WO2020248653A1 - 三维物体成型方法和成型装置 - Google Patents

三维物体成型方法和成型装置 Download PDF

Info

Publication number
WO2020248653A1
WO2020248653A1 PCT/CN2020/081532 CN2020081532W WO2020248653A1 WO 2020248653 A1 WO2020248653 A1 WO 2020248653A1 CN 2020081532 W CN2020081532 W CN 2020081532W WO 2020248653 A1 WO2020248653 A1 WO 2020248653A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional object
layer
heat
particles
powder
Prior art date
Application number
PCT/CN2020/081532
Other languages
English (en)
French (fr)
Inventor
吴俊中
杨前程
蒋韦
毛庆霖
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2020248653A1 publication Critical patent/WO2020248653A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to the field of 3D printing technology, and in particular to a three-dimensional object molding method and molding device.
  • 3D printing technology is called rapid prototyping technology, rapid prototyping manufacturing technology, additive manufacturing technology, etc. Its basic principle is to slice the 3D model based on slicing software, and the data processor converts the slice data of the 3D model into layered printing data.
  • the controller controls the printing device to print layer by layer according to the layer printing data and superimpose to form a 3D object.
  • the mainstream molding process of 3D printing technology is: spreading the powdered parts on the supporting platform to lay a layer of powder particles, and the controller controls the inkjet print head to selectively spray the adhesive on the layer of powder particles according to the layer printing data to make the bonding
  • the powder particles are glued together to form a slice layer or a forming layer, and then the powder spreading and inkjet printing steps are repeated layer by layer and superimposed to form a three-dimensional object.
  • the mechanical strength of the 3D object printed by this molding method is low.
  • 3D objects are placed in a heating furnace for heating treatment to further melt the powder particles therein to enhance the bonding force between the powder particles, thereby improving the mechanical strength of the 3D objects.
  • a heating furnace for heating treatment to further melt the powder particles therein to enhance the bonding force between the powder particles, thereby improving the mechanical strength of the 3D objects.
  • using the above-mentioned heating treatment method often requires a large amount of heat energy to be consumed, which makes the energy consumption and manufacturing cost of the 3D printed product higher.
  • the present application provides a three-dimensional object forming method, which can reduce energy consumption and manufacturing costs in the manufacturing process of 3D printed products.
  • the present application also provides a three-dimensional object forming device for implementing the aforementioned three-dimensional object forming method.
  • one aspect of the present application is to provide a three-dimensional object forming method, which includes the following steps:
  • the powder particles used to form the powder particle layer comprise core particles and a coating layer covering at least part of the surface of the core particles;
  • the layer printing data spray the heat-promoting material on the powder particle layer, make the heat-promoting material contact with the coating material used to form the coating layer to release heat, and the core particles are melted and formed under the action of the heat.
  • the steps from forming the powder particle layer to forming the slice layer are repeated, and the obtained slice layers are layered one by one to form a three-dimensional object.
  • the 3D model can be sliced by the slice software first, and the slice data is converted into layer printing data by the data processor; the powder particles are supplied to the molding platform through the powder supply component to be on the molding platform Form a powder particle layer with the required thickness; according to the layer printing data, a liquid jet head is used to spray the exothermic material on the powder particle layer, so that the exothermic material penetrates into the powder particle layer and fully contacts the coating material to release heat. The core material is melted and molded under the action of the heat, thereby forming a slice layer on the molding platform. Then repeat the operations from forming the powder particle layer to forming the slice layer, so that the formed slice layers are superimposed layer by layer, and finally a three-dimensional object is formed.
  • the core particles are melted and molded using the heat released by the contact between the coating material and the exothermic promoting material.
  • the use of the three-dimensional object molding method of the present application significantly reduces the energy consumption in the 3D object printing process, reduces the manufacturing cost of the 3D object, and also Can improve the printing accuracy of 3D objects.
  • the three-dimensional object molding device at least includes a powder supply component, a molding platform and a liquid ejection head, wherein: the powder supply component is used for A layer of powder particles is formed on the forming platform; the liquid jet head is used to eject heat-promoting materials on the layer of powder particles according to the layer printing data.
