WO2023168790A1 - 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用 - Google Patents

低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用 Download PDF

Info

Publication number
WO2023168790A1
WO2023168790A1 PCT/CN2022/087307 CN2022087307W WO2023168790A1 WO 2023168790 A1 WO2023168790 A1 WO 2023168790A1 CN 2022087307 W CN2022087307 W CN 2022087307W WO 2023168790 A1 WO2023168790 A1 WO 2023168790A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
diethylphosphinate
phosphorus
fine powder
complex
Prior art date
Application number
PCT/CN2022/087307
Other languages
English (en)
French (fr)
Inventor
李金忠
雷华
Original Assignee
江苏利思德新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏利思德新材料有限公司 filed Critical 江苏利思德新材料有限公司
Publication of WO2023168790A1 publication Critical patent/WO2023168790A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids R2P(=O)(OH); Thiophosphinic acids, i.e. R2P(=X)(XH) (X = S, Se)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to the field of new materials, and specifically relates to an aluminum diethylphosphinate crystal with low fine powder content and its preparation method and application.
  • the preparation method uses a phosphorus-containing aluminum salt complex as a seed crystal, with the purpose of obtaining a low fine powder content.
  • the fine powder content of aluminum diethylphosphinate crystals meets the requirements for the fluidity of flame retardant powder in the preparation process of halogen-free flame-retardant glass fiber reinforced engineering plastics.
  • Glass fiber reinforced engineering plastics (such as various nylons, polyesters, etc.) are widely used in the field of electronic and electrical appliances due to their good rigidity, impact resistance, low warpage, good surface appearance and other performance characteristics. Applications in these fields put forward flame retardant requirements for materials, and most engineering plastics are flammable materials. After compounding with glass fiber, the glass fiber reinforced engineering plastics are more likely to burn due to the wick effect of the glass fiber. Therefore, when glass fiber reinforced engineering plastics are used in these fields, they need to solve the problem of flame retardancy, and the existence of the wick effect makes it more difficult to flame retardant.
  • halogen flame retardant systems usually use brominated flame retardants in conjunction with antimony trioxide.
  • brominated flame retardants will produce harmful substances such as thick smoke and hydrogen bromide when burned. Can cause suffocation in the human body. Therefore, the development of safe, environmentally friendly, halogen-free flame retardant systems for glass fiber reinforced engineering plastics has become a research hotspot. In recent years, new halogen-free flame retardants or flame retardant systems for glass fiber reinforced engineering plastics have emerged.
  • the mainstream of halogen-free flame retardants used in glass fiber reinforced engineering plastics is a compound system based on diethyl aluminum phosphate, which includes the synergy of diethyl aluminum phosphate and nitrogen-containing compounds, such as diethyl aluminum phosphate.
  • Diethyl aluminum phosphate which includes the synergy of diethyl aluminum phosphate and nitrogen-containing compounds, such as diethyl aluminum phosphate.
  • Aluminum phosphate compounded with melamine polyphosphate (MPP) system and nitrogen-free aluminum diethyl hypophosphite and aluminum phosphite compounded system.
  • MPP melamine polyphosphate
  • nitrogen-free aluminum diethyl hypophosphite and aluminum phosphite compounded system These systems have high flame retardancy, high temperature resistance and no color problems, and are currently used in a large number of applications.
  • compound systems based on diethyl aluminum hypophosphite usually have finer particle sizes.
  • the key reason for the bridging and unsmooth discharge of aluminum diethylphosphinate particles during the application process is the fine powder present in the aluminum diethylphosphinate particles.
  • the particle size of these fine powders is very small, and usually Below 5 ⁇ m, the finer the particle size, the larger the specific surface area, and the greater the force between particles.
  • the proportion of this part of fine powder exceeds a certain amount, it will easily cause bridging and unsmooth cutting. Therefore, the key to solving the problem of poor feeding is to control the proportion of fine powder in aluminum diethylphosphinate.
  • the preparation of aluminum diethylphosphinate particles takes advantage of the low water solubility and crystallization characteristics of aluminum diethylphosphinate, which is obtained by crystallization and precipitation in the aqueous phase through a metathesis reaction.
  • the actual granulation process is a crystallization process.
  • aluminum diethylphosphinate particles are stacked by a large number of small flake-shaped small crystal grains. The size of these small crystal grains is very small.
  • the size distribution of the crystalline particles is wide; at the same time, the molecular structure of aluminum diethylphosphinate contains a lipophilic ethyl group and a hydrophilic aluminum salt structure, that is, its molecular structure contains both lipophilic and lipophilic elements.
  • the stacking of small crystal grains will cause repulsion.
  • the structural force formed by the stacking of small crystal grains is weak. Under the action of shearing force such as a stirrer, it is easier to become small-sized particles. Therefore, diethyl Aluminum diethylphosphinate particles tend to have small particle sizes. In the usual preparation process, the particles obtained have a wide particle size distribution.
  • the characteristics of the conventional aluminum diethylphosphinate particles currently prepared are: the average particle size is biased. Small, wide distribution, and a large number of ultra-fine particle sizes. These particle size characteristics are the reasons for the poor feeding of aluminum diethylphosphinate. Therefore, to solve this problem, it is key to control the crystallization process in the preparation process of aluminum diethylphosphinate, reduce the proportion of ultra-fine particles, reduce the maximum particle size, appropriately increase the average particle size, and try to maximize the particle size. Distributed near the average particle size, the particle size distribution becomes narrow. There are no relevant reports on how to effectively reduce ultrafine particle size.
  • the present invention uses a phosphorus-containing aluminum salt complex as a seed crystal and adds it during the crystallization process of preparing aluminum diethylphosphinate, which can effectively regulate the crystallization process and obtain low Diethylphosphinic acid crystal particles with fine powder content, narrow distribution and large particle size can solve the problems of existing aluminum diethylphosphinate powders such as easy bridging and poor cutting, and are suitable for halogen-free flame-retardant glass. Fiber reinforced engineering plastic processing technology.
  • the prepared aluminum diethylphosphinate contains a small amount of phosphorus-containing aluminum salt complex seed crystals, and its flame retardant performance is not affected.
  • the main purpose of the present invention is to provide a method for preparing aluminum diethylphosphinate to overcome the shortcomings of existing aluminum diethylphosphinate.
  • the newly invented preparation method can obtain low fine powder content, narrow distribution and large particles. Diameter aluminum diethylphosphinate crystal particles solve the fluidity problems such as bridging and poor cutting. There is no need to prepare high-concentration carrier-containing masterbatch, and the powder can be directly applied to halogen-free flame-retardant glass fiber reinforced engineering plastics. processing technology while maintaining high flame retardancy.
  • the invention relates to the preparation of aluminum diethylphosphinate with low fine powder content.
  • a phosphorus-containing aluminum salt complex based on aluminum diethylphosphinate and aluminum ethylbutylphosphinate is used as a seed crystal, and a small amount is added to
  • the preparation process of aluminum diethylphosphinate effectively regulates the crystallization process of aluminum diethylphosphinate, and can obtain aluminum diethylphosphinate crystalline powder with low fine powder content, narrow distribution and large particle size. It solves the problems of high content and wide distribution of fine particle size aluminum diethylphosphinate powder obtained by the existing preparation method, and avoids fluidity problems such as easy bridging and poor discharge during application.
  • a method for preparing aluminum diethylphosphinate crystals with low fine powder content including: uniformly dispersing a phosphorus-containing aluminum salt complex as seed crystals in an aqueous solution of soluble diethylphosphinate, and then adding A water-soluble aluminum salt solution of strong acid is reacted at 70-95°C. After the reaction is completed, the solid product is washed and dried to obtain the low fine powder content aluminum diethylphosphinate crystal;
  • the phosphorus-containing aluminum salt complex has the structure shown in the following formula (I):
  • the present invention is to solve the problem of easy bridging and poor flow of aluminum diethylphosphinate in the existing halogen-free flame retardant system based on aluminum diethylphosphinate that is widely used in glass fiber reinforced engineering plastics.
  • the inventor has conducted extensive and in-depth research.
  • the phosphorus-containing aluminum salt complex contains:
  • R 1 and R 2 are independently selected from H or C1-C6 alkyl groups, and when either R 1 or R 2 is an ethyl group, the other is not a butyl group;
  • R 3 is H or a C1-C6 alkyl group.
  • the phosphorus-containing aluminum salt complex is different from a single aluminum salt or a mixture of several aluminum salts. It exhibits different properties and is a compound with a new structure.
  • Figures 4 and 5 show aluminum ethyl butyl phosphinate and aluminum diethyl phosphinate respectively.
