WO2023168792A1 - 一种含磷铝盐复合体及其制备方法和应用 - Google Patents

一种含磷铝盐复合体及其制备方法和应用 Download PDF

Info

Publication number
WO2023168792A1
WO2023168792A1 PCT/CN2022/087340 CN2022087340W WO2023168792A1 WO 2023168792 A1 WO2023168792 A1 WO 2023168792A1 CN 2022087340 W CN2022087340 W CN 2022087340W WO 2023168792 A1 WO2023168792 A1 WO 2023168792A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
complex
flame
diethylphosphinate
phosphorus
Prior art date
Application number
PCT/CN2022/087340
Other languages
English (en)
French (fr)
Inventor
李金忠
雷华
Original Assignee
江苏利思德新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏利思德新材料有限公司 filed Critical 江苏利思德新材料有限公司
Publication of WO2023168792A1 publication Critical patent/WO2023168792A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition

Definitions

  • the invention relates to the technical field of new materials, and specifically relates to a phosphorus-containing aluminum salt complex based on aluminum diethylphosphinate that can adjust the crystal form transformation of aluminum diethylphosphinate and its preparation method and application.
  • This compound can adjust the crystal form transformation of aluminum diethylphosphinate, change the crystal form transformation temperature and absorption/release heat of aluminum diethylphosphinate, and even make the crystal form transformation disappear. It can also be used as a flame retardant and retardant. Flame synergist is used for flame retardancy of polymer materials to reduce the negative effects caused by crystalline transformation of aluminum diethylphosphinate in some application fields.
  • the mesoscopic state of solid matter includes two aggregation states: crystalline and amorphous.
  • crystalline solid substances there is usually a melting point or crystalline transition temperature.
  • the melting point or crystalline transition temperature is the characteristic temperature of the compound and is a constant temperature. Even when mixed with other compounds, the melting point or crystalline transition temperature of the compound usually remains unchanged. No change occurs, and substances typically undergo rapid changes in heat at the melting point or crystalline transition temperature.
  • the melting of crystals or the transformation of crystal forms is a physical process, but changes in heat will have an impact on other processes, such as affecting certain reaction processes and causing changes in material dimensions. Therefore, the melting point or crystal transition temperature of crystalline materials is usually the basic physical property that needs attention.
  • the melting point or crystal transition temperature of a crystalline solid can be determined by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • DSC can also measure the heat absorption/release per unit mass when crystal transformation occurs.
  • the magnitude of the heat absorption/release is also Characteristic parameters of crystalline transformation.
  • Aluminum diethylphosphinate is a widely used halogen-free flame retardant that can be used in thermoplastic materials such as nylon, polyester, thermoplastic elastomers, etc., and can also be used in thermosetting materials such as polyurethane and epoxy resin. , unsaturated polyester.
  • Aluminum diethylphosphinate is a crystalline compound. Through DSC testing, it was found that there is an obvious endothermic peak at around 179°C. At this temperature, aluminum diethylphosphinate does not melt, but crystals exist. Form transformation, the crystal form transformation temperature is the characteristic temperature of aluminum diethylphosphinate. The existence of this crystalline transformation temperature will have an impact on the materials used.
  • aluminum diethylphosphinate particles are dispersed in the matrix of the epoxy resin. Since the epoxy resin needs to be molded in It is cured at a certain temperature, and the curing temperature of epoxy resin is very close to the crystal transition temperature of aluminum diethylphosphinate. At this time, the crystal form of aluminum diethylphosphinate changes and absorbs heat, which affects the flame retardancy. The curing reaction of the resin near the agent particles leads to uneven curing of the epoxy resin and the appearance of glue particles that affect the appearance and performance. And in some applications that require relatively high dimensional stability, diethyl aluminum phosphinate is used in thermoplastic materials.
  • the present invention proposes a phosphorus-containing aluminum salt complex based on aluminum ethylbutylphosphinate.
  • a small amount of it is added to aluminum diethylphosphinate, it can significantly affect the performance of diethylphosphinate.
  • the crystal form transformation of aluminum diethyl phosphinate can reduce the crystal form transformation temperature and heat absorption/release at low addition amounts. When the addition amount reaches a certain level, the crystal form transformation of aluminum diethylphosphinate will disappear.
  • the addition of these phosphorus-containing aluminum salt complexes does not affect the flame retardant properties of aluminum diethylphosphinate, which can satisfy applications in some special fields.
  • a complex of multiple phosphorus-containing aluminum salts based on aluminum ethylbutylphosphinate (hereinafter referred to as "phosphorus-containing aluminum salt complex" or “complex”), including:
  • R 1 and R 2 are independently selected from H or C1-C6 alkyl groups, and when either R 1 or R 2 is an ethyl group, the other is not a butyl group;
  • R 3 is H or a C1-C6 alkyl group.
  • the phosphorus-containing aluminum salt complex is different from a single aluminum salt or a mixture of several aluminum salts. It exhibits different properties and is a compound with a new structure.
  • the phosphorus-containing aluminum salt complex of the present invention can regulate the crystal form transformation of aluminum diethylphosphinate, reduce the crystal form transformation temperature of aluminum diethylphosphinate at a low dosage, and reduce the absorption/release during crystal form transformation. Heat, at higher dosages, causes the crystalline transformation to disappear.
  • aluminum ethylbutylphosphinate-aluminum diethylphosphinate composites can be obtained. body. Further research found that aluminum ethyl butyl phosphinate can form composite aluminum salts with aluminum dialkyl phosphinate, aluminum monoalkyl phosphinate, and inorganic aluminum phosphite, as well as with multiple different diamines. Aluminum alkylphosphinate, aluminum monoalkylphosphinate, inorganic aluminum phosphite, etc.
  • the aluminum salt complex cannot be obtained by combining aluminum ethylbutylphosphinate with non-phosphorus-containing compounds, nor can it be obtained by reacting with other non-aluminum metal cationic compounds.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (IV):
  • Formula (IV) represents a preferred complex formed between aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including aluminum diethylphosphinate, a type of aluminum ethylbutylphosphinate except ethylbutylphosphinate.
  • the phosphorus-containing aluminum salt complex of the present invention is formed of dialkyl aluminum phosphinate, a monoalkyl aluminum phosphinate, an inorganic aluminum phosphite, and the like other than aluminum acid and diethyl aluminum phosphinate.
  • Aluminum ethylbutylphosphinate can form an aluminum salt complex with one or more phosphorus-containing aluminum salts.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (V):
  • Formula (V) represents a preferred aluminum salt complex formed by aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including aluminum diethylphosphinate, a monoalkyl aluminum phosphinate, a Three inorganic aluminum phosphites form the phosphorus-containing aluminum salt composite of the present invention having four phosphorus-containing aluminum salts.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (VI):
  • Formula (VI) represents a preferred phosphorus-containing aluminum salt complex formed by aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including aluminum diethylphosphinate, a kind of aluminum salt except ethylbutylphosphinate.
  • Aluminum dialkyl phosphinate and an inorganic aluminum phosphite other than aluminum diethylphosphinate form the phosphorus-containing aluminum salt complex of the present invention having four phosphorus-containing aluminum salts.
  • the phosphorus-containing aluminum salt complex has the structure shown in the following formula (VII):
  • Formula (VII) represents a preferred phosphorus-containing aluminum salt complex formed by aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including a compound other than aluminum ethylbutylphosphinate and diethylphosphine.
  • the phosphorus-containing aluminum salt complex of the present invention is composed of four kinds of phosphorus-containing aluminum salts, including dialkyl aluminum phosphinate, a monoalkyl aluminum phosphinate, and an inorganic aluminum phosphite.
  • the phosphorus-containing aluminum salt complex has the structure shown in the following formula (VIII):
  • Formula (VIII) represents a preferred phosphorus-containing aluminum salt complex formed by aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including aluminum diethylphosphinate, a kind of aluminum salt except ethylbutylphosphinate.
  • the phosphorus-containing aluminum salt complex of the present invention is formed by aluminum dialkyl phosphinate other than aluminum diethyl phosphinate and aluminum diethyl phosphinate.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (IX):
  • Formula (IX) represents a preferred phosphorus-containing aluminum salt complex formed by ethylbutyl aluminum phosphinate and other phosphorus-containing aluminum salts, including a dialkyl phosphonium salt other than ethylbutyl aluminum phosphinate.
  • Aluminum phosphonate and a monoalkyl aluminum phosphonite form a phosphorus-containing aluminum salt complex of the present invention with three phosphorus-containing aluminum salts.
  • the phosphorus-containing aluminum salt complex has a structure represented by the following formula (X):
  • Formula (X) represents the preferred phosphorus-containing aluminum salt complex formed by ethylbutyl aluminum phosphinate and other phosphorus-containing aluminum salts, including a monoalkyl aluminum phosphinate and inorganic aluminum phosphite.
  • Three kinds of phosphorus-containing aluminum salt complexes of the present invention are three kinds of phosphorus-containing aluminum salt complexes of the present invention.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (XI):
  • Formula (XI) represents a preferred phosphorus-containing aluminum salt complex formed by aluminum ethylbutylphosphinate and other phosphorus-containing aluminum salts, including a dialkylphosphonium salt other than aluminum ethylbutylphosphinate.
  • the phosphorus-containing aluminum salt complex of the present invention formed by aluminum phosphonate has two phosphorus-containing aluminum salts.
  • the phosphorus-containing aluminum salt complex has a structure shown in the following formula (XII):
  • Formula (XII) represents a preferred phosphorus-containing aluminum salt complex formed by ethylbutyl aluminum phosphinate and other phosphorus-containing aluminum salts, including a monoalkyl aluminum phosphinate or inorganic aluminum phosphite. Two phosphorus-containing aluminum salt complexes of the present invention.
  • the invention also provides a method for preparing the phosphorus-containing aluminum salt complex, which includes the steps:
  • the soluble salt is usually sodium salt or potassium salt
  • the aluminum-containing compound is preferably at least one of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, and aluminum oxide;
  • the end point of the washing is preferably when the conductivity of the washing water is less than 500 ⁇ s/cm.
  • step (1) the phosphorus-containing composite anion donor and the aluminum ion donor can be added in an equal molar ratio for complete reaction.
  • the strong acid includes concentrated sulfuric acid, concentrated nitric acid, concentrated hydrochloric acid, and concentrated phosphoric acid, and the amount added can be 2% to 5% of the mass of the phosphorus-containing composite anion donor.
  • the aluminum-containing compound When the aluminum-containing compound is insoluble in water, the aluminum-containing compound can be dispersed in water to form a suspended dispersion system. At this time, it reacts with the phosphorus-containing composite anion donor added in the form of an acid, and the presence of a high concentration of strong acid may not be required; When the aluminum compound is a water-soluble compound, it is recommended to react in the presence of a high concentration of strong acid. At this time, it can react with a phosphorus-containing complex anion donor added in the form of a salt.
  • the mass concentration of the aluminum-containing compound in the reaction system is preferably 15%-50%.
  • the reaction time can be 1-5 hours.
  • step (2)
  • the liquid phase pH can be controlled to be less than 4 to obtain a solid precipitate; the pH can be controlled by adding alkali or metal oxides;
  • the drying can use various ovens, drying rooms, dryers, etc., and the drying temperature can be 100-130°C.
  • High-temperature treatment is a key step in the preparation process.
  • the treatment process is related to the composition and proportion of the phosphorus-containing aluminum salt complex and the processing capacity.
  • the temperature setting of the high-temperature treatment is a key factor in the high-temperature treatment. Research has found that when the treatment temperature is lower than 180°C , the phosphorus-containing aluminum salt composite of the present application cannot be obtained, and the upper temperature limit of the high-temperature treatment is the decomposition temperature of the composite, which is usually lower than 450°C.
  • the high-temperature treatment process 0.5-10 hours to raise the temperature to 180-450°C for high-temperature treatment. , the time of high temperature treatment is 1-300min.
  • the high-temperature treatment process in step (2) can also be performed under an inert atmosphere (nitrogen atmosphere, rare gas atmosphere, etc.) or vacuum conditions.
  • the obtained phosphorus-containing aluminum salt composite can be pulverized to a required particle size as needed.
  • the phosphorus-containing aluminum salt complex prepared in the present invention is characterized by DSC.
  • DSC Taking the aluminum ethylbutylphosphinate (0.7)-aluminum diethylphosphinate (0.3) complex with the molecular structure shown in Figure 1 as an example (the numbers indicate the molar ratio of the composite aluminum salt, the same below), the The DSC diagram is shown in Figure 2. It can be seen from the DSC chart that the aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex has no crystalline transformation peak.
  • Figure 3 is a DSC chart of a mixture of aluminum ethyl butyl phosphinate and aluminum diethyl phosphinate (mixing molar ratio 0.7:0.3).
  • Figures 4 and 5 show aluminum ethyl butyl phosphinate and aluminum diethyl phosphinate respectively.
  • the composite with the new structure shown in Figure 1 is obtained according to the process of the present application, which is different from the mixture of the two.
  • the DSC reflects the characteristics of the mixture.
  • the crystal transition temperature is the crystal transition temperature of aluminum diethylphosphinate.
  • the compound salt is not a mixture of the two, but a new structure.
  • FIG. 6 is a DSC chart of a mixture (weight ratio 8:92) formed after the previously prepared aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex is added to aluminum diethylphosphinate.
  • the use of phosphorus-containing aluminum salt complexes can adjust the crystal form transformation of aluminum diethylphosphinate, reduce the crystal form transformation temperature, and even prevent aluminum diethylphosphinate from undergoing crystal form transformation.
  • further research found that when the phosphorus-containing aluminum salt complex is used to adjust the crystal form transformation of aluminum diethylphosphinate, the obtained phosphorus-containing aluminum salt complex does not affect diethylphosphinic acid.
  • Aluminum acid has flame retardant properties, mechanical properties, temperature resistance, migration resistance and other properties. Therefore, the phosphorus-containing aluminum salt complex proposed by the present invention can adjust the crystal form transformation of aluminum diethylphosphinate without affecting the properties of aluminum diethylphosphinate, and achieve the goal of the present invention. .
  • the phosphorus-containing aluminum salt complex as an effective component for regulating aluminum diethylphosphinate, is preferably the phosphorus-containing aluminum ethylbutylphosphinate (structural formula (I)) in the phosphorus-containing aluminum salt complex.