  • a powder supply component can be used to supply powder particles to the forming platform to form a powder particle layer with a required thickness; a liquid jet head is used to spray the heat-promoting material on the powder particle layer according to the layer printing data.
  • the exothermic material penetrates into the powder particle layer, contacts the coating material to release heat, and the core particles are melted and formed under the action of the heat to form a slice layer.
  • the forming platform is lowered by the height of one or more slice layers, or the powder supply part and/or the liquid jet head is raised by the height of one or more slice layers, and the formation process of the next slice layer is continued, and finally the slice layers are superimposed layer by layer To form a target three-dimensional object.
  • the powder particles used to form the solid structure of the three-dimensional object include a coating material that is in contact with the exothermic material to release heat, and a core particle covered by the coating material.
  • the heat-promoting material is sprayed onto the surface of the powder particle layer, and the heat-promoting material contacts the coating material to release heat at the drop point and in the process of penetrating into the powder particle layer.
  • the core particles can be melted and formed under the heat. Therefore, the three-dimensional object molding method provided by the present application fully utilizes heat on the premise of ensuring the molding accuracy of the three-dimensional object, avoids a large amount of heat loss during the transfer process, and saves the need to melt powder particles by heating. Energy consumption, thus reducing the manufacturing cost of three-dimensional objects.
  • the three-dimensional object molding device provided in the present application is used to implement the aforementioned three-dimensional object molding method, and can reduce the energy consumption and manufacturing cost in the three-dimensional object manufacturing process.
  • FIG. 1 is a schematic diagram of a three-dimensional object forming method provided by a specific embodiment of this application;
  • FIG. 2 is a schematic diagram of the structure of powder particles in this application.
  • FIG. 3 is another schematic diagram of the structure of the powder particles in this application.
  • FIG. 4 is a schematic structural diagram of a three-dimensional object forming device provided by a specific embodiment of this application.
  • This embodiment provides a three-dimensional object forming method, as shown in FIG. 1, including the following steps:
  • the execution body of the above-mentioned three-dimensional object molding method may be a molding device.
  • the molding device realizes the above steps S1, S2, and S3 by controlling the supply of powder particle layers, spraying heat-promoting materials, and stacking multiple slice layers layer by layer, and finally manufacturing Target three-dimensional object.
  • the powder supply component may be used to form a powder particle layer on the molding platform.
  • the thickness of the powder particle layer can be reasonably set according to the accuracy requirements of the target three-dimensional object.
  • the thickness of the powder particle layer is generally controlled to be 5 to 500 ⁇ m.
  • step S1' preheating the powder particle layer can also be performed first. Specifically, the current layer of the powder particle layer is heated.
  • preheating the powder particle layer on the one hand, part of the heat can be provided, plus the heat released by the contact between the exothermic material and the covering material, to ensure that there is enough heat to fully melt the core particles in the printing area , Improve the molding rate; on the other hand, the preheating process can also make the subsequent heat-promoting material and the coating material contact at a suitable temperature, and smoothly release heat.
  • the preheating temperature should be lower than the melting point of the powder particles.
  • the preheating temperature also depends on factors such as the amount of heat released by the contact between the exothermic material and the coating material.
  • a liquid jet head can be used to spray the exothermic material on the powder particle layer, so that the exothermic material accurately falls on the powder particle layer and enters the gap between the powder particles. In the process, it comes into contact with the coating material wrapped outside the core particles to release heat, and the released heat is directly absorbed by the core particles and melted into shape, thereby realizing full use of energy and reducing energy loss.
  • the powder particle layer is divided into multiple regions, and the volume of the heat-releasing material sprayed on different regions may be the same or different.
  • the heat-promoting material can be sprayed uniformly on the entire printing area of the powder particle layer, so that the formed slice layer and the entire three-dimensional object have very consistent mechanical properties; or, Different amounts of heat-promoting materials are sprayed on different areas of the powder particle layer, so that in different areas, the heat released by the heat-releasing material and the coating material is different, resulting in different degrees of melting of the core particles, and finally the slice layer Different areas of the three-dimensional object and even different areas of the three-dimensional object have different mechanical properties, which better meet the needs of the actual three-dimensional object.
  • the method of this embodiment reduces the number of spray heads and spray materials used.
