WO2023168782A1 - 三维物体打印方法及装置、三维打印材料 - Google Patents

三维物体打印方法及装置、三维打印材料 Download PDF

Info

Publication number
WO2023168782A1
WO2023168782A1 PCT/CN2022/086826 CN2022086826W WO2023168782A1 WO 2023168782 A1 WO2023168782 A1 WO 2023168782A1 CN 2022086826 W CN2022086826 W CN 2022086826W WO 2023168782 A1 WO2023168782 A1 WO 2023168782A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid material
powder
layer
ratio
forming area
Prior art date
Application number
PCT/CN2022/086826
Other languages
English (en)
French (fr)
Inventor
吕如松
何兴帮
沈为真
杨前程
蒋韦
黄雅滢
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Priority to KR1020247030902A priority Critical patent/KR20240149430A/ko
Publication of WO2023168782A1 publication Critical patent/WO2023168782A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of three-dimensional printing technology, and in particular to three-dimensional object printing methods and devices, and three-dimensional printing materials.
  • the main process of three-dimensional object additive manufacturing technology is to obtain the digital model of the three-dimensional object, slice and layer the digital model, and perform data processing and conversion on each slice layer to obtain the printing data of each slice layer.
  • the printing device is based on The sliced layer printing data is printed layer by layer and superimposed to create a three-dimensional object.
  • the existing three-dimensional object additive manufacturing technology combines powder and inkjet printing.
  • the print head sprays the liquid material in the molding area according to the layer printing data of the three-dimensional object and then provides radiation to cause the liquid material to polymerize.
  • the powder particles in contact with it are wrapped to form a layer of a three-dimensional object, or the liquid material contains a radiation absorber, which absorbs radiation and converts it into heat energy, thereby melting the powder particles in contact with it to form a layer of a three-dimensional object.
  • the sprayed liquid material penetrates into the non-formed area, causing the powder particles in the non-formed area to adhere and wrap on the surface of the adjacent three-dimensional object, or causing the powder particles in the non-formed area to adhere and wrap around the surface of the adjacent three-dimensional object.
  • the melt adheres to the surface of the three-dimensional object, resulting in high surface roughness of the final three-dimensional object and difficult post-processing.
  • Embodiments of the present application provide three-dimensional object printing methods and devices, and three-dimensional printing materials, which can improve the storage stability of liquid materials, improve the surface accuracy of three-dimensional objects, and reduce the difficulty of post-processing.
  • this application provides a three-dimensional object printing method, which method includes:
  • the powder material layer includes a forming area and a non-forming area
  • a first liquid material and a second liquid material are applied at a first ratio in the molding area of the powder material layer according to the layer printing data.
  • the second liquid material promotes the polymerization reaction of the first liquid material to form a three-dimensional object. layer solid part;
  • a first liquid material and a second liquid material are applied at a second ratio in the non-forming area of the powder material layer according to the layer printing data to form a layer protection portion of the three-dimensional object; wherein the first ratio is greater than the Second ratio; the amount of the second liquid material per unit volume of the forming area is less than the amount of the second liquid material per unit volume of at least part of the non-forming area, and in the unit volume of the forming area The amount of the first liquid material is greater than the amount of the first liquid material per unit volume of at least part of the non-forming area.
  • the first ratio is the volume ratio of the first liquid material to the second liquid material, and the first ratio is (1-10):1 ;
  • the second ratio is the volume ratio of the first liquid material to the second liquid material, and the second ratio is (0-0.95):1.
  • the layer solid part and the layer protective part are located on the same horizontal plane, and the layer solid part and the layer protective part are arranged adjacent to each other.
  • the amount of the second liquid material in the unit volume of the non-forming area gradually decreases in a direction away from the forming area.
  • the width of the layer protective portion is greater than or equal to the minimum diameter of the droplets of the applied liquid material.
  • the first liquid material and the second liquid material are sprayed at a first ratio in the forming area of the powder material layer according to the layer printing data, and the first liquid material and the second liquid material are sprayed according to the layer printing data in the forming area of the powder material layer.
  • the three-dimensional object printing method further includes:
  • the preheating temperature is 5°C to 100°C lower than the melting point or melting temperature of the powder material.
  • the Three-dimensional object printing methods also include:
  • the layer of powder material to which the second liquid material is applied is heated.
  • the heating temperature is higher than 70°C and lower than the melting point or melting temperature of the powder material by more than 5°C to promote water in the second liquid material. Evaporate, and/or, promote the first liquid material to dissolve the powder material and promote the polymerization reaction of the first liquid material.
  • the preheating and heating energy includes at least one of radiant energy and thermal energy.
  • the first liquid material includes a first active component, and the first active component dissolves at least part of the powder material;
  • the second liquid material includes a Two auxiliary agents, powder release agent, stripper, hydrocarbon chain surfactant and water, the second auxiliary agent is used to promote the polymerization reaction of the first liquid material.
  • the second liquid material includes the following components in weight proportion: second auxiliary agent 0.1% ⁇ 40%, water 30% to 90%, powder release agent 0.01% to 10%, stripper 1% to 30% and hydrocarbon chain surfactant 0.1% to 10%.
  • the second auxiliary agent is selected from at least one of initiators, pro-initiators and catalysts;
  • the powder release agent is selected from the group consisting of silicon-containing water-soluble release agents, silicon-containing water-dispersible release agents, fluorine-containing water-soluble release agents, and fluorine-containing water-dispersible release agents. at least one of;
  • the powder release agent is selected from at least one of silicone oil emulsion, fluorine-containing nonionic surfactant, and fluorine-containing anionic surfactant;
  • the stripper is selected from water-soluble polymers and/or water-dispersible polymers with a glass transition temperature lower than 40°C;
  • the release agent is selected from at least one of polyether resin, polyester resin, poly(meth)acrylate resin, and polyurethane resin with a glass transition temperature lower than 40°C.
  • the second liquid material further includes the following components in weight proportion: co-solvent 0.05%-30%.
  • the co-solvent is selected from at least one of alcohols, alcohol ethers, amides, pyrrolidones, organic acids and organic salts.
  • the method further includes:
  • the slice layers include a layer solid part and a layer protective part.
  • embodiments of the present application provide a non-transitory computer-readable storage medium.
  • the storage medium includes a stored program.
  • the program When the program is running, the device where the storage medium is located is controlled to execute the above-mentioned three-dimensional object printing method.
  • embodiments of the present application provide a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, The above-mentioned three-dimensional object printing method.
  • embodiments of the present application provide a three-dimensional object, which is printed according to the above-mentioned three-dimensional object printing method.
  • embodiments of the present application provide a three-dimensional printing material for use in conjunction with powder materials for three-dimensional printing.
  • the material includes:
  • a first liquid material comprising a first active component capable of dissolving at least a portion of the powder material
  • the second liquid material based on the total weight of the second liquid material being 100%, the second liquid material includes the following components by weight: second auxiliary agent 0.1% to 40%, water 30% to 90% , powder release agent 0.01% ⁇ 10%, stripper 1% ⁇ 30% and hydrocarbon chain surfactant 0.1% ⁇ 10%; wherein, the second auxiliary agent is used to promote the polymerization of the first liquid material reaction.
  • embodiments of the present application provide a three-dimensional printing material, which includes:
  • Powder material the powder material is used to form a powder material layer
  • a first liquid material comprising a first active component that dissolves at least a portion of the powder material
  • the second liquid material based on the total weight of the second liquid material being 100%, the second liquid material includes the following components by weight: second auxiliary agent 0.1% to 40%, water 30% to 90% , powder release agent 0.01% ⁇ 10%, stripper 1% ⁇ 30% and hydrocarbon chain surfactant 0.1% ⁇ 10%; wherein, the second auxiliary agent is used to promote the polymerization of the first liquid material reaction.
  • the powder material layer includes a forming area and a non-forming area, and the first liquid material and the second liquid material are applied to the forming area in a first ratio Within, the first liquid material and the second liquid material are applied to the non-forming area in a second ratio, wherein the first ratio is greater than the second ratio.
  • the first ratio is a volume ratio of the first liquid material to the second liquid material, and the first ratio is (1-10):1 ;
  • the second ratio is the volume ratio of the first liquid material to the second liquid material, and the second ratio is (0-0.95):1.
  • the amount of the second liquid material in the unit volume of the forming area is less than the amount of the second liquid material in the unit volume of at least part of the non-forming area
  • the amount of the first liquid material per unit volume of the forming area is greater than the amount of the first liquid material per unit volume of at least part of the non-forming area
  • the powder material includes polystyrene, polyvinyl chloride, polyacrylonitrile, acrylonitrile-styrene-acrylate copolymer, polyamide, polyester, polyurethane, Poly(meth)acrylate, polyvinyl fluoride, chlorinated polyolefin, block and/or graft copolymer containing soluble in the first active component, polyvinyl alcohol containing hydroxyl group, cellulose, modified At least one kind of cellulose.
  • the first active component has an active group that can participate in the polymerization reaction, and the active group includes a carbon-carbon double bond, a hydroxyl group, a carboxyl group, a heterogeneous group, and a carbon-carbon double bond. At least one of a cyclopropane group, a carbonate group, an epoxy group, a liquid cyclic lactone structure, and a cyclic acetal structure.
  • the first liquid material includes a second active component
  • the second active component has an active group that can participate in a polymerization reaction
  • the third The two active components do not dissolve the powder material
  • the second active component includes isobornyl acrylate, isobornyl methacrylate, lauryl acrylate, lauryl methacrylate, cyclotrimethylolpropane methyl acetal acrylate, and prepolymers containing carbon-carbon double bonds.
  • Prepolymers containing epoxy groups monomers that promote ring-opening polymerization of epoxy groups, prepolymers that promote ring-opening polymerization of epoxy groups, solid cyclic lactones, and cyclic amide compounds at least one of them.
  • the weight proportion of the first active component in the first liquid material is 10% ⁇ 95%.
  • the weight proportion of the second active component in the first liquid material 5% to 90%.
  • the first liquid material further includes the following components in weight proportion: first auxiliary agent Agent 0.01% ⁇ 30%;
  • the first auxiliary agent includes at least one of a high-temperature initiator, a leveling agent, a defoaming agent, a polymerization inhibitor, an antioxidant, a plasticizer, a dispersant, a pigment and a dye.
  • the second auxiliary agent is selected from at least one of initiators, pro-initiators and catalysts;
  • the powder release agent is selected from the group consisting of silicon-containing water-soluble release agents, silicon-containing water-dispersible release agents, fluorine-containing water-soluble release agents, and fluorine-containing water-dispersible release agents. at least one of;
  • the powder release agent is selected from at least one of silicone oil emulsion, fluorine-containing nonionic surfactant, and fluorine-containing anionic surfactant;
  • the stripper is selected from water-soluble polymers and/or water-dispersible polymers with a glass transition temperature lower than 40°C;
  • the release agent is selected from at least one of polyether resin, polyester resin, poly(meth)acrylate resin, and polyurethane resin with a glass transition temperature lower than 40°C.
  • the second liquid material in combination with the fifth or sixth aspect, also includes the following components in weight proportion: co-solvent 0.05 %-30%.
  • the co-solvent is selected from at least one of alcohols, alcohol ethers, amides, pyrrolidones, organic acids and organic salts.
  • the hydrocarbon chain surfactant is selected from fatty alcohol polyoxyethylene ether, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, alkyl sulfate One or more of sodium ester, sodium alkyl succinate sulfonate, sodium sulfamate, polyether, polyoxyethylene polyoxypropylene ether block copolymer.
  • embodiments of the present application provide a three-dimensional object printing device, which includes:
  • a powder supply component provides powder material to form a powder material layer, and the powder material layer includes a forming area and a non-forming area;
  • a forming platform to support the formed layer of powder material
  • a print head and a controller controls the print head to apply a first liquid material and a second liquid material in a first ratio within the forming area of the powder material layer according to the layer printing data, the second liquid material Promote the polymerization reaction of the first liquid material to form the layer entity part of the three-dimensional object;
  • the controller controls the print head to apply the first liquid material and the second liquid material at a second ratio in the non-forming area of the powder material layer according to the layer printing data to form a layer protection portion of the three-dimensional object; wherein , the first ratio is greater than the second ratio; the amount of the second liquid material per unit volume of the forming area is less than the amount of the second liquid material per unit volume of at least part of the non-forming area, and The amount of first liquid material per unit volume of the forming region is greater than the amount of first liquid material per unit volume of at least part of the non-forming region.
  • the print head includes a first nozzle array and a second nozzle array, wherein the first nozzle array is used to eject the first liquid at a first ratio material and a second liquid material, and the second nozzle hole array is used to inject the first liquid material and the second liquid material in a second ratio.
  • the print head includes a first nozzle array and a second nozzle array, wherein the first nozzle array and the second nozzle array are used for forming The first liquid material and the second liquid material are sprayed respectively at a first ratio in the area, and the first liquid material and the second liquid material are sprayed respectively at a second ratio in the non-forming area.
  • the three-dimensional object printing device further includes a lifting mechanism. After each three-dimensional object slice layer including a layer solid part and a layer protective part is formed, the lifting mechanism drives the The forming platform moves downward by a powder layer thickness.
  • the three-dimensional printing device further includes a preheating component, which is placed above the forming platform to preheat the powder material layer.
  • the three-dimensional printing device further includes a heating component, the heating component is disposed above the forming platform, and the powder material layer sprayed with the second liquid material is Apply heat.
  • the three-dimensional object printing method not only helps to improve the storage stability of the liquid material by storing the first liquid material and the second liquid material separately and applying them in different configuration ratios to the forming area and non-forming area of the powder material layer properties, improve the inkjet printing fluency of liquid materials, and help reduce the temperature of the non-forming area, help reduce the effect of the first liquid material on the powder material in the non-forming area, and reduce the post-processing of the printed three-dimensional object. Difficulty, especially post-processing of the surface of three-dimensional objects, thereby improving the surface accuracy of printed objects.
  • the first liquid material and the second liquid material are different types of liquid materials, and the second liquid material contains components for promoting the polymerization reaction of the first liquid material.
  • the material and the second liquid material are stored separately, which helps to improve the storage stability of the liquid material and improve the smoothness of inkjet printing of the liquid material.
  • the second liquid material contains water, and when energy is provided to the powder material layer to which the second liquid material is applied, the water is evaporated, increasing the concentration of the second additive, thereby increasing the polymerization reaction speed of the first active component, and When a sufficient amount of water is evaporated, it can take away the temperature of the powder material in the non-forming area, thereby preventing the powder material in the non-forming area from melting and/or adhering; and using water is more cost-effective than using other volatile solvents. Low cost and more environmentally friendly; the second liquid material contains a powder release agent.
  • the volume of the second liquid material in the unit volume of the molding area is smaller than the second liquid in the unit volume of the non-molding area.
  • the volume of the material helps to improve the surface accuracy of the edge of the molding area; the second liquid material contains a release agent, and when the second liquid material is sprayed on the non-forming area of the powder material, the release agent will The powders are bonded together, which facilitates the peeling of the powder in the non-forming area and the powder is easily separated from the powder in other non-forming areas during recycling.
  • the formula of the second liquid material is conducive to reducing the post-processing difficulty of the printed three-dimensional object, thereby improving the surface accuracy of the printed object, and is also conducive to the recovery of powder in the non-forming area.
  • Figure 1 is a schematic flow chart of a three-dimensional object printing method provided by an embodiment of the present application
  • Figure 2 is a schematic flow chart of a three-dimensional object printing method provided by another embodiment of the present application.
  • Figure 3a is a schematic structural diagram of a three-dimensional object to be printed according to an embodiment of the present application.
  • Figure 3b is a schematic structural diagram of the powder material layer provided by the embodiment of the present application.
  • Figures 4a-4e are schematic diagrams of the structure of the ink droplet drop points when the first liquid material and the second liquid material are ejected at a specified ratio according to the embodiment of the present application;
  • Figure 5 is a schematic flow chart of a three-dimensional object printing method provided by yet another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a three-dimensional object printing device provided by an embodiment of the present application.
  • Figures 7a-7c are partial structural schematic diagrams of the liquid supply device in the three-dimensional object printing device provided by the embodiment of the present application.
  • FIGS. 8a-8c are schematic diagrams of the surface structure of the print head nozzle holes in the three-dimensional object printing device according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of a non-transitory computer-readable storage medium provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • This application describes an additive manufacturing technology that combines powder materials with inkjet printing, and involves a printing method for three-dimensional objects, materials required to print three-dimensional objects, printed three-dimensional objects, and computer-readable storage media that store program instructions.
  • Computer equipment and devices for printing three-dimensional objects using the three-dimensional object printing method of the present application can improve the surface accuracy of target three-dimensional objects and reduce the difficulty of post-processing.
  • inventions of the present application provide a three-dimensional printing material.
  • the material includes:
  • Powder material the powder material is used to form a powder material layer
  • the first liquid material includes a first active component, the first active component dissolves at least a portion of the powder material;
  • the second liquid material based on the total weight of the second liquid material being 100%, the second liquid material includes the following components by weight: 0.1% to 40% of the second additive, 30% to 90% of water, and powder release.
  • the second additive is used to promote the polymerization reaction of the first liquid material.
  • the application provides a three-dimensional printing material, wherein the powder material layer formed by the powder material includes a molding area and a non-molding area, the first liquid material and the second liquid material are different types of liquid materials, and the second liquid material contains A second auxiliary agent for the polymerization reaction of the first liquid material.
  • the second auxiliary agent promotes the polymerization reaction of the first active component in the first liquid material to form a solid part of the three-dimensional object.
  • the second liquid material contains water, and when energy is provided to the powder material layer to which the second liquid material is applied, the water is evaporated, which can increase the concentration of the second additive in the second liquid material, so that the high concentration of the second additive in the powder material layer is
  • the two additives can increase the polymerization reaction speed of the first active component, and when a sufficient amount of water is evaporated, it can take away the temperature of the powder material in the non-forming area of the powder material layer, thereby preventing the powder material in the non-forming area from Be melted and/or stuck. And using water is less expensive and more environmentally friendly than using other volatile solvents.
  • the second liquid material also contains a powder release agent, which helps to improve the surface accuracy of the edge of the molding area; the second liquid material also contains a stripper, which helps to separate the powder material in the non-molding area from the molding area.
  • the solid part is peeled off, and it is beneficial to separate the recycled powder material from other non-forming area powder.
  • the formula of the second liquid material is conducive to reducing the post-processing difficulty of the printed three-dimensional object, thereby improving the surface accuracy of the printed object, and is also conducive to the recovery of powder in the non-forming area.
  • the liquid material can be configured alone as a three-dimensional printing material, and then combined with a suitable powder material when printing. In other embodiments, the liquid material can be combined with the powder material as a three-dimensional printing material, allowing users to directly print three-dimensional objects.
  • the powder material is material particles in powder form, which may be metal powder material or non-metal powder material.
  • the non-metallic powder material is selected from organic polymer powder materials.
  • the organic polymer powder materials will not undergo polymerization reaction with the first liquid material and the second liquid material. Under specific proportions and suitable temperature conditions, the second liquid material and the third liquid material will not undergo polymerization reaction.
  • the second liquid material promotes the polymerization reaction of the first liquid material. According to the difference in the proportion of the first liquid material and the second liquid material, the strength of the polymer formed by the polymerization reaction is different, so that the three-dimensional object formed by printing is The solid part (corresponding to the molded area) and the protective part (corresponding to the non-molded area) have different strengths.
  • the organic polymer powder material may be selected from polypropylene. In practical applications, polypropylene cannot be dissolved by the first liquid material.
  • the organic polymer powder material may be selected from polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), acrylonitrile-styrene-acrylate copolymer (ASA), polyvinyl chloride (PVC), Amide (PA), polyester, polyurethane (PU), poly(meth)acrylate, polyvinyl fluoride, chlorinated polyolefin, containing block and/or graft copolymers that can be dissolved by the first active component, At least one of hydroxyl-containing polyvinyl alcohol (PVA), cellulose, and modified cellulose.
  • PVA hydroxyl-containing polyvinyl alcohol
  • cellulose and modified cellulose.
  • the above-mentioned organic polymer powder materials can be dissolved by the first liquid material.
  • the powder material may further include additives, and the additives include at least one of flow aids and fillers.
  • the flow aid is used to improve the fluidity of the powder material.
  • the flow aid can be, for example, silica, talc, etc.; the filler is used to improve the mechanical strength of the three-dimensional object.
  • the filler can be, for example, graphene, carbon nanotubes, and carbon fiber. , glass microspheres, glass fibers, kaolin, etc., are not limited in this embodiment.
  • the melting point or melting temperature of the organic polymer powder material can be 60°C-300°C, specifically 60°C, 70°C, 80°C, 100°C, 120°C, 150°C, 180°C, 200°C °C, 240 °C, 280 °C or 300 °C, etc., of course, it can also be other values within the above range, and is not limited here.
  • the particle shape and particle size of the powder material are not particularly limited.
  • the powder material may be in the shape of spheres, dendrites, flakes, discs, needles, rods, etc.
  • the average particle size of the powder material is 1 ⁇ m to 400 ⁇ m, and may be, for example, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m or 400 ⁇ m.
  • the average particle size of the powder material is preferably 30 ⁇ m to 200 ⁇ m.
  • the particle gap in the powder material is approximately 5 nm to 100 ⁇ m, for example, it may be 5 nm, 10 nm, 100 nm, 250 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m or 100 ⁇ m, which is not limited here.
  • the particle gaps of the powder materials in various embodiments of the present application are in the range of 5 nm to 100 ⁇ m, which is beneficial for the liquid material to quickly penetrate into the powder material layer through the gaps and retain part of the surface layer, and even wet the surface of the powder material in the selected area. , and at least partially dissolve the powder material. It should be noted that dissolution in the examples of this application refers to all possible situations except complete indissolution.
  • the first active component may be a substance including only one soluble powder material, or a mixture including a plurality of soluble powder materials.
  • the solubility of the various substances to the powder material may be different. Can be the same.
  • dissolution in this embodiment refers to all possible situations except complete indissolution.
  • the first active component completely dissolves the powder material.
  • the dissolution is not limited to normal temperature, but can also be achieved by heating and/or stirring the active component to dissolve the powder material; the dissolution is not limited to one dissolution, but can also be performed in stages, such as when the active component is in contact with the powder material. Slow dissolution occurs and the powder material can be heated to speed up the dissolution rate.
  • the first active component completely dissolves the powder material in contact with the first active component.
  • the weight proportion of the first active component in the first liquid material is 10%-95%.
  • it can be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 95%.
  • the weight proportion can also be proportioned according to actual usage, which is not done here. limited.
  • the weight proportion of the first active component in the liquid material is 30%-95%.
  • the weight proportion of the first active component in the first liquid material is greater than or equal to 30%.
  • the first active component has active groups that can participate in polymerization reactions.
  • the active groups include carbon-carbon double bonds, hydroxyl groups, carboxyl groups, thiirane groups, carbonate groups, epoxy groups, liquid At least one of a cyclic lactone structure and a cyclic acetal structure. It should be noted that the first active component does not undergo polymerization reaction with the powder material.
  • the first active component can be selected from monomers containing carbon-carbon double bonds, compositions containing epoxy groups and promoting ring-opening polymerization of epoxy groups, cyclic lactones, sulfur heterocyclic compounds, and carbonate compounds. , at least one of cyclic amide compounds.
  • the monomer containing carbon-carbon double bonds may be (meth)acrylates, vinyl ethers, allyl ethers, styrene, acryloylmorpholine, N-vinylpyrrolidone, etc.
  • the composition containing epoxy groups and promoting the ring-opening polymerization of the epoxy groups may be a small molecule or prepolymer containing an epoxy diluent and/or a hydroxyl group, an epoxy diluent and/or a small molecule containing a carboxyl group. or prepolymer.
  • the cyclic lactone may be ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, etc.
  • Sulfur heterocyclic compounds such as thiirane, thietane, etc.
  • the carbonate compound may be dimethyl carbonate, diethyl carbonate, etc.
  • the cyclic amide compound may be caprolactam, etc.
  • the first active component may be styrene or ⁇ -butyrolactone
  • the powder material may be polystyrene capable of being dissolved by styrene or ⁇ -butyrolactone.
  • the first active component can also be a (meth)acrylate monomer
  • the powder material can be poly(meth)acrylate, cellulose, modified cellulose, etc. dissolved by a (meth)acrylate monomer.
  • the first active component may also be acryloylmorpholine
  • the powder material may be polyurethane, cellulose, modified cellulose, polyvinyl alcohol containing hydroxyl groups, etc., which can be partially dissolved by acryloylmorpholine.
  • the first active component may also be epichlorohydrin, epoxy diluent, or hydroxyethylacrylamide.
  • the powder material may also be polycarbonate that can be dissolved by epichlorohydrin, epoxy diluent, or hydroxyethylacrylamide. Ester, polyamide, modified polyamide, cellulose ester, cellulose ether, etc.
  • the first active component may be ⁇ -butyrolactone
  • the powder material may also be polyacrylonitrile, cellulose acetate, polymethyl methacrylate, polyvinyl fluoride, polystyrene, etc. that can be dissolved by ⁇ -butyrolactone.
  • the first active component may also be ⁇ -caprolactone
  • the powder material may also be chlorinated polyolefin, polyurethane, etc. that can be dissolved by ⁇ -caprolactone.
  • the first liquid material may also include a second active component, and the second active component has an active group; the second active component does not dissolve the powder material, that is, the second active component does not dissolve the powder material at all.
  • the second reactive component may undergo polymerization by itself or may participate in the polymerization reaction together with the first reactive component.
  • the weight proportion of the second active component in the first liquid material is 5%-90%.
  • it can be 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%.
  • the weight proportion can also be proportioned according to the actual use. This is not limited.
  • the weight proportion of the second active component in the first liquid material is 20%-70%.
  • the second active component can be filled into the gaps between the particles of the powder material or within the powder particles to reduce the porosity of the molded object and increase the molding density of the object. Furthermore, the second active component can also complement the performance of the first active component, so that the three-dimensional object has higher performance than when it only contains the first active component.
  • the second active component includes isobornyl acrylate, isobornyl methacrylate, lauryl acrylate, lauryl methacrylate, caprolactone acrylate, cyclotrimethylolpropane methyl acrylate, carbon-containing carbon bis bonded prepolymers, prepolymers containing epoxy groups, monomers that promote ring-opening polymerization of epoxy groups, prepolymers that promote ring-opening polymerization of epoxy groups, solid cyclic lactones, cyclic at least one of the amide compounds.
  • the prepolymer containing carbon-carbon double bonds can be, for example, epoxy or (modified) acrylate prepolymer, polyester acrylate prepolymer, polyurethane acrylate prepolymer, pure acrylate Prepolymer-like, etc.
  • Prepolymers containing epoxy groups can be, for example, epoxy resin E-51, epoxy resin E-41, etc.
  • cyclic lactones can be, for example, lactide, glycolide, etc., and the cyclic lactone itself is solid. , poor solubility.
  • (Meth)acrylate monomers have different dissolving abilities for polymers due to their structural differences, such as isobornyl acrylate, isobornyl methacrylate, lauryl acrylate, lauryl methacrylate, and cyclotrimethylol Propane methyl acrylate, etc. have poor dissolving effect on polyurethane powder and are basically insoluble.
  • the first liquid material also includes a first auxiliary agent, which includes at least one of a high-temperature initiator, a leveling agent, a defoaming agent, a polymerization inhibitor, an antioxidant, a plasticizer, a dispersant, and a colorant.
  • a first auxiliary agent which includes at least one of a high-temperature initiator, a leveling agent, a defoaming agent, a polymerization inhibitor, an antioxidant, a plasticizer, a dispersant, and a colorant.
  • the weight proportion of the first auxiliary agent in the liquid material is 0.1%-30%, specifically it can be 0.1%, 1%, 5%, 10%, 15%, 19.5%, 24.5%, 27% or 30%, etc.
  • the weight proportion can also be proportioned according to actual usage, and is not limited here.
  • the weight proportion of the high-temperature initiator in the first liquid material is 0%-10%, specifically 0%, 0.1%, 1%, 3.4%, 5.7%, 6.0%, 7.5%, 8.5% , 9.7% or 10%, etc.;
  • the weight proportion of the leveling agent in the first liquid material is 0.01%-3%, specifically it can be 0.01%, 0.05%, 0.1%, 0.5%, 1.2%, 1.8%, 2.1 %, 2.5%, 2.7% or 3%, etc.
  • the weight proportion of the defoaming agent in the first liquid material is 0.01%-3%, specifically it can be 0.01%, 0.05%, 0.1%, 0.5%, 1.2%, 1.8%, 2.1%, 2.5%, 2.7% or 3%, etc.
  • the weight proportion of the polymerization inhibitor in the first liquid material is 0.05%-3%, specifically it can be 0.05%, 0.1%, 0.5%, 1.2% , 1.8%, 2.1%, 2.5%, 2.7% or 3%, etc.
  • the weight proportion of the antioxidant in the first liquid material is
  • the high-temperature initiator will not obviously initiate the active components in the first liquid material, such as the first active component or the first active component and the second active component, under normal temperature conditions, so it contains a high-temperature initiator.
  • the first liquid material is relatively stable at room temperature and can be stored for 3 to 6 months or even longer.
  • the high-temperature initiator is preferably an initiator with a half-life of greater than 120°C in 1 hour defined as a high-temperature initiator.
  • High-temperature initiators will produce better initiating effects in high-temperature environments.
  • the tolerance temperature of some polymer powder materials is often lower than the decomposition temperature of high-temperature initiators. Therefore, a promoter is needed to promote the high-temperature initiator to occur at a lower temperature. trigger effect.
  • the high temperature initiator can be selected from tert-amyl peracetate, tert-amyl peroxybenzoate, tert-butyl peroxide 3,5,5-trimethylhexanoate, tert-butyl peroxybenzoate, 3 , ethyl 3-bisbutyrate, ethyl 3,3-bis(tert-butylperoxy)butyrate, ethyl 3,3-bis(tert-amylperoxy)butyrate, dicumyl peroxide, At least one of di-tert-amyl peroxide, di-tert-butyl peroxide, tert-amyl peroxide, tert-butyl peroxide, cumene hydroperoxide, and the like.
  • the function of the leveling agent is to improve the fluidity of the first liquid material and the wetting performance of the powder material, and at the same time adjust the surface tension of the first liquid material so that it can be printed normally.
  • the leveling agent used can meet the above performance requirements, there is no restriction on which leveling agent to choose.
  • it can be BYK333, BYK377, BYK1798, BYK-UV3530, BYK-UV3575, BYK-UV3535, etc. from BYK. , Tego's TEGO wet 500, TEGO wet 270, TEGO Glide450, TEGO RAD 2010, TEGO RAD 2011, TEGO RAD 2100, TEGO RAD 2200, etc.
  • the function of the defoaming agent is to suppress, reduce, and eliminate bubbles in liquid materials.