  • structure) molar content is greater than 10%, and the more preferred molar content is not less than 30%. If the crystal form transformation of diethyl aluminum phosphinate is to be eliminated, it is preferred that the molar content of aluminum ethyl butyl phosphinate (phosphorus-containing structure of structural formula (I)) in the phosphorus-containing aluminum salt complex is greater than 20%.
  • the invention also provides the application of the phosphorus-containing aluminum salt complex in regulating the crystal form transformation of aluminum diethylphosphinate.
  • the invention also provides a method for regulating the crystal form transformation of aluminum diethylphosphinate.
  • the phosphorus-containing aluminum salt complex is added to the aluminum diethylphosphinate, thereby reducing the The crystalline transformation temperature of aluminum may cause the crystalline transformation phenomenon of aluminum diethylphosphinate to disappear.
  • the present invention also provides a compound, which consists of: in terms of mass percentage:
  • the phosphorus-containing aluminum salt complex is 0.1%-50%
  • the phosphorus-containing aluminum salt complex is added to aluminum diethylphosphinate to adjust the crystal form transformation. It can be mixed evenly through physical dry mixing. For example, it can be completed in solid mixing machines such as high mixers, slow mixers, and kneaders. .
  • the formulation may also include at least one of the following components (A)-(C):
  • the invention also provides the application of the phosphorus-containing aluminum salt complex and the compound.
  • the phosphorus-containing aluminum salt complex and the compound can be used as a flame retardant or flame retardant synergist, including:
  • the total mass of the flame-retardant polymer molding material, flame-retardant polymer film, and flame-retardant polymer fiber is calculated as 100%.
  • the raw material composition preferably includes:
  • the flame retardant system includes:
  • the polymer matrix can be selected from PU (polyurethane), TPE (thermoplastic elastomer), epoxy resin, thermosetting unsaturated polyester, nylon, thermoplastic polyester, POK (polyketone).
  • flame retardant synergists can be selected from:
  • Dialkylphosphinic acid and/or its salts condensation products of melamine and/or reaction products of melamine and phosphoric acid and/or reaction products of condensation products of melamine and polyphosphoric acid or mixtures thereof; nitrogen-containing phosphates; benzoguanidines Amine, tris(hydroxyethyl)isocyanurate, allantoin, glycoluril, melamine, melamine cyanurate, dicyandiamide and/or guanidine; magnesium oxide, calcium oxide, aluminum oxide, zinc oxide, manganese oxide, Tin oxide, aluminum hydroxide, boehmite, dihydrotalcite, hydrocalumite, magnesium hydroxide, calcium hydroxide, zinc hydroxide, tin oxide hydrate, manganese hydroxide, zinc borate, alkaline zinc silicate and /or zinc stannate; phosphite, hydrogen phosphite or its condensate; phosphate and its derivatives;
  • the present invention has the following significant technical effects:
  • the present invention proposes a phosphorus-containing aluminum salt complex based on aluminum ethylbutylphosphinate.
  • a small amount is added to aluminum diethylphosphinate, it can significantly affect the crystal form of aluminum diethylphosphinate. Transformation, the crystal form transformation temperature can be reduced and the heat absorption/release heat can be reduced at low addition amounts. When the addition amount is high to a certain extent, the crystal form transformation of aluminum diethylphosphinate will disappear.
  • the addition of these phosphorus-containing aluminum salt complexes does not affect the flame retardant properties of aluminum diethylphosphinate, which can satisfy applications in some special fields.
  • Figure 1 shows the molecular structure of aluminum ethylbutylphosphinate (0.7)-aluminum diethylphosphinate (0.3) complex
  • Figure 2 is a DSC chart of the aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex shown in Figure 1;
  • Figure 3 is a DSC chart of a mixture of aluminum ethylbutylphosphinate and aluminum diethylphosphinate (molar ratio 0.7:0.3);
  • Figure 4 is a DSC chart of aluminum ethylbutylphosphinate
  • Figure 5 is a DSC chart of aluminum diethylphosphinate
  • Figure 6 is a DSC chart of the mixture formed after the aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex shown in Figure 1 is added to aluminum diethylphosphinate at a weight ratio of 8:92;
  • Figure 7 is a DSC chart of the mixture formed after the aluminum ethylbutylphosphinate-aluminum diethylphosphinate complex shown in Figure 1 is added to aluminum diethylphosphinate at a weight ratio of 3:7.
  • DSC test method nitrogen atmosphere; heating rate: 10°C/min; temperature range: room temperature -300°C.
  • the preparation process is: Dissolve 120.4g (0.7mol) sodium ethylbutylphosphinate and 43.2g (0.3mol) sodium diethylphosphinate in 381.7g of water in a 2L reaction kettle, stir thoroughly and dissolve. A mixed solution of sodium ethylbutylphosphinate and sodium diethylphosphinate was obtained. Dissolve 57g of aluminum sulfate in 133g of water in a 500mL beaker, then add 4.0g of concentrated sulfuric acid with a concentration of 98wt% to the aluminum sulfate solution, mix thoroughly, and transfer to a dropping funnel.
  • Example 12 none - Example 13 none - Example 14 none - Example 15 none - Example 16 none - Comparative example 1 none - Comparative example 2 have 179.0 Comparative example 3 none - Comparative example 4 none - Comparative example 5 none - Comparative example 6 have 179.0 Comparative example 7 have 179.0 Comparative example 8 have 179.0 Comparative example 9 have 179.0 Comparative example 10 have 179.0 Comparative example 11 have 179.0 Comparative example 12 have 179.0 Comparative example 13 have 179.0 Comparative example 14 have 179.0 Comparative example 15 have 179.0 Comparative example 16 have 179.0 Comparative example 17 have 179.0 Comparative example 18 have 179.0 Comparative example 19 have 179.0 Comparative example 20 Yes (melting point) 215.0
  • Example 1 The same as Example 1, except that the high temperature treatment temperature was set to 220°C, and the DSC of the sample was tested. The results are shown in Table 1.
  • Example 1 The same as Example 1, except that the high temperature treatment was maintained at a temperature of 60 minutes and the DSC of the sample was tested. The results are shown in Table 1.
  • the preparation process is: Dissolve 105g (0.7mol) ethylbutylphosphinic acid and 36.6g (0.3mol) diethylphosphinic acid in 424.8g of water in a 2L reaction kettle, stir and dissolve thoroughly to obtain ethylphosphinic acid. Mixed solution of butylphosphinic acid and diethylphosphinic acid. Disperse 78g aluminum hydroxide in 200g water in a 500mL beaker and transfer it to a dropping funnel. Heat the reaction kettle to 90°C, start adding the aluminum hydroxide suspension dropwise, and complete the dropwise addition in 2 hours. Adjust the pH value to 2.6 through the solid aluminum hydroxide, and keep warm to continue the reaction for 1 hour.
  • Example 1 The same as Example 1, except that the reaction ratio was adjusted to: the molar ratio of sodium ethylbutylphosphinate and sodium diethylphosphinate was 3:7.
  • Example 1 The same as Example 1, except that the reaction ratio was adjusted to: the molar ratio of sodium ethylbutylphosphinate and sodium diethylphosphinate was 1:9.
  • Test DSC and the results are shown in Table 1.
  • Example 2 The same as Example 1, except that sodium ethylhexylphosphinate is added to the reactants, and the ratio of the three reactants is: sodium ethylbutylphosphinate: sodium diethylphosphinate: ethylhexylphosphinate The molar ratio of sodium phosphonate is 0.7:0.2:0.1.
  • Example 7 The same as Example 7, except that sodium ethylphosphinate is added to the reactants, and the ratio of the four reactants is: sodium ethylbutylphosphinate: sodium diethylphosphinate: ethylhexylphosphinate
  • the molar ratio of sodium phosphate:sodium ethylphosphonite is 0.7:0.15:0.1:0.05.
  • Example 7 The same as Example 7, except that sodium phosphinate is added to the reactants, and the ratio of the four reactants is: sodium ethylbutylphosphinate: sodium diethylphosphinate: sodium ethylhexylphosphinate : The molar ratio of sodium phosphite is 0.7:0.15:0.1:0.05.
  • Example 10 Aluminum ethylbutylphosphinate (0.7)-aluminum diethylphosphinate (0.1)-aluminum ethylhexylphosphinate (0.1)-aluminum ethylphosphinate (0.05)-aluminum phosphinate (0.05)Synthesis of complex
  • Example 8 The same as Example 8, except that sodium phosphinate is added to the reactants, and the ratio of the five reactants is: sodium ethylbutylphosphinate: sodium diethylphosphinate: sodium ethylhexylphosphinate : Sodium ethylphosphonite: The molar ratio of sodium phosphite is 0.7:0.1:0.1:0.05:0.05.
  • Example 2 The same as Example 1, except that sodium diethylphosphinate is replaced by sodium ethylhexylphosphinate in the reactants, and the ratio of the two reactants is: sodium ethylbutylphosphinate:ethylhexylphosphinate The molar ratio of sodium phosphonate is 0.7:0.3.
  • Example 2 The same as Example 1, except that sodium diethylphosphinate is replaced by sodium ethylphosphinate in the reactants, and the ratio of the two reactants is: sodium ethylbutylphosphinate:ethylphosphinic acid The molar ratio of sodium is 0.7:0.3.
  • Example 1 The same as Example 1, except that sodium diethylphosphinate is replaced by sodium phosphite in the reactants, and the ratio of the two reactants is: sodium ethylbutylphosphinate: mole of sodium phosphinate 0.7: 0.3.
  • Example 7 The same as Example 7, except that sodium ethylhexylphosphinate is replaced by sodium ethylphosphinate in the reactants, and the ratio of the three reactants is: sodium ethylbutylphosphinate:diethylphosphine
  • the molar ratio of sodium phosphate:sodium ethylphosphonite is 0.7:0.2:0.1.
  • Example 7 The same as Example 7, except that sodium ethylhexylphosphinate is replaced by sodium phosphite in the reactants, and the ratio of the three reactants is: sodium ethylbutylphosphinate: sodium diethylphosphinate: The molar ratio of sodium phosphonite is 0.7:0.2:0.1.
  • Example 7 The same as Example 7, except that sodium diethylphosphinate and sodium ethylhexylphosphinate are not used in the reactants, replaced by sodium ethylphosphinate and sodium phosphite, and the ratio of the three reactants is:
  • the molar ratio of sodium ethylbutylphosphinate:sodium ethylphosphinate:sodium phosphinate is 0.7:0.2:0.1.
  • Example 1 Aluminum ethylbutylphosphinate and aluminum diethylphosphinate were mixed evenly according to the proportion of phosphorus-containing anions in Example 1, and the DSC results of the sample are as shown in Table 1.
  • Example 1 The same as Example 1, except that no high-temperature heat treatment was performed, the prepared sample was tested for DSC, and the results are shown in Table 1.
  • Example 7 The same as Example 7, except that no high-temperature heat treatment was performed, the prepared sample was tested for DSC, and the results are shown in Table 1.
  • Example 7 Mix aluminum ethylbutylphosphinate, aluminum diethylphosphinate and aluminum ethylhexylphosphinate according to the proportion of the composite aluminum salt in Example 7, and perform the same high-temperature heat treatment as in Example 1.
  • the samples were tested by DSC, and the results are shown in Table 1.
  • Example 10 Mix aluminum ethyl butyl phosphinate, aluminum diethyl phosphinate, aluminum ethylhexyl phosphinate, aluminum ethyl phosphinate and aluminum phosphite according to the same composite aluminum salt ratio as in Example 10. The sample was tested for DSC and the results are shown in Table 1.
  • Example 1 The same as Example 1, except that aluminum sulfate was replaced with zinc sulfate, and the prepared samples were tested for DSC. The results are shown in Table 1. (Note: The melting point of zinc diethylphosphinate is 215°C)
  • Example 17 have 177.8 Example 18 have 171.3 Example 19 have 165.5 Example 20 have 155.3 Example 21 none - Example 22 none - Example 23 have 177.1 Example 24 have 178.0 Example 25 have 163.1 Example 26 have 155.2 Example 27 have 157.0 Example 28 have 150.1 Example 29 have 170.4 Example 30 have 171.8 Example 31 have 173.1 Example 32 have 165.2 Example 33 have 166.4 Example 34 have 169.5 Example 35 have 171.2 Example 36 have 171.2 Example 37 have 171.2 Comparative example 21 have 179.0 Comparative example 22 have 179.0 Comparative example 23 have 179.0 Comparative Example 24 have 179.0 Comparative example 25 have 179.0 Comparative example 26 have 179.0 Comparative Example 27 have 179.0 Comparative example 28 have 179.0 Comparative example 29 have 179.0 Comparative example 30 have 179.0 Comparative example 31 have 179.0
  • Comparative example 32 have 179.0 Comparative example 33 have 179.0 Comparative example 34 have 179.0 Comparative example 35 have 179.0 Comparative example 36 have 179.0 Comparative example 37 have 179.0 Comparative example 38 have 179.0 Comparative example 39 have 179.0
  • the phosphorus-containing aluminum salt complex prepared by the process of the present invention is different from the single phosphorus-containing compound and its mixture participating in the complex. It can be seen from the results in Table 2 that the phosphorus-containing aluminum salt complex obtained by the present invention can adjust the crystal form transition of aluminum diethylphosphinate, reduce the crystal form transition temperature of aluminum diethylphosphinate, and Under certain conditions, the crystal transition temperature of aluminum diethylphosphinate disappears.
  • flame-retardant glass fiber reinforced PPA was prepared according to general procedures, and samples were prepared. Testing the flame retardant performance, the material's flame retardancy reaches UL94 V0 (0.8mm), and the shrinkage rate is 0.25%.
  • flame-retardant glass was prepared according to general procedures. Fiber reinforced PPA, and samples were prepared to test the flame retardant properties. The material's flame retardancy reaches UL94 V0 (0.8mm), and the shrinkage rate is 0.30%.
  • flame retardant was prepared according to general procedures. Glass fiber reinforced PPA, and samples were prepared to test the flame retardant performance. The material's flame retardancy reaches UL94 V0 (0.8mm), and the shrinkage rate is 0.6%.
  • flame-retardant glass fiber reinforced PPA was prepared according to general procedures, and samples were prepared to test the flame retardant performance.
  • the material was resistant to Burnability reaches UL94 V0 (0.8mm), shrinkage rate is 0.6%.
  • the phosphorus-containing aluminum salt composite of the present invention and the mixture of the aluminum salt composite and aluminum diethylphosphinate have good flame retardancy and can also significantly reduce the shrinkage rate of the material.
  • FCCL epoxy copper-clad laminates
  • step 2) Coat the halogen-free flame-retardant epoxy resin composition prepared in step 1) on a polyimide insulation film with a thickness of 12.5 ⁇ m through a glue applicator.
  • the glue thickness is 13 ⁇ m, and then placed in an oven at 180°C. Heating for 3 minutes to form a partially cured composition layer on the polyimide thin insulating film, then laminating it with release paper, and rolling it to obtain a highly flexible halogen-free flame retardant covering film.
  • the implementation process is the same as that of Example 40, except that the flame retardant component of the formula system is the phosphorus-containing aluminum salt composite of Example 1, which is replaced by the mixture of diethyl aluminum diethylphosphinate and the phosphorus-containing aluminum salt composite of Example 17.
  • Performance test results The flame retardant performance passed the UL 94 V0 test; there are no glue particles in the appearance of the film.
  • the implementation process is the same as that of Example 40, except that the phosphorus-containing aluminum salt composite of Example 1 of the flame retardant component in the formula system is replaced with the mixture of aluminum diethylphosphinate and aluminum ethylbutylphosphinate of Comparative Example 21.
  • Performance test results The flame retardant performance passed the UL 94 V0 test; there are glue particles in the appearance of the film.
  • the implementation process is the same as that of Example 40, except that the phosphorus-containing aluminum salt composite of Example 1 of the flame retardant component in the formula system is replaced with aluminum diethylphosphinate.
  • Performance test results The flame retardant performance passed the UL 94 V0 test; there are glue particles in the appearance of the film.
  • the phosphorus-containing aluminum salt composite of the present invention and the mixture of the aluminum salt composite and aluminum diethylphosphinate have good flame retardancy, and can also significantly improve the condition of the glue particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