  • the type of three-dimensional object reduces the manufacturing cost of the three-dimensional object forming device and the printing cost of the three-dimensional object.
  • steps S1, S1', S2, and S3 are repeated to form multiple slice layers, and the multiple slice layers are superimposed layer by layer, and finally the target three-dimensional object is obtained.
  • the powder particle layer formed in the present application preferably contains only one type of powder particles.
  • the powder particles include core particles and a coating layer covering at least part of the surface of the core particles, wherein the coating layer is formed
  • the coating material includes components that can participate in exothermic heat, and the core particles absorb heat to melt and shape. Since only a single type of powder particles are used, there is no uneven distribution of powder particles in the formed powder particle layer due to uneven mixing of multiple types of powder particles in the process of forming the powder particle layer. Reduce one of the factors that affect the molding accuracy of the target object from the source.
  • the diameter of the powder particles can generally be controlled within 1 to 300 ⁇ m.
  • the coating material forms a continuous coating layer on the surface of the core particles; of course, the coating material can also form a continuous coating layer on part of the surface of the core particles.
  • the thickness of the coating layer may be uniform or non-uniform. In this embodiment, the thickness of the coating layer is not particularly limited, as long as it can ensure that the heat released during the contact between the coating material and the exothermic promoting material is sufficient to melt the core particles.
  • the thickness of the coating layer is generally controlled to be 50 to 1500 nm.
  • the coating layer includes a plurality of discrete beads surrounding the surface of the core particles.
  • the coating material is coated or bonded on the surface of the core particles in the form of beads, and the beads are arranged at intervals. For example, multiple beads are evenly or unevenly distributed on the outer surface of the inner core particle.
  • the particle size of the beads used to form the coating layer is not particularly limited, as long as it can be ensured that the plurality of beads coated on the surface of the core particles and the heat-promoting material emit enough heat to make the core
  • the particles can be formed by melting, and the diameter of the beads is generally 50-1500nm.
  • This embodiment does not specifically limit the specific method of how to coat or bond the coating material on the surface of the core particles to prepare the above-mentioned powder particles, and an appropriate method can be selected according to actual needs.
  • the coating method can include spray drying method, immersion drying method, stirring mixing adding method, etc., and publicly known commercially available coating methods can be used.
  • the exothermic material and the coating material to release heat through contact can be many implementation forms for promoting the exothermic material and the coating material to release heat through contact.
  • This embodiment does not specifically limit this, as long as the exothermic material is in contact with the coating material to release heat. And the released heat can melt and form the core particles.
  • the way to achieve contact exotherm may be initiation of exotherm, catalytic exotherm, redox exotherm, dissolution exotherm, and so on.
  • the exothermic promoting material contains an initiator, and the coating material reacts to emit heat under the initiation of the initiator.
  • the initiator can be, for example, at least one of benzoyl peroxide, dicumyl peroxide, cyclohexanone peroxide, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, azobisisoheptonitrile, etc.
  • the coating material contains compounds with vinyl groups, such as polyester acrylate, polyurethane acrylate, epoxy acrylate, hyperbranched acrylate, unsaturated polyester, tris(2-hydroxyethyl) Group) at least one of isocyanurate triacrylate and the like.
  • At least one of the heat-promoting material and the coating material contains a catalyst, and the other of the heat-promoting material and the coating material reacts to release heat under the catalysis of the catalyst, that is, the heat-promoting material or
  • the coating material contains components capable of generating an exothermic reaction under the catalysis of the catalyst.
  • the heat-promoting material contains hydrogen peroxide
  • the coating material contains manganese dioxide.
  • the hydrogen peroxide in the heat-promoting material reacts and decomposes under the catalysis of manganese dioxide to generate water and oxygen, and release a large amount of heat.
  • the exothermic promoting material contains a metal catalyst, and the coating material contains a compound with a hydroxyl group.
  • the compound with a hydroxyl group reacts under the action of the metal catalyst to release heat.
  • the metal catalyst that meets the above conditions may be at least one of copper, silver, palladium, etc.; the compound with a hydroxyl group may be at least one of polyvinyl alcohol, polyether polyol, polyester polyol, hydroxy acrylic resin, etc.