  • defoaming agent can be BYK055 and BYK088 of BYK Company. , BYK020, BYK025, etc., TEGO Airex 920, TEGO Airex 921, TEGO Airex 986, TEGO Foamex810, TEGO Foamex N, etc. of TEGO Company, Efka 7081, Efka7082, etc. of Efka Company.
  • the function of the polymerization inhibitor can be to improve the stability of the active component in the first liquid material at high temperatures, to prevent the active component from polymerizing in a non-printing state, and to improve the storage stability of the liquid material.
  • it can be hydroquinone, p-hydroxyanisole, p-benzoquinone, 2-tert-butylhydroquinone, phenothiazine, etc.
  • antioxidants are to delay or inhibit polymer oxidation.
  • they can be 2,6-di-tert-butyl-4-methylphenol, ⁇ -tetrakis[3-(3,5-di-tert-butyl-4- Hydroxyphenyl)propionate]pentaerythritol ester, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate n-octadecanol ester, 1,1,3-tris(2-methyl- 4-Hydroxy-5-tert-butylphenyl)butane, 4-[(4,6-dioctylthio-1,3,5-triazin-2-yl)amino]-2,6-di-tert-butane phenol, dilauryl thiodipropionate, tris(nonylphenyl)phosphite, triphenyl phosphite, 2-mercaptobenz
  • plasticizers are to improve the toughness of finished three-dimensional objects.
  • they can be dioctyl phthalate, butyl benzyl phthalate, diisononyl phthalate, and diisodecyl phthalate.
  • the main function of the dispersant is to improve the dispersion stability of the colorant.
  • the high molecular polymer formed by the polymerization reaction of the active component and the powder material are mixed at the molecular level. At this time, it is easy to obtain colorless or light-colored transparent three-dimensional objects.
  • colored three-dimensional objects can be realized.
  • Colorants can be dyes or pigments.
  • the specific pigments can be selected from C.I.Pigment White 6, C.I.Pigment Red 3, C.I.Pigment Red 5, C.I.Pigment Red 7, C.I.Pigment Red 9, C.I.Pigment Red 12, C.I.Pigment Red 13, C.I.Pigment Red 21, C.I.Pigment Red 31, C.I.Pigment Red 49:1, C.I.Pigment Red 58:1, C.I.Pigment Red 175; C.I.Pigment Yellow 63, C.I.Pigment Yellow 3, C.I.Pigment Yellow 12, C.I.Pigment Yellow 16, C.I.Pigment Yellow 83; C.I.P igment Blue 1.
  • C.I.Pigment One or more of Blue 10 C.I.Pigment Blue B, Phthalocyanine Blue BX, Phthalocyanine Blue BS, C.I.Pigment Blue
  • the dye can be specifically selected from C.I. Acid Red 37, C.I. Acid Red 89 (weak acid red 3B, 2BS), C.I. Acid Red 145 (weak acid red GL), C.I. Acid Orange 67 (weak acid yellow RXL), C.I. Acid Orange 116 ( Acid Orange AGT), C.I. Acid Orange 156 (Weak Acid Orange 3G), C.I. Acid Yellow 42 (Weak Acid Yellow Rs, Acid Yellow R), C.I. Acid Yellow 49 (Acid Yellow GR200), C.I. Acid Blue 277, C.I. Acid Blue 344 , C.I. Acid Blue 350, C.I. Acid Blue 9 (Brilliant Blue FCF), C.I. Green 17, C.I. Acid Green 28, C.I.
  • Acid Green 41 C.I. Acid Green 81, C.I. Acid Violet 17 (Acid Violet 4BNS), C.I. Acid Violet 54 ( Weakly acidic brilliant red 10B), C.I. acid violet 48, C.I. acid brown 75, C.I. acid brown 98, C.I. acid brown 165, C.I. acid brown 348, C.I. acid brown 349, C.I. acid black 26, C.I. acid black 63, C.I. acid black 172.
  • C.I. Acid Black 194 C.I. Acid Black 210, C.I. Acid Black 234, C.I. Acid Black 235, C.I. Acid Black 242, Orasol Red 395/BL, etc.
  • the second auxiliary agent is used to promote the polymerization reaction of the first liquid material, specifically to initiate or catalyze the polymerization reaction of the active components in the first liquid material.
  • the second auxiliary agent includes at least one of an initiator, a promoter and a catalyst; based on the total weight of the second liquid material being 100%, the weight proportion of the second auxiliary agent in the second liquid material is 0.1 %-40%, specifically it can be 0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%. Of course, it can also be other values within the above range. This is not limited.
  • the initiator is selected from water-soluble or water-dispersible initiators, which can be azobisisobutylamidine hydrochloride, azobisisobutylimidazoline salt, azodicyanovaleric acid, azobisisopropyl imidazoline, sodium persulfate, ammonium persulfate, potassium persulfate, polymethacrylate containing azo groups, self-emulsifying polyurethane containing azo groups, or aqueous dispersions of some organic peroxides (reference Literature: Di Zhigang. Aqueous dispersion of PVC initiator-organic peroxide [J] Polyvinyl Chloride, Issue 2, 1995).
  • azobisisobutylamidine hydrochloride azobisisobutylimidazoline salt
  • azodicyanovaleric acid azobisisopropyl imidazoline
  • sodium persulfate ammonium persulfate
  • the initiator can be selected from partially water-soluble initiators, such as ferrous lactate, dimethylaniline, tetramethylthiourea, dimethylthiourea, etc.
  • partially water-soluble initiators such as ferrous lactate, dimethylaniline, tetramethylthiourea, dimethylthiourea, etc.
  • the catalyst can be triethylbenzyl ammonium chloride, triethylamine, triethanolamine, methylfluorosulfonic acid, ethylfluorosulfonic acid, methylnitrobenzenesulfonic acid, methyl methanesulfonate, etc.
  • the second liquid material contains water, and the weight proportion of water in the second liquid material is 30%-90%, specifically 30%, 35%, 40%, 45%, 50%, 55%, 60%, 80%, 85%, 90%, and of course other values within the above range, which are not limited here.
  • the main function of the water contained in the second liquid material is to spray the second liquid material in the non-forming area.
  • the water can reduce the temperature of the powder material in the non-forming area, and when the water is evaporated, the evaporated water can also take away the non-forming area.
  • the temperature of the powder material in the area thereby preventing the powder material in the non-molding area from being melted and/or dissolved by the first liquid material, bonding to the surface of the molded object, affecting the surface accuracy of the object, and using water is better than using other volatile solvents Lower cost and more environmentally friendly.
  • the second liquid material contains a powder release agent, and the weight proportion of the powder release agent in the second liquid material is 0.01%-10%; the powder release agent is selected from the group consisting of silicon-containing water-soluble release agents, silicon-containing release agents. At least one of a water-dispersible release agent, a fluorine-containing water-soluble release agent, and a fluorine-containing water-dispersible release agent.
  • the silicon-containing water-soluble release agent or silicon-containing water-dispersible release agent is selected from silicone oil emulsion;
  • the fluorine-containing water-soluble release agent or fluorine-containing water-dispersible release agent can be selected from silicone oil emulsion.
  • Fluorinated nonionic surfactants or fluorinated anionic surfactants are selected from silicone oil emulsion.
  • the silicone oil emulsion may be a mixture containing polysiloxane polymer using water as a dispersant.
  • the fluorine-containing nonionic surfactant can be a polyoxyethylene ether of a fluorine-containing fatty alcohol, a polyoxyethylene ether of a fluorine-containing phenol, a polyoxyethylene ester of a fluorine-containing carboxylic acid, or a polyoxyethylene fluorine-containing alkylsulfonyl alcoholamine.
  • the fluorine-containing anionic surfactant can be a fluorine-containing carboxylate, a fluorine-containing sulfonate, a fluorine-containing phosphate, etc.
  • the three-dimensional printing material provided in this embodiment is used in three-dimensional object printing.
  • the amount of the second liquid material in the unit volume of the molding area is controlled to be smaller than the second liquid material in the unit volume of the non-molding area.
  • the main function of the second liquid material in the forming area is to promote the polymerization reaction of the first liquid material to form a polymer, and the main function of the second liquid material in the non-forming area is to reduce the amount of powder material in the non-forming area.
  • the temperature prevents the first liquid material in the forming area from diffusing into the non-forming area, thereby improving the surface accuracy of the formed three-dimensional object.
  • the role of the powder release agent contained in the second liquid material is to reduce the surface tension of the powder surface. Further, because the content of the second liquid material sprayed per unit volume in the molding area is less than the content of the second liquid material sprayed per unit volume in the surrounding non-forming area, The amount of liquid material is such that the surface tension of the powder surface or between powders in the non-molding area around the molding area is smaller than the surface tension of the powder surface or between powders in the molding area, and the first liquid material in the molding area is not easy to spread to the edge.
  • the weight proportion of the powder release agent is controlled to be 0.01%-10%, specifically 0.01%, 0.05%, 0.08%, 0.1%, 0.5%, 0.9%, 1.1%, 2.6%, 3.9%, 4 %, 5%, 6.6%, 7.9%, 9.9% or 10%, etc., are not limited here.
  • the weight proportion of the powder release agent is less than 0.01%, it cannot effectively prevent molding.
  • the effect of diffusion of the first liquid material in the area to the non-forming area When the weight proportion of the powder release agent is greater than 10%, it was found in this case that some powder release agents exceeding a certain content will affect the penetration of the first liquid material into the powder material layer and inhibit the diffusion of the first liquid material to the edge of the molding area. , helps to improve the surface accuracy of the edges of the molding area.
  • the second liquid material contains a release agent, and the weight proportion of the release agent in the second liquid material is 1%-30%, specifically 1%, 2%, 5%, 8%, 12%, 15%, 18% %, 19%, 22%, 24%, 25%, 28%, 29% or 30%, etc., are not limited here; the stripper is selected from water-soluble polymers and/or water with a glass transition temperature lower than 40°C Dispersible polymers; preferably water-soluble polymers or water-dispersible polymers with a glass transition temperature lower than 0°C, so that they are easily destroyed during sand blasting.
  • the water-soluble polymer or water-dispersible polymer is selected from at least one of polyether resin, polyester resin, poly(meth)acrylate resin, and polyurethane resin.
  • the release agent bonds the powder material in the non-forming area at the edge of the forming area together, and the release agent helps to separate the powder material in the non-forming area from the non-forming area.
  • the solid part formed in the molding area is peeled off, and it is beneficial to separate the recycled powder material from the powder in other non-forming areas.
  • the second liquid material contains a hydrocarbon chain surfactant.
  • the weight proportion of the hydrocarbon chain surfactant in the second liquid material is 0.1%-10%. Specifically, it can be 0.1%, 0.5%, 0.9%, or 1.1%. , 2.6%, 3.9%, 4%, 5%, 6.6%, 7.9%, 9.9% or 10%, etc., are not limited here. Adding an appropriate amount of hydrocarbon chain surfactant to the second liquid material is beneficial to the dissolution or dispersion of the second additive, powder release agent, and stripper in water, and is beneficial to the formation of a uniform liquid.
  • the hydrocarbon chain surfactant is selected from fatty alcohol polyoxyethylene ether, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium alkyl sulfate, sodium alkyl succinate sulfonate, sodium sulfamate , polyether, polyoxyethylene polyoxypropylene ether block copolymer, one or more.
  • the second liquid material also contains a co-solvent
  • the weight proportion of the co-solvent in the second liquid material is 0.05%-30%, specifically, it can be 0.05%, 0.1%, 1%, 2%, 5%, 8%, 12%, 15%, 18%, 19%, 22%, 24%, 25%, 28%, 29% or 30%, etc., are not limited here.
  • the co-solvent is selected from at least one of alcohols, alcohol ethers, amides, pyrrolidones, organic acids and organic salts. Adding an appropriate amount of cosolvent to the second liquid material can effectively increase the solubility of the second additive, powder release agent, peeling aid, etc. in the second liquid material, further improving the surface accuracy of the formed three-dimensional object.
  • the alcohol may be at least one of ethylene glycol, propylene glycol, glycerin, butylene glycol, diethylene glycol, and the like.
  • the alcohol ethers may be at least one of polyethylene glycol 200, polyethylene glycol 400, propylene glycol ether, etc.
  • the amides may be at least one of urea, acetamide, etc.
  • the pyrrolidone may be at least one of pyrrolidone, hydroxyethylpyrrolidone, methylpyrrolidone, and the like.
  • the organic acids may be at least one of p-aminobenzoic acid, benzenesulfonic acid, ascorbic acid, etc., and the organic salts may be at least one of sodium benzoate, sodium salicylate, etc.
  • Figure 1 is a schematic flow chart of a three-dimensional object printing method provided by an embodiment of the present application. As shown in Figure 1, on the other hand, the present application provides a three-dimensional object printing method, which includes the following steps:
  • Step S10 using powder material to form a powder material layer, where the powder material layer includes a forming area and a non-forming area;
  • Step S20 Apply the first liquid material and the second liquid material at a first ratio in the molding area of the powder material layer according to the layer printing data.
  • the second liquid material promotes the polymerization reaction of the first liquid material to form the layer entity part of the three-dimensional object.
  • Step S30 Apply the first liquid material and the second liquid material at a second ratio in the non-molding area of the powder material layer according to the layer printing data to form a layer protection part of the three-dimensional object; wherein the first ratio is greater than the second ratio; in The amount of the second liquid material per unit volume of the forming area is less than the amount of the second liquid material per unit volume of the non-forming area at least partially, and the amount of the first liquid material per unit volume of the forming area is greater than at least partially the non-forming area. The amount of first liquid material per unit volume of the forming area.
  • the inkjet printing fluency of the material also helps to reduce the temperature of the non-forming area, helps to reduce the effect of the first liquid material on the powder material in the non-forming area, and reduces the post-processing difficulty of the printed three-dimensional object, especially Post-processing of the surface of three-dimensional objects to improve the surface accuracy of printed objects.
  • the powder material is the aforementioned metal powder material or organic polymer powder material; when the powder material is an organic polymer powder material, the organic polymer powder material may not be dissolved by the first liquid material and will not be dissolved by the second liquid material.
  • the two liquid materials dissolve, or at least part of the organic polymer powder material can be dissolved by the first liquid material but not by the second liquid material, depending on the specific composition of the first liquid material.
  • the reaction mechanism of this embodiment is: the second liquid material promotes the first liquid material in the forming area of the powder material layer A polymerization reaction occurs, and the polymer formed by the reaction wraps the powder material in contact with the first liquid material to form a layered solid portion of the three-dimensional object.
  • the second liquid material mainly functions to reduce the temperature of the powder material in the non-forming area, and/or simultaneously prevent the first liquid material in the forming area from diffusing into the non-forming area to form a layer protection of the three-dimensional object.
  • the reaction mechanism of this embodiment is: in the forming area of the powder material layer, the first liquid material dissolves the powder material in contact with it , and the second liquid material promotes the polymerization reaction of the first liquid material to form a polymer to form a layer entity part of the three-dimensional object; the formed polymer is blended with the dissolved powder material, especially the mixture with the dissolved powder material can reach a molecular level.
  • the formation of a polymer alloy enables good connections between powder materials, between powder materials and formed polymers, and between printing layers, presenting a "sea-island structure" or homogeneous structure, which can improve the three-dimensional The mechanical strength of an object.
  • the second liquid material mainly functions to reduce the temperature of the powder material in the non-forming area, and/or simultaneously prevent the first liquid material in the forming area from diffusing into the non-forming area to form a layer protection of the three-dimensional object. part, in order to improve the surface accuracy of three-dimensional objects and reduce the difficulty of post-processing.
  • the liquid material can quickly penetrate into the powder material layer through the gap and retain part of the surface layer, and even wet the surface of the powder material in the selected area, and at least Partially dissolved powder material. It should be noted that dissolution in the examples of this application refers to all possible situations except complete indissolution.
  • step S20 can be before step S30 or after step S30; or, step S20 Step S30 can also be executed at the same time, which is related to the printing method and/or the shape of the object to be printed. Only a few situations are listed in the specification of this application, and not all of them are described.
  • the method also includes:
  • Step S01 Obtain the digital model of the three-dimensional object, slice and layer the digital model of the three-dimensional object to obtain multiple slice layers and slice layer image data, and generate layer printing data based on the slice layer image data.
  • the layer printing data includes the shape of the molding area. Layer print data and layer print data for non-molding areas.
  • the original data of the three-dimensional object can be obtained through scanning and three-dimensional modeling can be performed to obtain a digital model of the three-dimensional object, or a digital model of the three-dimensional object can be obtained by designing and constructing a three-dimensional object model, and the digital model can be formatted Conversion, for example, into STL format, PLY format, WRL format and other formats that can be recognized by slicing software, and then use slicing software to slice and layer the model to obtain slice layer image data, and process the layer image data to obtain the representation of the object.
  • the layer printing data includes layer printing data representing the molding area of the object shape information and layer printing data representing the non-molding area around the object.
  • the shape of the three-dimensional object to be printed is not limited and can be an object of any shape.
  • Figure 3a is a schematic structural diagram of a three-dimensional object to be printed provided by an embodiment of the present application.
  • the three-dimensional object 1 to be printed can be a cylinder, for example, and the three-dimensional object 1 to be printed is sliced. After layering processing, multiple slice layers of the three-dimensional object are obtained, and the solid part of the forming layer can be printed based on the layer printing data of the molding area 1n in the slice layer.
  • Step S10 Use powder material to form a powder material layer.
  • the powder material layer includes a forming area and a non-forming area.
  • the forming area 1n of the powder material layer forms the solid part of the three-dimensional object, that is, the outline of the three-dimensional object to be printed and the area within the outline.
  • the non-forming area is the area outside the outline of the three-dimensional object to be printed.
  • the protective portion of the three-dimensional object is formed in the non-formed area of the layer of powder material.
  • Figure 3b is a schematic structural diagram of the powder material layer provided by the embodiment of the present application.
  • the areas on the powder material layer L0 except the forming area 1n are all non-forming areas, wherein the area 1n' is at least one of the non-forming areas.
  • One part, located around the molding area 1n, is called the layer protection part.
  • the region 1n' may also be a non-forming region.
  • the powder material used in this embodiment is the same as the previous three-dimensional printing material, and will not be described again here.
  • the thickness of the formed powder material layer is 10 ⁇ m to 500 ⁇ m, for example, it may be 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m or 500 ⁇ m.
  • the thickness of the powder material layer is preferably 50 ⁇ m to 150 ⁇ m.
  • the printing method further includes:
  • Step S11 preheat the powder material layer.
  • thermal energy is provided on the formed powder material layer to preheat the powder material.
  • the preheating temperature is 5°C-100°C lower than the melting point or melting temperature of the powder material.
  • the first liquid material applied in the molding area undergoes a polymerization reaction to prevent the first liquid material in the molding area from spreading to the non-molding area and affecting the surface accuracy of the molded object; and/or, promoting the subsequent application of the second liquid material in the molding area.
  • the evaporation of some components (such as water) in the liquid material increases the concentration of additives in the second liquid material in the molding area, further accelerating the polymerization reaction rate of the first liquid material.
  • the preheating energy includes at least one of radiant energy and thermal energy.
  • preheating can be performed by infrared radiation, visible light irradiation, etc.
  • the first liquid material and the second liquid material can be inkjet printed in the same scanning direction.
  • Step S20 the specific implementation method may be:
  • Step S201 in the same scanning direction, apply the first liquid material and the second liquid material at a first ratio in the molding area of the powder material layer according to the layer printing data of the molding area, and the second liquid material promotes the polymerization of the first liquid material. React to form the layered solid portion of a three-dimensional object.
  • the first liquid material and the second liquid material are stored independently and applied to the forming area and the non-forming area of the powder material layer in different configuration ratios, which not only helps to improve the storage stability of the liquid material, but also improves the stability of the liquid material.
  • the smoothness of inkjet printing is not only helps to improve the storage stability of the liquid material, but also improves the stability of the liquid material.
  • the first liquid material includes a first active component
  • the weight ratio of the first active component in the first liquid material is 10%-95%
  • the first active component dissolves at least part of the powder material .
  • the first active component has active groups that can participate in polymerization reactions.
  • the active groups include carbon-carbon double bonds, hydroxyl groups, carboxyl groups, thiirane groups, carbonate groups, epoxy groups, liquid At least one of a cyclic lactone structure and a cyclic acetal structure.
  • the first active component can be selected from monomers containing carbon-carbon double bonds, compositions containing epoxy groups and promoting ring-opening polymerization of epoxy groups, cyclic lactones, sulfur heterocyclic compounds, and carbonate compounds. , at least one of cyclic amide compounds. It should be noted that the first active component does not undergo polymerization reaction with the powder material. For specific examples, please refer to the introduction in the aforementioned three-dimensional printing materials, and they will not be described again here.
  • the second liquid material includes the following components by weight: second additive 0.1% to 40%, water 30% to 90%, powder release agent 0.01% to 10%, stripper 1% to 30%, and hydrocarbon Chain surfactant 0.1% to 10%; wherein, the second auxiliary agent is used to promote the polymerization reaction of the first liquid material, specifically to initiate or catalyze the polymerization reaction of the first active component in the first liquid material.
  • the second auxiliary agent includes at least one of an initiator, a pro-initiator and a catalyst;
  • the initiator is selected from a water-soluble or water-dispersible initiator;
  • the pro-initiator can be selected from a partially water-soluble pro-initiator;
  • the catalyst can be triethylbenzyl ammonium chloride, triethylamine, triethanolamine, methylfluorosulfonic acid, ethylfluorosulfonic acid, methylnitrobenzenesulfonic acid, methyl methanesulfonate, etc.
  • the powder release agent is selected from at least one of a silicon-containing water-soluble release agent, a silicon-containing water-dispersible release agent, a fluorine-containing water-soluble release agent, and a fluorine-containing water-dispersible release agent. After many tests, it was found that the powder release agent can reduce the surface tension of the powder surface. An appropriate amount of powder release agent will affect the penetration of the first liquid material into the powder material layer and inhibit the diffusion of the first liquid material to the edge of the molding area. Helps improve surface accuracy at the edges of the molding area.
  • the stripping agent is selected from water-soluble polymers and/or water-dispersible polymers with a glass transition temperature lower than 40°C; preferably water-soluble polymers or water-dispersible polymers with a glass transition temperature lower than 0°C.
  • the water-soluble polymer or water-dispersible polymer is selected from at least one of polyether resin, polyester resin, poly(meth)acrylate resin, and polyurethane resin.
  • the stripper helps to peel off the solid part formed by the powder material in the non-forming area and the forming area, and is helpful in separating the recycled powder material from the powder in other non-forming areas.
  • the hydrocarbon chain surfactant is selected from fatty alcohol polyoxyethylene ether, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium alkyl sulfate, sodium alkyl succinate sulfonate, sodium sulfamate, polyether , one or more of polyoxyethylene polyoxypropylene ether block copolymers. Adding an appropriate amount of hydrocarbon chain surfactant to the second liquid material is beneficial to the dissolution or dispersion of the second additive, powder release agent, and stripper in water, and is beneficial to the formation of a uniform liquid.
  • the second liquid material contains water.
  • the main function of water is to spray the second liquid material in the non-forming area.
  • Water can reduce the temperature of the powder material in the non-forming area.
  • the evaporated water can also bring Increase the temperature of the powder material in the non-forming area, thereby preventing the powder material in the non-forming area from being melted and/or dissolved by the first liquid material, bonding to the surface of the molded object, affecting the surface accuracy of the object, and using water is better than using other Volatile solvents are less expensive and more environmentally friendly.
  • the second liquid material also contains a co-solvent in a weight ratio of 0.05%-30%.
  • the co-solvent is selected from alcohols, alcohol ethers, amides, pyrrolidone, organic acids and organic acids. At least one of the salts. Adding an appropriate amount of cosolvent to the second liquid material can effectively increase the solubility of the second additive, powder release agent, peeling aid, etc. in the second liquid material, further improving the surface accuracy of the formed three-dimensional object.
  • the first ratio is the ratio of the amount of the first liquid material applied to the amount of the second liquid material applied within the shaping area of the layer of powder material.
  • the “amount” is a measure of the amount of the first liquid material and the second liquid material, which can be the volume or weight or the number of ink droplets, and is not limited in this application.
  • the first ratio is the volume ratio of the first liquid material to the second liquid material.
  • the first ratio is (1-10):1.
  • the first ratio can be 1:1, 2:1, or 3. :1, 5:1, 6:1, 7:1, 8:1, 10:1, etc., by controlling the size of the first ratio in the molding area of the powder material layer, the second liquid material promotes the first liquid material Polymerization reactions occur rapidly to yield solid portions of layers of three-dimensional objects with specified material properties. When the second liquid material is insufficient, the polymerization reaction of the first liquid material is slow and the reaction is incomplete.
  • the strength of the three-dimensional object is reduced, and because the first liquid material does not fully participate in the polymerization reaction to form a polymer, excess first liquid The material easily penetrates into non-molding areas, affecting the molding accuracy of the object.
  • the second liquid material is excessive, the second liquid material is likely to lower the temperature of the powder material in the molding area, reduce the polymerization reaction rate of the first liquid material and/or reduce the dissolution rate of the first liquid material dissolving the powder material.
  • step S30 may be:
  • Step S301 in the same scanning direction as step S201, apply the first liquid material and the second liquid material at a second ratio in the non-forming area of the powder material layer according to the layer printing data of the non-forming area to form a layer of the three-dimensional object
  • the protective portion wherein the first ratio is greater than the second ratio; the amount of the second liquid material in the unit volume of the forming area is less than the amount of the second liquid material in the unit volume of at least part of the non-forming area, and in the forming area
  • the amount of first liquid material per unit volume is greater than the amount of first liquid material per unit volume of at least part of the non-forming area.
  • the second ratio is the ratio of the amount of first liquid material applied to the amount of second liquid material applied within the non-forming area of the layer of powder material.
  • the first proportion is greater than the second proportion, that is, when the first liquid material and the second liquid material are mixed, the proportion of the first liquid material in the mixture in the first proportion is greater than the proportion of the first liquid material in the second proportion. The proportions of the mixture.
  • the second ratio is the volume ratio of the first liquid material to the second liquid material, and the second ratio is (0-0.95):1.
  • the second ratio can be 0, 0.05:1, or 0.1:1. , 0.2:1, 0.5:1, 0.7:1, 0.8:1, 0.95:1, etc.
  • the second ratio is 0, it means that only the second liquid material is applied in the non-forming area of the powder material layer, and it is not formed at this time.
  • the amount of the second liquid material applied in the area only needs to satisfy that the amount of the second liquid material applied per unit volume in the non-forming area is greater than the amount of the second liquid material applied per unit volume in the forming area, where the second liquid
  • the material is mainly used to reduce the temperature of the powder material in the non-forming area and/or prevent the first liquid material in the forming area from penetrating into the non-forming area, thereby improving the surface accuracy of forming the three-dimensional object.
  • the second ratio is greater than 0, it means that the first liquid material and the second liquid material are applied in the non-forming area of the powder material layer, where the second liquid material is mainly used to reduce the temperature of the powder material in the non-forming area, and/or The second liquid material is used to reduce the concentration of the first liquid material in the non-forming area, thereby preventing the powder material in the non-forming area from being melted and bonded to the surface of the three-dimensional object at high temperature or being dissolved by the first liquid material, and/or preventing forming.
  • the first liquid material in the area penetrates into the non-forming area, thereby improving the surface accuracy of forming the three-dimensional object.
  • the endothermic evaporation of some components can effectively reduce the amount of the powder material in the non-forming area.
  • Temperature prevents powder materials in non-forming areas from adhering to the surface of the formed three-dimensional object, which can improve the surface accuracy of the three-dimensional object.
  • this application controls the amount of the first liquid material in the non-molding area of the powder material layer.
  • the second ratio is greater than 0.95:1
  • the second liquid material in the non-molding area promotes the polymerization reaction of the first liquid material.
  • the formed polymer has sufficient strength, and the polymer formed in the non-forming area adheres to the surface of the object, which will reduce the surface accuracy of the formed three-dimensional object and increase the difficulty of post-processing.
  • the amount of the second liquid material per unit volume of the forming area is smaller than the amount of the second liquid material per unit volume of the non-forming area.
  • the main function of the second liquid material in the molding area is to promote the polymerization reaction of the first liquid material to form a polymer.
  • the polymer formed in the molding area is blended with the dissolved powder material, especially mixed with the dissolved powder material at the molecular level to form a polymer.
  • Polymer alloys can improve the mechanical strength of three-dimensional objects.
  • the second liquid material in the non-forming area mainly functions to reduce the temperature of the powder material in the non-forming area; the second liquid material in the non-forming area can also prevent the first liquid material in the forming area from spreading to the non-forming area.
  • the content of the second liquid material sprayed per unit volume in the molding area is less than the amount of the second liquid material sprayed per unit volume in the surrounding non-forming area, the powder release agent in the second liquid material Under the action of , the surface tension of the powder surface or between powders in the non-molding area around the molding area is smaller than the surface tension of the powder surface or between powders in the molding area, and the first liquid material in the molding area is not easy to spread to the edge.
  • the first liquid material it is difficult for the first liquid material to penetrate into the powder material in the non-molding area and dissolve the powder material in the non-molding area, which helps to reduce the effect of the first liquid material on the powder material in the non-molding area; and, since the second liquid material Containing water, when a sufficient amount of water is evaporated, it can take away the temperature of the powder material in the non-molding area, thereby helping to reduce the temperature of the non-molding area and preventing the powder material in the non-molding area from sticking at high temperatures.
  • an interface Connected to the surface of the formed layer solid part (corresponding to the molding area), an interface can be formed between the formed layer solid part and the layer protective part.
  • the layer protective part will not merge with the layer solid part, thereby improving the surface of the formed three-dimensional object. Accuracy.
  • the proportion of the first liquid material in the liquid material applied to the non-forming area is low, and the polymer formed by the first liquid material cannot effectively wrap the powder material, but can form particles larger than the original powder material particles. , which is conducive to sandblasting and recycling powder materials, reducing the difficulty of post-processing of printed three-dimensional objects, especially the post-processing of the surface of three-dimensional objects, thereby improving the surface accuracy of printed objects.
  • Figures 4a-4e are schematic diagrams of the structure of the ink droplets when the first liquid material and the second liquid material are ejected at a specified ratio according to the embodiment of the present application.
  • the x direction in Figure 4a is the scanning of the print head.
  • the y direction is the stepping direction of the print head.
  • Each small square represents the minimum printing unit of the printer. In three-dimensional printing, the minimum printing unit is called a voxel. In a two-dimensional plane, the minimum printing unit is called a pixel.
  • Each dotted box in the figure represents A mixing unit, the first liquid material A and the second liquid material B are sprayed in the mixing unit in proportion, for example, in the mixing unit X1, the first liquid material A and the second liquid material B are sprayed in different voxels in a volume ratio. Mixing is performed at 5:4, and when the first liquid material A and the second liquid material B come into contact, the second liquid material B promotes the polymerization reaction of the first liquid material A.
  • the mixing unit X2 the first liquid material A and the second liquid material B are mixed at a volume ratio of 1:1.
  • the mixing unit X3 the first liquid material A and the second liquid material B are mixed at a volume ratio of 0.8:1.
  • the mixing unit is an area where the first liquid material A and the second liquid material B can be sprayed at a specified ratio to achieve substantially uniform mixing. The actual size of the area is not limited here.
  • the hybrid unit can be a single form, or it can be combined with other forms of hybrid units, and there is no limitation here.
  • Figure 4b is a schematic diagram of the ink droplet landing point structure of another first liquid material and a second liquid material; the x direction represents the scanning direction, and the Z direction represents the ink droplet stacking direction.
  • the first liquid material A and the second liquid material Liquid material B is sprayed at the same voxel position at a specified ratio.
