WO2022083032A1 - 一种结晶型亚磷酸铝及其制备方法和应用 - Google Patents

一种结晶型亚磷酸铝及其制备方法和应用 Download PDF

Info

Publication number
WO2022083032A1
WO2022083032A1 PCT/CN2021/075180 CN2021075180W WO2022083032A1 WO 2022083032 A1 WO2022083032 A1 WO 2022083032A1 CN 2021075180 W CN2021075180 W CN 2021075180W WO 2022083032 A1 WO2022083032 A1 WO 2022083032A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
flame retardant
phosphite
crystalline
preparation
Prior art date
Application number
PCT/CN2021/075180
Other languages
English (en)
French (fr)
Inventor
雷华
李金忠
Original Assignee
江苏利思德新材料有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏利思德新材料有限公司, 浙江大学 filed Critical 江苏利思德新材料有限公司
Publication of WO2022083032A1 publication Critical patent/WO2022083032A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/163Phosphorous acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • C09D5/185Intumescent paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Definitions

  • the invention relates to the technical field of materials, in particular to a crystalline aluminum phosphite and a preparation method and application thereof.
  • the mesoscopic state of solid matter includes both crystalline and amorphous aggregated states. Some substances are crystalline substances, and some are non-crystalline substances, which are affected by the chemical composition of the substances; but these aggregation states are also affected by the environmental conditions during preparation, such as temperature, pressure, etc., so the same chemical substance can appear as crystalline state, and can also be in an amorphous state.
  • the mesoscopic aggregation state of solid matter will affect its physical and chemical properties, such as melting point, solubility, etc. Different mesoscopic aggregation states can be selected for different application needs.
  • Aluminum phosphite has good flame retardant synergy with aluminum diethyl hypophosphite (such as the patented technology of publication number CN107936297A, CN107760023A, etc.), and its water solubility and acidity are relatively low, and it is currently widely used as flame retardant synergy. It is used in glass fiber reinforced engineering plastics, such as nylon, polyester and other systems, and has good flame retardancy.
  • the present invention provides a method for preparing a crystalline aluminum phosphite, wherein the aluminum phosphite compound of the crystalline structure is composed of aluminum hydrogen phosphite (unless otherwise specified, the hydrogen phosphite described in the present invention)
  • the molecular formula of aluminum is (H 2 PO 3 ) 3 Al) and specific aluminum-containing compounds are reacted under certain conditions, and obtained through a special high-temperature post-treatment process.
  • the crystalline aluminum phosphite has a higher thermal decomposition temperature and is more Low water absorption and acidity, can be used as or used to prepare flame retardant or flame retardant synergist, used in the flame retardant of polymer materials, such as compounding with aluminum diethyl hypophosphite as a flame retardant for glass fiber reinforced engineering plastics. combustion system.
  • a preparation method of crystalline aluminum phosphite comprising the steps:
  • the aluminum-containing compound is at least one of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, and aluminum oxide;
  • the solvent of each solution in the present invention is water.
  • Aluminum hydrogen phosphite and aluminum-containing compounds are reacted in water at 80-110 °C in the presence of a small amount of concentrated phosphoric acid in a certain proportion to obtain aluminum phosphite precipitation. It is the key to prepare crystalline aluminum phosphite to use aluminum hydrogen phosphite as the starting material for the reaction, and other phosphorus-containing compounds cannot be used to prepare crystalline aluminum phosphite.
  • the obtained crystalline aluminum phosphite can be pulverized to a desired particle size.
  • step (1) the aluminum-containing compound and aluminum hydrogen phosphite may be added in an equimolar ratio for complete reaction.
  • step (1) as preferably:
  • the quality of the concentrated phosphoric acid is 2%-5% of the quality of aluminum hydrogen phosphite
  • the mass concentration of the aluminum-containing compound in the mixed solution obtained after the aluminum-containing compound is dispersed in water is 15%-50%;
  • the mass concentration of aluminum hydrogen phosphite in the aluminum hydrogen phosphite solution is 15%-50%;
  • the mixed solution of aluminum-containing compound and concentrated phosphoric acid is added to the aluminum hydrogen phosphite solution by dropwise addition, and the total reaction time is 1-5 hours.
  • step (3) various ovens, drying rooms, dryers and the like can be used.
  • the inert atmosphere in step (4) can be a rare gas atmosphere, a nitrogen atmosphere, or the like.
  • the present invention also provides the crystalline aluminum phosphite prepared by the preparation method.
  • the crystalline aluminum phosphite with a typical XRD diffraction pattern as shown in Figure 1 can be obtained by the preparation method of the present invention, and characteristic diffraction peaks unique to the crystalline structure can be seen from the XRD diffraction results.
  • the typical XRD diffraction pattern of aluminum phosphite currently used in the field of flame retardant is shown in Figure 2. There are no narrow characteristic peaks on the spectrum, showing an amorphous aggregate structure.
  • the crystalline aluminum phosphite of the present invention and the existing amorphous phosphorous acid are characterized and analyzed, and the typical physical property results are shown in Table 1 below.
  • the crystalline aluminum phosphite of the present invention has higher thermal weight loss temperature, lower water absorption and weaker acidity, and these advantages are favorable for aluminum phosphite to be used as a flame retardant .
  • crystalline aluminum phosphite and diethyl aluminum hypophosphite still have a synergistic flame retardant effect, and the flame retardant efficiency is improved to a certain extent compared to amorphous aluminum phosphite.