一种基于乙基丁基次膦酸铝的含磷铝盐复合体及其制备方法和应用。该含磷铝盐复合体可调节二乙基次膦酸铝的晶型转变,改变二乙基次膦酸铝的晶型转变温度和吸/放热量,甚至使晶型转变消失,也可作为阻燃剂和阻燃协同剂,应用于高分子材料的阻燃,降低二乙基次膦酸铝在一些应用领域由于晶型转变引起的负面作用。

Description

一种含磷铝盐复合体及其制备方法和应用 技术领域
本发明涉及新材料技术领域,具体涉及一种可调节二乙基次膦酸铝晶型转变的基于乙基丁基次膦酸铝的含磷铝盐复合体及其制备方法和应用。该化合物可调节二乙基次膦酸铝的晶型转变,改变二乙基次膦酸铝的晶型转变温度和吸/放热量,甚至使晶型转变消失,也可作为阻燃剂和阻燃协同剂,应用于高分子材料的阻燃,降低二乙基次膦酸铝在一些应用领域由于晶型转变引起的负面作用。
背景技术
固体物质的介观状态包括了结晶和非结晶两种聚集态。而对于结晶型固体物质通常会存在熔点或晶型转变温度,熔点或晶型转变温度是化合物的特征温度,是一个恒定温度,即便与其它化合物混合时,化合物的熔点或晶型转变温度通常也不会发生变化,在熔点或晶型转变温度下物质通常会发生热量的快速变化。晶体的熔化或晶型的转变过程是物理过程,但由于热量的变化,会对其它过程产生影响,比如会影响某些反应过程、引起材料尺寸的变化等。因此通常结晶型物质的熔点或晶型转变温度是需要关注的基本物性。结晶性固体的熔点或晶型转变温度可以通过差示扫描量热(DSC)方法来测定,此外DSC还可测定发生晶型转变时单位质量的吸/放热量,该吸/放热量的大小也是晶型转变的特征参数。
二乙基次膦酸铝是一种广泛使用的无卤阻燃剂,可应用热塑性材料,如尼龙、聚酯、热塑性弹性体等材料中,也可应用于热固性材料,如聚氨酯、环氧树脂、不饱和聚酯中。二乙基次膦酸铝是一种结晶化合物,通过DSC测试发现,其在179℃左右存在一个明显的吸热峰,在此温度下二乙基次膦酸铝并不熔化,而是存在晶型转变,该晶型转变温度是二乙基次膦酸铝的特征温度。这个晶型转变温度的存在,会对所应用的材料产生影响,比如应用于环氧树脂时,二乙基次膦酸铝颗粒分散在环氧树脂的基体里,由于环氧树脂成型时需要在一定温度下固化,而环氧树脂的固化温度与二乙基次膦酸铝的晶型转变温度非常接近,此时二乙基次膦酸铝晶型发生转变而吸收热量,从而会影响阻燃剂颗粒附近树脂的固化反应,导致环氧树脂固化不均匀,出现影响外观和性能的胶颗粒。以及在一些对尺寸稳定性要求比较高的应用中,二乙基次膦酸铝应用于热塑性材料中,在成型的冷却过程中,由于在晶型转变时发生体积收缩,会引起成型制品大的尺寸差异,而无法达到应用的要求。如果二乙基次膦酸铝不存在晶型 转变,材料将具有更低的成型收缩率,成型制品的尺寸稳定性可以得到保持。因此,在这些应用中,希望二乙基次膦酸铝的晶型转变可以调整,改变晶型转变温度,降低晶型转变时能量的吸收量或者不存在晶型转变过程,这样就可避免在应用过程中的负面作用。
为了解决二乙基次膦酸铝的晶型转变的负面影响,有必要研究可调控二乙基次膦酸铝的晶型转变的方法,改变二乙基次膦酸铝的晶型转变温度,甚至使其晶型转变消失。关于晶型转变的调节,对于小分子化合物,由于晶型转变温度是化合物的一个特征温度,就现状而言,未见关于改变化小分子化合物的晶型转变温度的相关报道,特别是针对二乙基次膦酸铝的晶型转变,更未见相关报道。
发明内容
针对上述技术问题,本发明提出了一种基于乙基丁基次膦酸铝的含磷铝盐复合体,当其少量加入到二乙基次膦酸铝中,可以明显影响二乙基次膦酸铝的晶型转变,在低添加量下可降低晶型转变温度,降低吸/放热量,当添加量高到一定程度时,二乙基次膦酸铝的晶型转变会消失。而且这些含磷铝盐复合体的加入,不影响二乙基次膦酸铝的阻燃性能,这样可以满足一些特殊领域的应用。
一种基于乙基丁基次膦酸铝的多种含磷铝盐的复合体(以下简称“含磷铝盐复合体”或“复合体”),包含有:
结构式(I)的含磷结构,以及
与结构式(II)和/或结构式(III)所指代的一种或多种含磷结构;
Figure PCTCN2022087340-appb-000001
结构式(II)中,R 1、R 2分别独立选自H或C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基;
结构式(III)中,R 3为H或C1-C6的烷基。
该含磷铝盐复合体不同于单一铝盐或几种铝盐的混合物,表现出了不同的性质,是一种具有新的结构的化合物。
本发明的含磷铝盐复合体可以调控二乙基次膦酸铝的晶型转变,在低用量下可以降低二乙基次膦酸铝的晶型转变温度,降低晶型转变时吸/放热量,在较高用量下使得 晶型转变消失。
通过研究发现,不同乙基丁基次膦酸铝和二乙基次膦酸铝比例,根据本申请的制备工艺,都能得到乙基丁基次膦酸铝-二乙基次膦酸铝复合体。进一步的研究发现,乙基丁基次膦酸铝可以与二烷基次膦酸铝、单烷基亚膦酸铝、无机的亚磷酸铝也能形成复合铝盐,以及与多个不同的二烷基次膦酸铝、单烷基亚膦酸铝、无机的亚磷酸铝等复合能得到含磷铝盐复合体,该复合体的组分和比例会影响其调控二乙基次膦酸铝晶型转变的效果。但乙基丁基次膦酸铝与非含磷结构的化合物复合不能得到铝盐复合体,与其它非铝金属阳离子化合物作用也不能得到复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(IV)所示结构:
Figure PCTCN2022087340-appb-000002
式(IV)中,a、b、c、d、e均为摩尔比,a为0.01-0.99,b、c、d、e为0-0.99且不同时为0,a+b+c+d+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
式(IV)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的复合体,其它含磷铝盐包括二乙基次膦酸铝、一种除乙基丁基次膦酸铝和二乙基次膦酸铝外的二烷基次膦酸铝、一种单烷基亚膦酸铝、一种无机的亚磷酸铝等形成的本发明的含磷铝盐复合体。乙基丁基次膦酸铝可以与其中的一种或多种含磷铝盐形成铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(V)所示结构:
Figure PCTCN2022087340-appb-000003
式(V)中,a、b、c、d均为摩尔比,a、b、c、d为0.01-0.97,且a+b+c+d=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
式(V)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的铝盐复合体,包括与二乙基次膦酸铝、一种单烷基亚膦酸铝、一种无机的亚磷酸铝形成具有四种含磷 铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(VI)所示结构:
Figure PCTCN2022087340-appb-000004
式(VI)中,a、b、c、e均为摩尔比,a、b、c、e为0.01-0.97,且a+b+c+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基。
式(VI)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与二乙基次膦酸铝、一种除乙基丁基次膦酸铝和二乙基次膦酸铝外的二烷基次膦酸铝、一种无机的亚磷酸铝形成具有四种含磷铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(VII)所示结构:
Figure PCTCN2022087340-appb-000005
式(VII)中,a、c、d、e均为摩尔比,a、c、d、e为0.01-0.97,且a+c+d+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
式(VII)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与一种除乙基丁基次膦酸铝和二乙基次膦酸铝外的二烷基次膦酸铝、一种单烷基亚膦酸铝、一种无机的亚磷酸铝形成的具有四种含磷铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(VIII)所示结构:
Figure PCTCN2022087340-appb-000006
Figure PCTCN2022087340-appb-000007
式(VIII)中,a、b、c均为摩尔比,a为0.01-0.98,b为0.01-0.98,c为0.01-0.98,a+b+c=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基。
式(VIII)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与二乙基次膦酸铝、一种除乙基丁基次膦酸铝和二乙基次膦酸铝外的二烷基次膦酸铝形成的具有三种含磷铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(IX)所示结构:
Figure PCTCN2022087340-appb-000008
式(IX)中,a、c、d均为摩尔比,a、c、d为0.01-0.98,且a+c+d=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基,R 3为H或C1-C6的烷基。
式(IX)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与一种除乙基丁基次膦酸铝外的二烷基次膦酸铝和一种单烷基亚膦酸铝形成的具有三种含磷铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(X)所示结构:
Figure PCTCN2022087340-appb-000009
式(X)中,a、d、e均为摩尔比,a、d、e为0.01-0.98,且a+d+e=1,R 3为C1-C6的烷基。
式(X)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与一种单烷基亚膦酸铝和无机亚磷酸铝形成的具有三种含磷铝盐的本发明的含磷 铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(XI)所示结构:
Figure PCTCN2022087340-appb-000010
式(XI)中,a、c均为摩尔比,a、c为0.01-0.99,且a+c=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基。
式(XI)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与一种除乙基丁基次膦酸铝外的二烷基次膦酸铝形成的具有两种含磷铝盐的本发明的含磷铝盐复合体。
在一优选例中,所述含磷铝盐复合体具有如下式(XII)所示结构:
Figure PCTCN2022087340-appb-000011
式(XII)中,a、d均为摩尔比,a、d为0.01-0.99,且a+d=1,R 3为H或C1-C6的烷基。