  • DSC chart of aluminum phosphinate From the results, the new structure complex shown in Figure 1 is different from the mixture of the two. In a mixture of the two, the DSC reflects the characteristics of the mixture.
  • the crystal transition temperature is the crystal transition temperature of aluminum diethylphosphinate. Due to the decrease in the ratio, the enthalpy of the crystal transition decreases; while in the composite Here, at the same ratio, the characteristic crystalline transformation peak of aluminum diethylphosphinate disappears. So the compound salt is not a mixture of the two, but a new structure.
  • aluminum ethylbutylphosphinate-aluminum diethylphosphinate composites can be obtained. Further research found that aluminum ethyl butyl phosphinate can form composite aluminum salts with aluminum dialkyl phosphinate, aluminum monoalkyl phosphinate, and inorganic aluminum phosphite, as well as with multiple different diamines. Aluminum alkyl phosphinate, aluminum monoalkyl phosphinate, inorganic aluminum phosphite, etc. can be combined to obtain a phosphorus-containing aluminum salt complex.
  • FIG. 6 is a DSC chart of a mixture (weight ratio 8:92) formed after the previously prepared aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex is added to aluminum diethylphosphinate.
  • the phosphorus-containing aluminum salt complex significantly affects the crystal form transformation process of aluminum diethylphosphinate, and crystal form transformation and crystallization are closely related. Therefore, the inventor proposed that the phosphorus-containing aluminum salt complex would affect the crystallization process of preparing aluminum diethylphosphinate, thus affecting the particle size and distribution of the crystallized particles.
  • the phosphorus-containing aluminum salt complex should have a molecular structure as shown in formula (I).
  • Formula (I) represents a complex formed with other phosphorus-containing aluminum salts in the presence of aluminum ethylbutylphosphinate and aluminum diethylphosphinate.
  • the other phosphorus-containing aluminum salts include a compound other than ethylbutylphosphinate.
  • the invention is formed of aluminum dialkyl phosphinate/aluminum monoalkyl phosphinate, a monoalkyl aluminum phosphinate, an inorganic aluminum phosphite, etc. in addition to aluminum phosphonate and diethyl aluminum phosphinate.
  • the phosphorus-containing aluminum salt complex can form a phosphorus-containing aluminum salt complex with one or more phosphorus-containing aluminum salts.
  • the invention also provides a preferred preparation method of the phosphorus-containing aluminum salt complex, which includes the steps:
  • the soluble salt is usually sodium salt or potassium salt
  • the aluminum-containing compound is preferably at least one of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, and aluminum oxide;
  • the end point of the washing is preferably when the conductivity of the washing water is less than 500 ⁇ s/cm.
  • step (1) the phosphorus-containing composite anion donor and the aluminum ion donor can be added in an equal molar ratio for complete reaction.
  • the strong acid includes concentrated sulfuric acid, concentrated nitric acid, concentrated hydrochloric acid, and concentrated phosphoric acid, and the amount added can be 2% to 5% of the mass of the phosphorus-containing composite anion donor.
  • the aluminum-containing compound When the aluminum-containing compound is insoluble in water, the aluminum-containing compound can be dispersed in water to form a suspended dispersion system. At this time, it reacts with the phosphorus-containing composite anion donor added in the form of an acid, and the presence of a high concentration of strong acid may not be required; When the aluminum compound is a water-soluble compound, it is recommended to react in the presence of a high concentration of strong acid. At this time, it can react with a phosphorus-containing complex anion donor added in the form of a salt.
  • the mass concentration of the aluminum-containing compound in the reaction system is preferably 15%-50%.
  • the reaction time can be 1-5 hours.
  • step (2)
  • the liquid phase pH can be controlled to be less than 4 to obtain a solid precipitate; the pH can be controlled by adding alkali or metal oxides;
  • the drying can use various ovens, drying rooms, dryers, etc., and the drying temperature can be 100-130°C.
  • High-temperature treatment is a key step in the preparation process.
  • the treatment process is related to the composition and proportion of the phosphorus-containing aluminum salt complex and the processing capacity.
  • the temperature setting of the high-temperature treatment is a key factor in the high-temperature treatment. Research has found that when the treatment temperature is lower than 180°C , the phosphorus-containing aluminum salt composite of the present application cannot be obtained, and the upper temperature limit of the high-temperature treatment is the decomposition temperature of the composite, which is usually lower than 450°C.
  • the high-temperature treatment process 0.5-10 hours to raise the temperature to 180-450°C for high-temperature treatment. , the time of high temperature treatment is 1-300min.
  • the high-temperature treatment process in step (2) can also be performed under an inert atmosphere (nitrogen atmosphere, rare gas atmosphere, etc.) or vacuum conditions.
  • the obtained phosphorus-containing aluminum salt composite can be pulverized to a required particle size as needed.
  • the phosphorus-containing aluminum salt complex has a structure as shown in formula (I).
  • the molecular structure at least contains a complex of aluminum ethylbutylphosphinate and aluminum diethylphosphinate. On this basis, the complex also It can contain one or more other phosphorus-containing aluminum salts.
  • the resulting complex can affect the crystallization during the preparation process of aluminum diethylphosphinate, can effectively adjust the particle size and distribution of the crystals, and can significantly reduce the Fine powder content.
  • the phosphorus-containing aluminum salt complex without the structure shown in formula (I) can still affect the crystallization process, it cannot significantly reduce the fine powder content and cannot achieve the purpose of this application.
  • Water-soluble aluminum salt and soluble diethylphosphinate can be added according to the stoichiometric molar ratio of the product aluminum diethylphosphinate.
  • the soluble diethylphosphinate can be sodium salt, potassium salt, etc., and its mass concentration in the aqueous solution can be 20%-60%.
  • the addition amount of the phosphorus-containing aluminum salt complex is preferably 0.01% to 10%, and more preferably 0.1% to 5%.
  • the appropriate addition amount can effectively control the crystallization process and control the fine powder content without causing major changes in the crystallization characteristics of aluminum diethylphosphinate; adding too much phosphorus-containing aluminum salt complex will It will not further effectively reduce the fine powder content, and will significantly affect the crystal form transformation of aluminum diethylphosphinate.
  • the crystallization characteristics of the obtained material are greatly different from those of pure aluminum diethylphosphinate, which is not the purpose of this application; If the addition amount is too low, the control effect is effective and the purpose of significantly reducing the fine powder content cannot be achieved in this application.
  • the average particle diameter D50 of the phosphorus-containing aluminum salt composite preferably satisfies 10 ⁇ m ⁇ D50 ⁇ 50 ⁇ m, and further preferably satisfies 20 ⁇ m ⁇ D50 ⁇ 40 ⁇ m. Research has found that the particle size of the phosphorus-containing aluminum salt complex will affect the control effect of the crystallization process. Neither the too fine particle size nor the too coarse particle size can significantly reduce the content of fine powder, and cannot achieve the goal of this application.
  • the phosphorus-containing aluminum salt complex also includes at least one of the following components (A)-(C):
  • the small amount of the above components (A)-(C) does not affect the effect of the phosphorus-containing aluminum salt complex on the crystallization process, and can still effectively reduce the fine powder content.
  • the strong acid includes at least one of sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc.
  • the addition amount of the strong acid can be 1%-5%.
  • the aluminum salt in the water-soluble aluminum salt solution preferably includes at least one of aluminum sulfate, aluminum nitrate, and aluminum chloride.
  • the mass concentration of the aluminum salt in the water-soluble aluminum salt solution in the reaction system is preferably 15%-50%.
  • the reaction time can be 1-5 hours.
  • the liquid phase pH can be controlled to be less than 4 to obtain a solid precipitate; the pH can be controlled by adding alkali or metal oxides.
  • the end point of the washing is preferably when the conductivity of the washing water is less than 500 ⁇ s/cm.
  • the drying can use various ovens, drying rooms, dryers, etc., and the drying temperature can be 100-130°C.
  • the drying process in step (4) can also be performed under an inert atmosphere (nitrogen atmosphere, rare gas atmosphere, etc.) or vacuum conditions.
  • the aluminum diethylphosphinate crystals with low fine powder content prepared by the present invention may also include aluminum diethylphosphinate, aluminum ethylbutylphosphinate, aluminum butylbutylphosphinate, and One or several mixture impurities among aluminum ylhexylphosphinate, aluminum butylhexylphosphinate, aluminum hexylhexylphosphinate, etc.