  • the preparation of the amorphous aluminum phosphite in table 1 adopts the existing conventional method: based on the reaction principle shown below, sodium phosphite and aluminum sulfate are in aqueous phase and under certain temperature conditions to obtain aluminum phosphite precipitation, and by separating
  • the prepared aluminum phosphite is amorphous, and even through various post-processing methods, the aluminum phosphite with crystalline structure cannot be obtained, and the object of the present invention cannot be achieved.
  • the crystalline aluminum phosphite has a particle size of 0.1-1000 ⁇ m, a solubility in water of 0.01-10 g/L, and a bulk density of 80-800 g/L.
  • the residual moisture of the crystalline aluminum phosphite of the present invention is less than 5wt%.
  • the present invention also provides the application of the crystalline aluminum phosphite as or for preparing a flame retardant or a flame retardant synergist.
  • the flame retardant or flame retardant synergist is used for, including:
  • the flame-retardant polymer molding material, flame-retardant polymer film, and flame-retardant polymer fiber are calculated by 100% of the total weight, and the raw material composition includes:
  • the flame retardant polymer molding material, flame retardant polymer film, and flame retardant polymer fiber are calculated by 100% of the total weight, and the raw material composition includes:
  • the flame retardant system includes:
  • the flame retardant is preferably aluminum diethyl hypophosphite.
  • the polymer matrix may be selected from at least one of nylon, polyester and POK (polyketone).
  • the crystalline aluminum phosphite compound of the present invention can be used as a flame retardant for varnishes and foam coatings, as a flame retardant for wood and other cellulose-containing products, and as a non-reactive flame retardant for polymers , for the production of flame-retardant polymer molding materials, for the production of flame-retardant polymer moldings and/or for imparting flame retardancy to polyester and cellulose pure and mixed fabrics by impregnation, and as flame retardant mixtures and synergists in flame retardants.
  • thermoplastic or thermosetting polymer molding materials comprising 0.1 to 45 wt % crystalline aluminum phosphite, 55 to 99.9 wt % thermoplastic or thermosetting A polymer or mixture thereof, 0 to 44.9 wt % of additives, and 0 to 44.9 wt % of filler or reinforcement, wherein the sum of the components is 100 wt %.
  • thermoplastic or thermosetting polymer molding materials comprising 0.1 to 45 wt % of a flame retardant mixture containing 0.1 to 50 wt % crystalline aluminum phosphite compound, 55 to 99.9 wt % flame retardant, 55 to 99.9 wt % thermoplastic or thermoset polymer or mixtures thereof, 0 to 44.9 wt % additives and 0 to 44.9 wt % filler or reinforcement material, where the sum of the components is 100 wt%.
  • thermoplastic or thermosetting polymer moulding materials flame retardant thermoplastic or thermosetting polymer moulding materials, polymer mouldings, polymer films, polymer filaments and polymer fibres, the flame retardant being dialkyl hypophosphorous acid and/or its salts; condensation products of melamine and/or Reaction products of melamine and phosphoric acid and/or reaction products of condensation products of melamine and polyphosphoric acid or mixtures thereof; nitrogen-containing phosphates; benzoguanamine, tris(hydroxyethyl)isocyanurate, allantoin, glycine Urea, melamine, melamine cyanurate, dicyandiamide and/or guanidine; magnesium oxide, calcium oxide, aluminum oxide, zinc oxide, manganese oxide, tin oxide, aluminum hydroxide, boehmite, hydrotalcite, hydrocalumite , magnesium hydroxide, calcium hydroxide, zinc hydroxide, tin oxide hydrate, manganese hydroxide, zinc borate, alkaline zinc
  • thermoplastic or thermosetting polymer molding materials are melam, melem, melon, dimelamine pyrophosphate, Melamine polyphosphate, melam polyphosphate, melon polyphosphate and/or melem polyphosphate and/or their mixed polysalts and/or ammonium hydrogen phosphate, ammonium dihydrogen phosphate and/or Ammonium polyphosphate.
  • Flame retardant thermoplastic or thermosetting polymer molding materials, polymer moldings, polymer films, polymer filaments and polymer fibers, flame retardants are aluminum hypophosphite, zinc hypophosphite, calcium hypophosphite, sodium phosphite, monophenylene Hypophosphorous acid and its salts, mixtures of dialkyl hypophosphorous acid and its salts with monoalkyl hypophosphorous acid and its salts, 2-carboxyethyl alkyl hypophosphorous acid and its salts, 2-carboxyethyl methyl hypophosphorous acid and its salts Its salts, 2-carboxyethyl aryl hypophosphorous acid and its salts, 2-carboxyethyl phenyl hypophosphorous acid and its salts, DOPO and its salts, and adducts on p-benzoquinone.
  • crystalline aluminum phosphite is compounded with diethyl aluminum hypophosphite, which is used in glass fiber reinforced engineering plastics, including various nylon, polyester and POK substrates.
  • the present invention provides a preparation method of crystalline aluminum phosphite, through the reaction of aluminum hydrogen phosphite and a specific aluminum-containing compound under certain conditions, and through a special high-temperature post-treatment The process obtains crystalline aluminum phosphite.
  • the crystalline aluminum phosphite has higher thermal decomposition temperature, lower water absorption and acidity, and can be used as or used for preparing flame retardants or flame retardant synergist.
  • Fig. 1, Fig. 3 are the XRD patterns of crystalline aluminum phosphite
  • Figure 2 is an XRD pattern of amorphous aluminum phosphite.