  • the first liquid material A and the second liquid material B are sprayed at the same voxel position Vvoxel at a volume ratio of 1:1.
  • the ink droplets are stacked in the Z direction.
  • the first liquid material A and the second liquid material B are sprayed at the same voxel position Vvoxel with a volume ratio of 2:1, and the ink droplets are superimposed in the Z direction at the same voxel position.
  • Two drops of the first liquid material A with the same volume are sprayed.
  • the first liquid material A and the second liquid material B are sprayed at the same voxel position Vvoxel with a volume ratio of 2:1, and the ink droplets are superimposed in the Z direction at the same voxel position.
  • the volume of a single ink droplet of the first liquid material A is twice the volume of a single ink droplet of the second liquid material B.
  • the x direction is the scanning direction of the print head
  • the y direction is the stepping direction of the print head.
  • the first liquid material A and the second liquid material B are in a volume ratio of 1:1.
  • Proportional jetting is performed at the same voxel position Vvoxel, and the ink droplets are arranged on the horizontal plane in the same voxel.
  • the first liquid material and the second liquid material are sprayed in the molding area and the non-molding area in a specified ratio.
  • the ink droplet placement method can also be a combination of the above methods, which is not limited here.
  • the present application preferably reduces the range of the non-formed area where the liquid material is sprayed to improve the recycling rate of the powder material.
  • the width d of the layer protection part is greater than or equal to the minimum diameter of the droplets of the applied liquid material.
  • the minimum diameter of the droplets is 10um.
  • d in this embodiment is greater than or equal to 10um.
  • the amount of the second liquid material in the unit volume of the non-forming region gradually decreases in a direction away from the forming region. This reduces the amount of the second liquid material sprayed in the non-forming area and reduces the cost of three-dimensional object printing.
  • the peelability allows a clear interface to be formed between the layer solid part and the layer protective part of the three-dimensional object, and the amount of the second liquid material in the unit volume defining the forming area is less than the amount of the second liquid material in the unit volume of at least part of the non-forming area.
  • the amount of the second liquid material, and the amount of the first liquid material in the unit volume of the forming area is greater than the amount of the first liquid material in the unit volume of at least part of the non-forming area.
  • the printing method further includes: step S40, heating the powder material layer to which the second liquid material is applied.
  • thermal energy is provided on the powder material layer applied with the second liquid material to heat the powder material layer applied with the second liquid material, and the heating temperature is higher than 70°C and lower than the melting point or melting temperature of the powder material 5°C or above;
  • the heating temperature is higher than 70°C and lower than the melting point or melting temperature of the powder material 5°C or above;
  • the molding area affects the surface accuracy of the molded object; and/or promotes the evaporation of some components in the second liquid material (such as the evaporation of water), and increases the concentration of the second additive in the second liquid material in the molding area to further accelerate the first The polymerization reaction rate of the liquid material. Since the amount of the second liquid material in the unit volume of the non-forming area is greater than the amount of the second liquid material in the unit volume of the forming area, the endothermic evaporation of some components can effectively reduce the polymerization rate in the non-forming area.
  • the temperature of the powder material prevents the powder material in the non-forming area from adhering to the surface of the formed three-dimensional object, which can improve the surface accuracy of the three-dimensional object.
  • the heating energy includes at least one of radiant energy and thermal energy.
  • heating can be performed by infrared radiation, visible light irradiation, etc.
  • the printing method also includes:
  • Step S50 confirm whether the molding layer of the current three-dimensional object is the last layer. If not, repeat the above steps of forming the powder material layer to forming the molding layer, so that the obtained multiple molding layers are superimposed layer by layer to form the three-dimensional object.
  • the digital model of the three-dimensional object is sliced and layered to obtain at least one slice layer.
  • each formed layer is superimposed layer by layer until all slice layers are printed to form the target three-dimensional object. Otherwise, it is necessary to repeatedly form the powder material layer and spray the first liquid material and the second liquid material to form the layer solid part and the layer protective part according to the layer printing data, wherein the layer solid part and the layer protective part constitute the molding layer, and are formed layer by layer.
  • applying the second liquid material in the molding area can promote the polymerization reaction of the first liquid material and dissolve at least part of the powder material to form the layer solid part of the three-dimensional object.
  • the second liquid material in the non-forming area does not promote or slowly promotes the polymerization reaction of the first liquid material to form the layer protective portion of the three-dimensional object.
  • the main function of applying the second liquid material in the non-forming area is to prevent the first liquid material in the forming area from penetrating into the non-forming area, thereby preventing the penetrating first liquid material from interacting with the powder material in the non-forming area from affecting the surface of the molded object.
  • Figure 5 is a schematic flow chart of a three-dimensional object printing method provided by yet another embodiment of the present application. This embodiment is different from Figure 2 in that during the printing process, the first liquid material A and the second liquid material B are scanned in different directions. Inkjet printing is performed and the second liquid material B is ejected first and then the first liquid material A is ejected.
  • the printing method includes:
  • Step S202 in the first scanning direction, first apply the second liquid material at the first ratio in the molding area of the powder material layer according to the layer printing data of the molding area, and apply the second liquid material in the non-molding area of the powder material layer according to the layer printing data of the non-molding area.
  • the second liquid material is first applied in the molding area at a second ratio;
  • step S40 is performed to heat the powder material layer to which the second liquid material is applied.
  • step S302 is performed, in the second scanning direction, the first liquid material is applied in the molding area of the powder material layer at a first ratio according to the layer printing data of the molding area, and the second liquid material promotes the polymerization of the first liquid material.
  • Reaction to form a layer entity part of a three-dimensional object applying the first liquid material at a second ratio in the non-formed area of the powder material layer according to the layer printing data of the non-formed area to form a layer protective part of the three-dimensional object; wherein, the first a scanning direction is opposite to the second scanning direction, the first ratio is greater than the second ratio; the amount of the second liquid material in the unit volume of the forming area is less than the amount of the second liquid material in the unit volume of at least part of the non-forming area, And the amount of the first liquid material per unit volume of the forming area is greater than the amount of the first liquid material per unit volume of at least part of the non-forming area.
  • the first liquid material and the second liquid material are applied in different scanning directions respectively, and the second liquid material is applied first, and then the powder material layer to which the second liquid material is applied is heated, and then the The first liquid material.
  • the first liquid material is ejected, at least part of the evaporable components in the second liquid material are evaporated.
  • the amount of the second liquid material in the non-forming area is large, and the evaporated components are By reducing the temperature of the powder material in the non-forming area, the temperature of the powder material in the non-forming area is lowered, and the concentration of other components in the second liquid material is increased, which can promote the polymerization reaction speed of the first liquid material and improve the formation of objects. surface accuracy.
  • liquid material formula is as follows:
  • the water-soluble polyester resin does not react during the molding process, and the Tg is 10°C.
  • liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • liquid material formula is as follows:
  • the Tg of water-based polyurethane is 0°C.
  • liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • Example 8 Cellulose acetate is used as the powder material, and the liquid material formula is as follows:
  • the Tg of water-based acrylic emulsion is 40°C.
  • Example 5 The three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and a single voxel Vvoxel is printed with 8 drops of ink during the inkjet printing process.
  • the volume of a single ink droplet is basically the same
  • the first ratio is 4:4, which means that 4 drops of the first liquid material ink droplets and 4 drops of the second liquid material ink droplets are sprayed in a single voxel in the molding area
  • the second ratio is 0: 8 means that the first liquid material is not sprayed in the non-forming area, and only 8 drops of the second liquid material are sprayed in a single voxel in the non-forming area.
  • Example 5 The three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and a single voxel Vvoxel is printed with 8 drops of ink during the inkjet printing process.
  • the volume of a single ink droplet is basically the same, the first ratio is 7:1, which can be expressed as ejecting 7 drops of the first liquid material ink droplet and 1 drop of the second liquid material ink droplet in a single voxel in the molding area; the second ratio is 3 :5, which can be expressed as ejecting 3 drops of the first liquid material ink droplets and 5 drops of the second liquid material ink droplets in a single voxel in the non-forming area.
  • the three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and 8 is used in the single voxel Vvoxel in the forming area during the inkjet printing process.
  • Drop ink printing a single voxel in the non-forming area uses 4 drops of ink printing in Vvoxel.
  • the volume of a single ink drop is basically the same.
  • the first ratio is 6:2, which can be expressed as 6 drops of the first liquid sprayed into a single voxel in the forming area.
  • the second ratio is 1:3, which can be expressed as ejecting 1 drop of the first liquid material ink droplet and 3 drops of the second liquid material ink in a single voxel in the non-forming area drop.
  • liquid material formula is as follows:
  • Polyurethane particles are used as powder materials, and the first liquid material in Example 4 is used as the spray liquid.
  • the formula of the first liquid material, and the formula of the second liquid material are as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • Polyamide particles are used as the powder material, and the first liquid material of Example 5 is used alone as the spray liquid formula;
  • Polyamide particles are used as the powder material, the first liquid material of Example 5 is used as the spray liquid, the first liquid material formula, and the second liquid material formula are as follows:
  • the Tg of water-based acrylic emulsion is -10°C.
  • Polyamide particles are used as the powder material, the first liquid material of Example 5 is used as the first liquid material of the spray liquid, and the formula of the second liquid material is as follows:
  • the Tg of water-based acrylic emulsion B is 90°C.
  • Polyamide particles are used as the powder material, the first liquid material of Example 5 is used as the first liquid material of the spray liquid, and the formula of the second liquid material is as follows:
  • Example 5 The three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and a single voxel Vvoxel is printed with 4 drops of ink during the inkjet printing process.
  • the volume of a single ink droplet is basically the same
  • the first ratio is 1:1, which means that 2 drops of the first liquid material ink droplet and 2 drops of the second liquid material ink droplet are respectively sprayed in a single voxel in the molding area
  • the second ratio is 1: 1, indicating that two drops of first liquid material ink droplets and two drops of second liquid material ink droplets are respectively ejected in a single voxel in the non-forming area.
  • the three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and the single voxel Vvoxel in the forming area during the inkjet printing process is 12 Drop ink printing, a single voxel in the non-forming area uses 8 drops of ink printing in Vvoxel.
  • the volume of a single ink drop is basically the same, and the first ratio is 11:1, which means that 11 drops of the first liquid material are sprayed into a single voxel in the forming area.
  • the three-dimensional printing material in Example 5 is used in combination with the three-dimensional object printing method in Figure 2, where the preheating temperature is 175°C, the heating temperature is 180°C, and 8 is used in the single voxel Vvoxel in the forming area during the inkjet printing process.
  • Drop ink printing a single voxel in the non-forming area uses 4 drops of ink printing in Vvoxel.
  • the volume of a single ink drop is basically the same, and the first ratio is 4:4, which means that 4 drops of the first liquid material are sprayed into a single voxel in the forming area.
  • Example 6 and Example 7 A high-temperature initiator is added to the liquid material, and a low-temperature initiator is added to the first liquid material provided in Comparative Example 1.
  • the first liquid material does not contain an initiator, and the storage stability of the first liquid material is good; the first liquid Materials containing low-temperature initiators can easily cause the storage stability of the first liquid material to deteriorate; the inclusion of high-temperature initiators in the first liquid material will not affect the storage stability of the first liquid material at the temperature that induces the low-temperature initiator to act.
  • the high-temperature initiators in Example 6 and Example 7 are different from Example 2 in that they are both relatively stable at room temperature and can ensure the storage stability of the first liquid material.
  • Example 1 a sample is printed using the three-dimensional object printing method (ratio of first liquid material and second liquid material) in Figure 2 at a preheating temperature of 150°C.
  • Examples 2-4 The powder materials provided in Comparative Examples 1-3 were printed using the three-dimensional object printing method in Figure 2 at a preheating temperature of 110°C; Examples 5-7, Examples 9-11, and Comparative Examples 4-10 were provided.
  • the powder material is preheated at a temperature of 175°C and the three-dimensional object printing method in Figure 2 is used.
  • the powder material provided in Example 8 is preheated at a temperature of 150°C and the three-dimensional object printing method in Figure 2 is used.
  • Examples 1 to 8, Comparative Example 3, Comparative Example 5, Comparative Example 6 and Comparative Example 7 are based on the three-dimensional object printing method.
  • the total volume of ink in a single voxel in the forming area and the non-forming area is the same, in terms of a single ink droplet.
  • the volumes are basically the same.
  • the number of ink droplets in a single voxel in the molding area and the non-molding area is the same.
  • the volumes of the first liquid material and the second liquid material in the molding area are The ratio is 6:2; the volume ratio of the first liquid material to the second liquid material in the non-forming area is 2:6, and the sample is printed.
  • Comparative Example 1 Comparative Example 2, and Comparative Example 4 were based on the three-dimensional object printing method. Samples were printed by spraying 8 drops of liquid material ink droplets into a single voxel in the molding area of the three-dimensional object.
  • the sample was tested for tensile strength according to GB/T 1040.2-2006 Plastic Tensile Properties Measurement Standard.
  • the target length of the sample is 70.00mm
  • the target width is 10.00mm
  • the target thickness is 3.00mm.
  • ⁇ W width actual measured width value-target width value
  • ⁇ D thickness actual measured thickness value – target thickness value
  • ⁇ L length actual measured length value – target length value
  • Example 2 and Comparative Example 2 in Table 2 use the same first liquid material, and the second liquid material containing a promoter is not added to the liquid material provided in Comparative Example 2. After testing, it was found that the tensile strength and elongation at break of the sample of Example 2 were significantly better than that of the sample of Comparative Example 2. This is because the high-temperature initiator in the first liquid material of Example 2 requires the introduction of a second liquid material containing a promoter for better initiation of polymerization; while Comparative Example 2 does not add a second liquid material containing a promoter. Liquid material, the first liquid material did not effectively polymerize after being mixed with the powder material, so the mechanical properties of the sample were poor.
  • Example 2 the first liquid material and the second liquid material are applied on the powder material layer.
  • Comparative Example 2 the second liquid material is not applied. From Table 3, it can be seen that ⁇ W, ⁇ D, ⁇ L and roughness in Comparative Example 2 The larger value indicates that the combined use of the first liquid material and the second liquid material has a significant improvement effect on the dimensional stability and roughness of the three-dimensional object.
  • Example 4 The same polyurethane powder and the same first liquid material are used in both Example 4 and Comparative Example 3.
  • the weight proportion of the powder release agent in the second liquid material provided in Example 4 is 2%, and the weight ratio of the powder release agent in the second liquid material provided in Comparative Example 3 is The weight proportion of the powder release agent in the second liquid material is 15% (more than 10%). It can be seen from Table 3 that the ⁇ W, ⁇ D, ⁇ L and roughness values of Comparative Example 3 are larger than those of Example 4, which shows that the powder release agent has little effect on the difference between the solid part and the protective part after exceeding a certain content. Obviously, the effect of the second liquid material is not obvious.
  • Example 5 and Comparative Example 4 use the same first liquid material.
  • the second liquid material of Example 5 contains an initiator, while Comparative Example 4 does not add the second liquid material containing an initiator. Therefore, the tensile strength and elongation at break of Example 5 are significantly stronger than those of Comparative Example 4.
  • the ⁇ W, ⁇ D, ⁇ L and roughness values of the printed sample of Comparative Example 4 are larger than those of Example 5, which illustrates the impact of spraying the first liquid material and the second liquid material containing the initiator on the powder material layer on the dimensional stability. and roughness have a certain effect.
  • Example 5 and Comparative Example 5 use the same first liquid material, wherein the second liquid material provided in Comparative Example 5 does not contain powder release agent. It can be seen from Table 3 that compared with Comparative Example 4 and Comparative Example 5, Comparative Example 5 has a certain improvement effect on dimensional stability and roughness, but there is still a certain gap compared with Example 5, indicating that in the second liquid material Adding an appropriate amount of powder release agent can improve the dimensional stability and roughness of three-dimensional objects.
  • Example 5 and Comparative Example 6 use the same first liquid material, wherein the glass transition temperature Tg point of the release agent (water-based acrylate emulsion) in the second liquid material provided in Comparative Example 6 is 90°C, exceeding 40°C. ; And the glass transition temperature Tg point of the release agent (water-based acrylate emulsion) in the second liquid material provided in Example 5 is -10°C, which is lower than 40°C.
  • the ⁇ W and ⁇ D of the sample printed in Comparative Example 6 are positive values, but the roughness is much larger than that of Example 5. This shows that after the powder material particles are wrapped with a release agent with a high glass transition temperature, it is easy to adhere to the surface of the sample. , the error value appears to be positive, and the surface is rougher. Therefore, it is necessary to control the glass transition temperature of the release agent in the second liquid material to be lower than 40°C.
  • Example 5 and Comparative Example 7 use the same first liquid material.
  • the second liquid material provided in Comparative Example 7 does not contain a release agent.
  • the ⁇ W, ⁇ D, ⁇ L and The roughness value is close to the sample of Example 5, but there is still a certain gap between it and Example 5. It shows that the second liquid material contains a release agent, which has a certain improvement effect on the dimensional stability and roughness of the sample.
  • Example 5 Example 9, Example 10, Example 11, Comparative Example 8, Comparative Example 9, and Comparative Example 10 all use the same powder material and liquid material, but adopt different printing methods.
  • Comparative Example 8 the tensile strength and elongation at break are much lower than those in Example 5, Example 9, Example 10 and Example 11. This may be because the amount of ink in Comparative Example 8 is too small.
  • the protective part of the non-molding area and the solid part are bonded into a molding layer.
  • Comparative Example 9 The tensile strength and elongation at break of Comparative Example 9 are much lower than those of Example 5, Example 9, Example 10 and Example 11. This is because the first liquid material in Comparative Example 9 is too much, and the second liquid material is too much. There is too little liquid material, and there is not enough second liquid material to promote the polymerization reaction of the first liquid material, resulting in insufficient polymerization of the first liquid material, so its tensile strength and elongation at break are too low.
  • the amount (volume) of the second liquid material in the unit volume of the molding area is The amount (volume) of the second liquid material per unit volume that is greater than the non-forming area, coupled with the larger overall ink volume of the first liquid material, results in ⁇ W, ⁇ D, and ⁇ L being larger than the target values, and the roughness larger.
  • Figure 6 is a schematic structural diagram of a three-dimensional object printing device provided by an embodiment of the present application. As shown in Figure 6, an embodiment of the present application also provides a three-dimensional object printing device for implementing the above three-dimensional object printing method. Devices include:
  • the powder supply component 2 provides powder material to form a powder material layer L0.
  • the powder material layer includes a forming area and a non-forming area;
  • Forming platform 3 supports the formed powder material layer L0;
  • the print head 26 ejects the first liquid material A and the second liquid material B;
  • the controller 9 controls the print head 26 to apply the first liquid material A and the second liquid material B at a first ratio in the forming area of the powder material layer according to the layer printing data, and the second liquid material B promotes the first liquid material A A polymerization reaction occurs to form the layered solid portion of a three-dimensional object;
  • the controller 9 controls the print head 26 to apply the first liquid material A and the second liquid material B at a second ratio in the non-forming area of the powder material layer according to the layer printing data to form a layer protection part of the three-dimensional object; wherein, the first ratio Greater than the second ratio; the amount of the second liquid material B in the unit volume of the forming area is less than the amount of the second liquid material B in the unit volume of at least part of the non-forming area, and the first amount of the second liquid material B in the unit volume of the forming area is greater than the second ratio; The amount of liquid material A is greater than the amount of first liquid material A per unit volume of at least part of the non-forming area.
  • the powder supply component 2 includes a powder storage chamber 23, a lifting assembly 22 and a powder spreader 21.
  • the powder storage chamber is used to store the powder material 0.
  • the powder storage chamber 23 has a movable support plate 231 inside.
  • the lifting assembly 22 Connected to the support plate 231, the support plate 231 can be driven up or down in the Z direction; the powder spreader 21 is used to spread the powder material 0 in the powder storage chamber 23 onto the forming platform 3 to form a powder material layer L0.
  • the powder device 21 can be a powder spreading stick or a scraper.
  • the print head 26 includes a first nozzle hole array 26a and a second nozzle hole array 26b, wherein the first nozzle hole array 26a is used to eject the first liquid material A, and the second nozzle hole array 26b is used to eject the second liquid material B; Or the first nozzle hole array 26a is used to spray the first liquid material A and the second liquid material B mixed in a first ratio, and the second nozzle hole array 26b is used to spray the second liquid material A and the second liquid material B mixed in a second ratio. Two liquid materials B.
  • the first liquid material A and the second liquid material B are two different liquid materials, which are stored separately in different material reservoirs, such as ink tanks, and the first liquid material A and B are respectively transported through different liquid material delivery pipelines. liquid material and a second liquid material.
  • the specific components of the first liquid material A and the second liquid material B are detailed in the introduction of the aforementioned three-dimensional printing materials, and will not be described again here.
  • the first liquid material A and the second liquid material B are sprayed in proportion, which may be when the first liquid material A and the second liquid material B are delivered to respective nozzle arrays of the print head 26 for spraying. After mixing in proportion, the mixed liquid material is sprayed on the forming area or non-forming area of the powder material layer.
  • Figure 7a is a partial structural schematic diagram of the liquid supply device in the three-dimensional object printing device provided by the embodiment of the present application.
  • the first liquid material A is stored in the ink tank 21a and pumped through the pump. 22a is transported to the mixing container 25a or 25b via the ink tube 23a.
  • the second liquid material B is stored in the ink cartridge 21b and is transported to the mixing container 25a or 25b via the ink tube 23b by the pump 22b.
  • the first liquid material B in the mixing container 25a The liquid material A and the second liquid material B are mixed in a first ratio.
  • the first liquid material A and the second liquid material B are mixed in the mixing container 25b in a second ratio.
  • the switches 24a and 24b are respectively used to control the first liquid material A and the second liquid material B.
  • the second liquid material B supplies ink to the mixing container 25a or the mixing container 25b.
  • the specific types of switches 24a and 24b are not limited, as long as the first liquid material A and the second liquid material B can be controlled to flow to the designated mixing container. It just needs to supply ink, for example, it can be a solenoid valve.
  • Figure 7b is a partial structural schematic diagram of the liquid supply device in the three-dimensional object printing device provided by the embodiment of the present application.
  • the first liquid material A is stored in the ink tank 21a.
  • the pump 22a is transported to the mixing container 25a via the ink tube 23a, and is transported to the mixing container 25b via the ink tube 23c by the pump 22c;
  • the second liquid material B is stored in the ink tank 21b, and is transported via the ink tube 23b by the pump 22b.
  • the first liquid material A and the second liquid material B are mixed in the mixing container 25a at a first ratio.
  • the first liquid material in the mixing container 25b A and the second liquid material B are mixed in a second ratio.
  • the mixture of the first liquid material A and the second liquid material B mixed in the first ratio supplies ink to the first nozzle array 26a, and the mixture of the first liquid material A and the second liquid material B mixed in the second ratio supplies ink to the first nozzle array 26a.
  • the two nozzle arrays 26b supply ink, thereby realizing inkjet printing in the forming area and non-forming area of the powder material layer, and obtaining the layer solid part and the layer protective part of the three-dimensional object.
  • the first liquid material A and the second liquid material B are sprayed in proportion. It is also possible that the first liquid material A and the second liquid material B are sprayed to different nozzle hole arrays of the print head 26 through different ink supply pipes. Ink supply, liquid material is sprayed on the powder layer in different proportions.
  • Figure 7c is a partial structural schematic diagram of the liquid supply device in the three-dimensional object printing device provided by the embodiment of the present application.
  • the first liquid material A is stored in the ink tank 21a.
  • Pump 22a is delivered via ink tube 23a into the first orifice array 26a of the print head.
  • the second liquid material is stored in the ink tank 21b and is delivered by the pump 22b via the ink tube 23b to the second nozzle array 26b of the print head.
  • the controller controls the first nozzle array 26a and the second nozzle array 26b of the print head 26 to respectively eject the first liquid material A and the second liquid material B on the forming area of the powder material layer at a first ratio according to the layer printing data, According to the layer printing data, the first nozzle hole array 26a and the second nozzle hole array 26b are controlled to spray the first liquid material A and the second liquid material B respectively on the non-forming area of the powder material layer at the second ratio.
  • the first liquid material A Contact is made with the second liquid material B on the powder material layer.
  • Figure 8a is a schematic diagram of the surface structure of the print head nozzle holes in the three-dimensional object printing device according to the embodiment of the present application.
  • the first nozzle hole array 26a and the second nozzle hole array 26b can be integrated into multiple channels.
  • the print head, or two multi-channel print heads, the multi-channel print head 26 includes at least two rows of nozzles, such as 2 rows, 3 rows, 4 rows, etc.
  • the print head 26 has four rows of nozzle holes, and each row of nozzle holes can be controlled independently.
  • Figure 8b is a schematic diagram of the surface structure of another print head nozzle hole provided by an embodiment of the present application.
  • the first nozzle hole array 26a and the second nozzle hole array 26b can be a single-channel print head, and the print head 26 is Single pass printhead.
  • Figure 8c is a schematic diagram of the surface structure of another printhead nozzle hole provided by an embodiment of the present application.
  • the first nozzle array 26a and the second nozzle array 26b can also be integrated into a single channel or multiple channels. channel printhead.
  • the print head 26 is an integrated single-channel and multi-channel print head, and each nozzle hole can be independently controlled, such as controlling whether each nozzle hole ejects ink, and/or each nozzle hole ejects ink. Ink droplet size is variable.
  • the storage stability of the liquid material can be improved and the occurrence of the first liquid material can be prevented.
  • the polymerization reaction ensures the smooth ink supply of liquid materials, and also prevents the print head nozzles from being blocked and damaging the print head.
  • the three-dimensional object printing device also includes a preheating component 53.
  • the preheating component 53 is placed above the molding platform 3.
  • the preheating component 53 is used to provide radiant energy or thermal energy to preheat the powder material layer L0 to facilitate molding.
  • the second liquid material in the region promotes the polymerization reaction of the first liquid material to form a polymer, which contributes to the evaporation of the evaporable components in the second liquid material in the non-forming region to take away the temperature of the powder material in the non-forming region.
  • the preheating component can be selected from at least one of an ultraviolet lamp, an infrared lamp, a microwave emitter, a heating wire, a heating sheet, and a heating plate, and there is no restriction on the specific selection.
  • the three-dimensional object printing device further includes heating components 51 and 52 for heating the powder layer sprayed with the second liquid material after the print head ejects the second liquid material.
  • the heating components may be selected from the group consisting of ultraviolet lamps, infrared lamps, and microwaves. At least one of an emitter, a heating wire, a heating sheet, and a heating plate; it should be noted that which form of heating component is specifically selected and the type of the first active component in the first liquid material or the first active group The type of component is related to the type of the second additive.
  • the heating component provides radiant energy such as ultraviolet radiation to trigger the first activity through ultraviolet radiation.
  • the components undergo photopolymerization; when the first active component in the first liquid material undergoes thermal polymerization, the heating component provides thermal energy such as infrared lamp, microwave, heating wire, heating sheet, and heating plate, and the thermal energy triggers the second A first reactive component in a liquid material undergoes thermal polymerization.
  • the heating component provides thermal energy such as infrared lamp, microwave, heating wire, heating sheet, and heating plate, and the thermal energy triggers the second A first reactive component in a liquid material undergoes thermal polymerization.
  • the three-dimensional object printing device also includes a lifting mechanism 4.
  • the lifting mechanism 4 is connected to the forming platform 3 and drives the forming platform 3 to rise or fall in the vertical direction.
  • the lifting mechanism 4 drives the forming platform 3 to move downward by a distance of a powder layer thickness.
  • the preheating component 53 is installed above the molding platform 3 or on the top of the molding chamber.
  • the heating component 51, the print head 26 and the heating component 52 can be installed on the guide rail 11 in order, and can be installed on the guide rail 11. move on the guide rail 11.
  • the three-dimensional object printing device may also include a temperature monitor (not shown in the figure), which is used to monitor the temperature of the powder material layer.
  • controller 9 is also used to control the operation of at least one of the powder supply component 2, the preheating component 53, the heating components 51 and 52, and the temperature monitor.
  • the temperature monitor feeds back the monitored temperature to the controller 9, and the controller controls the amount of energy provided by the preheating component 53 and/or the heating component 51 and the heating component 52 based on the information fed back by the temperature monitor.
  • Embodiments of the present application also provide a non-transitory computer-readable storage medium.
  • the storage medium 91 includes a stored program 911.
  • the program runs, the device where the storage medium 91 is located is controlled to execute the above-mentioned three-dimensional object printing method.
  • the computer device of this embodiment includes: a processor 101, a memory 102, and a computer program 103 stored in the memory 102 and executable on the processor 101.
  • the processor 101 executes the computer program 103, the three-dimensional object printing method in the embodiment is implemented. To avoid repetition, details will not be described here.
  • Computer equipment can be computing equipment such as desktop computers, notebooks, PDAs, and cloud servers. Computer equipment may include, but is not limited to, processors and memory. Those skilled in the art can understand that a computer device may include more or less components than shown in the figures, or a combination of certain components, or different components. For example, the computer device may also include input and output devices, network access devices, buses, etc. .
  • the so-called processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), on-site Programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory may be an internal storage unit of the computer device, such as a hard drive or memory of the computer device.
  • Memory can also be an external storage device of a computer device, such as a plug-in hard drive, a smart memory card (SMC), a secure digital (SD) card, a flash card, etc. .
  • the memory may also include both internal storage units of the computer device and external storage devices.
  • Memory is used to store computer programs and other programs and data required by the computer device.
  • the memory can also be used to temporarily store data that has been output or is to be output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