式(XII)表示了乙基丁基次膦酸铝与其它含磷铝盐形成的优选的含磷铝盐复合体,包括与一种单烷基亚膦酸铝或无机亚磷酸铝形成的具有两种含磷铝盐的本发明的含磷铝盐复合体。
本发明还提供了所述的含磷铝盐复合体的制备方法,包括步骤:
(1)将包含有结构式(I)的阴离子部分的乙基丁基次膦酸和/或可溶性乙基丁基次膦酸盐与其它参与复合的包含有结构式(II)和/或结构式(III)的阴离子部分的酸和/或可溶性盐(含磷复合阴离子供体)溶于水(水中可以加入少量强酸或不加入强酸)中,再加入含铝化合物(铝离子供体),在80-90℃下反应;
(2)反应结束后,固液分离取固体洗涤、干燥,然后在180-450℃下高温处理得 到所述的含磷铝盐复合体。
上述制备方法中:
所述的可溶性盐通常是钠盐或钾盐;
所述含铝化合物优选为硫酸铝、硝酸铝、氯化铝、氢氧化铝、氧化铝中的至少一种;
所述洗涤的终点优选为洗涤出水的电导率小于500μs/cm。
步骤(1)中,含磷复合阴离子供体、铝离子供体可按完全反应等摩尔比加入。
步骤(1)中,所述强酸包括浓硫酸、浓硝酸、浓盐酸、浓磷酸,添加量可以为含磷复合阴离子供体质量的2%-5%。
所述含铝化合物不溶于水时,可以把含铝化合物分散于水中形成悬浮分散体系,此时其与以酸形式添加的含磷复合阴离子供体反应,可以不需要高浓度的强酸存在;含铝化合物为水溶性化合物时,建议有高浓度的强酸存在的条件下反应,此时其可以与以盐形式添加的含磷复合阴离子供体反应。
含铝化合物在反应体系中的质量浓度优选为15%-50%。
步骤(1)中,反应时间可以是1-5小时。
步骤(2)中:
反应结束可通过控制液相pH小于4,得到固体沉淀物;pH的控制可以通过加入碱或金属氧化物等实现;
所述干燥可以采用各种烘箱、烘房、干燥器等,干燥温度可以是100-130℃。高温处理是制备工艺的关键步骤,处理工艺和含磷铝盐复合体的组成及比例、处理量有关,高温处理的温度设置是高温处理的关键因素,研究发现,当处理温度低于180℃时,不能得到本申请的含磷铝盐复合体,而高温处理的温度上限为复合体的分解温度,通常低于450℃,高温处理的工艺:0.5-10小时升温至180-450℃进行高温处理,高温处理的时间为1-300min。
步骤(2)的高温处理过程也可以在惰性氛围(氮气气氛、稀有气体气氛等)或真空条件下进行。
在步骤(2)后,可以根据需要将得到的含磷铝盐复合体粉碎至所需粒径。
研究发现,要得到本发明的含磷铝盐复合体,制备方法中的两个步骤都必不可少,即不进行高温处理(包括处理温度低于180℃)或者只是几种含磷铝盐干混后高温热处理都不能得到本申请的含磷铝盐复合体。
对本发明所制备得到的含磷铝盐复合体进行DSC表征。以如图1所示分子结构的 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体(数字表示复合铝盐的摩尔比,下同)为例,其DSC图如图2所示。从DSC图上可以看出,此乙基丁基次膦酸铝-二乙基次膦酸铝复合体没有晶型转变峰。图3是乙基丁基次膦酸铝和二乙基次膦酸铝混合物(混合摩尔比0.7:0.3)的DSC图,图4和图5分别为乙基丁基次膦酸铝和二乙基次膦酸铝的DSC图。从结果看,按照本申请的工艺得到的是图1所示的新结构的复合体,与两者的混合物是不同的。在两者的混合物中,其DSC体现了混合物特性,晶型转变温度是二乙基次膦酸铝的晶型转变温度,由于比例的降低,晶型转变的焓值降低了;而在复合体里,相同的比例下,二乙基次膦酸铝的特征晶型转变峰消失了。因此复合盐不是两者的混合物,而是一种新的结构。
令人惊奇的是,当把前述本发明的少量的含磷铝盐复合体加入到二乙基次膦酸铝中时,可以明显改变二乙基次膦酸铝的晶型转变,降低晶型转变温度,降低晶型转变时的吸/放热量,而且在一定比例下,发现二乙基次膦酸铝的晶型转变消失了。图6为前述制备的乙基丁基次膦酸铝-二乙基次膦酸铝复合体加入到二乙基次膦酸铝里后形成的混合物(重量比8:92)的DSC图。从图中可以看到,当加入8wt%的复合体时,二乙基次膦酸铝的晶型转变温度从179℃降低到了171.3℃,明显改变了二乙基次膦酸铝的晶型转变,降低了晶型转变温度。而且研究发现,随着含磷铝盐复合体加入比例的提高,晶型转变温度降低越多,当加入到30wt%时,二乙基次膦酸铝的晶型转变消失,即在所考察的温度范围内,不发生晶型转变,其DSC图如图7所示。
因此,利用含磷铝盐复合体,可以调节二乙基次膦酸铝的晶型转变,降低晶型转变温度,甚至使二乙基次膦酸铝不发生晶型转变。而且进一步的研究发现,当把所述的含磷铝盐复合体用于调节二乙基次膦酸铝的晶型转变时,所得到的含磷铝盐复合体并不影响二乙基次膦酸铝的阻燃性能、力学性能、耐温性能、耐迁移性等性能。因此本发明提出的含磷铝盐复合体,在不影响二乙基次膦酸铝的各性能前提下,可以实现对二乙基次膦酸铝的晶型转变的调节,达到本发明的目标。
所述的含磷铝盐复合体,作为调节二乙基次膦酸铝的有效组分,优选的是含磷铝盐复合体中乙基丁基次膦酸铝(结构式(I)的含磷结构)摩尔含量大于10%,更优选的摩尔含量不小于30%。如果要消除二乙基次膦酸铝的晶型转变,优选的是含磷铝盐复合体中乙基丁基次膦酸铝(结构式(I)的含磷结构)摩尔含量大于20%。
本发明还提供了所述的含磷铝盐复合体在调控二乙基次膦酸铝晶型转变中的应用。
本发明还提供了一种调控二乙基次膦酸铝晶型转变的方法,将所述的含磷铝盐复合体添加到二乙基次膦酸铝中,从而降低二乙基次膦酸铝的晶型转变温度或使二乙基 次膦酸铝的晶型转变现象消失。
作为一个总的发明构思,本发明还提供了一种复配物,按质量百分比计,其组成包括:
所述的含磷铝盐复合体                                   0.1%-50%,
二乙基次膦酸铝                                         50%-99.9%。
含磷铝盐复合体加入到二乙基次膦酸铝中调节晶型转变,可通过物理干混的方式混合均匀,如可以在高搅机、慢混机和捏合机等固体混合机械内完成。
所述复配物还可包括以下组分(A)-(C)中的至少一种:
(A)乙基丁基次膦酸盐、丁基丁基次膦酸盐、乙基己基次膦酸盐、丁基己基次膦酸盐、己基己基次膦酸盐中的一种或几种非复合盐;
(B)烷基亚膦酸盐;
(C)硫酸盐、氯化物、磷酸盐、亚磷酸盐、次磷酸盐、硝酸盐、乙酸盐、含氮化合物、含铁化合物、含钙化合物、含镁化合物、含钛化合物、含钠化合物、含钾化合物中的一种或几种。
在上述这些化合物存在下,不影响含磷铝盐复合体对二乙基次膦酸铝晶型转变的调节作用。
本发明还提供了所述的含磷铝盐复合体、所述的复配物的应用。所述含磷铝盐复合体、所述复配物可作为阻燃剂或阻燃协效剂,用于,包括:
清漆或发泡涂料的阻燃;
木材或含纤维素产品的阻燃;
制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
所述阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总质量以100%计,原料组成优选包括:
Figure PCTCN2022087340-appb-000012
以质量百分比计,所述的阻燃体系包括:
Figure PCTCN2022087340-appb-000013
Figure PCTCN2022087340-appb-000014
所述的聚合物基体可选自PU(聚氨酯)、TPE(热塑性弹性体)、环氧树脂、热固性不饱和聚酯、尼龙、热塑性聚酯、POK(聚酮)。
所述的阻燃体系中,其它阻燃剂、阻燃协同剂可以选自:
二烷基次膦酸和/或其盐;三聚氰胺的缩合产物和/或三聚氰胺与磷酸的反应产物和/或三聚氰胺的缩合产物与聚磷酸或其混合物的反应产物;含氮磷酸盐;苯并胍胺、三(羟乙基)异氰脲酸酯、尿囊素、甘脲、三聚氰胺、氰尿酸三聚氰胺、双氰胺和/或胍;氧化镁、氧化钙、氧化铝、氧化锌、氧化锰、氧化锡、氢氧化铝、勃姆石、二水滑石、水铝钙石、氢氧化镁、氢氧化钙、氢氧化锌、氧化锡水合物、氢氧化锰、硼酸锌、碱性硅酸锌和/或锡酸锌;亚磷酸盐、亚磷酸氢盐或其缩合物;磷酸盐及其衍生物;
蜜白胺、蜜勒胺、蜜隆、二蜜胺焦磷酸盐、蜜胺聚磷酸盐、蜜白胺聚磷酸盐、蜜隆聚磷酸盐和/或蜜勒胺聚磷酸盐和/或它们的混合聚盐和/或为磷酸氢铵、磷酸二氢铵和/或聚磷酸铵;
次磷酸铝、次磷酸锌、次磷酸钙、亚磷酸钠、单苯基次膦酸及其盐、二烷基次膦酸及其盐与单烷基次膦酸及其盐的混合物、2-羧乙基烷基次膦酸及其盐、2-羧乙基甲基次膦酸及其盐、2-羧乙基芳基次膦酸及其盐、2-羧乙基苯基次膦酸及其盐、DOPO及其盐和对苯醌上的加合物。
与现有技术相比,本发明具有如下显著的技术效果:
本发明提出了一种基于乙基丁基次膦酸铝的含磷铝盐复合体,当其少量加入到二乙基次膦酸铝中,可以明显影响二乙基次膦酸铝的晶型转变,在低添加量下可降低晶型转变温度,降低吸/放热量,当添加量高到一定程度时,二乙基次膦酸铝的晶型转变会消失。而且这些含磷铝盐复合体的加入,不影响二乙基次膦酸铝的阻燃性能,这样可以满足一些特殊领域的应用。
附图说明
图1为乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体分子结构;
图2为图1所示乙基丁基次膦酸铝-二乙基次膦酸铝复合体DSC图;
图3为乙基丁基次膦酸铝和二乙基次膦酸铝混合物(摩尔比0.7:0.3)的DSC图;
图4为乙基丁基次膦酸铝DSC图;
图5为二乙基次膦酸铝DSC图;
图6为图1所示乙基丁基次膦酸铝-二乙基次膦酸铝复合体按重量比8:92加入到二乙基次膦酸铝里后形成的混合物的DSC图;
图7为图1所示乙基丁基次膦酸铝-二乙基次膦酸铝复合体按重量比3:7加入到二乙基次膦酸铝里后形成的混合物的DSC图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
DSC测试方法:氮气氛围;升温速度:10℃/min;温度范围:室温-300℃。
含磷铝盐复合体的制备
实施例1 如图1所示的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体的合成
制备过程为:在2L的反应釜中把120.4g(0.7mol)乙基丁基次膦酸钠和43.2g(0.3mol)二乙基次膦酸钠溶于381.7g的水,充分搅拌溶解,得到乙基丁基次膦酸钠和二乙基次膦酸钠混合溶液。在500mL的烧杯中把57g硫酸铝溶于133g水中,再在硫酸铝溶液中加入4.0g浓度为98wt%的浓硫酸充分搅拌混合均匀,转移到滴液漏斗中。加热反应釜,升温至90℃,开始滴加含硫酸的硫酸铝溶液,2小时滴加完成,保温继续反应1小时。趁热过滤,并多次洗涤沉淀物,直至洗涤出水电导率小于200μs/cm,停止洗涤。转移物料至烘箱,升温至120℃,干燥60min,固体物水分含量为0.1wt%,再以2℃/min的速度升温至180℃,保持60min,再以1℃/min升温至320℃,保持30min,降温至常温,出料,得到乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体。把物料粉碎,平均粒径D50为42μm,得率为96.5%。通过DSC测试样品的晶型转变,测试结果如表1所示。
表1
样品编号 DSC曲线是否存在晶型转变 晶型转变温度(℃)
实施例1 -
实施例2 -
实施例3 -
实施例4 -
实施例5 -
实施例6 160.2
实施例7 -
实施例8 -
实施例9 -
实施例10 -
实施例11 -
实施例12 -
实施例13 -
实施例14 -
实施例15 -
实施例16 -