  • the above-mentioned compounds with hydroxyl groups are oxidized to produce carbon dioxide and water under the catalytic action of a metal catalyst, and release a large amount of heat.
  • one of the exothermic promoting material and the coating material contains an oxidant and the other contains a reducing agent.
  • the oxidant and the reducing agent undergo an oxidation-reduction reaction to release heat.
  • the oxidizing agent can be selected from at least one of potassium permanganate, potassium perchlorate, ammonium nitrate, ammonium perchlorate, ferric chloride, potassium dichromate, etc.; the reducing agent is selected from sucrose, sorbitol, At least one of mannitol, glucose, fructose, and the like.
  • the exothermic promoting material is water or a solution containing water
  • the coating material contains at least one hydroxide, which can be dissolved in water or a solution containing water to release heat.
  • the hydroxide may be at least one of lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, aluminum hydroxide, etc.
  • the heat-promoting material may be water, aqueous hydrochloric acid, etc. .
  • the hydroxide is dissolved in water, or the hydroxide is dissolved in a water-containing solution to undergo acid-base neutralization reaction and release heat.
  • the exothermic-promoting material in this embodiment may also contain a colorant, which may be a colorant commonly used in three-dimensional objects at present, such as at least one of dyes and pigments, preferably Pigments, especially self-dispersing nano-scale pigment pastes. Since the surface of the self-dispersing nano-level pigment color paste is chemically modified, it can prevent the pigment from flocculating and settling, thereby ensuring the stability of the first material.
  • a colorant which may be a colorant commonly used in three-dimensional objects at present, such as at least one of dyes and pigments, preferably Pigments, especially self-dispersing nano-scale pigment pastes. Since the surface of the self-dispersing nano-level pigment color paste is chemically modified, it can prevent the pigment from flocculating and settling, thereby ensuring the stability of the first material.
  • the self-dispersing nano-scale pigment color paste used may be a self-dispersing nano-scale inorganic pigment color paste or a self-dispersing nano-scale organic pigment color paste.
  • the self-dispersing nano-scale inorganic pigment color paste can specifically be a white pigment color paste, such as titanium dioxide, zinc oxide, lithopone white, lead white, etc.; it can also be a black pigment color paste, such as carbon black, graphite, and iron oxide black. , Aniline black, carbon black, etc.
  • Self-dispersing nano-level organic pigment pastes can be color pigment pastes, such as Golden Red (PR21), Lithol Scarlet (PR49:1), Pigment Red G (PR37), Pigment Red 171 (PR171), lightfast Yellow G (PY1), Hansa Yellow R (PY10), Permanent Yellow GR (PY13), Pigment Yellow 129 (PY129), Pigment Yellow 150 (PY150), Pigment Yellow 185 (PY185), Phthalocyanine Blue (PB15), Indanthrone (PB60) and so on.
  • color pigment pastes such as Golden Red (PR21), Lithol Scarlet (PR49:1), Pigment Red G (PR37), Pigment Red 171 (PR171), lightfast Yellow G (PY1), Hansa Yellow R (PY10), Permanent Yellow GR (PY13), Pigment Yellow 129 (PY129), Pigment Yellow 150 (PY150), Pigment Yellow 185 (PY185), Phthalocyanine Blue (PB15), Indanthrone (PB60) and so on
  • the heat release promoting material in this embodiment may also include a medium material, which is used to dissolve or disperse other components in the heat release promoting material other than the medium material, or to adjust the ejection performance of the heat release promoting material.
  • suitable media materials can be selected according to the actual conditions of the exothermic materials, such as water, ethanol, isopropanol, ethylene glycol, propylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, and ethylene glycol butyl ether.
  • Diethylene glycol methyl ether triethylene glycol butyl ether, propylene glycol butyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, ethyl acetate, butyl acetate, n-butyl ether, petroleum ether, cyclohexane, butanone, etc. At least one of.