本申请提供一种三维物体打印方法及装置、三维打印材料,其中,打印方法包括利用粉末材料形成粉末材料层,粉末材料层包括成型区域和非成型区域;根据层打印数据在粉末材料层的成型区域内以第一比例喷射第一液体材料和第二液体材料,第二液体材料促进第一液体材料发生聚合反应,形成三维物体的层实体部分;根据层打印数据在粉末材料层的非成型区域内以第二比例喷射第一液体材料和第二液体材料,形成三维物体的层防护部分;其中,第一比例大于第二比例。本申请实施例提供三维物体打印方法及装置、三维打印材料,可以提高液体材料的储存稳定性,提高三维物体表面精度,降低后处理难度。

Description

三维物体打印方法及装置、三维打印材料
本申请要求于2022年03月11日提交中国专利局,申请号为202210235881.X、发明名称为“三维物体打印方法及装置、三维打印材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维打印技术领域,尤其涉及三维物体打印方法及装置、三维打印材料。
背景技术
三维物体增材制造技术主要过程是获取三维物体的数字模型,并对所述数字模型进行切片分层以及对每个切片层进行数据处理和转换从而得到每个切片层的打印数据,打印装置根据切片层打印数据进行逐层打印并叠加制造出三维物体。
现有三维物体增材制造技术中粉末与喷墨打印相结合的技术,例如,在粉末材料层上打印头根据三维物体的层打印数据在成型区域喷射液体材料之后提供辐射使液体材料发生聚合反应包裹与之接触的粉末颗粒形成三维物体的层,或者,液体材料中含有辐射吸收剂,辐射吸收剂吸收辐射转化为热能从而使与之接触的粉末颗粒熔融形成三维物体的层。然而,该类三维物体增材制造技术存在喷射的液体材料渗透至非成型区域从而导致非成型区域的粉末颗粒粘附包裹在与之相邻的三维物体表面,或者,导致非成型区域的粉末颗粒熔融黏连在三维物体表面,以致最终三维物体表面粗糙度高,后处理难。
因此,在粉末与喷墨打印相结合的增材制造技术中,如何提高三维物体的表面精度,降低三维物体后处理难度是本领域技术人员有待解决的技术问题。
发明内容
本申请实施例提供三维物体打印方法及装置、三维打印材料,可以提高液体材料的储存稳定性,提高三维物体表面精度,降低后处理难度。
第一方面,本申请提供一种三维物体打印方法,所述方法包括:
利用粉末材料形成粉末材料层,所述粉末材料层包括成型区域和非成型区域;
根据层打印数据在所述粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,所述第二液体材料促进所述第一液体材料发生聚合反应,形成三维物体的层实体部分;
根据层打印数据在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成所述三维物体的层防护部分;其中,所述第一比例大于所述第二比例;在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材料的量。
结合第一方面,在一种可行的实施方式中,所述第一比例为所述第一液体材料与所述第二液体材料的体积比,所述第一比例为(1-10):1;和/或,所述第二比例为所述第一液体材料与所述第二液体材料的体积比,所述第二比例为(0-0.95):1。
结合第一方面,在一种可行的实施方式中,所述层实体部分与所述层防护部分位于同一水平面,且所述层实体部分与所述层防护部分相邻设置。
结合第一方面,在一种可行的实施方式中,所述非成型区域沿远离所述成型区域的方向,所述非成型区域的单位体积中的第二液体材料的量逐渐减小。
结合第一方面,在一种可行的实施方式中,所述层防护部分的宽度大于或等于施加的液体材料的液滴的最小直径。
结合第一方面,在一种可行的实施方式中,在所述根据层打印数据在所述粉末材料层的成型区域内以第一比例喷射第一液体材料和第二液体材料,根据层打印数据在所述粉末材料层的非成型区域内以第二比例喷射第一液体材料和第二液体材料之前,所述三维物体打印方法还包括:
预热所述粉末材料层。
结合第一方面,在一种可行的实施方式中,所述预热的温度低于所述粉末材料的熔点或熔融温度5℃-100℃。
结合第一方面,在一种可行的实施方式中,在所述根据层打印数据在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料之后,所述三维物体打印方法还包括:
对施加有所述第二液体材料的粉末材料层进行加热。
结合第一方面,在一种可行的实施方式中,所述加热的温度高于70℃且低于所述粉末材料的熔点或熔融温度5℃以上,以促进所述第二液体材料中的水蒸发,和/或,促进所述第一液体材料溶解所述粉末材料且促进所述第一液体材料发生聚合反应。
结合第一方面,在一种可行的实施方式中,所述预热和所述加热的能量包括辐射能、热能中的至少一种。
结合第一方面,在一种可行的实施方式中,所述第一液体材料包括第一活性组分,所述第一活性组分溶解至少部分所述粉末材料;所述第二液体材料包括第二助剂、粉末离型剂、剥离剂、碳氢链表面活性剂及水,所述第二助剂用于促进所述第一液体材料发生聚合反应。
结合第一方面,在一种可行的实施方式中,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%。
结合第一方面,在一种可行的实施方式中,其满足以下特征中的至少一种:
(1)所述第二助剂选自引发剂、促引发剂和催化剂中至少一种;
(2)所述粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种;
(3)所述粉末离型剂选自硅油乳液、含氟非离子表面活性剂、含氟阴离子表面活性剂中至少一种;
(4)所述剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;
(5)所述剥离剂选自玻璃化温度低于40℃的聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中至少一种。
结合第一方面,在一种可行的实施方式中,所述第二液体材料还包括重量占比的以下组分:助溶剂0.05%-30%。
结合第一方面,在一种可行的实施方式中,所述助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。
结合第一方面,在一种可行的实施方式中,在形成三维物体的层实体部分和层防护部分之后,所述方法还包括:
重复形成粉末材料层和施加第一液体材料及第二液体材料,获得的多个切片层逐层叠加形成三维物体,所述切片层包括层实体部分和层防护部分。
第二方面,本申请实施例提供一种非暂时性计算机可读存储介质,所述存储介质包括存储的程序,在所述程序运行时控制所述存储介质所在设备执行上述的三维物体打印方法。
第三方面,本申请实施例提供一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的三维物体打印方法。
第四方面,本申请实施例提供一种三维物体,所述三维物体根据上述的三维物体打印方法打印得到。
第五方面,本申请实施例提供一种三维打印材料,与三维打印用的粉末材料配合使用,所述材料包括:
第一液体材料,所述第一液体材料包括第一活性组分,所述第一活性组分可溶解至少部分所述粉末材料;及
第二液体材料,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,所述第二助剂用于促进所述第一液体材料发生聚合反应。
第六方面,本申请实施例提供一种三维打印材料,所述材料包括:
粉末材料,所述粉末材料用于形成粉末材料层;
第一液体材料,所述第一液体材料包括第一活性组分,所述第一活性组分溶解至少部分所述粉末材料;及
第二液体材料,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,所述第二助剂用于促进所述第一液体材料发生聚合反应。
结合第六方面,在一种可行的实施方式中,所述粉末材料层包括成型区域和非成型区域,所述第一液体材料和所述第二液体材料以第一比例施加至所述成型区域内,所述第一液体材料和所述第二液体材料以第二比例施加至所述非成型区域内,其中,所述第一比例大于所述第二比例。
结合第六方面,在一种可行的实施方式中,所述第一比例为所述第一液体材料与所述第二液体材料的体积比,所述第一比例为(1-10):1;和/或,所述第二比例为所述第一液体材料与所述第二液体材料的体积比,所述第二比例为(0-0.95):1。
结合第六方面,在一种可行的实施方式中,在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材 料的量。
结合第六方面,在一种可行的实施方式中,所述粉末材料包括聚苯乙烯、聚氯乙烯、聚丙烯腈、丙烯腈-苯乙烯-丙烯酸酯共聚物、聚酰胺、聚酯、聚氨酯、聚(甲基)丙烯酸酯、聚氟乙烯、氯化聚烯烃、含有可被所述第一活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇、纤维素、改性纤维素中的至少一种。
结合第五或第六方面,在一种可行的实施方式中,所述第一活性组分具有可参与聚合反应的活性基团,所述活性基团包括碳碳双键、羟基、羧基、杂环丙烷基团、碳酸酯类基团、环氧基团、液体环状内酯结构、环状缩醛结构中的至少一种。
结合第五或第六方面,在一种可行的实施方式中,所述第一液体材料包括第二活性组分,所述第二活性组分具有可参与聚合反应的活性基团,所述第二活性组分不溶解所述粉末材料;
所述第二活性组分包括丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环三羟甲基丙烷甲缩醛丙烯酸酯、含碳碳双键的预聚物、含环氧基团的预聚物、促使环氧基团发生开环聚合的单体、促使环氧基团发生开环聚合的预聚物、固体环状内酯、环状酰胺类化合物中的至少一种。
结合第五或第六方面,在一种可行的实施方式中,以所述第一液体材料总重量为100%计,所述第一活性组分在所述第一液体材料中的重量占比为10%~95%。
结合第五或第六方面,在一种可行的实施方式中,以所述第一液体材料总重量为100%计,所述第二活性组分在所述第一液体材料中的重量占比为5%~90%。
结合第五或第六方面,在一种可行的实施方式中,以所述第一液体材料总重量为100%计,所述第一液体材料还包括重量占比的以下组分:第一助剂0.01%~30%;
所述第一助剂包括高温引发剂、流平剂、消泡剂、阻聚剂、抗氧化剂、增塑剂、分散剂、颜料及染料中至少一种。
结合第五或第六方面,在一种可行的实施方式中,其满足以下特征中的至少一种:
(1)所述第二助剂选自引发剂、促引发剂和催化剂中至少一种;
(2)所述粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种;
(3)所述粉末离型剂选自硅油乳液、含氟非离子表面活性剂、含氟阴离子表面活性剂中至少一种;
(4)所述剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;
(5)所述剥离剂选自玻璃化温度低于40℃的聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中至少一种。
结合第五或第六方面,在一种可行的实施方式中,以所述第二液体材料总重量为100%计,所述第二液体材料还包括重量占比的以下组分:助溶剂0.05%-30%。
结合第五或第六方面,在一种可行的实施方式中,所述助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。
结合第五或第六方面,在一种可行的实施方式中,所述碳氢链表面活性剂选自脂肪醇聚氧乙烯醚、烷基磺酸钠、烷基苯磺酸钠、烷基硫酸酯钠、琥珀酸烷基酯磺酸钠、氨基磺酸钠、聚醚、聚氧乙烯聚氧丙烯醚嵌段共聚物中的一种或多种。
第七方面,本申请实施例提供一种三维物体打印装置,所述装置包括:
供粉部件,提供粉末材料形成粉末材料层,所述粉末材料层包括成型区域和非成型区域;
成型平台,支撑形成的所述粉末材料层;
打印头和控制器,所述控制器根据层打印数据控制所述打印头在所述粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,所述第二液体材料促进所述第一液体材料发生聚合反应,形成所述三维物体的层实体部分;
所述控制器根据层打印数据控制所述打印头在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成所述三维物体的层防护部分;其中,所述第一比例大于所述第二比例;在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材料的量。
结合第七方面,在一种可行的实施方式中,所述打印头包括第一喷孔阵列和第二喷孔阵列,其中,所述第一喷孔阵列用于以第一比例喷射第一液体材料和第二液体材料,所述第二喷孔阵列用于以第二比例喷射第一液体材料和第二液体材料。
结合第七方面,在一种可行的实施方式中,所述打印头包括第一喷孔阵列和第二喷孔阵列,其中,所述第一喷孔阵列和第二喷孔阵列用于在成型区域以第一比例分别喷射第一液体材料和第二液体材料,用于在非成型区域以第二比例分别喷射第一液体材料和第二液体材料。
结合第七方面,在一种可行的实施方式中,所述三维物体打印装置还包括升降机构,在每形成一个包括层实体部分和层防护部分的三维物体切片层之后,所述升降机构驱动所述成型平台向下移动一个粉末层厚的距离。
结合第七方面,在一种可行的实施方式中,所述三维打印装置还包括预热部件,所述预热部件置于所述成型平台的上方,对所述粉末材料层预热。
结合第七方面,在一种可行的实施方式中,所述三维打印装置还包括加热部件,所述加热部件设置于所述成型平台的上方,对喷射有所述第二液体材料的粉末材料层进行加热。
本申请的技术方案至少具有以下有益效果:
本申请提供的三维物体打印方法,通过将第一液体材料和第二液体材料单独存储并按不同配置比例施加在粉末材料层的成型区域和非成型区域,不仅有助于提高液体材料的储存稳定性、提高液体材料的喷墨打印流畅性,而且有助于降低非成型区域的温度,有助于降低第一液体材料对非成型区域中粉末材料的作用,降低打印得到的三维物体的后处理难度,特别是三维物体表面的后处理,进而提高打印物体的表面精度。
本申请提供的三维打印材料,其中,第一液体材料和第二液体材料是不同种类的液体材料,第二液体材料中含有用于促进第一液体材料发生聚合反应的成份,通过将第一液体材料和第二液体材料单独存储,有助于提高液体材料的储存稳定性,提高液体材料的喷墨打印流畅性。
第二液体材料中含有水,在对施加有第二液体材料的粉末材料层提供能量时水被蒸发,提高了第二助剂的浓度,从而提高了第一活性组分的聚合反应速度,且当足够量的水被蒸发时,能带走非成型区域内粉末材料的温度,从而防止非成型区域内的粉末材料被熔融和/或黏连;而且使用水相比使用其他挥发性溶剂成本更低且更环保;第二液体材料中含有粉末离型剂,当第二液体材料喷射在粉末材料层的成型区域的单位体积中第二液体材料的体积小于非 成型区域的单位体积中第二液体材料的体积时有助于提高成型区域边缘的表面精度;第二液体材料中含有剥离剂,当第二液体材料喷射在粉末材料的非成型区域时,剥离剂将成型区域边缘非成型区域中的粉末粘结在一起,便于非成型区域中粉末的剥离且粉末回收时易于与其他非成型区域粉末分离。第二液体材料的配方,有利于降低打印得到的三维物体的后处理难度,进而提高打印物体的表面精度,还有利于非成型区域中粉末的回收。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的三维物体打印方法的流程示意图;
图2为本申请另一实施例提供的三维物体打印方法的流程示意图;
图3a为本申请实施例提供的待打印的三维物体的结构示意图;
图3b为本申请实施例提供的粉末材料层的结构示意图;
图4a-4e为本申请实施例提供的第一液体材料和第二液体材料以指定比例喷射时墨滴落点结构示意图;
图5为本申请再一实施例提供的三维物体打印方法的流程示意图;
图6为本申请实施例提供的三维物体打印装置的结构示意图;
图7a-图7c为本申请实施例提供的三维物体打印装置中的液体供应装置的局部结构示意图;
图8a-图8c为本申请实施例提供三维物体打印装置中的打印头喷孔的表面结构示意图;
图9为本申请实施例提供的非暂时性计算机可读存储介质示意图;
图10为本申请实施例提供的计算机设备的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本文中“喷射”、“施加”表达相同的意思,都是表示将材料储存容器中的液体材料通过打印头喷孔喷射出来。
本申请描述的是粉末材料与喷墨打印相结合的增材制造技术,涉及三维物体的打印方法、打印三维物体所需要的材料、打印得到的三维物体、存储程序指令的计算机可读存储介质、计算机设备以及使用本申请的三维物体打印方法打印三维物体的装置,可以提高目标三维物 体的表面精度,降低后处理难度。
一方面,本申请实施例提供一种三维打印材料,材料包括:
粉末材料,粉末材料用于形成粉末材料层;
第一液体材料,第一液体材料包括第一活性组分,第一活性组分溶解至少部分粉末材料;及
第二液体材料,以第二液体材料总重量为100%计,第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,第二助剂用于促进第一液体材料发生聚合反应。
本申请提供的三维打印材料,其中,粉末材料形成的粉末材料层包括成型区域和非成型区域,第一液体材料和第二液体材料是不同种类的液体材料,第二液体材料中含有用于促进第一液体材料发生聚合反应的第二助剂,具体的,第二助剂促进第一液体材料中的第一活性组分发生聚合反应以形成三维物体的实体部分。通过将第一液体材料和第二液体材料单独存储,有助于提高液体材料的储存稳定性,提高液体材料的喷墨打印流畅性。
第二液体材料中含有水,在对施加有第二液体材料的粉末材料层提供能量时水被蒸发,可以提高第二液体材料中的第二助剂的浓度,从而粉末材料层中高浓度的第二助剂可以提高第一活性组分的聚合反应速度,且当足够量的水被蒸发时,能带走粉末材料层的非成型区域内粉末材料的温度,从而防止非成型区域内的粉末材料被熔融和/或黏连。而且使用水相比使用其他挥发性溶剂成本更低且更环保。第二液体材料中还含有粉末离型剂,有助于提高成型区域边缘的表面精度;第二液体材料中还含有剥离剂,剥离剂有助于将非成型区域中粉末材料与成型区域形成的实体部分进行剥离,且有利于将回收后的粉末材料与其他非成型区域粉末分离。第二液体材料的配方,有利于降低打印得到的三维物体的后处理难度,进而提高打印物体的表面精度,还有利于非成型区域中粉末的回收。
在一些实施方式中,液体材料可以单独配置作为三维打印材料,待打印时,再与合适的粉末材料搭配组合使用。在另一些实施方式中,液体材料可以与粉末材料搭配后作为三维打印材料,从而使得用户能够直接用于打印三维物体。
在一些实施例中,粉末材料是呈粉末状的材料颗粒,可以是金属粉末材料或非金属粉末材料。
其中,非金属粉末材料选自有机聚合物粉末材料,有机聚合物粉末材料与第一液体材料和第二液体材料均不会发生聚合反应,在特定比例和适宜温度条件下第二液体材料与第一液体材料接触时第二液体材料促进第一液体材料发生聚合反应,根据第一液体材料与第二液体材料的比例大小差异聚合反应形成的聚合物的强度不同,从而使得打印形成的三维物体的实体部分(对应成型区域)与防护部分(对应非成型区域)的强度不同。
在一些实施例中,有机聚合物粉末材料可以选自聚丙烯。在实际应用时,聚丙烯不能被第一液体材料溶解。
在一些实施例中,有机聚合物粉末材料可以选自聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯腈(PAN)、丙烯腈-苯乙烯-丙烯酸酯共聚物(ASA)、聚酰胺(PA)、聚酯、聚氨酯(PU)、聚(甲基)丙烯酸酯、聚氟乙烯、氯化聚烯烃、含有可被第一活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇(PVA)、纤维素、改性纤维素中的至少一种。在实际应用时,上述这些有机聚合物粉末材料能被第一液体材料溶解。
在一些实施例中,粉末材料还可以包括添加剂,添加剂包括流动助剂、填料中的至少一种。其中,流动助剂用来改善粉末材料的流动性,流动助剂例如可以是二氧化硅、滑石粉等;填料用来提高三维物体的机械强度,填料例如可以是石墨烯、碳纳米管、碳纤维、玻璃微球、玻璃纤维、高岭土等,在本实施例中不做限制。
本申请各实施例中,有机聚合物粉末材料的熔点或熔融温度可以为60℃-300℃,具体可以是60℃、70℃、80℃、100℃、120℃、150℃、180℃、200℃、240℃、280℃或300℃等,当然也可以是上述范围内的其他值,在此不做限定。
本申请各实施例中,粉末材料的颗粒形状和颗粒大小没有特殊限制。可选地,粉末材料可以是球状、树枝状、片状、盘状、针状和棒状等形状。粉末材料的平均粒径为1μm~400μm,例如可以是1μm、5μm、10μm、30μm、50μm、100μm、150μm、200μm、250μm、300μm、350μm或400μm,粉末材料的平均粒径优选为30μm~200μm。粉末材料中的颗粒间隙大概为5nm~100μm,例如可以是5nm、10nm、100nm、250nm、500nm、1μm、5μm、10μm、25μm、50μm、75μm或100μm,在此不做限定。本申请各实施例中的粉末材料的颗粒间隙在5nm~100μm范围内,有利于液体材料通过间隙快速渗透到粉末材料层内部和保留部分在表层,甚至润湿选定区域内的粉末材料的表面,并至少部分溶解粉末材料。需要说明的是,本申请各实施例中的溶解是指除完全不溶解以外的所有可能情况。
本申请各实施例中,第一活性组分可以是仅包括一种可溶解粉末材料的物质,或者是包括多种可溶解粉末材料的物质的混合物,多种物质对粉末材料的溶解度可以不同也可以相同。
需要说明的是,本实施例中溶解是指除了完全不溶解以外的所有可能情况。例如当1g粉末材料置于100g活性组分中有至多1%的粉末材料溶解。优选地,第一活性组分完全溶解粉末材料。溶解不限制于常温下,还可以在加热和/或搅拌的情况下实现的活性组分溶解粉末材料;溶解不限于一次溶解还可以分次分阶段溶解,如在活性组分与粉末材料接触时发生缓慢溶解,可以加热粉末材料以加快溶解速率。优选地,第一活性组分完全溶解与第一活性组分接触的粉末材料。
在本具体实施方式中,以液体材料的总重量为100%计,第一活性组分在第一液体材料中的重量占比为10%-95%。例如可以是10%、20%、30%、40%、50%、60%、70%、80%或95%,当然,其重量占比还可以根据实际使用情况进行配比,在此不做限定。优选地,第一活性组分在液体材料中重量占比为30%-95%。本实施例中第一活性组分在第一液体材料中的重量占比大于或等于30%,通过提高第一液体材料中第一活性组分的占比可以提高第一活性组分对粉末材料的溶解速率和溶解程度,从而提高打印物体的机械强度。
具体的,第一活性组分具有可参与聚合反应的活性基团,活性基团包括碳碳双键、羟基、羧基、硫杂环丙烷基团、碳酸酯类基团、环氧基团、液体环状内酯结构、环状缩醛结构中的至少一种。需要说明的是,第一活性组分与粉末材料不发生聚合反应。
第一活性组分可以选自含碳碳双键的单体、含环氧基团和促使环氧基团发生开环聚合的组合物、环状内酯、硫杂环化合物、碳酸酯类化合物、环状酰胺类化合物中的至少一种。
具体地,含碳碳双键的单体可以是(甲基)丙烯酸酯类、乙烯基醚类、烯丙基醚类、苯乙烯、丙烯酰吗啉、N-乙烯基吡咯烷酮等。
含环氧基团和促使环氧基团发生开环聚合的组合物可以是含有环氧稀释剂和/或含有羟基的小分子或预聚物、环氧稀释剂和/或含有羧基的小分子或预聚物。环状内酯可以是γ-丁内 酯、δ-戊内酯、ε-己内酯等。
硫杂环化合物如硫杂环丙烷、硫杂环丁烷等。
碳酸酯类化合物可以是碳酸二甲酯、碳酸二乙酯等。
环状酰胺类化合物可以是己内酰胺等。
示例性地,第一活性组分可以是苯乙烯或γ-丁内酯,粉末材料可以是能够被苯乙烯或γ-丁内酯溶解的聚苯乙烯。
第一活性组分还可以是(甲基)丙烯酸酯类单体,粉末材料可以是被(甲基)丙烯酸酯类单体溶解的聚(甲基)丙烯酸酯、纤维素、改性纤维素、含有羟基的聚乙烯醇、聚酯、聚氨酯、改性聚酰胺等。
第一活性组分还可以是丙烯酰吗啉,粉末材料可以是能够被丙烯酰吗啉部分溶解的聚氨酯、纤维素、改性纤维素、含有羟基的聚乙烯醇等。
第一活性组分还可以是环氧氯丙烷、环氧稀释剂、羟乙基丙烯酰胺,粉末材料还可以是能够被环氧氯丙烷或环氧稀释剂或羟乙基丙烯酰胺溶解的聚碳酸酯、聚酰胺、改性聚酰胺、纤维素酯、纤维素醚等。
第一活性组分可以是γ-丁内酯,粉末材料还可以是能够被γ-丁内酯溶解的聚丙烯腈、乙酸纤维、聚甲基丙烯酸甲酯、聚氟乙烯和聚苯乙烯等。
第一活性组分还可以是ε-己内酯,粉末材料还可以是能够被ε-己内酯溶解的氯化聚烯烃、聚氨酯等。
进一步地,第一液体材料还可以包括第二活性组分,第二活性组分具有活性基团;第二活性组分不溶解粉末材料,即,第二活性组分完全不溶解粉末材料。可选地,第二活性组分可以自身发生聚合反应,或能与第一活性组分一起参与聚合反应。
在本实施例中,以第一液体材料的总重量为100%计,第二活性组分在第一液体材料中重量占比为5%-90%。例如可以是5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,当然,其重量占比还可以根据实际使用情况进行配比,在此不做限定。优选地,第二活性组分在第一液体材料中重量占比为20%-70%。通过控制第一液体材料中第二活性组分的占比,在保证第一活性组分溶解粉末材料的前提下,第二活性组分与第一活性组分形成性能互补,使三维物体具有比仅含第一活性组分时更高的性能,如降低收缩率。
需要说明的是,在三维物体打印过程中,第二活性组分可以填充至粉末材料的颗粒之间或粉末颗粒内部的空隙中,减小成型物体的孔隙率,提高物体的成型密度。进一步地,第二活性组分还可以与第一活性组分形成性能互补,使三维物体具有比仅含第一活性组分时更高的性能。
第二活性组分包括丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、己内酯丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯、含碳碳双键的预聚物、含环氧基团的预聚物、促使环氧基团发生开环聚合的单体、促使环氧基团发生开环聚合的预聚物、固体环状内酯、环状酰胺类化合物中的至少一种。
示例性地,含碳碳双键的预聚物例如可以是环氧或(改性)丙烯酸酯类预聚物、聚酯丙烯酸酯类预聚物、聚氨酯丙烯酸酯类预聚物、纯丙烯酸酯类预聚物等。含有环氧基团的预聚物例如可以是环氧树脂E-51、环氧树脂E-41等;环状内酯例如可以是丙交酯、乙交酯等,环状内酯本身为固体,溶解力差。部分具有环状缩醛结构的化合物,如三聚甲醛,其本身为固 体。(甲基)丙烯酸酯类单体由于其结构差异,对聚合物溶解能力不一样,如丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环三羟甲基丙烷甲缩醛丙烯酸酯等对聚氨酯类粉末溶解效果差,基本不溶。
进一步地,第一液体材料还包括第一助剂,第一助剂包括高温引发剂、流平剂、消泡剂、阻聚剂、抗氧化剂、增塑剂、分散剂、着色剂中的至少一种。具体地,以第一液体材料的总重量为100%计,第一助剂在液体材料中的重量占比为0.1%-30%,具体可以是0.1%、1%、5%、10%、15%、19.5%、24.5%、27%或30%等,当然,其重量占比还可以根据实际使用情况进行配比,在此不做限定。
示例性地,高温引发剂在第一液体材料中的重量占比为0%-10%,具体可以是0%、0.1%、1%、3.4%、5.7%、6.0%、7.5%、8.5%、9.7%或10%等;流平剂在第一液体材料中的重量占比为0.01%-3%,具体可以是0.01%、0.05%、0.1%、0.5%、1.2%、1.8%、2.1%、2.5%、2.7%或3%等;消泡剂在第一液体材料中的重量占比为0.01%-3%,具体可以是0.01%、0.05%、0.1%、0.5%、1.2%、1.8%、2.1%、2.5%、2.7%或3%等;阻聚剂在第一液体材料中的重量占比为0.05%-3%,具体可以是0.05%、0.1%、0.5%、1.2%、1.8%、2.1%、2.5%、2.7%或3%等;抗氧化剂在第一液体材料中的重量占比为0.05%-3%,具体可以是0.05%、0.1%、0.5%、1.2%、1.8%、2.1%、2.5%、2.7%或3%等;增塑剂在第一液体材料中的重量占比为0%-25%,具体可以是0%、1%、5%、10%、15%、17.5%、20%或25%等;分散剂在第一液体材料中的重量占比为0%-5%,具体可以是0%、0.1%、1%、1.4%、1.7%、2.0%、2.5%、3.5%、4.2%或5%等;颜料或染料在第一液体材料中的重量占比为0-10%,具体可以是0%、0.1%、1%、2%、4%、5%、6%、7%、9%或10%等,当然,其重量占比还可以根据实际使用情况进行配比,在此不做限定。
需要说明的是,高温引发剂在常温条件下不会明显引发第一液体材料中的活性组分,如第一活性组分或第一活性组分和第二活性组分,因此含有高温引发剂的第一液体材料在常温下是相对稳定的,可以保存3~6个月,甚至更长时间。本申请中,高温引发剂优选为将1小时半衰期大于120℃的引发剂定义为高温引发剂。高温引发剂在高温环境下才会产生较好的引发效果,然而一些聚合物粉末材料的耐受温度往往低于高温引发剂分解温度,因此需要促引发剂在较低温度下促使高温引发剂发生引发效果。
具体地,高温引发剂可以选自过氧化醋酸叔戊酯、过氧化苯甲酸叔戊酯、过氧化3,5,5-三甲基己酸叔丁酯、过氧化苯甲酸叔丁酯、3,3-双丁酸乙酯、3,3-双(叔丁基过氧)丁酸乙酯、3,3-双(叔戊基过氧)丁酸乙酯、过氧化二异丙苯、过氧化二叔戊基、过氧化二叔丁基、过氧化叔戊基、过氧化叔丁基、过氧化氢异丙苯等中的至少一种。
流平剂的作用是提高第一液体材料的流动性以及对粉末材料的润湿性能,同时调整第一液体材料的表面张力使其能够正常打印。本申请中只要所用流平剂能满足上述性能要求,具体选择哪种流平剂不受限制,例如可以是毕克公司的BYK333、BYK377、BYK1798、BYK-UV3530、BYK-UV3575、BYK-UV3535等,迪高公司的TEGO wet 500、TEGO wet 270、TEGO Glide450、TEGO RAD 2010、TEGO RAD 2011、TEGO RAD 2100、TEGO RAD 2200等。