  • the aluminum diethylphosphinate crystals with low fine powder content contain phosphorus-containing aluminum salt complex seed crystals, the average particle size D50 satisfies 20 ⁇ m ⁇ D50 ⁇ 50 ⁇ m, the bulk density is 500-700g/L, and the particle size is less than The fine powder content of 5 ⁇ m is less than 10 wt%.
  • the invention also provides aluminum diethylphosphinate crystals with low fine powder content prepared by the preparation method.
  • the invention also provides the application of the aluminum diethylphosphinate crystal with low fine powder content in the flame retardancy of glass fiber reinforced engineering plastics.
  • the glass fiber reinforced engineering plastic can be used as the polymer matrix of at least one of polyurethane, thermoplastic elastomer, epoxy resin, thermosetting unsaturated polyester, nylon, thermoplastic polyester, and POK (polyketone).
  • the aluminum diethylphosphinate crystals with low fine powder content can be used as flame retardants or flame retardant synergists, including:
  • the total mass of the flame-retardant polymer molding material, flame-retardant polymer film, and flame-retardant polymer fiber is calculated as 100%.
  • the raw material composition preferably includes:
  • the flame retardant system includes:
  • flame retardant synergists can be selected from:
  • Dialkylphosphinic acid and/or its salts condensation products of melamine and/or reaction products of melamine and phosphoric acid and/or reaction products of condensation products of melamine and polyphosphoric acid or mixtures thereof; nitrogen-containing phosphates; benzoguanidines Amine, tris(hydroxyethyl)isocyanurate, allantoin, glycoluril, melamine, melamine cyanurate, dicyandiamide and/or guanidine; magnesium oxide, calcium oxide, aluminum oxide, zinc oxide, manganese oxide, Tin oxide, aluminum hydroxide, boehmite, dihydrotalcite, hydrocalumite, magnesium hydroxide, calcium hydroxide, zinc hydroxide, tin oxide hydrate, manganese hydroxide, zinc borate, alkaline zinc silicate and /or zinc stannate; phosphite, hydrogen phosphite or its condensate; phosphate and its derivatives;
  • the main advantages of the present invention include:
  • the method for preparing aluminum diethylphosphinate provided by the present invention overcomes the defects of the existing methods.
  • the prepared aluminum diethylphosphinate has the particle characteristics of low fine powder content, large particle size and narrow distribution, and solves the problem of It solves liquidity problems such as easy bridging and poor material cutting, and can be directly applied to the processing technology of halogen-free flame-retardant glass fiber reinforced engineering plastics, and can achieve long-term operation.
  • Figure 1 shows the molecular structure of aluminum ethylbutylphosphinate (0.7)-aluminum diethylphosphinate (0.3) complex
  • Figure 2 is a DSC chart of the aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex shown in Figure 1;
  • Figure 3 is a DSC chart of a mixture of aluminum ethylbutylphosphinate and aluminum diethylphosphinate (molar ratio 0.7:0.3);
  • Figure 4 is a DSC chart of aluminum ethylbutylphosphinate
  • Figure 5 is a DSC chart of aluminum diethylphosphinate
  • Figure 6 is a DSC chart of aluminum diethylphosphinate after adding 8% (based on the total mass of the phosphorus-containing aluminum salt complex and aluminum diethylphosphinate being 100%) of the phosphorus-containing aluminum salt complex;
  • Figure 7 is a DSC chart of aluminum diethylphosphinate after adding 30% (based on the total mass of the phosphorus-containing aluminum salt complex and aluminum diethylphosphinate being 100%).
  • the molecular structure of the aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.8) complex is as follows:
  • the preparation process is: Dissolve 34.4g (0.2mol) sodium ethylbutylphosphinate and 115.2g (0.8mol) sodium diethylphosphinate in 381.7g of water in a 2L reaction kettle, stir thoroughly and dissolve. A mixed solution of sodium ethylbutylphosphinate and sodium diethylphosphinate was obtained. Dissolve 57g of aluminum sulfate in 133g of water in a 500mL beaker, then add 4.0g of concentrated sulfuric acid with a concentration of 98wt% to the aluminum sulfate solution, mix thoroughly, and transfer to a dropping funnel.
  • Complex-2 Aluminum ethylbutylphosphinate (0.3)-aluminum diethylphosphinate (0.7) complex, the average particle size D50 after pulverization is 35.2 ⁇ m.
  • Complex-3 Aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.7)-aluminum ethylhexylphosphinate (0.1) complex, the average D50 particle size after crushing is 36.1 ⁇ m .
  • Complex-4 Aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.7)-aluminum phosphinate (0.1) complex.
  • the average D50 particle size after crushing is 37.4 ⁇ m.
  • Complex-6 Aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.7)-aluminum ethylhexylphosphinate (0.05)-aluminum phosphinate (0.05) complex, after crushing The average D50 particle size is 38.5 ⁇ m.
  • Complex-7 Aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.7)-aluminum ethylhexylphosphinate (0.05)-aluminum ethylphosphinate (0.05) complex , the average D50 particle size after crushing is 37.6 ⁇ m.
  • Complex-8 Aluminum ethylbutylphosphinate (0.2)-aluminum diethylphosphinate (0.7)-aluminum ethylphosphinate (0.05)-aluminum phosphinate (0.05) complex, average after crushing The D50 particle size is 37.0 ⁇ m.
  • Aluminum phosphate (0.05) complex has an average D50 particle size of 38.4 ⁇ m after crushing.
  • Complex-10 Aluminum ethylbutylphosphinate (0.7)-aluminum diethylphosphinate (0.3) complex, the average D50 particle size after crushing is 37.7 ⁇ m.
  • Aluminum diethylphosphinate, LFR-8003, average particle size D50 is 39.2 ⁇ m, Jiangsu Liside New Materials Co., Ltd.
  • Aluminum ethylbutylphosphinate, the average particle size D50 is 42.6 ⁇ m, homemade.
  • the preparation process is as follows: Dissolve 144g (1 mol) sodium diethylphosphinate in 336g of water in a 2L reaction kettle, stir and dissolve thoroughly to obtain a sodium diethylphosphinate solution. Then add 2.6g (2wt%) of Complex-1 and stir thoroughly to make the complex evenly dispersed in the solution. Dissolve 57g of aluminum sulfate in 133g of water in a 500mL beaker, then add 3.0g of concentrated sulfuric acid with a concentration of 98wt% to the aluminum sulfate solution, mix thoroughly, and transfer to a dropping funnel.
  • Particle size testing method Use a laser particle size analyzer to test, disperse the powder in a 95vol% ethanol solution, and conduct ultrasonic treatment while testing to obtain the particle size and distribution results, and count the fine powder content less than 5 ⁇ m.
  • the implementation process is the same as in Example 1, except that a mixture of the same mass of aluminum ethylbutylphosphinate and aluminum diethylphosphinate (molar ratio 0.2:0.8) is added to replace Complex-1, and other conditions remain unchanged.
  • the results are shown in Table 1.
  • Example 1 D50( ⁇ m) D100( ⁇ m) Particle size fraction below 5 ⁇ m (% by weight)
  • Example 1 43.2 91.3 1.2
  • Example 2 44.5 89.5 1.0
  • Example 3 38.3 92.6 2.8
  • Example 4 42.4 90.1 1.1 Comparative example 1 36.2 138.5 14.3 Comparative example 2 38.5 126.3 13.6 Comparative example 3 39.0 124.5 13.4 Comparative example 4 38.9 123.4 13.6 Comparative example 5 39.2 118.6 12.0 Comparative example 6 36.0 139.2 14.6 Comparative example 7 37.6 122.3 12.2
  • the use of the phosphorus-containing aluminum salt composite of the present application results in larger particle size, narrower distribution, and significantly reduced fine powder content.
  • Example 5 D50( ⁇ m) D100( ⁇ m) Particle size fraction below 5 ⁇ m (% by weight)
  • Example 5 35.2 86.5 1.8
  • Example 6 36.6 87.3 1.6
  • Example 7 37.3 88.6 1.8
  • Example 8 33.8 90.1 2.0
  • Example 9 31.4 93.5
  • Example 10 32.0 94.3 2.3
  • Example 11 30.1 96.5 2.6
  • Table 2 show that the multi-component phosphorus-containing aluminum salt complex based on aluminum ethylbutylphosphinate and aluminum diethylphosphinate can also affect the crystallization process of the preparation process of aluminum diethylphosphinate. It can be obtained Aluminum diethylphosphinate crystals with low fine powder content, large particle size and narrow distribution.