对比例1 -
对比例2 179.0
对比例3 -
对比例4 -
对比例5 -
对比例6 179.0
对比例7 179.0
对比例8 179.0
对比例9 179.0
对比例10 179.0
对比例11 179.0
对比例12 179.0
对比例13 179.0
对比例14 179.0
对比例15 179.0
对比例16 179.0
对比例17 179.0
对比例18 179.0
对比例19 179.0
对比例20 有(熔点) 215.0
实施例2 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体的合成
与实施例1相同,除了高温处理温度设置220℃,测试样品的DSC,结果如表1所示。
实施例3 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体的合成
与实施例1相同,除了高温处理保持温度60min,测试样品的DSC,结果如表1所示。
实施例4 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体的合成
制备过程为:在2L的反应釜中把105g(0.7mol)乙基丁基次膦酸和36.6g(0.3mol)二乙基次膦酸溶于424.8g的水,充分搅拌溶解,得到乙基丁基次膦酸和二乙基次膦酸的混合溶液。在500mL的烧杯中把78g氢氧化铝分散于200g水中,转移到滴液漏斗中。加热反应釜,升温至90℃,开始滴加氢氧化铝悬浮液,2小时滴加完成,通过氢氧铝固体物调整pH值至2.6,保温继续反应1小时。趁热过滤,并多次洗涤沉淀物,直至洗涤出水电导率小于200μs/cm,停止洗涤。转移物料至烘箱,升温至120℃,干 燥60min,固体物水分含量为0.1wt%,再以2℃/min的速度升温至180℃,保持60min,再以1℃/min升温至320℃,保持60min,降温至常温,出料,得到乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体。把物料粉碎,平均粒径D50为40μm,得率为98.2%,并进行DSC测试,结果如表1所示。
实施例5 乙基丁基次膦酸铝(0.3)-二乙基次膦酸铝(0.7)复合体的合成
与实施例1相同,除了反应的比例调整为:乙基丁基次膦酸钠和二乙基次膦酸钠的摩尔比为3:7。所制得的乙基丁基次膦酸铝(0.3)-二乙基次膦酸铝(0.7)复合体。测试DSC,结果如表1所示。
实施例6 乙基丁基次膦酸铝(0.1)-二乙基次膦酸铝(0.9)复合体的合成
与实施例1相同,除了反应的比例调整为:乙基丁基次膦酸钠和二乙基次膦酸钠的摩尔比为1:9。所制得的乙基丁基次膦酸铝(0.1)-二乙基次膦酸铝(0.9)复合体。测试DSC,结果如表1所示。
实施例7 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基己基次膦酸铝(0.1)复合体的合成
与实施例1相同,除了反应物中增加了乙基己基次膦酸钠,且三种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:乙基己基次膦酸钠的摩尔比为0.7:0.2:0.1。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基己基次膦酸铝(0.1)复合体。测试DSC,结果如表1所示。
实施例8 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-乙基亚膦酸铝(0.05)复合体的合成
与实施例7相同,除了反应物中增加了乙基亚膦酸钠,且四种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:乙基己基次膦酸钠:乙基亚膦酸钠的摩尔比为0.7:0.15:0.1:0.05。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-乙基亚膦酸铝(0.05)复合体。测试DSC,结果如表1所示。
实施例9 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-亚膦酸铝(0.05)复合体的合成
与实施例7相同,除了反应物中增加了亚膦酸钠,且四种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:乙基己基次膦酸钠:亚磷酸钠的摩尔比为0.7:0.15:0.1:0.05。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-亚膦酸铝(0.05)复合体。测试DSC,结果如表1所示。
实施例10 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.1)-乙基己基次膦酸铝 (0.1)-乙基亚膦酸铝(0.05)-亚磷酸铝(0.05)复合体的合成
与实施例8相同,除了反应物中增加了亚膦酸钠,且五种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:乙基己基次膦酸钠:乙基亚膦酸钠:亚磷酸钠的摩尔比为0.7:0.1:0.1:0.05:0.05。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.1)-乙基己基次膦酸铝(0.1)-乙基亚膦酸铝(0.05)-亚磷酸铝(0.05)复合体。测试DSC,结果如表1所示。
实施例11 乙基丁基次膦酸铝(0.7)-乙基己基次膦酸铝(0.3)复合体的合成
与实施例1相同,除了反应物中把二乙基次膦酸钠换成乙基己基次膦酸钠,且两种反应物的比例为:乙基丁基次膦酸钠:乙基己基次膦酸钠的摩尔比为0.7:0.3。所制得的乙基丁基次膦酸铝(0.7)-乙基己基次膦酸铝(0.3)复合体。测试DSC,结果如表1所示。
实施例12 乙基丁基次膦酸铝(0.7)-乙基亚膦酸铝(0.3)复合体的合成
与实施例1相同,除了反应物中把二乙基次膦酸钠换成乙基亚膦酸钠,且两种反应物的比例为:乙基丁基次膦酸钠:乙基亚膦酸钠的摩尔比为0.7:0.3。所制得的乙基丁基次膦酸铝(0.7)-乙基亚膦酸铝(0.3)复合体。测试DSC,结果如表1所示。
实施例13 乙基丁基次膦酸铝(0.7)-亚膦酸铝(0.3)复合体的合成
与实施例1相同,除了反应物中把二乙基次膦酸钠换成亚磷酸钠,且两种反应物的比例为:乙基丁基次膦酸钠:亚膦酸钠的摩尔0.7:0.3。所制得的乙基丁基次膦酸铝(0.7)-亚膦酸铝(0.3)复合体。测试DSC,结果如表1所示。
实施例14 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基亚膦酸铝(0.1)复合体的合成
与实施例7相同,除了反应物中把乙基己基次膦酸钠换成乙基亚膦酸钠,且三种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:乙基亚膦酸钠的摩尔比为0.7:0.2:0.1。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基亚膦酸铝(0.1)复合体。测试DSC,结果如表1所示。
实施例15 乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-亚膦酸铝(0.1)复合体的合成
与实施例7相同,除了反应物中把乙基己基次膦酸钠换成亚磷酸钠,且三种反应物的比例为:乙基丁基次膦酸钠:二乙基次膦酸钠:亚膦酸钠的摩尔比为0.7:0.2:0.1。所制得的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-亚膦酸铝(0.1)复合体。测试DSC,结果如表1所示。
实施例16 乙基丁基次膦酸铝(0.7)-乙基亚膦酸铝(0.2)-亚膦酸铝(0.1)复合体的合成
与实施例7相同,除了反应物中不使用二乙基次膦酸钠和乙基己基次膦酸钠,换成乙基亚膦酸钠和亚磷酸钠,且三种反应物的比例为:乙基丁基次膦酸钠:乙基亚膦酸钠:亚膦酸钠的摩尔比为0.7:0.2:0.1。所制得的乙基丁基次膦酸铝(0.7)-乙基亚膦酸铝(0.2)-亚膦酸铝(0.1)复合体。测试DSC,结果如表1所示。
对比例1
测试乙基丁基次膦酸铝样品的DSC,结果如表1所示。
对比例2
测试二乙基次膦酸铝样品的DSC,结果如表1所示。
对比例3
测试乙基己基次膦酸铝样品的DSC,结果如表1所示。
对比例4
测试乙基亚膦酸铝样品的DSC,结果如表1所示。
对比例5
测试亚膦酸铝样品的DSC,结果如表1所示。
对比例6
把乙基丁基次膦酸铝和二乙基次膦酸铝按实施例1的含磷阴离子比例混合均匀,样品的DSC,结果如表1所示。
对比例7
与实施例1相同,除了不进行高温热处理外,对制备得到的样品测试DSC,结果如表1所示。
对比例8
把乙基丁基次膦酸铝和二乙基次膦酸铝按实施例1的复合铝盐比例混合均匀,进行与实施例1相同的高温热处理,对制备得到的样品测试DSC,结果如表1所示。
对比例9
与实施例7相同,除了不进行高温热处理外,对制备得到的样品测试DSC,结果如表1所示。
对比例10
把乙基丁基次膦酸铝、二乙基次膦酸铝和乙基己基次膦酸铝按实施例7的复合铝盐比例混合均匀,进行与实施例1相同的高温热处理,对制备得到的样品测试DSC, 结果如表1所示。
对比例11
把乙基丁基次膦酸铝、二乙基次膦酸铝、乙基己基次膦酸铝和乙基亚膦酸铝按实施例8相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例12
把乙基丁基次膦酸铝、二乙基次膦酸铝、乙基己基次膦酸铝和亚磷酸铝按实施例9相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例13
把乙基丁基次膦酸铝、二乙基次膦酸铝、乙基己基次膦酸铝、乙基亚膦酸铝和亚磷酸铝按实施例10相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例14
把乙基丁基次膦酸铝和乙基己基次膦酸铝按实施例11相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例15
把乙基丁基次膦酸铝和乙基亚膦酸铝按实施例12相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例16
把乙基丁基次膦酸铝和亚膦酸铝按实施例13相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例17
把乙基丁基次膦酸铝、二乙基次膦酸铝和乙基亚膦酸铝按实施例14相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例18
把乙基丁基次膦酸铝、二乙基次膦酸铝和亚膦酸铝按实施例15相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例19
把乙基丁基次膦酸铝、乙基亚膦酸铝和亚磷酸铝按实施例16相同的复合铝盐比例混合均匀,对样品测试DSC,结果如表1所示。
对比例20
与实施例1相同,除了把硫酸铝换成硫酸锌,对制备得到的样品测试DSC,结果 如表1所示。(注:二乙基次膦酸锌的熔点温度为215℃)
含磷复合铝盐对二乙基次膦酸铝晶型的调节
实施例17