  • the preparation process is as follows: adding 270 g (1 mol) of aluminum hydrogen phosphite ((H 2 PO 3 ) 3 Al) and 630 g of water into a 2L reaction kettle, fully stirring and dissolving to obtain an aluminum hydrogen phosphite solution. Dissolve 75g of aluminum sulfate in 175g of water in a 500mL beaker, then add 8.1g of concentrated phosphoric acid (H 3 PO 4 ) with a concentration of 85.1 wt% to the aluminum sulfate solution, stir and mix well, and transfer to a dropping funnel.
  • H 3 PO 4 concentrated phosphoric acid
  • the reaction kettle was heated, the temperature was raised to 90° C., and the phosphoric acid-containing aluminum sulfate solution was added dropwise, and the dropwise addition was completed in 2 hours, and the reaction was continued for 1 hour under heat preservation. Filter while hot, and wash the precipitate several times until the conductivity of the washed effluent is less than 50 ⁇ s/cm, and then stop washing.
  • Test TGA take the temperature of 2wt% weight loss as the thermal weight loss temperature.
  • Figure 3 shows the XRD results of the prepared aluminum phosphite.
  • Example 2 It is the same as Example 1, except that sodium phosphite is used instead of aluminum hydrogen phosphite, the other preparation process is the same, and the material is obtained, and the XRD test results show that it is an amorphous structure. Test TGA, water absorption and pH value, the results are shown in Table 2. The method is the preparation method of the existing amorphous aluminum phosphite.
  • Example 2 The same as in Example 1, except that no high-temperature post-treatment is performed, the other preparation processes are the same, and the material is obtained, and the XRD test results show that it is an amorphous structure. TGA, water absorption and pH were tested, and the results are shown in Table 2.
  • the prepared aluminum phosphite of the present invention is a crystalline aluminum phosphite, and the existing conventional processing method can only obtain amorphous aluminum phosphite.
  • crystalline aluminum phosphite has higher thermal decomposition temperature, lower water absorption and weaker acidity. These characteristics have obvious advantages for use as flame retardants.
  • the flame retardant glass fiber reinforced nylon 66 was prepared according to the same general procedure as in Example 2, and the flame retardant properties were tested by sample preparation. V0 level).
  • the flame retardant glass fiber reinforced nylon 66 was prepared according to the same general procedure as in Example 2, and the flame retardant properties were tested by sample preparation. V0 and V1 levels).
  • the flame retardant glass fiber reinforced nylon 66 was prepared according to the same general procedure as in Example 2, and the flame retardant properties were tested by sample preparation. V0 and V1 levels).