  • Example 12 42.8 91.2 1.3
  • Example 13 43.0 90.7 1.2
  • Example 14 42.3 90.2 1.2
  • flame-retardant glass fiber reinforced PPA was prepared according to general procedures, and 10 hr continuous operating conditions, and prepare samples to test flame retardant properties. Results: There was no shutdown due to bridging or other faults during the 10-hour operation, and the material’s flame retardancy reached UL94V0 (0.8mm).
  • flame-retardant glass fiber reinforced PPA was prepared according to general procedures, and 10 hours of continuous operating conditions, and prepare samples to test flame retardant properties. Results: 10 hours of operation led to 3 shutdowns due to bridging and other faults, and the material's flame retardancy reached UL94V0 (0.8mm).

Abstract

本发明公开了一种低细粉含量的二乙基次膦酸铝结晶物及其制备方法和在玻纤增强工程塑料阻燃中的应用。本发明以含磷铝盐复合体为晶种,在制备二乙基次膦酸铝的结晶过程中加入,可以有效地调控结晶过程,获得低细粉含量、窄分布、大粒径的二乙基次膦酸结晶颗粒,可以解决现有二乙基次膦酸铝粉末易架桥、下料不畅等问题,适用于无卤阻燃玻纤增强工程塑料加工工艺。所制得的二乙基次膦酸铝,包含少量含磷铝盐复合体晶种,其阻燃性能不受影响。

Description

低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用 技术领域
本发明涉及新材料领域,具体涉及一种低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用,该制备方法利用含磷铝盐复合体为晶种,目的得到具有低细粉含量的二乙基次膦酸铝结晶物,满足无卤阻燃玻纤增强工程塑料的制备工艺对阻燃剂粉体流动性的要求。
背景技术
玻纤增强工程塑料(如各种尼龙、聚酯等)因具有良好的刚性和抗冲击性、低翘曲性、良好的表面外观等性能特点而被广泛应用于电子电器领域。在这些领域的应用,对材料提出了阻燃的要求,而大多工程塑料是易燃材料,在与玻纤复合后,由于玻纤的灯芯效应,使得玻纤增强工程塑料更容易燃烧。因此玻纤增强工程塑料在这些领域应用时,需要解决阻燃的问题,而且灯芯效应的存在使得其阻燃难度更大。
对于玻纤增强工程塑料的阻燃,包括了两类基本的阻燃体系:卤系阻燃体系和非卤阻燃体系。卤系阻燃体系通常是含溴阻燃剂协同三氧化二锑,大量研究表明,添加有溴系阻燃剂的玻纤增强工程塑料在燃烧时会产生浓烟和溴化氢等有害物质,会引起人体窒息。因此,为玻纤增强工程塑料开发安全、环保、无卤阻燃体系成为研究的热点,近年来出现了新型的应用于玻纤增强工程塑料的无卤阻燃剂或阻燃体系。
目前,应用于玻纤增强工程塑料的无卤阻燃剂主流是基于二乙基次磷酸铝的复配体系,包括了二乙基次磷酸铝和含氮化合物的协同,例如,二乙基次磷酸铝复配三聚氰氨聚磷酸盐(MPP)体系,以及不含氮的二乙基次磷酸铝与亚磷酸铝的复配体系。这些体系具有高阻燃性、耐高温以及无颜色困扰等问题,目前也得到了大量的应用。但基于二乙基次磷酸铝的复配体系,通常存在粒径偏细,应用于通过双螺杆挤出机制备阻燃材料时,通常存在流动性问题,容易引起粉体架桥、下料不畅等问题,不容易实现长周期运行。针对此问题,通常的解决办法是把阻燃剂粉体制备成高浓度 的阻燃剂母粒,但该解决方案存在的问题也很明显:(1)增加一次造母粒的成本;(2)母粒中需要有聚合物载体,这些载体存在为下游材料的配方带来不灵活性,甚至影响材料的性能而无法使用。因此通过高浓度母粒方案解决二乙基次膦酸铝下料问题并不是最佳方案,需要从二乙基次膦酸铝自身找到解决下料不畅的方案。
通过研究发现,引起二乙基次膦酸铝颗粒物在应用过程中架桥、下料不畅的关键原因是二乙基次膦铝颗粒中存在的细粉,这些细粉粒径很小,通常在5μm以下,粒径越细,比表面积越大,颗粒间作用力大,当这部分细粉的占比超过一定的数量时,就容易引起架桥和下料不畅。因此解决下料不畅的关键是控制二乙基次膦酸铝中的细粉比例。
从二乙基次膦酸铝的制备工艺看,二乙基次磷酸铝颗粒的制备利用了二乙基次膦酸铝的低水溶性和结晶特性,通过复分解反应在水相中结晶析出得到,实际成粒过程是一个结晶过程。通过电镜观察,二乙基次膦酸铝颗粒是由大量小尺寸的片状小晶粒堆砌而成,这些小晶粒的尺寸非常小,由于堆砌是随机过程,因此在自然的结晶状态下,结晶颗粒的尺寸分布较宽;同时,二乙基次膦酸铝的分子结构中包含有亲油性的乙基基团和亲水性的铝盐结构,即在其分子结构上包含有既亲油又亲水的部分,小晶粒的堆砌会存在排斥,小晶粒堆砌形成的结构作用力较弱,在搅拌器等剪切力作用下,更容易变成小粒径颗粒,因此二乙基次膦酸铝颗粒趋向于得到小粒径,在通常制备过程中,所得到的颗粒物,粒径分布宽,即目前制备得到的常规二乙基次膦酸铝颗粒的特征是:平均粒径偏小,分布宽,存在大量的超细粒径。这些粒径特征是引起二乙基次膦酸铝下料不畅的原因。因此,要解决此问题,控制二乙基次膦酸铝制备过程中的结晶过程是关键,降低超细粒径颗粒的比例,减小最大粒径,适当增大平均粒径,颗粒粒径尽量分布在平均粒径附近,粒径分布变窄。而关于如何有效降低超细粒径的方案,未见相关报道。
发明内容
针对上述技术问题以及本领域存在的不足之处,本发明以含磷铝盐复合体为晶种,在制备二乙基次膦酸铝的结晶过程中加入,可以有效地调控结晶过程,获得低细粉含量、窄分布、大粒径的二乙基次膦酸结晶颗粒, 可以解决现有二乙基次膦酸铝粉末易架桥、下料不畅等问题,适用于无卤阻燃玻纤增强工程塑料加工工艺。所制得的二乙基次膦酸铝,包含少量含磷铝盐复合体晶种,其阻燃性能不受影响。
本发明的主要目的是提供一种制备二乙基次膦酸铝的方法,克服现有二乙基次膦酸铝的缺陷,新发明的制备方法可以得到低细粉含量、窄分布和大粒径的二乙基次膦酸铝结晶颗粒,解决了架桥、下料不畅等流动性问题,无需制备高浓度含载体母粒,直接把粉体应用于无卤阻燃玻纤增强工程塑料加工工艺,同时保持了高阻燃性。
本发明涉及低细粉含量的二乙基次膦酸铝的制备,应用基于二乙基次膦酸铝和乙基丁基次膦酸铝的含磷铝盐复合体为晶种,少量添加于二乙基次膦酸铝的制备过程,有效地调控二乙基次膦酸铝的结晶过程,可以得到低细粉含量、窄分布和大粒径的二乙基次膦酸铝结晶粉体,解决现有制备方法得到的二乙基次膦酸铝细粒径粉体含量高、宽分布等问题,避免在应用中容易架桥和下料不畅等流动性问题。
具体技术方案如下:
一种低细粉含量的二乙基次膦酸铝结晶物的制备方法,包括:将含磷铝盐复合体作为晶种均匀分散于可溶性二乙基次膦酸盐的水溶液中,然后加入含强酸的水溶性铝盐溶液,70-95℃反应,反应结束后取固体产物洗涤、干燥,得到所述低细粉含量的二乙基次膦酸铝结晶物;
所述含磷铝盐复合体具有如下式(I)所示结构:
Figure PCTCN2022087307-appb-000001
式(I)中,a、b、c、d、e均为摩尔比,a为0.1-0.5,b为0.5-0.9,c、d、e为0-0.3,且a+b+c+d+e=1,R 1、R 2分别独立选自H和C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
下面将对本发明作详细说明。
本发明是以解决现有广泛应用于玻纤增强工程塑料中的基于二乙基次膦酸铝的无卤阻燃体系中由于二乙基次膦酸铝易架桥、下料不畅等流动 性问题为目的,发明人进行了广泛而深入的研究。
经过研究发现,基于乙基丁基次膦酸铝的含磷铝盐复合体有着与二乙基次磷酸铝不同的晶型转变,甚至在一定条件下,晶型转变会消失。该含磷铝盐复合体包含有:
结构式(II)的含磷结构,以及
结构式(III)和/或结构式(IV)所指代的一种或多种含磷结构;