在二乙基次膦酸铝中加入3%(以混合后总质量为100%计,下同)实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
表2
样品编号 DSC曲线是否存在晶型转变 晶型转变温度(℃)
实施例17 177.8
实施例18 171.3
实施例19 165.5
实施例20 155.3
实施例21 -
实施例22 -
实施例23 177.1
实施例24 178.0
实施例25 163.1
实施例26 155.2
实施例27 157.0
实施例28 150.1
实施例29 170.4
实施例30 171.8
实施例31 173.1
实施例32 165.2
实施例33 166.4
实施例34 169.5
实施例35 171.2
实施例36 171.2
实施例37 171.2
对比例21 179.0
对比例22 179.0
对比例23 179.0
对比例24 179.0
对比例25 179.0
对比例26 179.0
对比例27 179.0
对比例28 179.0
对比例29 179.0
对比例30 179.0
对比例31 179.0
对比例32 179.0
对比例33 179.0
对比例34 179.0
对比例35 179.0
对比例36 179.0
对比例37 179.0
对比例38 179.0
对比例39 179.0
实施例18
在二乙基次膦酸铝中加入8%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例19
在二乙基次膦酸铝中加入12%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例20
在二乙基次膦酸铝中加入20%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例21
在二乙基次膦酸铝中加入30%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例22
在二乙基次膦酸铝中加入70%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例23
在二乙基次膦酸铝中加入8%实施例5制备得到的乙基丁基次膦酸铝(0.3)-二乙基次膦酸铝(0.7)复合体,混匀,取样测试DSC,结果如表2所示。
实施例24
在二乙基次膦酸铝中加入8%实施例6制备得到的乙基丁基次膦酸铝(0.1)-二乙基次膦酸铝(0.9)复合体,混匀,取样测试DSC,结果如表2所示。
实施例25
在二乙基次膦酸铝中加入8%实施例7制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基己基次膦酸铝(0.1)复合体,混匀,取样测试DSC,结果如表2所示。
实施例26
在二乙基次膦酸铝中加入8%实施例8制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-乙基亚膦酸铝(0.05)复合体,混匀,取样测试DSC,结果如表2所示。
实施例27
在二乙基次膦酸铝中加入8%实施例9制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.15)-乙基己基次膦酸铝(0.1)-亚磷酸铝(0.05)复合体,混匀,取样测试DSC,结果如表2所示。
实施例28
在二乙基次膦酸铝中加入8%实施例10制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.1)-乙基己基次膦酸铝(0.1)-乙基亚膦酸铝(0.05)-亚磷酸铝(0.05)复合体,混匀,取样测试DSC,结果如表2所示。
实施例29
在二乙基次膦酸铝中加入8%实施例11制备得到的乙基丁基次膦酸铝(0.7)-乙基己基次膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例30
在二乙基次膦酸铝中加入8%实施例12制备得到的乙基丁基次膦酸铝(0.7)-乙基亚膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例31
在二乙基次膦酸铝中加入8%实施例13制备得到的乙基丁基次膦酸铝(0.7)-亚膦酸铝(0.3)复合体,混匀,取样测试DSC,结果如表2所示。
实施例32
在二乙基次膦酸铝中加入8%实施例14制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-乙基亚膦酸铝(0.1)复合体,混匀,取样测试DSC,结果如表2所示。
实施例33
在二乙基次膦酸铝中加入8%实施例15制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.2)-亚膦酸铝(0.1)复合体,混匀,取样测试DSC,结果如表2所示。
实施例34
在二乙基次膦酸铝中加入8%实施例16制备得到的乙基丁基次膦酸铝(0.7)-乙 基亚膦酸铝(0.2)-亚膦酸铝(0.1)复合体,混匀,取样测试DSC,结果如表2所示。
实施例35
在二乙基次膦酸铝中加入8%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体和1%的乙基亚膦铝,混匀,取样测试DSC,结果如表2所示。
实施例36
在二乙基次膦酸铝中加入8%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体和0.5%的硫酸钠,混匀,取样测试DSC,结果如表2所示。
实施例37
在二乙基次膦酸铝中加入8%实施例1制备得到的乙基丁基次膦酸铝(0.7)-二乙基次膦酸铝(0.3)复合体和1%的亚磷酸铝,混匀,取样测试DSC,结果如表2所示。
对比例21
在二乙基次膦酸铝中加入8%的乙基丁基次膦酸铝盐,混匀,取样测试DSC,结果如表2所示。
对比例22
在二乙基次膦酸铝中加入8%的对比例3的样品,混匀,取样测试DSC,结果如表2所示。
对比例23
在二乙基次膦酸铝中加入8%的对比例4的样品,混匀,取样测试DSC,结果如表2所示。
对比例24
在二乙基次膦酸铝中加入8%的对比例5的样品,混匀,取样测试DSC,结果如表2所示。
对比例25
在二乙基次膦酸铝中加入8%的对比例6的样品,混匀,取样测试DSC,结果如表2所示。
对比例26
在二乙基次膦酸铝中加入8%的对比例7的样品,混匀,取样测试DSC,结果如表2所示。
对比例27
在二乙基次膦酸铝中加入8%的对比例8的样品,混匀,取样测试DSC,结果如 表2所示。
对比例28
在二乙基次膦酸铝中加入8%的对比例9的样品,混匀,取样测试DSC,结果如表2所示。
对比例29
在二乙基次膦酸铝中加入8%的对比例10的样品,混匀,取样测试DSC,结果如表2所示。
对比例30
在二乙基次膦酸铝中加入8%的对比例11的样品,混匀,取样测试DSC,结果如表2所示。
对比例31
在二乙基次膦酸铝中加入8%的对比例12的样品,混匀,取样测试DSC,结果如表2所示。
对比例32
在二乙基次膦酸铝中加入8%的对比例13的样品,混匀,取样测试DSC,结果如表2所示。
对比例33
在二乙基次膦酸铝中加入8%的对比例14的样品,混匀,取样测试DSC,结果如表2所示。
对比例34
在二乙基次膦酸铝中加入8%的对比例15的样品,混匀,取样测试DSC,结果如表2所示。
对比例35
在二乙基次膦酸铝中加入8%的对比例16的样品,混匀,取样测试DSC,结果如表2所示。
对比例36
在二乙基次膦酸铝中加入8%的对比例17的样品,混匀,取样测试DSC,结果如表2所示。
对比例37
在二乙基次膦酸铝中加入8%的对比例18的样品,混匀,取样测试DSC,结果如表2所示。
对比例38
在二乙基次膦酸铝中加入8%的对比例19的样品,混匀,取样测试DSC,结果如表2所示。
对比例39
在二乙基次膦酸铝中加入8%的对比例20的样品,混匀,取样测试DSC,结果如表2所示。
从表1的结果看,本发明的工艺制得的含磷铝盐复合体,是一种不同于参与复合的单种含磷化合物及其混合物。从表2的结果可以看到,本发明所得到的含磷铝盐复合体可以调节二乙基次膦酸铝的晶型转变,降低二乙基次膦酸铝的晶型转变温度,并在一定条件下使得二乙基次膦酸铝的晶型转变温度消失。
含磷铝盐复合体的应用
实施例38
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的根据实施例1的本发明的含磷铝盐复合体,按照一般规程制得阻燃玻纤增强PPA,并制样测试阻燃性能,材料阻燃达到UL94 V0(0.8mm),收缩率为0.25%。
实施例39
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的根据实施例17的二乙基次膦酸铝和含磷铝盐复合体的混合物,按照一般规程制得阻燃玻纤增强PPA,并制样测试阻燃性能,材料阻燃达到UL94 V0(0.8mm),收缩率为0.30%。
对比例40
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的对比例21的二乙基次膦酸铝和乙基丁基次膦酸铝的混合物,按照一般规程制得阻燃玻纤增强PPA,并制样测试阻燃性能,材料阻燃达到UL94 V0(0.8mm),收缩率为0.6%。
对比例41
采用50%wt的高温尼龙PPA,30%wt的玻纤,20%wt的二乙基次膦酸铝,按照一般规程制得阻燃玻纤增强PPA,并制样测试阻燃性能,材料阻燃达到UL94 V0(0.8mm),收缩率为0.6%。
通过应用结果可以看到,本发明的含磷铝盐复合体以及该铝盐复合体和二乙基次膦酸铝的混合物都具有好的阻燃性,同时还能明显降低材料的收缩率。
实施例40
按下列步骤制备和表征环氧覆铜板(FCCL):
1)按质量份,通过以下配方,将各原料共混后配制无卤阻燃环氧树脂组合物:
Figure PCTCN2022087340-appb-000015
用丁酮溶剂调节胶液的固体含量为40%,混制成无卤阻燃环氧树脂组合物。
2)将步骤1)配制的无卤阻燃环氧树脂组合物,通过涂胶机涂在厚度12.5μm的聚酰亚胺绝缘膜上,涂胶厚度为13μm,再放进180℃的烘箱中加热3分钟,以在聚酰亚胺薄绝缘膜上形成部分固化的组合物层,然后将其与离型纸覆合,收卷获得高柔软无卤阻燃覆盖膜。
性能测试结果:阻燃性能通过UL 94 V0测试;胶膜外观无胶颗粒。
实施例41
实施过程与实施例40相同,除了配方体系中阻燃组分实施例1的含磷铝盐复合体换用实施例17的二乙基次膦酸铝和含磷铝盐复合体的混合物。性能测试结果:阻燃性能通过UL 94 V0测试;胶膜外观无胶颗粒。
对比例42
实施过程与实施例40相同,除了配方体系中阻燃组分实施例1的含磷铝盐复合体换用对比例21的二乙基次膦酸铝和乙基丁基次膦酸铝的混合物。性能测试结果:阻燃性能通过UL 94 V0测试;胶膜外观存在胶颗粒。
对比例43
实施过程与实施例40相同,除了配方体系中阻燃组分实施例1的含磷铝盐复合体换用二乙基次膦酸铝。性能测试结果:阻燃性能通过UL 94 V0测试;胶膜外观存在胶颗粒。
通过应用结果可以看到,本发明的含磷铝盐复合体以及该铝盐复合体和二乙基次膦酸铝的混合物都具有好的阻燃性,同时还能明显改善胶颗粒情况。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (21)