  • the crystalline aluminum phosphite of the present invention can synergize with aluminum diethyl hypophosphite to improve the flame retardant effect.
  • the crystalline aluminum phosphite of the present invention when it is synergized with diethyl aluminum hypophosphite, it has better flame retardant effect, which reflects the advantages of crystalline aluminum phosphite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种结晶型亚磷酸铝及其制备方法和作为或用于制备阻燃剂或阻燃协同剂的应用。其制备方法流程为:1、亚磷酸氢铝和含铝化合物按一定比例在有少量浓磷酸存在的情况于水中在80-110℃下反应得到沉淀物;2、对沉淀物洗涤过滤; 3、把沉淀物在100-130℃下烘干水分;4、继续慢速梯级升温加热烘干水分的固体物,于5-10小时左右把物料温度从常温升至不超过350℃,升温速度不超过5℃/min。该结晶亚磷酸铝相对于无定型亚磷酸铝,具有更高的热分解温度,更低的吸水性和更弱的酸性,能与二乙基次磷酸铝协同作用,具有更好的阻燃性能,用于高分子材料的无卤阻燃组分。

Description

一种结晶型亚磷酸铝及其制备方法和应用 技术领域
本发明涉及材料技术领域,具体涉及一种结晶型亚磷酸铝及其制备方法和应用。
背景技术
固体物质的介观状态包括了结晶和非结晶两种聚集态。有些物质为结晶物质,有些则为非结晶物质,这受物质的化学组成影响;但这些聚集状态也受制备时的环境条件,如温度、压力等影响,因此同一种化学物质,可表现为结晶态,也可表现为非结晶态。固体物质的介观聚集状态会影响其物理和化学性能,如熔点,溶解度等,针对不同的应用需要,可选择不同的介观聚集态。
亚磷酸铝由于与二乙基次磷酸铝有很好的阻燃协同性(如公开号为CN107936297A、CN107760023A的专利技术等),且其水溶性和酸性较低,目前被广泛用作阻燃协同剂,应用于玻纤增强工程塑料中,比如尼龙、聚酯等体系中,具有较好的阻燃性。但目前所报道的亚磷酸铝,都是非结晶化合物,物理性质上显示有一定的溶解度,仍然具有一定的吸水性和酸性,因此该复配体系中,仍然存在几个问题:1)亚磷酸铝有一定溶解度,因此阻燃剂容易吸潮,应用于聚合物中制品也有吸潮的风险,影响电气绝缘性能;2)亚磷酸铝所显示的一定酸性,对聚合物和加工设备仍有一定的负面影响;3)热分解温度略显不足,特别是高剪切情况下,如在高玻纤含量下,由于剪切力增强,体系容易变色。这些不足限制了该阻燃剂体系的应用范围。
而经过研究发现,亚磷酸铝的这些不足,可能与其非结晶的聚集结构有关,为了避免亚磷酸铝的这些问题,需要提出一种具有结晶结构的亚磷酸铝,提供制备结晶型亚磷酸铝的合成方法,以及作为阻燃协同剂在高分子材料阻燃中的应用。
发明内容
针对本领域存在的不足之处,本发明提供了一种结晶型亚磷酸铝的制备方法,该结晶结构的亚磷酸铝化合物由亚磷酸氢铝(如无特殊说明,本发明所述亚磷酸氢铝的分子式均为(H 2PO 3) 3Al)和特定含铝化合物在一定条件下反应,并经过特殊的高温后处理工艺获得,该结晶型亚磷酸铝具有更高的热分解温度,更低的吸水性和酸性,可作为或用于制备阻燃剂或阻燃协同剂,应用于高分子材料的阻燃,如与二乙基次磷酸铝复配用作玻纤增强工程塑料的阻燃体系。
一种结晶型亚磷酸铝的制备方法,包括步骤:
(1)将含铝化合物分散于水中后和浓度不小于85wt%的浓磷酸混合,然后加入到80~110℃的亚磷酸氢铝溶液中进行反应;
所述含铝化合物为硫酸铝、硝酸铝、氯化铝、氢氧化铝、氧化铝中的至少一种;
(2)过滤反应混合物,洗涤沉淀物直至洗涤出水的电导率小于50μs/cm;
(3)将洗涤后的沉淀物于100-130℃加热烘干,使沉淀物含水率在0.3wt%以下;
(4)在惰性气氛或真空条件下继续加热沉淀物进行脱水反应,5-10小时内升温至不超过350℃,升温速度不超过5℃/min,最后冷却得到结晶型亚磷酸铝。
如无特殊说明,本发明所述各溶液的溶剂均为水。
本发明制备方法过程可概括为:
1、亚磷酸氢铝和含铝化合物按一定比例在有少量浓磷酸存在的情况于水中在80-110℃下反应,得到亚磷酸铝沉淀。制备结晶型亚磷酸铝使用亚磷酸氢铝作为反应起始原料是关键,选择其它的含磷化合物不能制得结晶型亚磷酸铝。
2、把沉淀物洗涤过滤。
3、把沉淀物在100-130℃下烘干水分。
4、继续慢速梯级升温加热烘干水分的固体物,于5-10小时左右把物料温度升至不超过350℃,升温速度不超过5℃/min。该高温处理过程也是获得结晶型亚磷酸铝的关键步骤,有利于晶体的形成。
如有需要,可将所得结晶型亚磷酸铝粉碎至所需粒径。
步骤(1)中,所述含铝化合物与亚磷酸氢铝可按完全反应等摩尔比加入。
步骤(1)中,作为优选:
所述浓磷酸质量为亚磷酸氢铝质量的2%-5%;
所述含铝化合物分散于水中后所得混合液(含铝化合物不溶时为水悬浮分散体系,水溶性含铝化合物则为溶液)中含铝化合物的质量浓度为15%-50%;
所述亚磷酸氢铝溶液中亚磷酸氢铝的质量浓度为15%-50%;
含铝化合物和浓磷酸的混合液通过滴加的方式加入到亚磷酸氢铝溶液中,反应总时间为1-5小时。
步骤(3)中的加热烘干可采用各种烘箱、烘房、干燥器等。
步骤(4)中的惰性气氛可以是稀有气体气氛、氮气气氛等。
本发明还提供了所述的制备方法制备得到的结晶型亚磷酸铝。
令人惊奇地发现,通过本发明的制备方法可以获得典型XRD衍射图谱如图1所示的结晶型的亚磷酸铝,从XRD衍射结果可以看到具有结晶结构所特有的特征衍射峰。而目前在阻燃领域所使用的亚磷酸铝,其典型XRD衍射图谱如图2所示,谱图上没有窄的特征峰,显示的是一种非晶聚集结构。
XRD图谱结果对比表明本发明的亚磷酸铝与目前所用亚磷酸铝在聚集状态上明显不同,目前所使用的亚磷酸铝为非结晶型,而本发明的亚磷酸铝是一种结晶型。
而对本发明的结晶型亚磷酸铝和现有非晶型亚磷酸进行表征分析,典型物理性能结果如下表1所示。