Figure PCTCN2022087307-appb-000002
结构式(III)中,R 1、R 2分别独立选自H或C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基;
结构式(IV)中,R 3为H或C1-C6的烷基。
该含磷铝盐复合体不同于单一铝盐或几种铝盐的混合物,表现出了不同的性质,是一种具有新的结构的化合物。
对含磷铝盐复合体进行DSC表征。以如图1所示分子结构的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体(数字表示复合铝盐的摩尔比,下同)为例,其DSC图如图2所示。从DSC图上可以看出,此乙基丁基次膦酸铝-二乙基次膦酸铝复合体没有晶型转变峰。图3是乙基丁基次膦酸铝和二乙基次膦酸铝混合物(混合摩尔比0.7:0.3)的DSC图,图4和图5分别为乙基丁基次膦酸铝和二乙基次膦酸铝的DSC图。从结果看,图1所示的新结构的复合体,与两者的混合物是不同的。在两者的混合物中,其DSC体现了混合物特性,晶型转变温度是二乙基次膦酸铝的晶型转变温度,由于比例的降低,晶型转变的焓值降低了;而在复合体里,相同的比例下,二乙基次膦酸铝的特征晶型转变峰消失了。因此复合盐不是两者的混合物,而是一种新的结构。
通过研究发现,不同乙基丁基次膦酸铝和二乙基次膦酸铝比例,都能得到乙基丁基次膦酸铝-二乙基次膦酸铝复合体。进一步的研究发现,乙基丁基次膦酸铝可以与二烷基次膦酸铝、单烷基亚膦酸铝、无机的亚磷酸铝也能形成复合铝盐,以及与多个不同的二烷基次膦酸铝、单烷基亚膦酸 铝、无机的亚磷酸铝等复合能得到含磷铝盐复合体。
令人惊奇的是,当把少量的含磷铝盐复合体加入到二乙基次膦酸铝中时,可以明显改变二乙基次膦酸铝的晶型转变,降低晶型转变温度,降低晶型转变时的吸/放热量,而且在一定比例下,发现二乙基次膦酸铝的晶型转变消失了。图6为前述制备的乙基丁基次膦酸铝-二乙基次膦酸铝复合体加入到二乙基次膦酸铝里后形成的混合物(重量比8:92)的DSC图。从图中可以看到,当加入8wt%的复合体时,二乙基次膦酸铝的晶型转变温度从179℃降低到了171.3℃,明显改变了二乙基次膦酸铝的晶型转变,降低了晶型转变温度。而且研究发现,随着含磷铝盐复合体加入比例的提高,晶型转变温度降低越多,当加入到30wt%时,二乙基次膦酸铝的晶型转变消失,即在所考察的温度范围内,不发生晶型转变,其DSC图如图7所示。
从这些结果可以看到,含磷铝盐复合体明显影响了二乙基次膦酸铝的晶型转变过程,而晶型转变和结晶密切相关。因此发明者提出含磷铝盐复合体会影响制备二乙基次膦酸铝的结晶过程,从而影响结晶颗粒的粒径大小和分布。
经过研究发现,在二乙基次膦酸铝的制备过程中,加入含磷铝盐复合体,其可以起到晶种的作用,影响结晶过程,并能调控结晶颗粒的粒径大小和分布,更重要的是可以降低细粉含量,增大粒径和使得粒径分布变窄,实现了本发明的目的。通过研究发现,该含磷铝盐复合体,应具有如式(I)所示的分子结构。
式(I)表示了乙基丁基次膦酸铝和二乙基次膦酸铝存在下,与其它含磷铝盐形成的复合体,其它含磷铝盐包括一种除乙基丁基次膦酸铝和二乙基次膦酸铝外的二烷基次膦酸铝/单烷基次磷酸铝、一种单烷基亚膦酸铝、一种无机的亚磷酸铝等形成的本发明的含磷铝盐复合体,可以与其中的一种或多种含磷铝盐形成含磷铝盐复合体。
本发明还提供了所述的含磷铝盐复合体的一种优选制备方法,包括步骤:
(1)将包含有结构式(II)的阴离子部分的乙基丁基次膦酸和/或可溶性乙基丁基次膦酸盐与其它参与复合的包含有结构式(III)和/或结构式(IV)的阴离子部分的酸和/或可溶性盐(含磷复合阴离子供体)溶于水 (水中可以加入少量强酸或不加入强酸)中,再加入含铝化合物(铝离子供体),在80-90℃下反应;
(2)反应结束后,固液分离取固体洗涤、干燥,然后在180-450℃下高温处理得到所述的含磷铝盐复合体。
上述制备方法中:
所述的可溶性盐通常是钠盐或钾盐;
所述含铝化合物优选为硫酸铝、硝酸铝、氯化铝、氢氧化铝、氧化铝中的至少一种;
所述洗涤的终点优选为洗涤出水的电导率小于500μs/cm。
步骤(1)中,含磷复合阴离子供体、铝离子供体可按完全反应等摩尔比加入。
步骤(1)中,所述强酸包括浓硫酸、浓硝酸、浓盐酸、浓磷酸,添加量可以为含磷复合阴离子供体质量的2%-5%。
所述含铝化合物不溶于水时,可以把含铝化合物分散于水中形成悬浮分散体系,此时其与以酸形式添加的含磷复合阴离子供体反应,可以不需要高浓度的强酸存在;含铝化合物为水溶性化合物时,建议有高浓度的强酸存在的条件下反应,此时其可以与以盐形式添加的含磷复合阴离子供体反应。
含铝化合物在反应体系中的质量浓度优选为15%-50%。
步骤(1)中,反应时间可以是1-5小时。
步骤(2)中:
反应结束可通过控制液相pH小于4,得到固体沉淀物;pH的控制可以通过加入碱或金属氧化物等实现;
所述干燥可以采用各种烘箱、烘房、干燥器等,干燥温度可以是100-130℃。高温处理是制备工艺的关键步骤,处理工艺和含磷铝盐复合体的组成及比例、处理量有关,高温处理的温度设置是高温处理的关键因素,研究发现,当处理温度低于180℃时,不能得到本申请的含磷铝盐复合体,而高温处理的温度上限为复合体的分解温度,通常低于450℃,高温处理的工艺:0.5-10小时升温至180-450℃进行高温处理,高温处理的时间为1-300min。
步骤(2)的高温处理过程也可以在惰性氛围(氮气气氛、稀有气体 气氛等)或真空条件下进行。
在步骤(2)后,可以根据需要将得到的含磷铝盐复合体粉碎至所需粒径。
研究发现,要得到本发明的含磷铝盐复合体,制备方法中的两个步骤都必不可少,即不进行高温处理(包括处理温度低于180℃)或者只是几种含磷铝盐干混后高温热处理都不能得到本发明的含磷铝盐复合体。
下面对本发明的低细粉含量的二乙基次膦酸铝结晶物的制备方法进行参数条件的详细描述和优选方案的介绍。
含磷铝盐复合体具有如式(I)所示结构,分子结构中至少包含了乙基丁基次膦酸铝和二乙基次膦酸铝的复合体,在此基础上,复合体还可以包含其它一种或多种含磷铝盐,所得到的复合体都能对二乙基次膦酸铝制备过程中的结晶产生影响,能有效调节结晶体的粒径及分布,并明显能降低细粉含量。而不具有式(I)所示结构的含磷铝盐复合体,虽然仍能影响结晶过程,但不能明显降低细粉含量,无法实现本申请的目的。
水溶性铝盐、可溶性二乙基次膦酸盐可按产物二乙基次膦酸铝的化学计量摩尔配比投加。
可溶性二乙基次膦酸盐可以是钠盐、钾盐等,其在水溶液中的质量浓度可以是20%-60%。
以产物二乙基次膦酸铝的理论质量为100%计,所述含磷铝盐复合体的加入量优选为0.01%~10%,进一步优选为0.1%~5%。合适的加入量,既能有效的调控结晶过程,实现对细粉含量的调控,还不会引起二乙基次膦酸铝结晶特性发生大的变化;过多的含磷铝盐复合体加入,不会进一步有效降低细粉含量,而且会明显影响二乙基次膦酸铝的晶型转变,获得的物质结晶特性与纯二乙基次膦酸铝差异较大,这不是本申请的目的;过低的加入量,其调控作用有效,无法实现本申请需要明显降低细粉含量的目的。
所述含磷铝盐复合体的平均粒径D50优选满足10μm<D50<50μm,进一步优选满足20μm<D50<40μm。研究发现,含磷铝盐复合体的粒径会影响对结晶过程的调控效果,过细的粒径和过粗的粒径都不能明显降低细粉的含量,无法实现本申请的目标。
所述含磷铝盐复合体中还包括以下组分(A)-(C)中的至少一种:
(A)乙基丁基次膦酸盐、丁基丁基次膦酸盐、乙基己基次膦酸盐、丁基己基次膦酸盐、己基己基次膦酸盐中的一种或几种非复合盐;
(B)烷基亚膦酸盐;
(C)硫酸盐、氯化物、磷酸盐、亚磷酸盐、次磷酸盐、硝酸盐、乙酸盐、含氮化合物、含铁化合物、含钙化合物、含镁化合物、含钛化合物、含钠化合物、含钾化合物中的一种或几种。
上述组分(A)-(C)的少量存在,不影响含磷铝盐复合体对结晶过程的作用效果,仍能有效降低细粉含量。
所述强酸包括硫酸、硝酸、盐酸、磷酸等中的至少一种。
以产物二乙基次膦酸铝的理论质量为100%计,所述强酸的加入量可以为1%-5%。
所述水溶性铝盐溶液中的铝盐优选包括硫酸铝、硝酸铝、氯化铝中的至少一种。
所述水溶性铝盐溶液中的铝盐在反应体系中的质量浓度优选为15%-50%。
反应时间可以是1-5小时。
反应结束可通过控制液相pH小于4,得到固体沉淀物;pH的控制可以通过加入碱或金属氧化物等实现。
所述洗涤的终点优选为洗涤出水的电导率小于500μs/cm。
所述干燥可以采用各种烘箱、烘房、干燥器等,干燥温度可以是100-130℃。步骤(4)的干燥处理过程也可以在惰性氛围(氮气气氛、稀有气体气氛等)或真空条件下进行。