  1. 一种基于乙基丁基次膦酸铝的多种含磷铝盐的复合体,其特征在于,所述复合体包含有:
    结构式(I)的含磷结构,以及
    结构式(II)和/或结构式(III)所指代的一种或多种含磷结构;
    Figure PCTCN2022087340-appb-100001
    结构式(II)中,R 1、R 2分别独立选自H或C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基;
    结构式(III)中,R 3为H或C1-C6的烷基。
  2. 根据权利要求1所述的复合体,其特征在于,所述复合体具有如下式(IV)所示结构:
    Figure PCTCN2022087340-appb-100002
    式(IV)中,a、b、c、d、e均为摩尔比,a为0.01-0.99,b、c、d、e为0-0.99且不同时为0,a+b+c+d+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
  3. 根据权利要求2所述的复合体,其特征在于,所述复合体具有如下式(V)所示结构:
    Figure PCTCN2022087340-appb-100003
    式(V)中,a、b、c、d均为摩尔比,a、b、c、d为0.01-0.97,且a+b+c+d=1, R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
  4. 根据权利要求2所述的复合体,其特征在于,所述复合体具有如下式(VI)所示结构:
    Figure PCTCN2022087340-appb-100004
    式(VI)中,a、b、c、e均为摩尔比,a、b、c、e为0.01-0.97,且a+b+c+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基。
  5. 根据权利要求2所述的复合体,其特征在于,所述复合体具有如下式(VII)所示结构:
    Figure PCTCN2022087340-appb-100005
    式(VII)中,a、c、d、e均为摩尔比,a、c、d、e为0.01-0.97,且a+c+d+e=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基,R 3为C1-C6的烷基。
  6. 根据权利要求2所述的复合体,其特征在于,所述复合体具有如下式(VIII)所示结构:
    Figure PCTCN2022087340-appb-100006
    式(VIII)中,a、b、c均为摩尔比,a为0.01-0.98,b为0.01-0.98,c为0.01-0.98, a+b+c=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为乙基和丁基。
  7. 根据权利要求1所述的复合体,其特征在于,所述复合体具有如下式(IX)所示结构:
    Figure PCTCN2022087340-appb-100007
    式(IX)中,a、c、d均为摩尔比,a、c、d为0.01-0.98,且a+c+d=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基,R 3为H或C1-C6的烷基。
  8. 根据权利要求2所述的复合体,其特征在于,所述复合体具有如下式(X)所示结构:
    Figure PCTCN2022087340-appb-100008
    式(X)中,a、d、e均为摩尔比,a、d、e为0.01-0.98,且a+d+e=1,R 3为C1-C6的烷基。
  9. 根据权利要求1所述的复合体,其特征在于,所述复合体具有如下式(XI)所示结构:
    Figure PCTCN2022087340-appb-100009
    式(XI)中,a、c均为摩尔比,a、c为0.01-0.99,且a+c=1,R 1、R 2分别独立选自C1-C6的烷基,且当R 1、R 2中任一个为乙基时,另一个不为丁基。
  10. 根据权利要求1所述的复合体,其特征在于,所述复合体具有如下式(XII)所示结构:
    Figure PCTCN2022087340-appb-100010
    式(XII)中,a、d均为摩尔比,a、d为0.01-0.99,且a+d=1,R 3为H或C1-C6的烷基。
  11. 根据权利要求1所述的复合体的制备方法,其特征在于,包括步骤:
    (1)将包含有结构式(I)的阴离子部分的乙基丁基次膦酸和/或可溶性乙基丁基次膦酸盐与其它参与复合的包含有结构式(II)和/或结构式(III)的阴离子部分的酸和/或可溶性盐溶于水中,再加入含铝化合物,在80-90℃下反应;
    (2)反应结束后,固液分离取固体洗涤、干燥,然后在180-450℃下高温处理得到所述的复合体。
  12. 根据权利要求1-10任一项所述的复合体在调控二乙基次膦酸铝晶型转变中的应用。
  13. 一种调控二乙基次膦酸铝晶型转变的方法,其特征在于,将权利要求1-10任一项所述的复合体添加到二乙基次膦酸铝中,从而降低二乙基次膦酸铝的晶型转变温度或使二乙基次膦酸铝的晶型转变现象消失。
  14. 一种复配物,其特征在于,按质量百分比计,其组成包括:
    权利要求1-10任一项所述的复合体                  0.1%-50%,
    二乙基次膦酸铝                                 50%-99.9%。
  15. 根据权利要求14所述的复配物,其特征在于,所述复配物还包括以下组分(A)-(C)中的至少一种:
    (A)乙基丁基次膦酸盐、丁基丁基次膦酸盐、乙基己基次膦酸盐、丁基己基次膦酸盐、己基己基次膦酸盐中的一种或几种非复合盐;
    (B)烷基亚膦酸盐;
    (C)硫酸盐、氯化物、磷酸盐、亚磷酸盐、次磷酸盐、硝酸盐、乙酸盐、含氮化合物、含铁化合物、含钙化合物、含镁化合物、含钛化合物、含钠化合物、含钾化合物中的一种或几种。
  16. 根据权利要求1-10任一项所述的复合体的应用,其特征在于,所述复合体作为阻燃剂或阻燃协效剂,用于,包括:
    清漆或发泡涂料的阻燃;
    木材或含纤维素产品的阻燃;
    制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
  17. 根据权利要求16所述的应用,其特征在于,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总质量以100%计,原料组成包括:
    Figure PCTCN2022087340-appb-100011
    以质量百分比计,所述的阻燃体系包括:
    所述复合体                                       1%-100%,
    其它阻燃协同剂                                   0-99%。
  18. 根据权利要求17所述的应用,其特征在于,所述聚合物基体选自聚氨酯、热塑性弹性体、环氧树脂、热固性不饱和聚酯、尼龙、热塑性聚酯、POK。
  19. 根据权利要求14所述的复配物的应用,其特征在于,所述复配物作为阻燃剂或阻燃协效剂,用于,包括:
    清漆或发泡涂料的阻燃;
    木材或含纤维素产品的阻燃;
    制备阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维。
  20. 根据权利要求19所述的应用,其特征在于,所述的阻燃聚合物模塑材料、阻燃聚合物膜、阻燃聚合物纤维,总质量以100%计,原料组成包括:
    Figure PCTCN2022087340-appb-100012
    以质量百分比计,所述的阻燃体系包括:
    所述复配物                                       1%-100%,
    其它阻燃协同剂                                   0-99%。
  21. 根据权利要求20所述的应用,其特征在于,所述聚合物基体选自聚氨酯、热塑性弹性体、环氧树脂、热固性不饱和聚酯、尼龙、热塑性聚酯、POK。
PCT/CN2022/087340 2022-03-10 2022-04-18 一种含磷铝盐复合体及其制备方法和应用 WO2023168792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210231009.8A CN114539621B (zh) 2022-03-10 2022-03-10 一种含磷铝盐复合体及其制备方法和应用
CN202210231009.8 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023168792A1 true WO2023168792A1 (zh) 2023-09-14