  • the exothermic-promoting material in this embodiment may also contain a dispersant for uniformly dispersing pigments and solid particles that are insoluble in the medium material into the medium material, and the specific type is not limited. It can be selected from BYK's ANTI-TERRA-U 100, BYK-9076, BYK-9077, BYKJET-9131, BYKJET-9142, BYKJET-9151, BYKJET-9171, DISPERBYK-106, DISPERBYK-118, etc., TEGO's TEGO At least one of Dispers 670, Tego Dispers 610S, Tego Dispers 650, Tego Dispers 651, Tego Dispers 700, Tego Dispers 715W, Tego Dispers 735W, etc.
  • a dispersant for uniformly dispersing pigments and solid particles that are insoluble in the medium material into the medium material and the specific type is not limited. It can be selected from BYK's ANTI-TERRA
  • the exothermic promoting material in this embodiment may also contain a surfactant to adjust the surface tension of the exothermic promoting material.
  • a surfactant to adjust the surface tension of the exothermic promoting material.
  • This embodiment does not limit the specific types of surfactants.
  • Suitable surfactants can be selected according to the specific composition of the exothermic materials. For example, they can be selected from BYK-307, BYK-333, BYK-337, BYK- At least one of 348, BYK-371, BYK-377, BYK1798, BYK-DYNWET 800 N, and/or at least one of TEGO’s Tego wet 270, TEGO wet 500, Tego Glide 450, etc.
  • the heat release promoting material in this embodiment may also contain fillers.
  • the fillers used can especially be inorganic fillers, including calcium carbonate, barium sulfate, calcium sulfate, kaolin, quartz powder, talc powder, mica powder, montmorillonite, aluminum powder, copper powder, zinc powder, iron powder, graphite , At least one of diamond, alumina, zirconia, magnesia, ceramic, carbon, silicate, borate, phosphate, silica, titania, etc.
  • the core particles are melt-molded to obtain a slice layer or even a three-dimensional object, which can specifically be thermoplastic plastic particles and/or thermosetting plastic particles.
  • the thermoplastic particles can be selected from polyethylene, polyvinyl chloride, polypropylene, polystyrene, polyacrylonitrile-butadiene-styrene, polyamide, polyimide, polycarbonate, polyurethane, polytetrafluoroethylene, etc.
  • thermosetting plastic particles can be selected from epoxy resins, unsaturated polyesters, for example At least one of resin, acrylate resin, phenol resin, cyanate resin, modified polyimide resin, bismaleimide particles, and the like.
  • the aforementioned three-dimensional object forming method may further include a step of heating the three-dimensional object, that is, step S4, to perform secondary curing of the formed three-dimensional object.
  • the heating temperature can be set reasonably according to the material of the core particles, for example, it can be 70-350°C.
  • the three-dimensional object can be heated by a heating method, such as a programmed heating method, that is, heating is divided into multiple stages, and each stage includes a heating section and a heat preservation section that are performed in sequence.
  • the heating method at elevated temperature helps the active groups on the thermosetting plastic particles that can initiate thermal polymerization to react slowly and fully, thereby improving the performance of the three-dimensional object.
  • the aforementioned three-dimensional object forming method may further include step S3': removing powder particles that have not been melted.
  • the shape and area of the ejection area (or called the printing area) of the heat-promoting material on the powder particle layer is determined according to the layer printing data, and the total area of the powder particle layer should be at least not less than the printing
  • the area of the area that is, generally sprays the exothermic material on a part of the powder particle layer, so it is inevitable that a part of the powder particle layer will not participate in the formation of the three-dimensional object. This part of the powder particles that are not involved in the molding should be removed to ensure the quality of the target three-dimensional object.
  • mechanical automation can be used to automatically separate, or manual operation to separate the powder particles that are not covered and penetrated by the exothermic material.
  • mechanical automation can be used to automatically separate, or manual operation to separate the powder particles that are not covered and penetrated by the exothermic material.
  • the final three-dimensional object green body does not contain or basically does not contain non- Melt shaped powder particles.
  • the three-dimensional object forming device for implementing the three-dimensional object forming method in the first embodiment.
  • the three-dimensional object forming device at least includes a powder supply component 11, a forming platform 12, and a liquid jet head 13, of which:
  • the powder supply component 11 is used to form a powder particle layer 14 on the forming platform 12;
  • the liquid ejection head 13 is used to eject the heat-releasing material 15 on the powder particle layer 14 according to the layer printing data.