本发明制备得到的低细粉含量的二乙基次膦酸铝结晶物中还可以包含二乙基次膦酸铝、乙基丁基次膦酸铝、丁基丁基次膦酸铝、乙基己基次膦酸铝、丁基己基次膦酸铝、己基己基次膦酸铝等中的一种或几种混合物杂质。
所述低细粉含量的二乙基次膦酸铝结晶物含有含磷铝盐复合体晶种,平均粒径D50满足20μm<D50<50μm,堆密度为500-700g/L,粒径低于5μm的细粉含量小于10wt%。
本发明还提供了所述的制备方法制备得到的低细粉含量的二乙基次膦酸铝结晶物。
本发明还提供了所述的低细粉含量的二乙基次膦酸铝结晶物在玻纤增强工程塑料阻燃中的应用。
所述玻纤增强工程塑料可以聚氨酯、热塑性弹性体、环氧树脂、热固性不饱和聚酯、尼龙、热塑性聚酯、POK(聚酮)中的至少一种作为聚合物基体。
所述的低细粉含量的二乙基次膦酸铝结晶物可作为阻燃剂或阻燃协效剂,用于,包括:
清漆或发泡涂料的阻燃;
木材或含纤维素产品的阻燃;
制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
所述阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总质量以100%计,原料组成优选包括:
Figure PCTCN2022087307-appb-000003
以质量百分比计,所述的阻燃体系包括:
所述低细粉含量的二乙基次膦酸铝结晶物       1%-100%,
其它阻燃协同剂                             0-99%。
所述的阻燃体系中,其它阻燃剂、阻燃协同剂可以选自:
二烷基次膦酸和/或其盐;三聚氰胺的缩合产物和/或三聚氰胺与磷酸的反应产物和/或三聚氰胺的缩合产物与聚磷酸或其混合物的反应产物;含氮磷酸盐;苯并胍胺、三(羟乙基)异氰脲酸酯、尿囊素、甘脲、三聚氰胺、氰尿酸三聚氰胺、双氰胺和/或胍;氧化镁、氧化钙、氧化铝、氧化锌、氧化锰、氧化锡、氢氧化铝、勃姆石、二水滑石、水铝钙石、氢氧化镁、氢氧化钙、氢氧化锌、氧化锡水合物、氢氧化锰、硼酸锌、碱性硅酸锌和/或锡酸锌;亚磷酸盐、亚磷酸氢盐或其缩合物;磷酸盐及其衍生物;
蜜白胺、蜜勒胺、蜜隆、二蜜胺焦磷酸盐、蜜胺聚磷酸盐、蜜白胺聚磷酸盐、蜜隆聚磷酸盐和/或蜜勒胺聚磷酸盐和/或它们的混合聚盐和/或为磷酸氢铵、磷酸二氢铵和/或聚磷酸铵;
次磷酸铝、次磷酸锌、次磷酸钙、亚磷酸钠、单苯基次膦酸及其盐、 二烷基次膦酸及其盐与单烷基次膦酸及其盐的混合物、2-羧乙基烷基次膦酸及其盐、2-羧乙基甲基次膦酸及其盐、2-羧乙基芳基次膦酸及其盐、2-羧乙基苯基次膦酸及其盐、DOPO及其盐和对苯醌上的加合物。
本发明与现有技术相比,主要优点包括:
本发明所提供的制备二乙基次膦酸铝的方法,克服了现有方法的缺陷,制备的二乙基次膦酸铝具有低细粉含量、大粒径、窄分布的颗粒特性,解决了易架桥、下料不畅等流动性问题,可以直接应用于无卤阻燃玻纤增强工程塑料加工工艺,并能实现长周期运行。
附图说明
图1为乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体分子结构;
图2为图1所示乙基丁基次膦酸铝-二乙基次膦酸铝复合体DSC图;
图3为乙基丁基次膦酸铝和二乙基次膦酸铝混合物(摩尔比0.7:0.3)的DSC图;
图4为乙基丁基次膦酸铝DSC图;
图5为二乙基次膦酸铝DSC图;
图6为加入8%(以含磷铝盐复合体、二乙基次膦酸铝总质量为100%计)的含磷铝盐复合体的二乙基次膦酸铝DSC图;
图7为加入30%(以含磷铝盐复合体、二乙基次膦酸铝总质量为100%计)的含磷铝盐复合体的二乙基次膦酸铝DSC图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.8)复合体的合成
乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.8)复合体的分子结构如下:
Figure PCTCN2022087307-appb-000004
制备过程为:在2L的反应釜中把34.4g(0.2mol)乙基丁基次膦酸钠和115.2g(0.8mol)二乙基次膦酸钠溶于381.7g的水,充分搅拌溶解,得到乙基丁基次膦酸钠和二乙基次膦酸钠混合溶液。在500mL的烧杯中把57g硫酸铝溶于133g水中,再在硫酸铝溶液中加入4.0g浓度为98wt%的浓硫酸充分搅拌混合均匀,转移到滴液漏斗中。加热反应釜,升温至90℃,开始滴加含硫酸的硫酸铝溶液,2小时滴加完成,保温继续反应1小时。趁热过滤,并多次洗涤沉淀物,直至洗涤出水电导率小于200μs/cm,停止洗涤。转移物料至烘箱,升温至120℃,干燥60min,固体物水分含量为0.1wt%,再以2℃/min的速度升温至180℃,保持60min,再以1℃/min升温至320℃,保持30min,降温至常温,出料,得到乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.8)复合体,记为复合体-1。把物料粉碎,平均粒径D50为38.0μm。
参照上述制备过程,改变原料的种类和投料摩尔比即可得到其它复合体。
复合体-2:乙基丁基次膦酸铝(0.3)-二乙基次膦酸铝(0.7)复合体,粉碎后平均粒径D50为35.2μm。
复合体-3:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-乙基己基次膦酸铝(0.1)复合体,粉碎后平均D50粒径为36.1μm。
复合体-4:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-亚磷酸铝(0.1)复合体,粉碎后平均D50粒径为37.4μm。
复合体-5:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-乙基亚膦酸铝(0.1)复合体,粉碎后平均D50粒径为35.8μm。
复合体-6:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-乙基己基次膦酸铝(0.05)-亚磷酸铝(0.05)复合体,粉碎后平均D50粒径为38.5μm。
复合体-7:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-乙基己 基次膦酸铝(0.05)-乙基亚膦酸铝(0.05)复合体,粉碎后平均D50粒径为37.6μm。
复合体-8:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.7)-乙基亚膦酸铝(0.05)-亚磷酸铝(0.05)复合体,粉碎后平均D50粒径为37.0μm。
复合体-9:乙基丁基次膦酸铝(0.2)-二乙基次膦酸铝(0.65)-乙基己基次膦酸铝(0.05)-乙基亚膦酸铝(0.05)-亚磷酸铝(0.05)复合体,粉碎后平均D50粒径为38.4μm。
复合体-10:乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,粉碎后平均D50粒径为37.7μm。
二乙基次膦酸铝,LFR-8003,平均粒径D50为39.2μm,江苏利思德新材料有限公司。
乙基丁基次膦酸铝,平均粒径D50为42.6μm,自制。
实施例1
制备过程为:在2L的反应釜中把144g(1mol)二乙基次膦酸钠溶于336g的水,充分搅拌溶解,得到二乙基次膦酸钠溶液。再加入2.6g(2wt%)的复合体-1,充分搅拌,使复合体均匀分散在溶液中。在500mL的烧杯中把57g硫酸铝溶于133g水中,再在硫酸铝溶液中加入3.0g浓度为98wt%的浓硫酸充分搅拌混合均匀,转移到滴液漏斗中。加热反应釜,升温至90℃,开始滴加含硫酸的硫酸铝溶液,2小时滴加完成,保温继续反应1小时。趁热过滤,并多次洗涤沉淀物,直至洗涤出水电导率小于200μs/cm,停止洗涤。转移物料至烘箱,升温至120℃,干燥60min,固体物水分含量为0.1wt%,降温至常温,出料,得到二乙基次膦酸铝,测试粒径,结果如表1所示。
粒径测试方法:利用激光粒度仪测试,把粉体分散在95vol%的乙醇溶液中,一边超声处理一边测试,得到粒径大小和分布结果,并统计小于5μm的细粉含量。
实施例2
实施过程与实施例1相同,加入的复合体-1的量为5.2g(4wt%),其它条件不变。结果见表1。
实施例3
实施过程与实施例1相同,加入的复合体-1的平均粒径为25μm,其它条件不变。结果见表1。
实施例4
实施过程与实施例1相同,加入相同质量的复合体-2,其它条件不变。结果见表1。
对比例1