Family

ID=81664189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087340 WO2023168792A1 (zh) 2022-03-10 2022-04-18 一种含磷铝盐复合体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114539621B (zh)
WO (1) WO2023168792A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478625B (zh) * 2022-03-10 2022-11-25 江苏利思德新材料股份有限公司 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用
CN115819844B (zh) * 2022-12-05 2024-07-12 金发科技股份有限公司 一种烷基亚膦酸复合盐及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143844A (ja) * 2004-11-18 2006-06-08 Hitachi Chem Co Ltd 樹脂組成物およびそれを用いたプリプレグ、金属張積層板、印刷配線板
CN107641218A (zh) * 2016-07-20 2018-01-30 科莱恩塑料和涂料有限公司 阻燃剂混合物、其制备及其用途
CN111662323A (zh) * 2019-03-07 2020-09-15 黎杰 二烷基次膦酸-烷基亚磷酸金属复合盐,其制备方法和用途
CN111825883A (zh) * 2019-04-15 2020-10-27 黎杰 多二烷基次膦酸金属复合盐和/或其混合物,和其用途
CN112876736A (zh) * 2020-09-01 2021-06-01 黎杰 二烷基次膦酸-亚磷酸铝复合盐,其制备方法和用途
EP3926002A1 (de) * 2020-06-15 2021-12-22 Clariant International Ltd Flammschutzmittel-stabilisator-kombination für thermoplastische polymere

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851852B (zh) * 2018-12-28 2021-03-23 江苏利思德新材料有限公司 一种低腐蚀性的二烷基次膦酸盐组合物及其应用
CN113460984B (zh) * 2020-10-22 2022-08-23 江苏利思德新材料有限公司 一种结晶型亚磷酸铝及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143844A (ja) * 2004-11-18 2006-06-08 Hitachi Chem Co Ltd 樹脂組成物およびそれを用いたプリプレグ、金属張積層板、印刷配線板
CN107641218A (zh) * 2016-07-20 2018-01-30 科莱恩塑料和涂料有限公司 阻燃剂混合物、其制备及其用途
CN111662323A (zh) * 2019-03-07 2020-09-15 黎杰 二烷基次膦酸-烷基亚磷酸金属复合盐,其制备方法和用途
CN111825883A (zh) * 2019-04-15 2020-10-27 黎杰 多二烷基次膦酸金属复合盐和/或其混合物,和其用途
EP3926002A1 (de) * 2020-06-15 2021-12-22 Clariant International Ltd Flammschutzmittel-stabilisator-kombination für thermoplastische polymere
CN112876736A (zh) * 2020-09-01 2021-06-01 黎杰 二烷基次膦酸-亚磷酸铝复合盐,其制备方法和用途

Also Published As

Publication number Publication date
CN114539621B (zh) 2022-10-21
CN114539621A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023168792A1 (zh) 一种含磷铝盐复合体及其制备方法和应用
JP7258295B2 (ja) 結晶型亜リン酸アルミニウム及びその製造方法ならびに使用
US9505904B2 (en) Mixtures of aluminum hydrogenphosphites with aluminum salts, process for the production thereof and the use thereof
WO2020177559A1 (zh) 二烷基次膦酸-烷基亚磷酸金属复合盐及制备方法和用途
WO2019144331A1 (zh) 一种氨基三亚甲基膦酸铝及其制备方法和应用
WO2023168791A1 (zh) 无卤阻燃剂组合物及其应用
CN111004285B (zh) 一种细粒度哌嗪聚磷酸盐的制备方法
CN111116987A (zh) 一种细粒度次磷酸铝复合阻燃剂合成的方法
JP7402470B2 (ja) ポリ/モノ亜リン酸と二亜リン酸水素塩の縮合物およびその調製と使用
CN105367604A (zh) 一种含磷氮星型成炭剂及其制备方法
CN114539618A (zh) 一种硅橡胶无卤阻燃剂及其制备方法和应用
TW201920633A (zh) 用於聚合物組成物之阻燃劑組合及其用途
WO2020047900A1 (zh) 阻燃剂、复合阻燃剂以及含有该复合阻燃剂的阻燃高分子材料
WO2023168790A1 (zh) 低细粉含量的二乙基次膦酸铝结晶物及其制备方法和应用
WO2022095294A1 (zh) 具有双峰热失重分解特征的基于亚磷酸铝的复合体及其制备和应用
CN113462027A (zh) 一种沉积包覆式复合阻燃剂的制备方法及用于pet的阻燃改性
JP2024538313A (ja) 微粉末の含有量の低いジエチルホスフィン酸アルミニウム結晶物、その製造方法及び使用
JPH11293155A (ja) 耐火塗料
US7507819B2 (en) Method for preparing amino phosphate compounds
CN117247600A (zh) 一种多孔性二烷基次膦酸铝颗粒物及其制备方法和应用
CN117417578A (zh) 一种多肉植物状二烷基次膦酸铝及其制备方法和应用
WO2022035377A1 (en) A halogen-free synergist
CN118271554A (zh) 一种含磷和三嗪结构的超交联聚合物的制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930154

Country of ref document: EP

Kind code of ref document: A1