表1
  2wt%失重温度(℃) 吸水率(%) pH值
结晶型亚磷酸铝 442 0.12 3.0
非晶亚磷酸铝 425 0.50 2.6
从表中结果可以看到,本发明的结晶型亚磷酸铝具有更高的热失重温度,更低的吸水率和更弱的酸性,而这些优点对亚磷酸铝用作阻燃剂是有 利的。而且,经过应用测试,结晶型亚磷酸铝与二乙基次磷酸铝仍有的协同阻燃效果,而且阻燃效率相对于非晶亚磷酸铝有一定的提高。
表1中的非晶亚磷酸铝的制备,采用现有的常规方法:基于如下所示反应原理,亚磷酸钠和硫酸铝在水相和一定温度条件下,制得亚磷酸铝沉淀,通过分离和干燥而得到,但所制得的亚磷酸铝为非结晶的,即便通过各种后处理方法,仍不能得到结晶结构的亚磷酸铝,无法实现本发明的目的。
Na 2HPO 3+Al 2(SO 4)→Al 2(HPO 3) 3+Na 2SO 4
经过发明人广泛而深入的研究,得到了制备结晶型亚磷酸铝的新工艺,其反应原理如下:
Figure PCTCN2021075180-appb-000001
同时结合特殊的后处理工艺,可以得到结晶型亚磷酸铝。
作为优选,所述的结晶型亚磷酸铝,粒径为0.1~1000μm,水中溶解度为0.01~10g/L,堆密度为80~800g/L。
本发明的结晶型亚磷酸铝残留水分小于5wt%。
本发明还提供了所述的结晶型亚磷酸铝作为或用于制备阻燃剂或阻燃协效剂的应用。
所述阻燃剂或阻燃协效剂用于,包括:
清漆或发泡涂料的阻燃;
木材或含纤维素产品的阻燃;
制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
在一优选例中,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总重量以100%计,原料组成包括:
Figure PCTCN2021075180-appb-000002
在另一优选例中,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总重量以100%计,原料组成包括:
Figure PCTCN2021075180-appb-000003
所述的阻燃体系包括:
结晶型亚磷酸铝                   0.1%~50%;
阻燃剂                           50%~99.9%。
所述阻燃剂优选为二乙基次磷酸铝。
所述的聚合物基体可选自尼龙、聚酯和POK(聚酮)中的至少一种。
本发明所述的结晶型亚磷酸铝化合物,可用于清漆和发泡涂料的阻燃剂,用于木材和其它含纤维素产品的阻燃剂,作为用于聚合物的非反应性阻燃剂,用于制备阻燃聚合物模塑材料,用于制备阻燃聚合物成型体和/或用于通过浸渍为聚酯和纤维素纯织物和混合织物配备阻燃性,以及作为阻燃剂混合物和阻燃剂中的协效剂。
阻燃热塑性或热固性聚合物模塑材料、聚合物成型体、聚合物膜、聚合物丝和聚合物纤维,其包含0.1至45wt%的结晶型亚磷酸铝、55至99.9wt%的热塑性或热固性聚合物或其混合物、0至44.9wt%的添加剂和0至44.9wt%的填料或者增强材料,其中各组分之和为100wt%。
阻燃热塑性或热固性聚合物模塑材料、聚合物成型体、聚合物膜、聚合物丝和聚合物纤维,其包含0.1至45wt%的阻燃剂混合物,该阻燃剂混合物含有0.1至50wt%的结晶型亚磷酸铝化合物、55至99.9wt%的阻燃剂,55至99.9wt%的热塑性或热固性聚合物或其混合物、0至44.9wt%的添加剂和0至44.9wt%的填料或者增强材料,其中各组分之和为100wt%。
阻燃热塑性或热固性聚合物模塑材料、聚合物成型体、聚合物膜、聚合物丝和聚合物纤维,阻燃剂为二烷基次磷酸和/或其盐;三聚氰胺的缩合产物和/或三聚氰胺与磷酸的反应产物和/或三聚氰胺的缩合产物与聚磷酸或其混合物的反应产物;含氮磷酸盐;苯并胍胺、三(羟乙基)异氰脲酸酯、尿囊素、甘脲、三聚氰胺、氰尿酸三聚氰胺、双氰胺和/或胍;氧化镁、氧化钙、氧化铝、氧化锌、氧化锰、氧化锡、氢氧化铝、勃姆石、二水滑石、水铝钙石、氢氧化镁、氢氧化钙、氢氧化锌、氧化锡水合物、氢氧化锰、硼酸锌、碱性硅酸锌和/或锡酸锌。
阻燃热塑性或热固性聚合物模塑材料、聚合物成型体、聚合物膜、聚合物丝和聚合物纤维,阻燃剂为蜜白胺、蜜勒胺、蜜隆、二蜜胺焦磷酸盐、蜜胺聚磷酸盐、蜜白胺聚磷酸盐、蜜隆聚磷酸盐和/或蜜勒胺聚磷酸盐和/或它们的混合聚盐和/或为磷酸氢铵、磷酸二氢铵和/或聚磷酸铵。
阻燃热塑性或热固性聚合物模塑材料、聚合物成型体、聚合物膜、聚合物丝和聚合物纤维,阻燃剂为次磷酸铝、次磷酸锌、次磷酸钙、亚磷酸钠、单苯基次磷酸及其盐、二烷基次磷酸及其盐与单烷基次磷酸及其盐的混合物、2-羧乙基烷基次磷酸及其盐、2-羧乙基甲基次磷酸及其盐、2-羧乙基芳基次磷酸及其盐、2-羧乙基苯基次磷酸及其盐、DOPO及其盐和对苯醌上的加合物。
优选的是结晶型亚磷酸铝与二乙基次磷酸铝复配,应用于玻纤增强工程塑料中,包括各种尼龙、聚酯和POK基材。
结晶型亚磷酸铝与二乙基次磷酸铝复配阻燃体系应用玻纤增强工程塑料中时,需要通过双螺杆挤出机的高温熔融,混合分散。
本发明与现有技术相比,主要优点包括:本发明提供一种结晶型亚磷酸铝的制备方法,通过亚磷酸氢铝和特定含铝化合物在一定条件下反应,并经过特殊的高温后处理工艺获得结晶型亚磷酸铝,与现有非晶亚磷酸铝相比,该结晶型亚磷酸铝具有更高的热分解温度,更低的吸水性和酸性,可作为或用于制备阻燃剂或阻燃协同剂。
附图说明
图1、图3为结晶型亚磷酸铝的XRD图;
图2为非结晶亚磷酸铝的XRD图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1 结晶型亚磷酸铝的制备
制备过程为:在2L的反应釜中加入270g(1mol)亚磷酸氢铝 ((H 2PO 3) 3Al)和630g的水,充分搅拌溶解,得到亚磷酸氢铝溶液。在500mL的烧杯中把75g硫酸铝溶于175g水中,再在硫酸铝溶液中加入8.1g浓度为85.1wt%的浓磷酸(H 3PO 4)充分搅拌混合均匀,转移到滴液漏斗中。加热反应釜,升温至90℃,开始滴加含磷酸的硫酸铝溶液,2小时滴加完成,保温继续反应1小时。趁热过滤,并多次洗涤沉淀物,直至洗涤出水电导率小于50μs/cm,停止洗涤。转移物料至烘箱,升温至120℃,干燥60min,固体物水分含量为0.1wt%,再以2℃/min的速度升温至180℃,保持60min,再以1℃/min升温至240℃,保持60min,再以2℃/min的加热速率升温至300℃,保持60min,降温至常温,出料,把物料粉碎,平均粒径D50为38μm,得率为98.2%,并进行相关的测试和应用。