消泡剂的作用是抑制、降低、消除液体材料中的气泡,本申请中只要所用消泡剂能达到上述效果具体选择哪种消泡剂不受限制,例如可以是毕克公司的BYK055、BYK088、BYK020、 BYK025等,迪高公司的TEGO Airex 920、TEGO Airex 921、TEGO Airex 986、TEGO Foamex810、TEGO Foamex N等,埃夫卡公司的Efka 7081、Efka7082等。
阻聚剂的作用可以是提高第一液体材料中的活性组分在高温下的稳定性,可以是阻止活性组分在非打印状态下发生聚合反应,提高液体材料的贮存稳定性。例如可以是对苯二酚、对羟基苯甲醚、对苯醌、2-叔丁基对苯二酚、吩噻嗪等,可以是瑞昂的GENORAD*16、GENORAD*18、GENORAD*20、GENORAD*22等,巴斯夫的Tinuvin234、Tinuvin770、Irganox245、氰特S100、氰特130等,汽巴的Irgastab UV10、Irgastab UV 22等。
抗氧化剂的作用主要是延缓或抑制聚合物氧化,例如可以是2,6-二叔丁基-4-甲基苯酚、:β-四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、1,1,3-三(2-甲基-4-羟基-5-叔丁苯基)丁烷、4-[(4,6-二辛硫基-1,3,5-三嗪-2-基)氨基]-2,6-二叔丁基苯酚、硫代二丙酸双月桂酯、三(壬基苯基)亚磷酸酯、亚磷酸三苯酯、2-巯基苯并咪唑等。
增塑剂的作用主要是改善三维物体成品的韧性,例如可以是邻苯二甲酸二辛酯、邻苯二甲酸丁苄酯、邻苯二甲酸二异壬酯、邻苯二甲酸二异癸酯、己二酸二乙酯、己二酸二丁酯、己二酸二异丁酯、己二酸二(2-丁氧基乙基)酯、己二酸二(2-乙基己基)酯、柠檬酸三乙酯、乙酰柠檬酸三乙酯、柠檬酸三丁酯、乙酰柠檬酸三丁酯。
分散剂的作用主要是提高和改善着色剂的分散稳定性。例如可以是具体选择哪种分散剂不受限制,目前市售的产品较多,可以是BYK102、BYK108、BYK110、BYK180、BYK9133、BYK9076、BYK9131,迪高Dispers 655、Dispers675、Dispers 688、Dispers750、Dispers 670等。
在本申请中,当第一液体材料和第二液体材料中均不含着色剂时,活性组分发生聚合反应形成的高分子聚合物与粉末材料达到分子级别的混合,此时容易获得无色或浅色透明的三维物体。
当第一液体材料和/或第二液体材料中含有着色剂时,可以实现彩色三维物体。着色剂可以是染料或颜料。
颜料具体可以选自C.I.Pigment White 6、C.I.Pigment Red 3、C.I.Pigment Red 5、C.I.Pigment Red 7、C.I.Pigment Red 9、C.I.Pigment Red 12、C.I.Pigment Red 13、C.I.Pigment Red 21、C.I.Pigment Red 31、C.I.Pigment Red49:1、C.I.Pigment Red 58:1、C.I.Pigment Red 175;C.I.Pigment Yellow 63、C.I.Pigment Yellow 3、C.I.Pigment Yellow 12、C.I.Pigment Yellow 16、C.I.Pigment Yellow 83;C.I.Pigment Blue 1、C.I.Pigment Blue 10、C.I.Pigment Blue B、Phthalocyanine Blue BX、Phthalocyanine Blue BS、C.I.Pigment Blue61:1等中的一种或多种。
染料具体可以选自C.I.酸性红37、C.I.酸性红89(弱酸性红3B、2BS)、C.I.酸性红145(弱酸性大红GL)、C.I.酸性橙67(弱酸性黄RXL)、C.I.酸性橙116(酸性橙AGT)、C.I.酸性橙156(弱酸性橙3G)、C.I.酸性黄42(弱酸性黄Rs、酸性黄R)、C.I.酸性黄49(酸性黄GR200)、C.I.酸性蓝277、C.I.酸性蓝344、C.I.酸性蓝350、C.I.酸性蓝9(艳蓝FCF)、C.I.绿17、C.I.酸绿28、C.I.酸性绿41、C.I.酸性绿81、C.I.酸性紫17(酸性紫4BNS)、C.I.酸性紫54(弱酸性艳红10B)、C.I.酸性紫48、C.I.酸性棕75、C.I.酸性棕98、C.I.酸性棕165、C.I.酸性棕348、C.I.酸性棕349、C.I.酸性黑26、C.I.酸性黑63、C.I.酸性黑172、C.I.酸性黑194、C.I.酸性黑210、C.I.酸性黑234、C.I.酸性黑235、C.I.酸性黑242、Orasol Red 395/BL等。
本申请中第二液体材料中,第二助剂用于促进第一液体材料发生聚合反应,具体是用于引发或催化第一液体材料中的活性组分发生聚合反应。具体的,第二助剂包括引发剂、促引发剂和催化剂中至少一种;以第二液体材料的总重量为100%计,第二助剂在第二液体材料中的重量占比为0.1%-40%,具体可以是0.1%、1%、5%、10%、15%、20%、25%、30%、35%、40%,当然也可以是上述范围内的其他值,在此不做限定。
引发剂选自水溶性或水可分散型的引发剂,可以是偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、过硫酸钠、过硫酸铵、过硫酸钾、含有偶氮基团的聚甲基丙烯酸盐、含有偶氮基的自乳化型聚氨酯、或者一些有机过氧化物的水分散液(参考文献:邸志刚.PVC引发剂-有机过氧化物的水分散液[J]聚氯乙烯,1995年第2期)。
促引发剂可以选自部分水溶性的促引发剂,如乳酸亚铁、二甲基苯胺、四甲基硫脲、二甲基硫脲等。当第一液体材料中含有高温引发剂时第二液体材料中添加促引发剂,用以降低第一液体材料聚合温度,从而达到提升强度效果。
催化剂可以是三乙基苄基氯化铵、三乙胺、三乙醇胺、甲基氟磺酸、乙基氟磺酸、甲基硝基苯磺酸、甲基磺酸甲酯等。
第二液体材料中含有水,水在第二液体材料中的重量占比为30%-90%,具体可以是30%、35%、40%、45%、50%、55%、60%、80%、85%、90%,当然也可以是上述范围内的其他值,在此不做限定。第二液体材料中含有水主要作用在于在非成型区域中喷射第二液体材料,水能降低非成型区域中粉末材料的温度,而且在水被蒸发过程中,蒸发的水分也能带走非成型区域中粉末材料的温度,从而防止非成型区域中粉末材料被熔融和/或被第一液体材料溶解,粘接在成型物体的表面,影响物体表面精度,而且使用水相比使用其他挥发性溶剂成本更低且更环保。
第二液体材料中含有粉末离型剂,粉末离型剂在第二液体材料中的重量占比为0.01%-10%;粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种。
具体的,含硅的水溶性离型剂或含硅的水可分散性离型剂选自硅油乳液;含氟的水溶性离型剂或含氟的水可分散性离型剂可以选自含氟非离子表面活性剂或含氟阴离子表面活性剂。
示例性的,硅油乳液可以是以水为分散剂含有聚硅氧烷聚合物的混合物。
含氟非离子表面活性剂可以是含氟脂肪醇的聚氧乙烯醚、含氟苯酚的聚氧乙烯醚、含氟羧酸的聚氧乙烯酯、含氟烷基磺酰醇胺的聚氧乙烯醚、含氟硫醇的聚氧乙烯醚。
含氟阴离子表面活性剂可以是含氟羧酸盐、含氟磺酸盐、含氟磷酸盐等。
本实施例中提供的三维打印材料应用于三维物体打印中,在三维物体打印过程中,控制成型区域的单位体积中的第二液体材料的量小于非成型区域的单位体积中的第二液体材料的量,在成型区域中的第二液体材料的主要作用是促进第一液体材料发生聚合反应形成聚合物,在非成型区域中的第二液体材料的主要作用是降低非成型区域中粉末材料的温度、阻止成型区域中第一液体材料扩散至非成型区域中,提高形成的三维物体的表面精度。
第二液体材料中含有粉末离型剂的作用是降低粉末表面的表面张力,进一步的由于成型区域中单位体积中喷射的第二液体材料的含量少于周围非成型区域中单位体积中喷射的第二液体材料的量,使得成型区域四周非成型区域粉末表面或粉末之间的表面张力小于成型区域中粉末表面或粉末之间的表面张力,成型区域的第一液体材料不易向边缘扩散。
本申请通过控制粉末离型剂的重量占比为0.01%-10%,具体可以是0.01%、0.05%、0.08%、0.1%、0.5%、0.9%、1.1%、2.6%、3.9%、4%、5%、6.6%、7.9%、9.9%或10%等,在此不做限定,经过多次试验发现,当粉末离型剂的重量占比小于0.01%时,不能有效起到阻止成型区域中第一液体材料向非成型区域扩散的作用。当粉末离型剂的重量占比大于10%时,本案中发现一些粉末离型剂超过一定含量会影响第一液体材料对粉末材料层的渗透且抑制成型区域第一液体材料往边缘扩散的效果,有助于提高成型区域边缘的表面精度。
第二液体材料中含有剥离剂,剥离剂在第二液体材料中的重量占比为1%-30%,具体可以是1%、2%、5%、8%、12%、15%、18%、19%、22%、24%、25%、28%、29%或30%等,在此不做限定;剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;优选玻璃化温度低于0℃的水溶性聚合物或水可分散聚合物,以便于喷砂处理时易破坏。
具体的,水溶性聚合物或水可分散聚合物选自聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中的至少一种。
可以理解地,当第二液体材料施加至粉末材料的非成型区域时,剥离剂将成型区域边缘非成型区域中的粉末材料粘结在一起,剥离剂有助于将非成型区域中粉末材料与成型区域形成的实体部分进行剥离,且有利于将回收后的粉末材料与其他非成型区域粉末分离。
第二液体材料中含有碳氢链表面活性剂,碳氢链表面活性剂在第二液体材料中的重量占比为0.1%-10%,具体可以是0.1%、0.5%、0.9%、1.1%、2.6%、3.9%、4%、5%、6.6%、7.9%、9.9%或10%等,在此不做限定。第二液体材料中加入适量的碳氢链表面活性剂,有利于第二助剂、粉末离型剂、剥离剂在水中溶解或分散,有利于形成均一的液体。
具体的,碳氢链表面活性剂选自脂肪醇聚氧乙烯醚、烷基磺酸钠、烷基苯磺酸钠、烷基硫酸酯钠、琥珀酸烷基酯磺酸钠、氨基磺酸钠、聚醚、聚氧乙烯聚氧丙烯醚嵌段共聚物中的一种或多种。
在另一种可选方式中,第二液体材料中还含有助溶剂,助溶剂在第二液体材料中的重量占比为0.05%-30%,具体可以是0.05%、0.1%、1%、2%、5%、8%、12%、15%、18%、19%、22%、24%、25%、28%、29%或30%等,在此不做限定。助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。第二液体材料中加入适量的助溶剂,能有效增加第二助剂、粉末离型剂、剥离助剂等在第二液体材料中的溶解度,进一步提高形成的三维物体的表面精度。
具体地,醇类可以是乙二醇、丙二醇、丙三醇、丁二醇、二乙二醇等中的至少一种。醇醚类可以是聚乙二醇200、聚乙二醇400、丙二醇醚等中的至少一种。酰胺类可以是尿素、乙酰胺等中的至少一种。吡咯烷酮类可以是吡咯烷酮、羟乙基吡咯烷酮、甲基吡咯烷酮等中的至少一种。有机酸类可以是对氨基苯甲酸、苯磺酸、抗血酸等中的至少一种,有机盐类可以是苯甲酸钠、水杨酸钠等中的至少一种。
图1为本申请实施例提供的三维物体打印方法的流程示意图,如图1所示,另一方面,本申请提供一种三维物体打印方法,包括以下步骤:
步骤S10,利用粉末材料形成粉末材料层,粉末材料层包括成型区域和非成型区域;
步骤S20,根据层打印数据在粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,第二液体材料促进第一液体材料发生聚合反应,形成三维物体的层实体部分;
步骤S30,根据层打印数据在粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成三维物体的层防护部分;其中,第一比例大于第二比例;在成型区域的单位体积中的第二液体材料的量小于至少部分非成型区域的单位体积中的第二液体材料的量,且在成型区域的单位体积中的第一液体材料的量大于至少部分非成型区域的单位体积中的第一液体材料的量。
在上述方案中,通过将第一液体材料和第二液体材料单独存储并按不同配置比例施加在粉末材料层的成型区域和非成型区域,不仅有助于提高液体材料的储存稳定性、提高液体材料的喷墨打印流畅性,而且有助于降低非成型区域的温度,有助于降低第一液体材料对非成型区域中粉末材料的作用,降低打印得到的三维物体的后处理难度,特别是三维物体表面的后处理,进而提高打印物体的表面精度。
本申请中,粉末材料为前述的金属粉末材料或有机聚合物粉末材料;当粉末材料为有机聚合物粉末材料时,有机聚合物粉末材料可以不会被第一液体材料溶解同时也不会被第二液体材料溶解,或者,至少部分有机聚合物粉末材料可以被第一液体材料溶解但不会被第二液体材料溶解,具体与第一液体材料的具体组成有关。
具体地,当粉末材料不被第一液体材料溶解同时也不被第二液体材料溶解时,此种实施方式的反应机理为:在粉末材料层的成型区域中第二液体材料促进第一液体材料发生聚合反应,反应形成的聚合物包裹与第一液体材料接触的粉末材料形成三维物体的层实体部分。在粉末材料层的非成型区域中通过控制第二比例的大小使得非成型区域中的第一液体材料含量或浓度得到稀释,从而不会发生有效的聚合反应形成聚合物;或者在非成型区域中第一液体材料发生聚合反应形成的少量游离的聚合物无法对粉末材料形成有效包裹,但可以形成比原粉末材料颗粒更大的颗粒。在粉末材料层的非成型区域中,第二液体材料主要作用降低非成型区域中粉末材料的温度,和/或同时阻止成型区域中第一液体材料向非成型区域中扩散形成三维物体的层防护部分,以此提高三维物体的表面精度,降低第一液体材料在非成型区域比例使得聚合物无法对粉末材料形成有效包裹但又形成比原粉末颗粒大的颗粒,利于喷砂和回收粉末筛选从而降低后处理难度。
当至少部分的粉末材料被第一液体材料溶解但不被第二液体材料溶解时,此种实施方式的反应机理为:在粉末材料层的成型区域中第一液体材料溶解与之接触的粉末材料,且第二液体材料促进第一液体材料发生聚合反应形成聚合物以形成三维物体的层实体部分;形成的聚合物与溶解的粉末材料共混,尤其与溶解的粉末材料可以达到分子级别的混合形成高分子合金,使得粉末材料之间、粉末材料与形成的聚合物之间、打印层与层之间都有很好的连接作用,呈现“海-岛结构”或均相结构,能够提高三维物体的机械强度。在粉末材料层的非成型区域中通过控制第二比例的大小使第一液体材料含量或浓度不足以有效溶解与之接触的粉末材料,但可以形成比原粉末材料颗粒更大的颗粒,且第一液体材料无法发生有效聚合反应形成聚合物;或者第一液体材料发生聚合反应形成少量游离在非成型区域的聚合物。在粉末材料层的非成型区域中,第二液体材料主要作用降低非成型区域中粉末材料的温度,和/或同时阻止成型区域中第一液体材料向非成型区域中扩散形成三维物体的层防护部分,以此提高三维物体的表面精度,降低后处理难度。
当对粉末材料层施加第一液体材料和第二液体材料时,液体材料能通过间隙快速渗透到粉末材料层内部和保留部分在表层,甚至润湿选定区域内的粉末材料的表面,并至少部分溶 解粉末材料。需要说明的是,本申请各实施例中的溶解是指除完全不溶解以外的所有可能情况。
需要说明的是,本申请流程示意图中的步骤编号并不表示三维物体打印过程中的先后顺序,在实际打印过程中,步骤S20可以在步骤S30之前,也可以在步骤S30之后;或者,步骤S20与步骤S30也可以同时执行,这与打印方式和/或待打印物体的形状有关,本申请说明书中仅列举了少数几种情况,没有全部进行描述。
请一并参阅图2,以下结合具体的实施方式进行详细的阐述:
在步骤S10之前,方法还包括:
步骤S01,获取三维物体的数字模型,将三维物体的数字模型进行切片分层,得到多个切片层及切片层图像数据,并根据切片层图像数据生成层打印数据,层打印数据包括成型区域的层打印数据和非成型区域的层打印数据。
在具体实现方式中,可以通过扫描方式获取三维物体的原始数据并进行三维建模得到三维物体的数字模型,或者,通过设计构建三维物体模型从而得到三维物体的数字模型,对数字模型进行数据格式转换,例如转换成STL格式、PLY格式、WRL格式等能被切片软件识别的格式,再使用切片软件对模型进行切片分层得到切片层图像数据,并对层图像数据进行处理,得到表示物体的层打印数据,层打印数据包括表示物体形状信息的成型区域的层打印数据和表示物体外围的非成型区域的层打印数据。
本申请中,待打印的三维物体的形状不受限制,可以是任何一种形状的物体。图3a为本申请实施例提供的待打印的三维物体的结构示意图,如图3a所示,在具体实施例中,待打印的三维物体1例如可以为圆柱,将待打印的三维物体1进行切片分层处理后,得到该三维物体的多个切片层,根据切片层中成型区域1n的层打印数据可以打印形成层实体部分。
步骤S10,利用粉末材料形成粉末材料层,粉末材料层包括成型区域和非成型区域。
在实际打印过程中,粉末材料层的成型区域1n形成三维物体的实体部分,即待打印三维物体的轮廓及轮廓以内所在的区域,非成型区域是待打印三维物体的轮廓以外的区域。在本实施例中,在粉末材料层的非成型区域内形成三维物体的防护部分。
图3b为本申请实施例提供的粉末材料层的结构示意图,如图3b所示,粉末材料层L0上除成型区域1n以外的区域都是非成型区域,其中,区域1n’是非成型区域中的至少一部分,位于成型区域1n的周围,叫做层防护部分。在其他实施方式中,区域1n’也可以就是非成型区域。
本实施例所用的粉末材料如前面三维打印材料中,在此不再赘述。其中,形成的粉末材料层的厚度为10μm~500μm,例如可以是10μm、25μm、50μm、75μm、100μm、125μm、150μm、200μm、300μm、400μm或500μm。粉末材料层的厚度优选为50μm~150μm。可以理解地,当粉末材料层的厚度较薄时,能够形成分辨率较高的物体,但是制造物体所花费的时间大大加长,制造成本增高;当粉末材料层的厚度较厚时,液体材料浸润粉末材料的时间加长,并且制造形成的物体分辨率下降,难以达到预期。
在一些实施方式中,在步骤S10之后以及步骤S201之前,打印方法还包括:
步骤S11,预热粉末材料层。
可以理解地,在形成的粉末材料层上提供热能对粉末材料进行预热,预热的温度低于粉末材料熔点或熔融温度5℃-100℃,通过对粉末材料进行预热,能有效促进后续施加在成型区 域内的第一液体材料发生聚合反应,防止成型区域中的第一液体材料扩散到非成型区域,影响成型物体的表面精度;和/或,促进后续施加在成型区域内的第二液体材料中部分组分(例如水)的蒸发,提高成型区域内的第二液体材料中助剂的浓度,进一步加快第一液体材料的聚合反应速率。
在一些实施方式中,预热的能量包括辐射能、热能中的至少一种,具体可以是通过红外辐射、可见光照射等进行预热。
为了有效提高喷墨打印效率,在打印过程中,第一液体材料和第二液体材料可以在同一个扫描方向上进行喷墨打印。
步骤S20,具体实现方式可以是:
步骤S201,在同一扫描方向上,根据成型区域的层打印数据在粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,第二液体材料促进第一液体材料发生聚合反应,形成三维物体的层实体部分。
在一些实施方式中,第一液体材料和第二液体材料独立存储,按不同配置比例施加在粉末材料层的成型区域和非成型区域,不仅有助于提高液体材料的储存稳定性,提高液体材料的喷墨打印流畅性。
在本申请实施例中,第一液体材料包括第一活性组分,第一活性组分在第一液体材料中的重量占比为10%-95%,第一活性组分溶解至少部分粉末材料。
具体的,第一活性组分具有可参与聚合反应的活性基团,活性基团包括碳碳双键、羟基、羧基、硫杂环丙烷基团、碳酸酯类基团、环氧基团、液体环状内酯结构、环状缩醛结构中的至少一种。第一活性组分可以选自含碳碳双键的单体、含环氧基团和促使环氧基团发生开环聚合的组合物、环状内酯、硫杂环化合物、碳酸酯类化合物、环状酰胺类化合物中的至少一种。需要说明的是,第一活性组分与粉末材料不发生聚合反应。具体实例可参见前述三维打印材料中的介绍,在此不再赘述。
第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,第二助剂用于促进第一液体材料发生聚合反应,具体是用于引发或催化第一液体材料中第一活性组分发生聚合反应。
具体地,第二助剂包括引发剂、促引发剂和催化剂中至少一种;引发剂选自水溶性或水可分散型的引发剂;促引发剂可以选自部分水溶性的促引发剂;催化剂可以是三乙基苄基氯化铵、三乙胺、三乙醇胺、甲基氟磺酸、乙基氟磺酸、甲基硝基苯磺酸、甲基磺酸甲酯等。
粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种。经过多次试验发现,粉末离型剂可以降低粉末表面的表面张力,适量的粉末离型剂会影响第一液体材料对粉末材料层的渗透且抑制成型区域第一液体材料往边缘扩散的效果,有助于提高成型区域边缘的表面精度。
剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;优选玻璃化温度低于0℃的水溶性聚合物或水可分散聚合物。具体的,水溶性聚合物或水可分散聚合物选自聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中的至少一种。剥离剂有助于将非成型区域中粉末材料与成型区域形成的实体部分进行剥离,且有利于将回收后的粉末材料与其他非成型区域粉末分离。
碳氢链表面活性剂选自脂肪醇聚氧乙烯醚、烷基磺酸钠、烷基苯磺酸钠、烷基硫酸酯钠、琥珀酸烷基酯磺酸钠、氨基磺酸钠、聚醚、聚氧乙烯聚氧丙烯醚嵌段共聚物中的一种或多种。第二液体材料中加入适量的碳氢链表面活性剂,有利于第二助剂、粉末离型剂、剥离剂在水中溶解或分散,有利于形成均一的液体。
第二液体材料中含有水,水的主要作用在于在非成型区域中喷射第二液体材料,水能降低非成型区域中粉末材料的温度,而且在水被蒸发过程中,蒸发的水分也能带走非成型区域中粉末材料的温度,从而防止非成型区域中粉末材料被熔融和/或被第一液体材料溶解,粘接在成型物体的表面,影响物体表面精度,而且使用水相比使用其他挥发性溶剂成本更低且更环保。
在另一种可选方式中,第二液体材料中还含有重量占比为0.05%-30%助溶剂,助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。第二液体材料中加入适量的助溶剂,能有效增加第二助剂、粉末离型剂、剥离助剂等在第二液体材料中的溶解度,进一步提高形成的三维物体的表面精度。
具体地,第一比例是粉末材料层的成型区域内施加的第一液体材料的量与施加的第二液体材料的量的比。需要说明的是,“量”是衡量第一液体材料和第二液体材料多少的量度,可以是体积或重量或墨滴数,本申请中不做限制。
在具体实施方式中,第一比例为第一液体材料与第二液体材料的体积比,第一比例为(1-10):1,第一比例具体可以是1:1、2:1、3:1、5:1、6:1、7:1、8:1、10:1等,在粉末材料层的成型区域中通过控制第一比例的大小,使第二液体材料促进第一液体材料快速发生聚合反应,以得到具有指定材料性能的三维物体的层实体部分。当第二液体材料不足时,第一液体材料发生聚合反应的速度慢且反应不完全,最终三维物体的强度降低,且由于第一液体材料没有完全参与聚合反应形成聚合物,过量的第一液体材料容易渗透至非成型区域,影响物体的成型精度。当第二液体材料过量时,第二液体材料容易降低成型区域中粉末材料的温度,降低第一液体材料的聚合反应速率和/或降低第一液体材料溶解粉末材料的溶解速率。
相配合地,步骤S30,具体实现方式可以是:
步骤S301,在与步骤S201相同的扫描方向上,根据非成型区域的层打印数据在粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成三维物体的层防护部分;其中,第一比例大于第二比例;在成型区域的单位体积中的第二液体材料的量小于至少部分非成型区域的单位体积中的第二液体材料的量,且在成型区域的单位体积中的第一液体材料的量大于至少部分非成型区域的单位体积中的第一液体材料的量。
第二比例是粉末材料层的非成型区域内施加的第一液体材料的量与施加的第二液体材料的量的比。本申请中,第一比例大于第二比例,即在第一液体材料与第二液体材料进行混合时第一比例中第一液体材料所占混合物的比例大于第二比例中第一液体材料所占混合物的比例。
在具体实施方式中,第二比例为第一液体材料与第二液体材料的体积比,第二比例为(0-0.95):1,第二比例具体可以是0、0.05:1、0.1:1、0.2:1、0.5:1、0.7:1、0.8:1、0.95:1等,当第二比例为0时,表示粉末材料层的非成型区域内仅施加第二液体材料,此时非成型区域中第二液体材料的施加量只要满足在非成型区域中单位体积中施加的第二液体材料的量大于成型区域中单位体积中施加的第二液体材料的量即可,其中,第二液体材料主要用于降低非 成型区域中粉末材料的温度,和/或防止成型区域中的第一液体材料渗透至非成型区域内,以此来提高形成三维物体的表面精度。
当第二比例大于0时,表示粉末材料层的非成型区域内施加第一液体材料与第二液体材料,其中,第二液体材料主要用于降低非成型区域中粉末材料的温度,和/或通过第二液体材料来降低非成型区域中第一液体材料的浓度,从而防止非成型区域中的粉末材料被高温熔融粘接在三维物体的表面或被第一液体材料溶解,和/或防止成型区域中的第一液体材料渗透至非成型区域内,以此来提高形成三维物体的表面精度。可以理解地,由于在非成型区域的单位体积中第二液体材料的量大于成型区域的单位体积中第二液体材料的量,部分组分的吸热蒸发可以有效降低非成型区域中粉末材料的温度,防止非成型区域的粉末材料粘接在成型的三维物体的表面,能改善三维物体的表面精度。
在具体实现过程中,本申请控制粉末材料层的非成型区域内第一液体材料的量,当第二比例大于0.95:1时,非成型区域中第二液体材料促进第一液体材料发生聚合反应形成的聚合物具有足够的强度,非成型区域中形成的聚合物粘接在物体的表面,会降低形成的三维物体的表面精度,且增加后处理难度。
在上述实施方式中,成型区域的单位体积中的第二液体材料的量小于非成型区域的单位体积中的第二液体材料的量。在成型区域中第二液体材料主要作用为促进第一液体材料发生聚合反应形成聚合物,成型区域中形成的聚合物与溶解的粉末材料共混,尤其与溶解的粉末材料达到分子级别的混合形成高分子合金,能够提高三维物体的机械强度。
在非成型区域中第二液体材料主要作用为降低非成型区域中粉末材料的温度;在非成型区域中第二液体材料还可以阻止成型区域中第一液体材料向非成型区域中扩散。具体来说,由于成型区域中单位体积中喷射的第二液体材料的含量少于周围非成型区域中单位体积中喷射的第二液体材料的量,以致在第二液体材料中的粉末离型剂的作用下,使得成型区域周围非成型区域粉末表面或粉末之间的表面张力小于成型区域中粉末表面或粉末之间的表面张力,成型区域的第一液体材料不易向边缘扩散。即第一液体材料难以渗透至非成型区域内的粉末材料中溶解非成型区域的粉末材料,有助于降低第一液体材料对非成型区域中粉末材料的作用;而且,由于第二液体材料中含有水,当足够量的水被蒸发时,能带走非成型区域内粉末材料的温度,从而有助于降低非成型区域的温度,能防止非成型区域中的粉末材料在高温下黏连粘接在形成的层实体部分(对应于成型区域)的表面,使得形成的层实体部分与层防护部分之间能够形成界面,层防护部分不会与层实体部分融合,提高形成的三维物体的表面精度。
并且,施加至非成型区域内的液体材料中的第一液体材料占比低,第一液体材料形成的聚合物无法对粉末材料形成有效包裹,但又能形成比原粉末材料颗粒更大的颗粒,有利于喷砂和回收粉末材料,降低打印得到的三维物体的后处理难度,特别是三维物体表面的后处理,进而提高打印物体的表面精度。
图4a-4e为本申请实施例提供的第一液体材料和第二液体材料以指定比例喷射时墨滴落点结构示意图,如图4a-4e所示,图4a中x方向是打印头的扫描方向,y方向是打印头的步进方向每个小方块代表打印机最小打印单元,在三维打印中最小打印单元叫体素,在二维平面中最小打印单元叫像素,图中每个虚线框表示一个混合单元,第一液体材料A和第二液体材料B在混合单元中按比例喷射,如混合单元X1中,第一液体材料A和第二液体材料B分 别喷射在不同体素中以体积比5:4进行混合,第一液体材料A与第二液体材料B接触时,第二液体材料B促进第一液体材料A发生聚合反应。如混合单元X2中第一液体材料A与第二液体材料B以体积比1:1混合。如混合单元X3中第一液体材料A与第二液体材料B以体积比0.8:1混合。本具体实施例中,混合单元是第一液体材料A和第二液体材料B以指定比例喷射能达到基本混合均匀的区域,区域的实际尺寸在此不做限定。
在打印过程中,以该混合单元为依据,按指定比例喷射第一液体材料和第二液体材料。在三维物体的一个层实体部分打印过程中,混合单元可以是一种单一的形式,也可以结合其他形式的混合单元,在此不做限制。
图4b是另一种第一液体材料和第二液体材料的墨滴落点结构示意图;x方向表示扫描方向,Z方向表示墨滴堆叠方向,该具体实施例中第一液体材料A和第二液体材料B以指定比例喷射在同一个体素位置,如图4b所示喷墨打印过程中第一液体材料A和第二液体材料B以体积比1:1的比例喷射在同一个体素位置Vvoxel,墨滴在Z方向叠加。或者,如图4c所示喷墨打印过程中第一液体材料A和第二液体材料B以体积比2:1的比例喷射在同一个体素位置Vvoxel,墨滴在Z方向叠加,同一体素位置中喷射两滴体积相同的第一液体材料A。或者,如图4d所示喷墨打印过程中第一液体材料A和第二液体材料B以体积比2:1的比例喷射在同一个体素位置Vvoxel,墨滴在Z方向叠加,同一体素位置中第一液体材料A的单个墨滴体积是第二液体材料B的单个墨滴体积的2倍。或者,如图4e所示,x方向是打印头的扫描方向,y方向是打印头的步进方向,喷墨打印过程中第一液体材料A和第二液体材料B以体积比1:1的比例喷射在同一个体素位置Vvoxel,墨滴在同一体素中的水平面上排布。本申请中第一液体材料和第二液体材料以指定比例喷射在成型区域和非成型区域中,墨滴落点方式还可以是上述各种方式的组合,在此不做限制。