实施过程与实施例1相同,除了不加入复合体,其它条件不变。结果见表1。
对比例2
实施过程与实施例1相同,除了加入相同质量的二乙基次磷酸铝取代复合体-1外,其它条件不变。结果见表1。
对比例3
实施过程与实施例1相同,除了加入相同质量的乙基丁基次膦酸铝取代复合体-1外,其它条件不变。结果见表1。
对比例4
实施过程与实施例1相同,除了加入相同质量的乙基丁基次膦酸铝和二乙基次膦酸铝(摩尔比0.2:0.8)的混合物取代复合体-1外,其它条件不变。结果见表1。
对比例5
实施过程与实施例1相同,加入的复合体-1的平均粒径为5μm,其它条件不变。结果见表1。
对比例6
实施过程与实施例1相同,加入0.01g的复合体-1,其它条件不变。 结果见表1。
对比例7
实施过程与实施例1相同,加入相同质量的复合体-10,其它条件不变。结果见表1。
表1
  D50(μm) D100(μm) 低于5μm粒径分率(%重量)
实施例1 43.2 91.3 1.2
实施例2 44.5 89.5 1.0
实施例3 38.3 92.6 2.8
实施例4 42.4 90.1 1.1
对比例1 36.2 138.5 14.3
对比例2 38.5 126.3 13.6
对比例3 39.0 124.5 13.4
对比例4 38.9 123.4 13.6
对比例5 39.2 118.6 12.0
对比例6 36.0 139.2 14.6
对比例7 37.6 122.3 12.2
从结果看,使用本申请的含磷铝盐复合体得到颗粒粒径更大,分布更窄,细粉含量大幅降低。
实施例5
实施过程与实施例1相同,加入相同质量的复合体-3,其它条件不变。结果见表2。
实施例6
实施过程与实施例1相同,加入相同质量的复合体-4,其它条件不变。结果见表2。
实施例7
实施过程与实施例1相同,加入相同质量的复合体-5,其它条件不变。结果见表2。
实施例8
实施过程与实施例1相同,加入相同质量的复合体-6,其它条件不变。结果见表2。
实施例9
实施过程与实施例1相同,加入相同质量的复合体-7,其它条件不变。结果见表2。
实施例10
实施过程与实施例1相同,加入相同质量的复合体-8,其它条件不变。结果见表2。
实施例11
实施过程与实施例1相同,加入相同质量的复合体-9,其它条件不变。结果见表2。
表2
  D50(μm) D100(μm) 低于5μm粒径分率(%重量)
实施例5 35.2 86.5 1.8
实施例6 36.6 87.3 1.6
实施例7 37.3 88.6 1.8
实施例8 33.8 90.1 2.0
实施例9 31.4 93.5 2.2
实施例10 32.0 94.3 2.3
实施例11 30.1 96.5 2.6
表2的结果表明,基于乙基丁基次膦酸铝和二乙基次膦酸铝的多元含磷铝盐复合体,同样能影响二乙基次膦酸铝制备过程的结晶过程,可以得到低细粉含量、大粒径、窄分布的二乙基次膦酸铝结晶物。
实施例12
实施过程与实施例1相同,加入2.5g复合体-1和0.1g乙基丁基次膦酸铝,其它条件不变。结果见表3。
实施例13
实施过程与实施例1相同,加入2.5g复合体-1和0.1g亚膦酸铝,其它条件不变。结果见表3。
实施例14
实施过程与实施例1相同,加入2.5g复合体-1和0.1g磷酸铝,其它条件不变。结果见表3。
表3
  D50(μm) D100(μm) 低于5μm粒径分率(%重量)
实施例12 42.8 91.2 1.3
实施例13 43.0 90.7 1.2
实施例14 42.3 90.2 1.2
表3结果表明,本申请的含磷铝盐复合体中,少量其它非复合盐的存在,不影响本申请的方法对二乙基次膦酸铝制备过程中结晶过程的调控。
二乙基次膦酸铝的应用
实施例15
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的根据实施例1所制得的二乙基次膦铝,按照一般规程制备阻燃玻纤增强PPA,考察10hr的连续运行状况,并制样测试阻燃性能。结果:10hr运行无架桥等故障停机,材料阻燃达到UL94V0(0.8mm)。
对比例8
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的根据对比例1所制得的二乙基次膦铝,按照一般规程制备阻燃玻纤增强PPA,考察10hr的连续运行状况,并制样测试阻燃性能。结果:10hr运行3次因架桥等故障停机,材料阻燃达到UL94V0(0.8mm)。
上述结果表明,应用本发明方法制备得到二乙基次膦酸铝,不会出现因架桥等问题引起的故障停车,并保持了阻燃性能。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种低细粉含量的二乙基次膦酸铝结晶物的制备方法,其特征在于,包括:将含磷铝盐复合体作为晶种均匀分散于可溶性二乙基次膦酸盐的水溶液中,然后加入含强酸的水溶性铝盐溶液,70-95℃反应,反应结束后取固体产物洗涤、干燥,得到所述低细粉含量的二乙基次膦酸铝结晶物;
    所述含磷铝盐复合体具有如下式(I)所示结构:
    Figure PCTCN2022087307-appb-100001
    式(I)中,a、b、c、d、e均为摩尔比,a为0.1-0.5,b为0.5-0.9,c、d、e为0-0.3,且a+b+c+d+e=1,R 1、R 2分别独立选自H和C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基;
    以产物二乙基次膦酸铝的理论质量为100%计,所述含磷铝盐复合体的加入量为0.01%~10%;
    所述含磷铝盐复合体的平均粒径D50满足10μm<D50<50μm。
  2. 根据权利要求1所述的制备方法,其特征在于,以产物二乙基次膦酸铝的理论质量为100%计,所述含磷铝盐复合体的加入量为0.1%~5%。
  3. 根据权利要求1所述的制备方法,其特征在于,所述含磷铝盐复合体的平均粒径D50满足20μm<D50<40μm。
  4. 根据权利要求1所述的制备方法,其特征在于,所述含磷铝盐复合体中还包括以下组分(A)-(C)中的至少一种:
    (A)乙基丁基次膦酸盐、丁基丁基次膦酸盐、乙基己基次膦酸盐、丁基己基次膦酸盐、己基己基次膦酸盐中的一种或几种非复合盐;
    (B)烷基亚膦酸盐;
    (C)硫酸盐、氯化物、磷酸盐、亚磷酸盐、次磷酸盐、硝酸盐、乙酸盐、含氮化合物、含铁化合物、含钙化合物、含镁化合物、含钛化合物、含钠化合物、含钾化合物中的一种或几种。
  5. 根据权利要求1所述的制备方法,其特征在于,所述强酸包括硫酸、 硝酸、盐酸、磷酸中的至少一种;
    以产物二乙基次膦酸铝的理论质量为100%计,所述强酸的加入量为1%-5%。
  6. 根据权利要求1所述的制备方法,其特征在于,所述水溶性铝盐溶液中的铝盐包括硫酸铝、硝酸铝、氯化铝中的至少一种。
  7. 根据权利要求1所述的制备方法,其特征在于,制备得到的低细粉含量的二乙基次膦酸铝结晶物中包含二乙基次膦酸铝、乙基丁基次膦酸铝、丁基丁基次膦酸铝、乙基己基次膦酸铝、丁基己基次膦酸铝、己基己基次膦酸铝中的一种或几种混合物杂质。
  8. 根据权利要求1所述的制备方法,其特征在于,所述低细粉含量的二乙基次膦酸铝结晶物含有含磷铝盐复合体晶种,平均粒径D50满足20μm<D50<50μm,堆密度为500-700g/L,粒径低于5μm的细粉含量小于10wt%。
  9. 根据权利要求1~8任一项所述的制备方法制备得到的低细粉含量的二乙基次膦酸铝结晶物。
  10. 根据权利要求9所述的低细粉含量的二乙基次膦酸铝结晶物在玻纤增强工程塑料阻燃中的应用,其特征在于,所述玻纤增强工程塑料以聚氨酯、热塑性弹性体、环氧树脂、热固性不饱和聚酯、尼龙、热塑性聚酯、POK中的至少一种作为聚合物基体。
PCT/CN2022/087307 2022-03-10 2022-04-18 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用 WO2023168790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210230945.7 2022-03-10
CN202210230945.7A CN114478625B (zh) 2022-03-10 2022-03-10 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023168790A1 true WO2023168790A1 (zh) 2023-09-14