测试项目及方法:
a.对所制备的化合物进行XRD分析,确定所获得化合物是否是结晶体。XRD图谱与图1接近,则认为是结晶体;如果XRD图谱与图2接近,则认为是非结晶体。
b.测试吸水率:称取50g的物料,置于85℃和85%湿度条件下的恒温恒湿箱中,保持7天,测试物料的增重,增重的百分比即为物料的吸水率。
c.测试所制备化合物的酸性;10g粉末物料分散在100g水中,恒温25℃,保持2hr后测试溶液的pH值。
d.测试TGA,以2wt%失重的温度作为热失重温度。
图3示出了所制得亚磷酸铝的XRD结果。
XRD结果表明所制得的亚磷酸铝是一种结晶体。热失重、吸水率和pH值请见表2。
对比例1
与实施例1相同,除了用亚磷酸钠替代亚磷酸氢铝外,其它制备过程相同,得到物料,测试XRD,结果显示为非晶结构。测试TGA、吸水率和pH值,结果见表2。该方法为现有非结晶亚磷酸铝的制备方法。
对比例2
与实施例1相同,除了不进行高温后处理外,其它制备过程相同,得到物料,测试XRD,结果显示为非晶结构。测试TGA、吸水率和pH值, 结果见表2。
对比例3
与对比例1相同,除了不进行高温后处理外,其它制备过程相同,得到物料,测试XRD,结果显示为非晶结构。测试TGA、吸水率和pH值,结果见表2。
表2
  结晶状态 2wt%失重温度(℃) 吸水率(%) pH值
实施例1 结晶型 442 0.12 3.0
对比例1 非结晶 425 0.50 2.6
对比例2 非结晶 280 0.80 2.3
对比例3 非结晶 265 1.05 2.1
从表2的结果看,本发明的制得的亚磷酸铝为结晶型亚磷酸铝,而现有常规工艺方法只能制得非结晶亚磷酸铝。结晶型亚磷酸铝相对于非结晶亚磷酸铝,具有更高的热分解温度,更低的吸水率和更弱的酸性。这些特点对用做阻燃剂具有明显的优势。
阻燃剂的应用
实施例2
采用52wt%的尼龙66,30wt%的玻纤,3.4wt%的实施例1的结晶型亚磷酸铝和14.6wt%二乙基次磷酸铝(LFR8003,江苏利思德新材料有限公司),按照一般规程制得阻燃玻纤增强尼龙66,并制样测试阻燃性能,材料阻燃达到UL94 V0(0.8mm)。
对比例4
采用50wt%的尼龙66,30wt%的玻纤,20wt%二乙基次磷酸铝(LFR8003,江苏利思德新材料有限公司),按照与实施例2相同的一般规程制得阻燃玻纤增强尼龙66,并制样测试阻燃性能,材料阻燃达到UL94 V2(0.8mm)(按照UL94的阻燃分级标准,V2级别阻燃效果劣于V0级别)。
对比例5
采用52wt%的尼龙66,30wt%的玻纤,3.4wt%的对比例1的非结晶型亚磷酸铝和14.6wt%二乙基次磷酸铝(LFR8003,江苏利思德新材料有限公司),按照与实施例2相同的一般规程制得阻燃玻纤增强尼龙66,并制样测试阻燃性能,材料阻燃达到UL94 V1(0.8mm)(根据UL94标准,V1级别的阻燃性劣于V0级别)。
对比例6
采用52wt%的尼龙66,30wt%的玻纤,3.4wt%的对比例2的非结晶型亚磷酸铝和14.6wt%二乙基次磷酸铝(LFR8003,江苏利思德新材料有限公司),按照与实施例2相同的一般规程制得阻燃玻纤增强尼龙66,并制样测试阻燃性能,材料阻燃达到UL94 V2(0.8mm)(根据UL94标准,V2级别的阻燃性劣于V0和V1级别)。
对比例7
采用52wt%的尼龙66,30wt%的玻纤,3.4wt%的对比例3的非结晶型亚磷酸铝和14.6wt%二乙基次磷酸铝(LFR8003,江苏利思德新材料有限公司),按照与实施例2相同的一般规程制得阻燃玻纤增强尼龙66,并制样测试阻燃性能,材料阻燃达到UL94 V2(0.8mm)(根据UL94标准,V2级别的阻燃性劣于V0和V1级别)。
通过应用结果可以看到,本发明的结晶型亚磷酸铝可以和二乙基次磷酸铝协同,提高了阻燃效果。同时相对于非结晶亚磷酸铝,在与二乙基次磷酸铝协同时,具有更好的阻燃效果,体现了结晶型亚磷酸铝的优势。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种结晶型亚磷酸铝的制备方法,其特征在于,包括步骤:
    (1)将含铝化合物分散于水中后和浓度不小于85wt%的浓磷酸混合,然后加入到80~110℃的亚磷酸氢铝溶液中进行反应;
    所述含铝化合物为硫酸铝、硝酸铝、氯化铝、氢氧化铝、氧化铝中的至少一种;
    (2)过滤反应混合物,洗涤沉淀物直至洗涤出水的电导率小于50μs/cm;
    (3)将洗涤后的沉淀物于100-130℃加热烘干,使沉淀物含水率在0.3wt%以下;
    (4)在惰性气氛或真空条件下继续加热沉淀物进行脱水反应,5-10小时内升温至不超过350℃,升温速度不超过5℃/min,最后冷却得到结晶型亚磷酸铝。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中:
    所述浓磷酸质量为亚磷酸氢铝质量的2%-5%;
    所述含铝化合物分散于水中后所得混合液中含铝化合物的质量浓度为15%-50%;
    所述亚磷酸氢铝溶液中亚磷酸氢铝的质量浓度为15%-50%;
    含铝化合物和浓磷酸的混合液通过滴加的方式加入到亚磷酸氢铝溶液中,反应总时间为1-5小时。
  3. 根据权利要求1或2所述的制备方法制备得到的结晶型亚磷酸铝。
  4. 根据权利要求3所述的结晶型亚磷酸铝,其特征在于,粒径为0.1~1000μm,水中溶解度为0.01~10g/L,堆密度为80~800g/L。
  5. 根据权利要求3或4所述的结晶型亚磷酸铝作为或用于制备阻燃剂或阻燃协效剂的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述阻燃剂或阻燃协效剂用于,包括:
    清漆或发泡涂料的阻燃;
    木材或含纤维素产品的阻燃;
    制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
  7. 根据权利要求6所述的应用,其特征在于,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总重量以100%计,原料组成包括:
    Figure PCTCN2021075180-appb-100001
  8. 根据权利要求6所述的应用,其特征在于,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总重量以100%计,原料组成包括:
    Figure PCTCN2021075180-appb-100002
    所述的阻燃体系包括:
    结晶型亚磷酸铝                   0.1%~50%;
    阻燃剂                           50%~99.9%。
  9. 根据权利要求8所述的应用,其特征在于,所述阻燃剂为二乙基次磷酸铝。
  10. 根据权利要求7或8所述的应用,其特征在于,所述的聚合物基体选自尼龙、聚酯和POK中的至少一种。
PCT/CN2021/075180 2020-10-22 2021-02-04 一种结晶型亚磷酸铝及其制备方法和应用 WO2022083032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140842 2020-10-22
CN202011140842.9 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022083032A1 true WO2022083032A1 (zh) 2022-04-28

Family

ID=77868218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075180 WO2022083032A1 (zh) 2020-10-22 2021-02-04 一种结晶型亚磷酸铝及其制备方法和应用

Country Status (5)

Country Link
US (1) US11787921B2 (zh)
EP (1) EP3988504A1 (zh)
JP (1) JP7258295B2 (zh)
CN (1) CN113460984B (zh)
WO (1) WO2022083032A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478625B (zh) * 2022-03-10 2022-11-25 江苏利思德新材料股份有限公司 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用
CN114539621B (zh) * 2022-03-10 2022-10-21 江苏利思德新材料有限公司 一种含磷铝盐复合体及其制备方法和应用
CN114957822B8 (zh) * 2022-05-23 2023-05-23 临沂沂光电缆有限公司 一种阻燃抗蚀电缆材料及其制备方法
CN115073819B (zh) * 2022-06-15 2024-05-03 兰州瑞朴科技有限公司 一种基于生长核的磷酸铝盐阻燃剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489306A (ja) * 1990-07-30 1992-03-23 Taihei Kagaku Sangyo Kk 球状亜リン酸アルミニウム結晶、その製造方法、及び、それを含有する塗料
JP2010111739A (ja) * 2008-11-05 2010-05-20 Teijin Chem Ltd 難燃性ポリ乳酸樹脂組成物
CN101804973A (zh) * 2010-03-15 2010-08-18 南开大学 具有有机无机杂化环的亚磷酸铝微孔晶体材料及合成方法
CN103101893A (zh) * 2013-02-01 2013-05-15 河北联合大学 高分散亚磷酸铝晶体的制备方法
WO2013083248A1 (de) * 2011-12-05 2013-06-13 Clariant International Ltd Mischungen von aluminium-hydrogenphosphiten mit aluminiumsalzen, verfahren zu ihrer herstellung sowie ihre verwendung
CN107082409A (zh) * 2017-04-28 2017-08-22 南开大学 一种微孔亚磷酸铝[Al2(HPO3)3(H2O)3]·H2O的制备方法
WO2018234429A1 (de) * 2017-06-22 2018-12-27 Basf Se Polyamide mit phosphor und al-phosphonaten
CN111201197A (zh) * 2017-10-11 2020-05-26 太平化学产业株式会社 亚磷酸铝和包含亚磷酸铝的组合物
CN111661830A (zh) * 2020-07-16 2020-09-15 深圳市瑞世兴科技有限公司 亚磷酸铝的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341013B2 (ja) 2010-04-20 2013-11-13 太平化学産業株式会社 亜リン酸系難燃剤および難燃性樹脂組成物
DE102011120200A1 (de) * 2011-12-05 2013-06-06 Clariant International Ltd. Flammschutzmittel-Mischungen enthaltend Flammschutzmittel und Aluminiumphosphite, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102011120192A1 (de) 2011-12-05 2013-06-06 Clariant International Ltd. Aluminium-Hydrogenphosphite, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102011120218A1 (de) * 2011-12-05 2013-06-06 Clariant International Ltd. Alkali-Aliminium-Mischphosphite, Verfahren zur ihrer Herstellung sowie deren Verwendung
DE102011120191A1 (de) * 2011-12-05 2013-06-06 Clariant International Ltd. Mischungen von Aluminiumphosphit mit schwerlöslichen Aluminiumsalzen und Fremdionen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN103253682A (zh) 2013-05-20 2013-08-21 南开大学 一种用结晶态亚磷酸铝为铝源合成β分子筛的方法