由于在三维物体打印完成后,非成型区域的粉末材料需要从目标物体的周围移除,本申请优选减少喷射液体材料的非成型区域的范围,以提高粉末材料的回收利用率。
本实施例中在保证层防护部分起到前述作用的前提下,层防护部分的宽度d大于或等于施加的液体材料的液滴的最小直径,如在喷墨过程中最小液滴的直径为10um,则本实施例中d为大于或等于10um。
在另一种可选的实施方式中,非成型区域中的区域1n’沿远离成型区域的方向,非成型区域的单位体积中的第二液体材料的量逐渐减小。由此减少非成型区域中喷射的第二液体材料的量,降低三维物体打印成本。
本申请各具体实施方式中,为了提高形成的三维物体的强度,降低非成型区域中粉末材料粘接在打印形成的三维物体表面的可能性,提高非成型区域中粉末材料粘接在三维物体表面的可剥离性,使得三维物体的层实体部分与层防护部分之间可以形成清晰的界面,限定成型区域的单位体积中的第二液体材料的量小于至少部分非成型区域的单位体积中的第二液体材料的量,且在成型区域的单位体积中的第一液体材料的量大于至少部分非成型区域的单位体积中的第一液体材料的量。
进一步地,在步骤S20和步骤S30之后,更具体是在执行步骤S201和步骤S301之后,打印方法还包括:步骤S40,对施加有第二液体材料的粉末材料层进行加热。
可以理解地,在施加有第二液体材料的粉末材料层上提供热能以对施加有第二液体材料的粉末材料层进行加热,加热的温度高于70℃且低于粉末材料的熔点或熔融温度5℃以上; 本具体实施方式中通过对施加有第二液体材料的粉末材料层进行加热,能进一步促进成型区域中第一液体材料发生聚合反应,防止成型区域中的第一液体材料扩散到非成型区域,影响成型物体的表面精度;和/或促进第二液体材料中部分组分的蒸发(如水的蒸发),在成型区域中提高第二液体材料中第二助剂的浓度进一步加快第一液体材料的聚合反应速率,由于在非成型区域的单位体积中第二液体材料的量大于成型区域的单位体积中第二液体材料的量,部分组分的吸热蒸发可以有效降低非成型区域中粉末材料的温度,防止非成型区域的粉末材料粘接在成型的三维物体的表面,能改善三维物体的表面精度。
在一些具体的实施方式中,加热的能量包括辐射能、热能中的至少一种,具体可以是通过红外辐射、可见光照射等进行加热。
三维物体打印过程中,在步骤S40之后,打印方法还包括:
步骤S50,确认当前三维物体的成型层是否为最后一层,如否,重复执行上述形成粉末材料层至形成成型层的步骤,使获得的多个成型层逐层叠加以形成三维物体。
可以理解地,对三维物体的数字模型进行切片分层得到至少一个切片层,在三维物体打印过程中,每形成一个成型层进行逐层叠加,直到所有切片层被打印完成,形成目标三维物体,否则,需要根据层打印数据重复形成粉末材料层和喷射第一液体材料及第二液体材料形成层实体部分和层防护部分,其中,层实体部分与层防护部分构成成型层,并逐层叠加形成三维物体。
本三维物体打印过程中,在成型区域施加第二液体材料可以促进第一液体材料发生聚合反应且第一液体材料溶解至少部分粉末材料以形成三维物体的层实体部分。非成型区域中第二液体材料不促进或缓慢促进第一液体材料发生聚合反应以形成三维物体的层防护部分。在非成型区域内施加第二液体材料主要作用是防止成型区域中第一液体材料渗透至非成型区域中,从而防止渗透的第一液体材料与非成型区域内的粉末材料作用影响成型物体的表面精度;和/或,防止非成型区域内的粉末材料被熔融粘附在成型物体的表面影响物体的表面精度;打印得到的三维物体中没有小分子物质残留,使用过程中也没有小分子物质析出,可以达到安全环保的要求。
图5为本申请再一实施例提供的三维物体打印方法的流程示意图,本实施例区别于图2,在打印过程中,第一液体材料A和第二液体材料B在不同的扫描方向上进行喷墨打印且先喷射第二液体材料B之后喷射第一液体材料A。
具体地,在步骤S11之后,打印方法包括:
步骤S202,在第一扫描方向上,根据成型区域的层打印数据在粉末材料层的成型区域内以第一比例先施加第二液体材料,根据非成型区域的层打印数据在粉末材料层的非成型区域内以第二比例先施加第二液体材料;
接着,执行步骤S40,对施加有第二液体材料的粉末材料层进行加热;
再之后,执行步骤S302,在第二扫描方向上,根据成型区域的层打印数据在粉末材料层的成型区域内以第一比例施加第一液体材料,第二液体材料促进第一液体材料发生聚合反应,以形成三维物体的层实体部分;根据非成型区域的层打印数据在粉末材料层的非成型区域内以第二比例施加射第一液体材料,形成三维物体的层防护部分;其中,第一扫描方向与第二扫描方向相反,第一比例大于第二比例;在成型区域的单位体积中的第二液体材料的量小于 至少部分非成型区域的单位体积中的第二液体材料的量,且在成型区域的单位体积中的第一液体材料的量大于至少部分非成型区域的单位体积中的第一液体材料的量。
本具体实施方式中,通过将第一液体材料和第二液体材料分别在不同的扫描方向进行施加,且先施加第二液体材料,对施加有第二液体材料的粉末材料层加热之后,再施加第一液体材料,此种方式中第一液体材料喷射之前,第二液体材料中的至少部分可被蒸发的组分被蒸发,非成型区域中第二液体材料的量大,蒸发的组分带走非成型区域中粉末材料的温度从而使非成型区域中粉末材料的温度被降低,且提高了第二液体材料中其他组分的浓度,能促进第一液体材料的聚合反应速度,提高形成物体的表面精度。
在本申请中,根据前述提供的三维打印材料以及使用图2中的三维物体打印方法,打印制得以下实施例以及对比例,需要说明的是实施例以及对比例的打印步骤相同。
实施例1:
以聚丙烯颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000001
注备:其中水溶性聚酯树脂在成型过程中不发生反应,且Tg为10℃。
实施例2:
以聚氨酯颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000002
Figure PCTCN2022086826-appb-000003
注备:水性丙烯酸酯乳液Tg为-10℃。
实施例3:
以聚氨酯颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000004
注备:水性聚氨酯Tg为0℃。
实施例4:
以聚氨酯颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000005
Figure PCTCN2022086826-appb-000006
注备:水性丙烯酸酯乳液Tg为-10℃。
实施例5:
以聚酰胺颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000007
注备:水性丙烯酸酯乳液Tg为-10℃。
实施例6:
以聚酰胺颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000008
Figure PCTCN2022086826-appb-000009
注备:水性丙烯酸酯乳液Tg为-10℃。
实施例7:
以聚酰胺颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000010
Figure PCTCN2022086826-appb-000011
注备:水性丙烯酸酯乳液Tg为-10℃。
实施例8:以乙酸纤维素为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000012
注备:水性丙烯酸酯乳液Tg为40℃。
实施例9:
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中单个体素Vvoxel中采用8滴墨打印,单个墨滴体积基本一致,第一比例为4:4,表示成型区域中单个体素中分别喷射4滴第一液体材料墨滴和4滴第二液体材料墨滴;第二比例为0:8,表示在非成型区域中不喷射第一液体材料,非成型区域的单个体素中仅喷射8滴第二液体材料墨滴。
实施例10:
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中单个体素Vvoxel中采用8滴墨打印,单个墨滴体积基本一致,第一比例为7:1,可以表示为成型区域中单个体素中喷射7滴第一液体材料墨滴和1滴第二液体材料墨滴;第二比例为3:5,可以表示为在非成型区域中单个体素中喷射3滴第一液体材料墨滴,5滴第二液体材料墨滴。
实施例11
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中成型区域中单个体素Vvoxel中采用8滴墨打印, 非成型区域中单个体素Vvoxel中采用4滴墨打印,单个墨滴体积基本一致,第一比例为6:2,可以表示为成型区域中单个体素中喷射6滴第一液体材料墨滴和2滴第二液体材料墨滴;第二比例为1:3,可以表示为在非成型区域中单个体素中喷射1滴第一液体材料墨滴,3滴第二液体材料墨滴。
对比例1:
以聚氨酯颗粒为粉末材料,液体材料配方如下:
Figure PCTCN2022086826-appb-000013
对比例2:
以聚氨酯颗粒为粉末材料,实施例2第一液体材料作为液体材料的配方。
对比例3:
以聚氨酯颗粒为粉末材料,实施例4第一液体材料作为喷射液第一液体材料的配方,第二液体材料配方如下:
Figure PCTCN2022086826-appb-000014
注备:水性丙烯酸酯乳液Tg为-10℃。
对比例4:
以聚酰胺颗粒作为粉末材料,实施例5第一液体材料单独作为喷射液配方;
对比例5:
以聚酰胺颗粒作为粉末材料,实施例5第一液体材料作为喷射液第一液体材料配方,第二液体材料配方如下:
Figure PCTCN2022086826-appb-000015
Figure PCTCN2022086826-appb-000016
注备:水性丙烯酸酯乳液Tg为-10℃。
对比例6:
以聚酰胺颗粒作为粉末材料,实施例5第一液体材料作为喷射液第一液体材料,第二液体材料配方如下:
Figure PCTCN2022086826-appb-000017
注备:水性丙烯酸酯乳液B的Tg为90℃。
对比例7:
以聚酰胺颗粒作为粉末材料,实施例5第一液体材料作为喷射液第一液体材料,第二液体材料配方如下:
Figure PCTCN2022086826-appb-000018
对比例8:
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中单个体素Vvoxel中采用4滴墨打印,单个墨滴体积基本一致,第一比例为1:1,表示成型区域中单个体素中分别喷射2滴第一液体材料墨滴和2滴第二液体材料墨滴;第二比例为1:1,表示在非成型区域中单个体素中分别喷射2滴第一液体材料墨滴和2滴第二液体材料墨滴。
对比例9:
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中成型区域中单个体素Vvoxel中采用12滴墨打印,非成型区域中单个体素Vvoxel中采用8滴墨打印,单个墨滴体积基本一致,第一比例为11:1,表示成型区域中单个体素中分别喷射11滴第一液体材料墨滴和1滴第二液体材料墨滴; 第二比例为3:5,表示在非成型区域中单个体素中分别喷射3滴第一液体材料墨滴和5滴第二液体材料墨滴。
对比例10
采用实施例5中的三维打印材料结合使用图2中的三维物体打印方法,其中,预热温度为175℃,加热温度为180℃,喷墨打印过程中成型区域中单个体素Vvoxel中采用8滴墨打印,非成型区域中单个体素Vvoxel中采用4滴墨打印,单个墨滴体积基本一致,第一比例为4:4,表示成型区域中单个体素中分别喷射4滴第一液体材料墨滴和4滴第二液体材料墨滴;第二比例为1:3,表示在非成型区域中单个体素中分别喷射1滴第一液体材料墨滴和3滴第二液体材料墨滴。
性能测试:
1.第一液体材料的性能测试:
将实施例1~8配制的第一液体材料及对比例1配制的液体材料分别置于常温25℃和70℃烘箱下进行烘烤,测试结果如表1所示。
表1.第一液体材料的存储稳定性测试
Figure PCTCN2022086826-appb-000019
通过表1的测试数据可知,实施例1、实施例3-实施例5及实施例8提供的第一液体材料未添加高温引发剂,实施例2、实施例6和实施例7提供的第一液体材料添加高温引发剂,对比例1提供的第一液体材料添加低温引发剂,根据实验测试数据可知,第一液体材料中不含有引发剂,第一液体材料的储存稳定性好;第一液体材料含有低温引发剂容易导致第一液体材料存储稳定性变差;在诱发低温引发剂发生作用的温度下第一液体材料中含有高温引发剂不会影响第一液体材料的存储稳定性。而实施例6、实施例7中的高温引发剂与实施例2不同,均能够在常温下相对稳定,可以保证第一液体材料的存储稳定性。
2.三维物体的性能测试
根据实施例1提供的粉末材料于150℃预热温度下结合使用图2中的三维物体打印方法(第一液体材料与第二液体材料的比例)打印得到样件,将实施例2-4、对比例1-3提供的粉末材料采用110℃预热温度下结合使用图2中的三维物体打印方法打印得到样件;将实施例5-7、实施例9-11、对比例4~10提供的粉末材料采用预热温度175℃结合使用图2中的三维物体打印方法,将实施例8提供的粉末材料采用预热温度150℃结合使用图2中的三维物体打印方法。其中实施例1至实施例8、对比例3、对比例5、对比例6和对比例7根据三维物体打印方法成型区域和非成型区域中单个体素中墨量总体积相同,以单个墨滴体积基本一致 为例,成型区域和非成型区域中单个体素中墨滴数量相同,以单个体素中喷射8滴液体材料墨滴为例,成型区域中第一液体材料与第二液体材料体积比为6:2;非成型区域中第一液体材料与第二液体材料体积比为2:6,打印得到样件。对比例1、对比例2、对比例4根据三维物体打印方法成型区域中单个体素中喷射8滴液体材料墨滴打印得到样件。
2.1)样件的拉伸强度测试:
根据GB/T 1040.2-2006塑料拉伸性能测定标准将样件进行拉伸强度测试。
2.2)样件的断裂伸长率测试:
根据GB/T 1040.2-2006塑料拉伸性能测定标准进行测定。
样件的拉伸强度及断裂伸长率测试结果如表2所示:
表2.样件的拉伸强度及断裂伸长率测试结果
样件 拉伸强度(MPa) 断裂伸长率(%)
实施例1 3.54 52
实施例2 10.30 325
实施例3 12.12 263
实施例4 10.60 332
实施例5 36.20 61
实施例6 39.50 49
实施例7 33.61 37
实施例8 15.23 15
实施例9 34.13 67
实施例10 37.02 57
实施例11 36.12 60
对比例1 9.32 306
对比例2 1.83 56
对比例3 10.26 331
对比例4 7.89 7
对比例5 35.21 62
对比例6 37.41 44
对比例7 35.61 56
对比例8 20.89 27
对比例9 17.69 17
对比例10 33.67 66
2.3)样件的尺寸稳定性和粗糙度测试:
样件的目标长度70.00mm、目标宽度10.00mm、目标厚度3.00mm,测量实际打印得到的样件宽度、厚度和长度,并计算实测值与目标值的差值,其中:
△W宽=实测宽度值-目标宽度值;
△D厚=实测厚度值-目标厚度值;
△L长=实测长度值-目标长度值;
采用表面粗糙度测试仪测量打印得到的样件粗糙度数值。
样件的尺寸稳定性和粗糙度测试结果如表3所示:
表3.样件的尺寸稳定性和粗糙度测试结果
样件 △W(mm) △D(mm) △L(mm) 粗糙度值(um)
实施例1 -0.16 0.10 -0.29 60
实施例2 -0.05 -0.12 -0.10 86
实施例3 0.05 -0.03 -0.61 74
实施例4 0.03 0.13 -0.24 71
实施例5 0.06 0.11 -0.51 26
实施例6 -0.02 0.05 -0.21 34
实施例7 -0.07 -0.05 -0.22 37
实施例8 -0.06 0.10 -0.22 41
实施例9 -0.08 -0.10 -0.66 25
实施例10 -0.02 0.04 -0.38 30
实施例11 0.04 0.02 -0.46 27
对比例1 -0.31 0.51 -1.32 187
对比例2 -0.37 0.46 -1.36 175
对比例3 -0.23 0.55 -1.41 121
对比例4 -0.67 0.60 -2.06 123
对比例5 -0.24 -0.31 -0.71 41
对比例6 0.43 0.39 1.01 351
对比例7 -0.15 -0.11 -1.37 45
对比例8 2.23 0.72 0.96 235
对比例9 -0.15 0.09 -0.67 44
对比例10 2.31 1.01 1.21 240
表2中实施例2和对比例2的材料配方采用同一第一液体材料,对比例2提供的液体材料中未添加包含促引发剂的第二液体材料。经过测试发现,实施例2的样件的拉伸强度和断裂伸长率明显优于对比例2的样件。这是由于实施例2的第一液体材料中的高温引发剂需要引入包含促引发剂的第二液体材料才会发生较好的引发聚合作用;而对比例2未添加包含促引发剂的第二液体材料,第一液体材料在与粉末材料混合后未有效发生聚合反应,因而样件的力学性能较差。
实施例2在粉末材料层上施加第一液体材料及第二液体材料,对比例2没有施加第二液体材料,从表3可以看出对比例2中△W、△D、△L和粗糙度值较大,说明第一液体材料与第二液体材料的配合使用对三维物体的尺寸稳定性和粗糙度具有显著改善效果。
实施例4和对比例3中均采用相同的聚氨酯粉末和相同的第一液体材料,其中,实施例4提供的第二液体材料中的粉末离型剂重量占比为2%,对比例3提供的第二液体材料中的粉末离型剂重量占比为15%(超过10%)。通过表3可以看出,对比例3的△W、△D、△L和粗糙度值较实施例4大,这说明粉末离型剂超过一定含量后对实体部分和防护部分产生的差异效果不明显,因而使得第二液体材料产生效果不明显。
表2中,实施例5和对比例4均采用相同的第一液体材料,实施例5的第二液体材料中含有引发剂,而对比例4未添加包含引发剂的第二液体材料。因而实施例5拉伸强度和断裂伸长率要明显强于对比例4。对比例4打印出来样件△W、△D、△L和粗糙度值较实施例5大,说明喷射在粉末材料层上施加第一液体材料及包含引发剂的第二液体材料对尺寸稳定性和粗糙度具有一定效果。
实施例5和对比例5均采用相同的第一液体材料,其中,对比例5提供的第二液体材料不含有粉末离型剂。通过表3可以看出对比例4和对比例5相比,对比例5对尺寸稳定性和粗糙度有一定改善效果,但相较于实施例5还有一定差距,说明在第二液体材料中添加适量的粉末离型剂后对三维物体的尺寸稳定性和粗糙度具有改善效果。
实施例5和对比例6均采用相同的第一液体材料,其中,对比例6提供的第二液体材料中的剥离剂(水性丙烯酸酯乳液)的玻璃化温度Tg点为90℃,超过40℃;而实施例5提供的第二液体材料中的剥离剂(水性丙烯酸酯乳液)的玻璃化温度Tg点为-10℃,低于40℃。对比例6打印得到的样件的△W、△D为正值,但是粗糙度比实施例5大很多,这说明玻璃化温度高的剥离剂包裹粉末材料颗粒后,容易粘接在样件表面,出现误差值偏正值,且表面更加粗糙,因此,需要控制第二液体材料中的剥离剂的玻璃化温度低于40℃。
实施例5和对比例7均采用相同的第一液体材料,其中,对比例7提供的第二液体材料不含有剥离剂,对比例7打印得到的样件的△W、△D、△L和粗糙度值靠近实施例5的样件,但依然与实施例5有一定差距。说明第二液体材料中包含剥离剂,对样件的尺寸稳定性和粗糙度具有一定改善效果。
实施例5、实施例9、实施例10、实施例11、对比例8、对比例9、对比例10均采用相同的粉末材料和液体材料,采用不同的打印方式。
对比例8中,其拉伸强度和断裂伸长率均比实施例5、实施例9、实施例10和实施例11低很多,这可能是因为对比例8中的墨量偏少,第一液体材料偏低所导致,而其△W、△D、△L均比目标值大,成型过程中把非成型区域的防护部分与实体部分黏连为成型层。
对比例9,其拉伸强度和断裂伸长率均比实施例5、实施例9、实施例10和实施例11低很多,是由于对比例9中的第一液体材料过多,而第二液体材料过少,没有充足的第二液体材料来促进第一液体材料发生聚合反应,导致第一液体材料聚合不充分,因而其拉伸强度和断裂伸长率偏低太多。
对比例10,成型区域第一液体与第二液体体积比和非成型区域第一液体与第二液体体积比虽然在范围内,但成型区域的单位体积中的第二液体材料的量(体积)大于非成型区域的单位体积中的第二液体材料的量(体积),再加上第一液体材料整体墨量较多,因此导致△W、△D、△L均比目标值大,粗糙度较大。
再一方面,图6为本申请实施例提供的三维物体打印装置的结构示意图,如图6所示,本申请实施例还提供一种三维物体打印装置,用于实施上述三维物体打印方法,打印装置包括:
供粉部件2,提供粉末材料以形成粉末材料层L0,粉末材料层包括成型区域和非成型区域;
成型平台3,支撑形成的粉末材料层L0;
打印头26,喷射第一液体材料A和喷射第二液体材料B;
控制器9,控制器根据层打印数据控制打印头26在粉末材料层的成型区域内以第一比例施加第一液体材料A和第二液体材料B,第二液体材料B促进第一液体材料A发生聚合反应,形成三维物体的层实体部分;
控制器9根据层打印数据控制打印头26在粉末材料层的非成型区域内以第二比例施加第一液体材料A和第二液体材料B,形成三维物体的层防护部分;其中,第一比例大于第二比例;在成型区域的单位体积中的第二液体材料B的量小于至少部分非成型区域的单位体积中的第二液体材料B的量,且在成型区域的单位体积中的第一液体材料A的量大于至少部分非成型区域的单位体积中的第一液体材料A的量。
本实施例中,供粉部件2包括储粉腔23、升降组件22和铺粉器21,储粉腔用于存储粉末材料0,储粉腔23内部具有可移动的支撑板231,升降组件22与支撑板231连接,可带动支撑板231在Z方向上升或下降;铺粉器21用于将储粉腔23中的粉末材料0铺展到成型平台3上以形成粉末材料层L0,常用的铺粉器21可以是铺粉棍或刮板。
打印头26包括第一喷孔阵列26a和第二喷孔阵列26b,其中,第一喷孔阵列26a用于喷射第一液体材料A,第二喷孔阵列26b用于喷射第二液体材料B;或者第一喷孔阵列26a用于喷射以第一比例混合的第一液体材料A和第二液体材料B,第二喷孔阵列26b用于喷射以第二比例混合的第二液体材料A和第二液体材料B。
在本申请中,第一液体材料A和第二液体材料B是两种不同的液体材料,分开存储于不同的材料储存器,如墨水盒中,通过不同的液体材料输送管路分别输送第一液体材料和第二液体材料。第一液体材料A和第二液体材料B的具体成分详见前述三维打印材料中的介绍,在此不再赘述。
在一种实施方式中,第一液体材料A和第二液体材料B按比例喷射,可以是在第一液体材料A和第二液体材料B被输送到打印头26的各自的喷孔阵列进行喷射之前按比例混合,之后将混合后的液体材料喷射在粉末材料层的成型区域或非成型区域。
图7a为本申请实施例提供的三维物体打印装置中的液体供应装置的局部结构示意图,如图7a所示,在一种实施方式中,第一液体材料A存储在墨水盒21a中,通过泵22a经由墨管23a被输送到混合容器25a或25b中,第二液体材料B存储在墨水盒21b中,通过泵22b经由墨管23b被输送到混合容器25a或25b中,混合容器25a中第一液体材料A和第二液体材料B以第一比例混合,混合容器25b中第一液体材料A和第二液体材料B以第二比例混合,开关24a和24b分别用于控制第一液体材料A和第二液体材料B向混合容器25a供墨或向混合容器25b供墨,具体开关24a和24b的种类不做限制,只要能控制第一液体材料A和第二液体材料B向指定的混合容器进行供墨即可,例如可以是电磁阀。
图7b为本申请实施例提供的三维物体打印装置中的液体供应装置的局部结构示意图,如图7b所示,在另一种实施方式中,第一液体材料A存储在墨水盒21a中,通过泵22a经由墨管23a被输送到混合容器25a中,通过泵22c经由墨管23c被输送到混合容器25b中;第二液体材料B存储在墨水盒21b中,通过泵22b经由墨管23b被输送到混合容器25a中,通过泵22d经由墨管23d被输送到混合容器25b中,混合容器25a中第一液体材料A和第二液体材料B以第一比例混合,混合容器25b中第一液体材料A和第二液体材料B以第二比例混合。以第一比例混合后的第一液体材料A和第二液体材料B混合物向第一喷孔阵列26a供墨,以 第二比例混合后的第一液体材料A和第二液体材料B混合物向第二喷孔阵列26b供墨,从而实现在粉末材料层的成型区域和非成型区域喷墨打印,得到三维物体的层实体部分和层防护部分。
本申请实施例中第一液体材料A和第二液体材料B按比例喷射,还可以是第一液体材料A和第二液体材料B分别经由不同的供墨管路向打印头26不同的喷孔阵列供墨,液体材料在粉末层上按不同比例进行喷射。
图7c为本申请实施例提供的三维物体打印装置中的液体供应装置的局部结构示意图,如图7c所示,在再一种实施方式中,第一液体材料A存储在墨水盒21a中,通过泵22a经由墨管23a被输送到打印头的第一喷孔阵列26a中。第二液体材料存储在墨水盒21b中,通过泵22b经由墨管23b被输送到打印头的第二喷孔阵列26b中。
控制器根据层打印数据控制打印头26的第一喷孔阵列26a和第二喷孔阵列26b以第一比例在粉末材料层的成型区域上分别喷射第一液体材料A和第二液体材料B,根据层打印数据控制第一喷孔阵列26a和第二喷孔阵列26b以第二比例在粉末材料层的非成型区域上分别喷射第一液体材料A和第二液体材料B,第一液体材料A和第二液体材料B在粉末材料层上进行接触。
图8a为本申请实施例提供三维物体打印装置中的打印头喷孔的表面结构示意图,如图8a所示,第一喷孔阵列26a和第二喷孔阵列26b可以是集成在一起的多通道打印头,或是两个多通道打印头,多通道打印头26包括至少两排喷孔,如2排、3排、4排等。在一具体的实施方式中,打印头26具有4排喷孔,每排喷孔可独立控制。
图8b为本申请实施例提供的另一打印头喷孔的表面结构示意图,如图8b所示,第一喷孔阵列26a和第二喷孔阵列26b可以是单通道打印头,打印头26是单通打印头。
图8c为本申请实施例提供的又一打印头喷孔的表面结构示意图,如图8c所示,第一喷孔阵列26a和第二喷孔阵列26b还可以是集成在一起的单通道和多通道打印头。在一具体的实施方式中,打印头26是集成在一起的单通道和多通道打印头,每个喷孔可独立控制,如控制每个喷孔是否喷墨、和/或每个喷孔喷射墨滴大小可变。
在本申请中,通过将第一液体材料和第二液体材料分开存储在不同的墨水盒并通过使用不同的墨水传输管路进行输送,可以提高液体材料的储存稳定性,防止第一液体材料发生聚合反应,保证液体材料的供墨流畅性,同时还能防止打印头喷孔被堵塞,损坏打印头。
可选地,三维物体打印装置还包括预热部件53,预热部件53置于成型平台3的上方,预热部件53用于提供辐射能或热能,预热粉末材料层L0,有助于成型区域中第二液体材料促进第一液体材料发生聚合反应形成聚合物,有助于非成型区域中第二液体材料中可蒸发组分的蒸发以带走非成型区域中粉末材料的温度。预热部件可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中的至少一种,具体选择哪种不受限制。
可选地,三维物体打印装置还包括加热部件51和52,用于在打印头喷射第二液体材料后加热喷射有第二液体材料的粉末层,加热部件可选自紫外灯、红外灯、微波发射器、加热丝、加热片、加热板中的至少一种;需要说明的是,具体选择哪种形式的加热部件和第一液体材料中的第一活性组分的种类或者与第一活性组分的种类及第二助剂的种类相关,当第一液体材料中的第一活性组分发生光聚合反应时,此时加热部件提供辐射能如紫外光辐射,通过紫外光辐射引发第一活性组分发生光聚合反应;当第一液体材料中的第一活性组分发生热 聚合反应时,此时加热部件提供热能如红外灯、微波、加热丝、加热片、加热板,通过热能引发第一液体材料中的第一活性组分发生热聚合反应。
可选地,三维物体打印装置还包括升降机构4,升降机构4与成型平台3连接,驱动成型平台3沿竖直方向上升或下降。在打印过程中,在每形成一个包括层实体部分和层防护部分的三维物体切片层之后,所述升降机构4驱动所述成型平台3向下移动一个粉末层厚的距离。
在本实施例中,预热部件53安装在成型平台3的上方可以是安装在成型腔室的顶部,加热部件51、打印头26和加热部件52可以按顺序安装在导轨11上,并能在导轨11上移动。
三维物体打印装置还可以包括温度监控器(图中未示出),温度监控器用于监测粉末材料层的温度。
进一步地,控制器9还用于控制供粉部件2、预热部件53、加热部件51和52、温度监控器中至少其一的工作。例如,温度监控器将监测的温度反馈给控制器9,控制器根据温度监控器反馈的信息控制预热部件53和/或加热部件51以及加热部件52提供能量的大小。
本申请实施例还提供一种非暂时性计算机可读存储介质,如图9所示,存储介质91包括存储的程序911,在程序运行时控制存储介质91所在设备执行上述的三维物体打印方法。
本申请实施例还提供一种计算机设备,如图10所示,该实施例的计算机设备包括:处理器101、存储器102以及存储在存储器102中并可在处理器101上运行的计算机程序103,处理器101执行计算机程序103时实现实施例中的三维物体打印方法,为避免重复,此处不一一赘述。
计算机设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。计算机设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,计算机设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如计算机设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以是计算机设备的内部存储单元,例如计算机设备的硬盘或内存。存储器也可以是计算机设备的外部存储设备,例如计算机设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器还可以既包括计算机设备的内部存储单元也包括外部存储设备。存储器用于存储计算机程序以及计算机设备所需的其他程序和数据。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (40)

