by overcoating with SiO2 via sol-gel method", CHINESE JOURNAL OF POWER SOURCES, vol. 25, no. 6, 27 December 2002 (2002-12-27), pages 401 - 404, XP093090268 *
LEE SEUNG-HWAN; PARK GUM-JAE; SIM SEOUNG-JU; JIN BONG-SOO; KIM HYUN-SOO: "Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2cathode via SiO2coating", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 791, 1 January 1900 (1900-01-01), CH , pages 193 - 199, XP085667641, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2019.03.308 *
OU SHA; SHAOLIANG WANG; ZHI QIAO; WEI YUAN; ZHIYUAN TANG; QIANG XU; YANJUN SU;: "Synthesis of spinel LiNiMnOcathode material with excellent cycle stability using urea-based sol gel method", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 89, 28 August 2012 (2012-08-28), AMSTERDAM, NL , pages 251 - 253, XP028516193, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2012.08.126 *

Also Published As

Publication number Publication date
CN114695872A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023168973A1 (zh) 一种锂电池正极材料及其制备方法
WO2018113506A1 (zh) 一种三元材料及其制备方法以及电池浆料和正极与锂电池
EP3675253A1 (en) High-voltage lithium nickel manganese cobalt oxide precursor, preparation method therefor, and high-voltage lithium nickel manganese cobalt oxide positive electrode material
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN102694167B (zh) 改性锰酸锂正极材料及其制备方法
CN109516509B (zh) 一种高压实单晶三元正极材料及其制备方法、应用
WO2018090956A1 (zh) 高电压锂电池正极材料、电池及制法和应用
CN103715424A (zh) 一种核壳结构正极材料及其制备方法
CN106784795B (zh) 一种单晶类球形锰酸锂材料及其制备方法、正极材料
CN101794880B (zh) 一种锂离子电池用正极多孔材料的制备方法
WO2022151977A1 (zh) 纳米钴酸锂正极材料的制备方法及其应用
CN101436667A (zh) 一种锂离子电池用正极多孔材料及其制备方法
CN105161688A (zh) 一种碳包覆的磷酸铁钠-磷酸钒钠复合材料及其制备方法
JP2010116302A (ja) コバルト酸リチウム粒子粉末及びその製造法、並びに非水電解質二次電池
WO2023173772A1 (zh) 硬碳负极材料的制备方法和应用
WO2024022431A1 (zh) 钠离子电池正极材料及其制备方法和应用
CN116022863A (zh) 一种前驱体材料及其制备方法和应用
CN113735196A (zh) 废旧三元前驱体的回收利用方法及回收得到的三元正极材料
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
CN114005972B (zh) 一种llto/纳米片状钴酸锂复合正极材料及其制备方法
CN113620353B (zh) 一种钛酸锶改性镍钴锰酸锂正极材料及包含它的锂离子电池
WO2022022198A1 (zh) 一种改性高镍正极材料及其制备方法
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN111740112B (zh) 一种磷酸铁锂/碳纳米管复合正极材料的制备方法
CN107978744B (zh) 一种高容量锂二次电池用正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930596

Country of ref document: EP

Kind code of ref document: A1