Family

ID=81486971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087307 WO2023168790A1 (zh) 2022-03-10 2022-04-18 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114478625B (zh)
WO (1) WO2023168790A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172664A (zh) * 2013-02-27 2013-06-26 广州金凯新材料有限公司 一种具有良好流散性的二烷基次膦酸盐的制备方法
CN106632464A (zh) * 2016-11-21 2017-05-10 浙江传化华洋化工有限公司 一种大粒径球形二烷基次膦酸盐的制备方法及应用
CN107778527A (zh) * 2017-11-22 2018-03-09 江苏利思德新材料有限公司 一种基于磷铝化合物的无卤阻燃复配体系及其在玻纤增强工程塑料中的应用
CN109879909A (zh) * 2019-03-07 2019-06-14 清远市普塞呋磷化学有限公司 一种大粒径二烷基次膦酸盐的制备方法
WO2020177559A1 (zh) * 2019-03-07 2020-09-10 黎杰 二烷基次膦酸-烷基亚磷酸金属复合盐及制备方法和用途
CN111808133A (zh) * 2020-06-23 2020-10-23 浙江新化化工股份有限公司 二乙基次膦酸铝材料及其制备方法
CN111825883A (zh) * 2019-04-15 2020-10-27 黎杰 多二烷基次膦酸金属复合盐和/或其混合物,和其用途
CN112876736A (zh) * 2020-09-01 2021-06-01 黎杰 二烷基次膦酸-亚磷酸铝复合盐,其制备方法和用途
CN114539621A (zh) * 2022-03-10 2022-05-27 江苏利思德新材料有限公司 一种含磷铝盐复合体及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484664A (zh) * 2018-03-15 2018-09-04 浙江工业大学 一种棒状二烷基次膦酸盐晶体的制备方法
CN108690070B (zh) * 2018-05-17 2020-06-23 青岛欧普瑞新材料有限公司 高固-固相变温度的二乙基次膦酸铝及其制备方法
CN110591341B (zh) * 2019-10-09 2023-04-07 江苏万纳普新材料科技有限公司 一种尼龙树脂改性专用无卤阻燃增效功能母粒及其制备方法
EP3926002A1 (de) * 2020-06-15 2021-12-22 Clariant International Ltd Flammschutzmittel-stabilisator-kombination für thermoplastische polymere
CN113460984B (zh) * 2020-10-22 2022-08-23 江苏利思德新材料有限公司 一种结晶型亚磷酸铝及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172664A (zh) * 2013-02-27 2013-06-26 广州金凯新材料有限公司 一种具有良好流散性的二烷基次膦酸盐的制备方法
CN106632464A (zh) * 2016-11-21 2017-05-10 浙江传化华洋化工有限公司 一种大粒径球形二烷基次膦酸盐的制备方法及应用
CN107778527A (zh) * 2017-11-22 2018-03-09 江苏利思德新材料有限公司 一种基于磷铝化合物的无卤阻燃复配体系及其在玻纤增强工程塑料中的应用
CN109879909A (zh) * 2019-03-07 2019-06-14 清远市普塞呋磷化学有限公司 一种大粒径二烷基次膦酸盐的制备方法
WO2020177559A1 (zh) * 2019-03-07 2020-09-10 黎杰 二烷基次膦酸-烷基亚磷酸金属复合盐及制备方法和用途
CN111825883A (zh) * 2019-04-15 2020-10-27 黎杰 多二烷基次膦酸金属复合盐和/或其混合物,和其用途
CN111808133A (zh) * 2020-06-23 2020-10-23 浙江新化化工股份有限公司 二乙基次膦酸铝材料及其制备方法
CN112876736A (zh) * 2020-09-01 2021-06-01 黎杰 二烷基次膦酸-亚磷酸铝复合盐,其制备方法和用途
CN114539621A (zh) * 2022-03-10 2022-05-27 江苏利思德新材料有限公司 一种含磷铝盐复合体及其制备方法和应用

Also Published As

Publication number Publication date
CN114478625A (zh) 2022-05-13
CN114478625B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
TWI591016B (zh) 混合之亞磷酸鹼金屬鹽/亞磷酸鋁、製備彼之方法及彼之用途
KR102097262B1 (ko) 난연제와 알루미늄 포스파이트를 함유하는 난연제 혼합물, 이의 제조방법 및 용도
WO2022083032A1 (zh) 一种结晶型亚磷酸铝及其制备方法和应用
WO2019100929A1 (zh) 一种基于磷铝化合物的无卤阻燃复配体系及其在玻纤增强工程塑料中的应用
KR102045722B1 (ko) 알루미늄 하이드로겐포스파이트, 이의 제조 방법 및 이의 용도
WO2019100592A1 (zh) 玻纤增强尼龙用无卤阻燃复配体系及其在无卤阻燃玻纤增强尼龙材料中的应用
TW201335066A (zh) 亞磷酸氫鋁與鋁鹽之混合物、其製備方法、及其用途
CN111116987B (zh) 一种细粒度次磷酸铝复合阻燃剂合成的方法
WO2015113740A1 (de) Halogenfreie feste flammschutzmittelmischung und ihre verwendung
WO2023168792A1 (zh) 一种含磷铝盐复合体及其制备方法和应用
TW201335065A (zh) 亞磷酸鋁與難溶性鋁鹽和外來離子的混合物,其製備方法,及其用途
JP2012509389A (ja) 合成無機系難燃剤、それらの調製方法及び難燃剤としてのそれらの使用
WO2023168791A1 (zh) 无卤阻燃剂组合物及其应用
CN112812372A (zh) 一种单宁酸-磷腈网络功能化水滑石基阻燃剂及其制备方法
JP7356197B2 (ja) 有機リン化合物難燃剤及びその製造方法と利用
WO2019144331A1 (zh) 一种氨基三亚甲基膦酸铝及其制备方法和应用
CN114874265A (zh) 一种稀土阻燃配合物及其制备方法和应用
WO2023168790A1 (zh) 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用
WO2022078274A1 (zh) 一种耐高热高剪切的高阻燃无卤阻燃复配体系及其应用
CN114015115A (zh) 一种基于焦磷酸哌嗪/三聚氰胺氰尿酸盐/聚磷酸铵的膨胀型阻燃剂的制备方法
de Souza et al. Recent development on flame retardants for polyurethanes
CN117247600A (zh) 一种多孔性二烷基次膦酸铝颗粒物及其制备方法和应用
WO2022095294A1 (zh) 具有双峰热失重分解特征的基于亚磷酸铝的复合体及其制备和应用
CN117417578A (zh) 一种多肉植物状二烷基次膦酸铝及其制备方法和应用
Bartoli et al. Overview on Classification of Flame-Retardant Additives for Polymeric Matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930422

Country of ref document: EP

Kind code of ref document: A1