  1. 一种三维物体打印方法,其特征在于,所述方法包括:
    利用粉末材料形成粉末材料层,所述粉末材料层包括成型区域和非成型区域;
    根据层打印数据在所述粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,所述第二液体材料促进所述第一液体材料发生聚合反应,形成三维物体的层实体部分;
    根据层打印数据在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成所述三维物体的层防护部分;其中,所述第一比例大于所述第二比例;在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材料的量。
  2. 根据权利要求1所述的打印方法,其特征在于,所述第一比例为所述第一液体材料与所述第二液体材料的体积比,所述第一比例为(1-10):1;和/或,所述第二比例为所述第一液体材料与所述第二液体材料的体积比,所述第二比例为(0-0.95):1。
  3. 根据权利要求1所述的打印方法,其特征在于,所述层实体部分与所述层防护部分位于同一水平面,且所述层实体部分与所述层防护部分相邻设置。
  4. 根据权利要求1所述的打印方法,其特征在于,所述非成型区域沿远离所述成型区域的方向,所述非成型区域的单位体积中的第二液体材料的量逐渐减小。
  5. 根据权利要求1所述的打印方法,其特征在于,所述层防护部分的宽度大于或等于施加的液体材料的液滴的最小直径。
  6. 根据权利要求1所述的打印方法,其特征在于,在所述根据层打印数据在所述粉末材料层的成型区域内以第一比例喷射第一液体材料和第二液体材料,根据层打印数据在所述粉末材料层的非成型区域内以第二比例喷射第一液体材料和第二液体材料之前,所述三维物体打印方法还包括:
    预热所述粉末材料层。
  7. 根据权利要求6所述的打印方法,其特征在于,所述预热的温度低于所述粉末材料的熔点或熔融温度5℃-100℃。
  8. 根据权利要求6所述的打印方法,其特征在于,在所述根据层打印数据在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料之后,所述三维物体打印方法还包括:
    对施加有所述第二液体材料的粉末材料层进行加热。
  9. 根据权利要求8所述的打印方法,其特征在于,所述加热的温度高于70℃且低于所述粉末材料的熔点或熔融温度5℃以上,以促进所述第二液体材料中的水蒸发,和/或,促进所述第一液体材料溶解所述粉末材料且促进所述第一液体材料发生聚合反应。
  10. 根据权利要求8所述的打印方法,其特征在于,所述预热和所述加热的能量包括辐射能、热能中的至少一种。
  11. 根据权利要求1所述的打印方法,其特征在于,所述第一液体材料包括第一活性组分,所述第一活性组分溶解至少部分所述粉末材料;所述第二液体材料包括第二助剂、粉末离型剂、剥离剂、碳氢链表面活性剂及水,所述第二助剂用于促进所述第一液体材料发生聚合反 应。
  12. 根据权利要求11所述的打印方法,其特征在于,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%。
  13. 根据权利要求11或12所述的打印方法,其特征在于,其满足以下特征中的至少一种:
    (1)所述第二助剂选自引发剂、促引发剂和催化剂中至少一种;
    (2)所述粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种;
    (3)所述粉末离型剂选自硅油乳液、含氟非离子表面活性剂、含氟阴离子表面活性剂中至少一种;
    (4)所述剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;
    (5)所述剥离剂选自玻璃化温度低于40℃的聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中至少一种。
  14. 根据权利要求12所述的打印方法,其特征在于,所述第二液体材料还包括重量占比的以下组分:助溶剂0.05%-30%。
  15. 根据权利要求14所述的打印方法,其特征在于,所述助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。
  16. 根据权利要求1所述的打印方法,其特征在于,在形成三维物体的层实体部分和层防护部分之后,所述方法还包括:
    重复形成粉末材料层和施加第一液体材料及第二液体材料,获得的多个切片层逐层叠加形成三维物体,所述切片层包括层实体部分和层防护部分。
  17. 一种非暂时性计算机可读存储介质,其特征在于,所述存储介质包括存储的程序,在所述程序运行时控制所述存储介质所在设备执行权利要求1~16任意一项所述的三维物体打印方法。
  18. 一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1~16任意一项所述的三维物体打印方法。
  19. 一种三维物体,其特征在于,所述三维物体根据权利要求1~16任意一项所述的三维物体打印方法打印得到。
  20. 一种三维打印材料,与三维打印用的粉末材料配合使用,其特征在于,所述材料包括:
    第一液体材料,所述第一液体材料包括第一活性组分,所述第一活性组分可溶解至少部分所述粉末材料;及
    第二液体材料,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,所述第二助剂用于促进所述第一液体材料发生聚合反应。
  21. 一种三维打印材料,其特征在于,所述材料包括:
    粉末材料,所述粉末材料用于形成粉末材料层;
    第一液体材料,所述第一液体材料包括第一活性组分,所述第一活性组分溶解至少部分 所述粉末材料;及
    第二液体材料,以所述第二液体材料总重量为100%计,所述第二液体材料包括重量占比的以下组分:第二助剂0.1%~40%、水30%~90%、粉末离型剂0.01%~10%、剥离剂1%~30%及碳氢链表面活性剂0.1%~10%;其中,所述第二助剂用于促进所述第一液体材料发生聚合反应。
  22. 根据权利要求21所述的三维打印材料,其特征在于,所述粉末材料层包括成型区域和非成型区域,所述第一液体材料和所述第二液体材料以第一比例施加至所述成型区域内,所述第一液体材料和所述第二液体材料以第二比例施加至所述非成型区域内,其中,所述第一比例大于所述第二比例。
  23. 根据权利要求22所述的三维打印材料,其特征在于,所述第一比例为所述第一液体材料与所述第二液体材料的体积比,所述第一比例为(1-10):1;和/或,所述第二比例为所述第一液体材料与所述第二液体材料的体积比,所述第二比例为(0-0.95):1。
  24. 根据权利要求22所述的三维打印材料,其特征在于,在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材料的量。
  25. 根据权利要求21所述的三维打印材料,其特征在于,所述粉末材料包括聚苯乙烯、聚氯乙烯、聚丙烯腈、丙烯腈-苯乙烯-丙烯酸酯共聚物、聚酰胺、聚酯、聚氨酯、聚(甲基)丙烯酸酯、聚氟乙烯、氯化聚烯烃、含有可被所述第一活性组分溶解的嵌段和/或接枝共聚物、含有羟基的聚乙烯醇、纤维素、改性纤维素中的至少一种。
  26. 根据权利要求20或21所述的三维打印材料,其特征在于,所述第一活性组分具有可参与聚合反应的活性基团,所述活性基团包括碳碳双键、羟基、羧基、杂环丙烷基团、碳酸酯类基团、环氧基团、液体环状内酯结构、环状缩醛结构中的至少一种。
  27. 根据权利要求20或21所述的三维打印材料,其特征在于,所述第一液体材料包括第二活性组分,所述第二活性组分具有可参与聚合反应的活性基团,所述第二活性组分不溶解所述粉末材料;
    所述第二活性组分包括丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、环三羟甲基丙烷甲缩醛丙烯酸酯、含碳碳双键的预聚物、含环氧基团的预聚物、促使环氧基团发生开环聚合的单体、促使环氧基团发生开环聚合的预聚物、固体环状内酯、环状酰胺类化合物中的至少一种。
  28. 根据权利要求20或21所述的三维打印材料,其特征在于,以所述第一液体材料总重量为100%计,所述第一活性组分在所述第一液体材料中的重量占比为10%~95%。
  29. 根据权利要求27所述的三维打印材料,其特征在于,以所述第一液体材料总重量为100%计,所述第二活性组分在所述第一液体材料中的重量占比为5%~90%。
  30. 根据权利要求20或21所述的三维打印材料,其特征在于,以所述第一液体材料总重量为100%计,所述第一液体材料还包括重量占比的以下组分:第一助剂0.01%~30%;
    所述第一助剂包括高温引发剂、流平剂、消泡剂、阻聚剂、抗氧化剂、增塑剂、分散剂、颜料及染料中至少一种。
  31. 根据权利要求20或21所述的三维打印材料,其特征在于,其满足以下特征中的至少 一种:
    (1)所述第二助剂选自引发剂、促引发剂和催化剂中至少一种;
    (2)所述粉末离型剂选自含硅的水溶性离型剂、含硅的水可分散性离型剂、含氟的水溶性离型剂、含氟的水可分散性离型剂中至少一种;
    (3)所述粉末离型剂选自硅油乳液、含氟非离子表面活性剂、含氟阴离子表面活性剂中至少一种;
    (4)所述剥离剂选自玻璃化温度低于40℃的水溶性聚合物和/或水可分散性聚合物;
    (5)所述剥离剂选自玻璃化温度低于40℃的聚醚树脂、聚酯树脂、聚(甲基)丙烯酸酯树脂、聚氨酯树脂中至少一种。
  32. 根据权利要求20或21所述的三维打印材料,其特征在于,以所述第二液体材料总重量为100%计,所述第二液体材料还包括重量占比的以下组分:助溶剂0.05%-30%。
  33. 根据权利要求32所述的三维打印材料,其特征在于,所述助溶剂选自醇类、醇醚类、酰胺类、吡咯烷酮类、有机酸类及有机盐类中的至少一种。
  34. 根据权利要求20或21所述的三维打印材料,其特征在于,所述碳氢链表面活性剂选自脂肪醇聚氧乙烯醚、烷基磺酸钠、烷基苯磺酸钠、烷基硫酸酯钠、琥珀酸烷基酯磺酸钠、氨基磺酸钠、聚醚、聚氧乙烯聚氧丙烯醚嵌段共聚物中的一种或多种。
  35. 一种三维物体打印装置,其特征在于,所述装置包括:
    供粉部件,提供粉末材料形成粉末材料层,所述粉末材料层包括成型区域和非成型区域;
    成型平台,支撑形成的所述粉末材料层;
    打印头和控制器,所述控制器根据层打印数据控制所述打印头在所述粉末材料层的成型区域内以第一比例施加第一液体材料和第二液体材料,所述第二液体材料促进所述第一液体材料发生聚合反应,形成所述三维物体的层实体部分;
    所述控制器根据层打印数据控制所述打印头在所述粉末材料层的非成型区域内以第二比例施加第一液体材料和第二液体材料,形成所述三维物体的层防护部分;其中,所述第一比例大于所述第二比例;在所述成型区域的单位体积中的第二液体材料的量小于至少部分所述非成型区域的单位体积中的第二液体材料的量,且在所述成型区域的单位体积中的第一液体材料的量大于至少部分所述非成型区域的单位体积中的第一液体材料的量。
  36. 根据权利要求35所述的三维物体打印装置,其特征在于,所述打印头包括第一喷孔阵列和第二喷孔阵列,其中,所述第一喷孔阵列用于以第一比例喷射第一液体材料和第二液体材料,所述第二喷孔阵列用于以第二比例喷射第一液体材料和第二液体材料。
  37. 根据权利要求35所述的三维物体打印装置,其特征在于,所述打印头包括第一喷孔阵列和第二喷孔阵列,其中,所述第一喷孔阵列和第二喷孔阵列用于在成型区域以第一比例分别喷射第一液体材料和第二液体材料,用于在非成型区域以第二比例分别喷射第一液体材料和第二液体材料。
  38. 根据权利要求35所述的三维物体打印装置,其特征在于,所述三维物体打印装置还包括升降机构,在每形成一个包括层实体部分和层防护部分的三维物体切片层之后,所述升降机构驱动所述成型平台向下移动一个粉末层厚的距离。
  39. 根据权利要求35所述的三维物体打印装置,其特征在于,所述三维打印装置还包括预热部件,所述预热部件置于所述成型平台的上方,对所述粉末材料层预热。
  40. 根据权利要求35所述的三维物体打印装置,其特征在于,所述三维打印装置还包括加热部件,所述加热部件设置于所述成型平台的上方,对喷射有所述第二液体材料的粉末材料层进行加热。
PCT/CN2022/086826 2022-03-11 2022-04-14 三维物体打印方法及装置、三维打印材料 WO2023168782A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247030902A KR20240149430A (ko) 2022-03-11 2022-04-14 3차원 물체 프린팅 방법 및 장치, 3차원 프린팅 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210235881.X 2022-03-11
CN202210235881.XA CN114619668B (zh) 2022-03-11 2022-03-11 三维物体打印方法及装置、三维打印材料