US9745449B2 (en) * 2013-07-24 2017-08-29 Lanxess Solutions Us Inc. Phosphorus containing flame retardants
JP6842692B2 (ja) * 2016-03-30 2021-03-17 太平化学産業株式会社 亜リン酸アルミニウム、および難燃性樹脂組成物
CN107936297A (zh) 2017-11-22 2018-04-20 江苏利思德新材料有限公司 玻纤增强尼龙用无卤阻燃复配体系及其在无卤阻燃玻纤增强尼龙材料中的应用
CN107760023A (zh) 2017-11-22 2018-03-06 江苏利思德新材料有限公司 一种玻纤增强尼龙用无卤阻燃复配体系及其应用
CN108794805B (zh) * 2018-06-28 2020-06-19 浙江大学 二烷基二硫代次磷酸盐、有机亚磷酸盐及含氮化合物协同的无卤阻燃体系及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489306A (ja) * 1990-07-30 1992-03-23 Taihei Kagaku Sangyo Kk 球状亜リン酸アルミニウム結晶、その製造方法、及び、それを含有する塗料
JP2010111739A (ja) * 2008-11-05 2010-05-20 Teijin Chem Ltd 難燃性ポリ乳酸樹脂組成物
CN101804973A (zh) * 2010-03-15 2010-08-18 南开大学 具有有机无机杂化环的亚磷酸铝微孔晶体材料及合成方法
WO2013083248A1 (de) * 2011-12-05 2013-06-13 Clariant International Ltd Mischungen von aluminium-hydrogenphosphiten mit aluminiumsalzen, verfahren zu ihrer herstellung sowie ihre verwendung
CN104114485A (zh) * 2011-12-05 2014-10-22 科莱恩金融(Bvi)有限公司 亚磷酸氢铝与铝盐的混合物、其制备方法及其用途
CN103101893A (zh) * 2013-02-01 2013-05-15 河北联合大学 高分散亚磷酸铝晶体的制备方法
CN107082409A (zh) * 2017-04-28 2017-08-22 南开大学 一种微孔亚磷酸铝[Al2(HPO3)3(H2O)3]·H2O的制备方法
WO2018234429A1 (de) * 2017-06-22 2018-12-27 Basf Se Polyamide mit phosphor und al-phosphonaten
CN111201197A (zh) * 2017-10-11 2020-05-26 太平化学产业株式会社 亚磷酸铝和包含亚磷酸铝的组合物
CN111661830A (zh) * 2020-07-16 2020-09-15 深圳市瑞世兴科技有限公司 亚磷酸铝的制备方法

Also Published As

Publication number Publication date
US20220127434A1 (en) 2022-04-28
CN113460984B (zh) 2022-08-23
CN113460984A (zh) 2021-10-01
JP2022068842A (ja) 2022-05-10
US11787921B2 (en) 2023-10-17
JP7258295B2 (ja) 2023-04-17
EP3988504A1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2022083032A1 (zh) 一种结晶型亚磷酸铝及其制备方法和应用
WO2020177559A1 (zh) 二烷基次膦酸-烷基亚磷酸金属复合盐及制备方法和用途
WO2019100592A1 (zh) 玻纤增强尼龙用无卤阻燃复配体系及其在无卤阻燃玻纤增强尼龙材料中的应用
WO2019100929A1 (zh) 一种基于磷铝化合物的无卤阻燃复配体系及其在玻纤增强工程塑料中的应用
CN104114486A (zh) 亚磷酸铝与难溶性铝盐和杂质离子的混合物、其制备方法及其用途
CN107936055A (zh) 一种有机亚磷酸铝及其制备方法和应用
WO2023168792A1 (zh) 一种含磷铝盐复合体及其制备方法和应用
JP7402470B2 (ja) ポリ/モノ亜リン酸と二亜リン酸水素塩の縮合物およびその調製と使用
WO2023168791A1 (zh) 无卤阻燃剂组合物及其应用
JP7477125B2 (ja) 高温・高せん断抵抗性を有する高難燃性ハロゲンフリー難燃組成物系及びその使用
CN109627758B (zh) 一种无卤阻燃玻纤增强尼龙
CN105492520B (zh) 由酰胺衍生物制备的阻燃剂及其制造方法
US10731290B2 (en) Liquid flame retardant composition
CN114478625B (zh) 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用
WO2022095294A1 (zh) 具有双峰热失重分解特征的基于亚磷酸铝的复合体及其制备和应用
CN117247600A (zh) 一种多孔性二烷基次膦酸铝颗粒物及其制备方法和应用
CN117417578A (zh) 一种多肉植物状二烷基次膦酸铝及其制备方法和应用
TW202344576A (zh) 具有低殘留三聚氰胺之三聚氰胺聚磷酸鹽之合成
CN108794808A (zh) 二烷基单硫代次磷酸盐阻燃剂及其应用
JP2003119467A (ja) 難燃剤、その製造方法及び難燃性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881458

Country of ref document: EP

Kind code of ref document: A1