Publications (1)

Publication Number Publication Date
WO2023168782A1 true WO2023168782A1 (zh) 2023-09-14

Family

ID=81899243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086826 WO2023168782A1 (zh) 2022-03-11 2022-04-14 三维物体打印方法及装置、三维打印材料

Country Status (3)

Country Link
KR (1) KR20240149430A (zh)
CN (2) CN114619668B (zh)
WO (1) WO2023168782A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284609B (zh) * 2022-08-01 2024-06-18 深圳市金石三维打印科技有限公司 光固化3d打印机的构件表面平滑打印方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030346A (ja) * 2015-02-06 2017-02-09 花王株式会社 三次元造形用可溶性材料
CN108177337A (zh) * 2016-12-08 2018-06-19 三纬国际立体列印科技股份有限公司 立体列印装置与立体列印方法
CN111132821A (zh) * 2017-09-28 2020-05-08 花王株式会社 三维造型用可溶性材料
CN111976134A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维物体增材制造方法及装置、存储介质、计算机设备
WO2021071493A1 (en) * 2019-10-10 2021-04-15 Hewlett-Packard Development Company, L.P. Three-dimensional printing with dihydrazides and glycidyl compounds
CN113290852A (zh) * 2021-05-21 2021-08-24 珠海赛纳三维科技有限公司 三维物体成型方法及装置、存储介质、计算机设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007486A1 (en) * 2015-07-09 2017-01-12 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects with target surface roughness
US10350823B2 (en) * 2015-12-22 2019-07-16 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
CN107471826B (zh) * 2017-05-03 2018-06-01 珠海赛纳打印科技股份有限公司 打印头组件及三维打印系统
EP3938180A4 (en) * 2019-03-15 2022-09-28 Hewlett-Packard Development Company, L.P. THREE-DIMENSIONAL PRINTING
JP2020199649A (ja) * 2019-06-07 2020-12-17 株式会社リコー 立体造形物の製造方法及び立体造形物の製造装置
CN111907056B (zh) * 2020-07-28 2022-07-08 珠海赛纳三维科技有限公司 三维物体打印方法、打印设备及非暂时性机器可读存储介质
CN111978479B (zh) * 2020-08-11 2021-11-12 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030346A (ja) * 2015-02-06 2017-02-09 花王株式会社 三次元造形用可溶性材料
CN108177337A (zh) * 2016-12-08 2018-06-19 三纬国际立体列印科技股份有限公司 立体列印装置与立体列印方法
CN111132821A (zh) * 2017-09-28 2020-05-08 花王株式会社 三维造型用可溶性材料
WO2021071493A1 (en) * 2019-10-10 2021-04-15 Hewlett-Packard Development Company, L.P. Three-dimensional printing with dihydrazides and glycidyl compounds
CN111976134A (zh) * 2020-08-11 2020-11-24 珠海赛纳三维科技有限公司 三维物体增材制造方法及装置、存储介质、计算机设备
CN113290852A (zh) * 2021-05-21 2021-08-24 珠海赛纳三维科技有限公司 三维物体成型方法及装置、存储介质、计算机设备

Also Published As

Publication number Publication date
KR20240149430A (ko) 2024-10-14
CN114619668B (zh) 2023-04-11
CN116080064A (zh) 2023-05-09
CN114619668A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN111976134B (zh) 三维物体增材制造方法及装置、存储介质、计算机设备
WO2022033113A1 (zh) 三维成型用材料、三维物体及其切片层
US20210078243A1 (en) Method of manufacturing three-dimensional object, liquid set for manufacturing three-dimensional object, device for manufacturing three-dimensional object, and gel object
CN113290852B (zh) 三维物体成型方法及装置、存储介质、计算机设备
WO2023168782A1 (zh) 三维物体打印方法及装置、三维打印材料
TW200909532A (en) UV curable ink with improved adhesion
WO2022033114A1 (zh) 三维成型用材料、三维物体及其切片层
WO2017185508A1 (zh) 3d喷墨打印用墨水组合物、墨水组及其制备方法
CN113478822B (zh) 三维物体打印方法及设备、存储介质、计算机设备
KR20200105688A (ko) 3d 광중합체 젯팅을 위한 지지 서브-구조체를 제조하기 위한 조성물
JP2009035672A (ja) インクジェット用白色インク用中空粒子およびその製造方法並びにインクジェット用白色インク
WO2015129744A1 (ja) インクジェット記録用インク組成物、印刷物の製造方法、及び、印刷方法
CN102174283B (zh) 一种纳米级紫外光固化喷墨喷绘色浆及其制备方法
CN114193764B (zh) 三维成型用材料、三维物体及其打印方法
JP2018012829A (ja) インクジェット用水性インク及びその製造方法並びにインクジェット用水性インクを基材に印刷してなる印刷物及びその製造方法
JP6037431B2 (ja) カラーフィルター用インク及びその製造方法、並びにカラーフィルターの製造方法
Liao et al. A novel liquid thermal polymerization resist for nanoimprint lithography with low shrinkage and high flowability
WO2019193941A1 (ja) 硬化膜の形成方法及び硬化性組成物
CN116141682A (zh) 3d打印设备、打印控制方法及装置
JP4920334B2 (ja) カラーフィルタの製造方法
KR101224261B1 (ko) 열경화성 잉크 조성물, 이를 이용한 컬러필터 및 이를 포함하는 액정표시소자
US20220290334A1 (en) Core-sheath filaments including diene-based rubbers and methods of printing the same
WO2020248653A1 (zh) 三维物体成型方法和成型装置
JP2011093313A (ja) 画像形成方法
JP5125197B2 (ja) インクジェット用硬化性着色組成物及びカラーフィルタ基板の製造方法及びカラーフィルタ基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247030902

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247030902

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022930414

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022930414

Country of ref document: EP

Effective date: 20241011