  • the process of printing a three-dimensional object using a three-dimensional object molding device is: the powder supply component 11 is used to supply powder particles on the molding platform 12 to form a powder particle layer 14, wherein the powder particle core particles and the coating material; To print data, the liquid jet head 13 selectively injects the exothermic material 15 on the powder particle layer 14. The exothermic material 15 covers and penetrates into the powder particle layer 14, and contacts the coating material to release heat; the released heat makes The core particles are melt-molded to form a slice layer 16 on the molding platform 12.
  • the forming platform 12 is moved down by one or more layer thickness distances, and then the powder supply and ejection promotion materials 15 for the next layer or layers are continued.
  • a plurality of slice layers 16 are stacked in the z direction (that is, in the height direction) as shown in FIG. 4 to finally obtain a three-dimensional object.
  • This embodiment does not specifically limit the structure of the above-mentioned powder supply component 11, as long as it can supply powder particles to the molding platform 12 to form a powder particle layer 14 with a required thickness on the molding platform 12.
  • the number of the powder supply parts 11 may be one, or two or more. When there are more than two powder supply parts 11, they can be arranged on different sides of the forming platform 12.
  • the forming platform 12 is used to provide support for the printing of three-dimensional objects, and it may be a supporting platform used in a normal 3D printing process. It can be understood that, in order to facilitate printing, the forming platform 12 is preferably capable of moving up and down.
  • the type and specifications of the liquid ejecting head 13 are not particularly limited in this embodiment, and it can be a single or multiple orifice liquid ejecting head 13, or a piezoelectric print head or a thermal bubble print head.
  • the number of liquid ejection heads 13 can be determined according to factors such as the color requirements of the three-dimensional object to be printed.
  • the above-mentioned three-dimensional molding device may further include a preheating part (not shown in FIG. 4), which is used to preheat the powder particle layer 14 before the exothermic promoting material 15 is sprayed.
  • the preheating component can be arranged above the powder particle layer 14. By preheating the powder particle layer 14 in advance, the requirement for the heat released by the exothermic reaction can be reduced, so that the powder particles in the printing area can be quickly melted and shaped. Improve molding accuracy.
  • the above-mentioned three-dimensional molding device may further include a control component 17 for controlling the operation of at least one of the powder supply component 11, the molding platform 12 and the liquid ejection head 13.
  • the control component 17 controls the powder supply component 11, the forming platform 12, the liquid jet head 13, and the preheating component to work according to the above steps to complete the automatic printing of the three-dimensional object.
  • this application embodiment adopts the three-dimensional object forming device in the second embodiment to process and manufacture the three-dimensional object, which specifically includes the following steps:
  • control component 17 controls the powder supply component 11 to supply powder particles on the forming platform 12 to form a powder particle layer 14 with a thickness of about 50 ⁇ m.
  • the core particles of the powder particles are polyacrylonitrile-butadiene-styrene (ABS), the coating material is glucose, and the thickness of the coating layer is 100 nm.
  • the above-mentioned powder particles adopt the "spray drying method" to coat the surface of the polyacrylonitrile-butadiene-styrene particles with glucose.
  • the main process is: dissolving glucose in water to obtain coating liquid; suspending ABS powder in the atomization cavity; adding glucose coating liquid into the atomization cavity to make the coating liquid atomize in the atomization cavity, and mist
  • the coating solution after chemical coating coats the surface of the ABS particles and forms a coating layer.
  • control component 17 controls the liquid jet head 13 to eject the heat-promoting material 15 on the powder particle layer 14 according to the layer printing data, and the heat-promoting material 15 covers at least part of the powder particle layer 14 and penetrates into the powder particle layer 14.
  • the exothermic-promoting material 15 contains the oxidant potassium permanganate, which contacts with the coating material glucose, and undergoes an oxidation-reduction reaction to release heat, so that the core particles are melted and formed to form the slice layer 16;
  • control component 17 controls the forming platform 12 to drop by one layer thickness, and continues the formation process of the next slice layer 16, and the formed slice layer 16 is superimposed layer by layer to finally form the target three-dimensional object.
  • the core particles of the powder particles in this application example are cyanate ester resin
  • the coating material is hyperbranched acrylate
  • the thickness of the coating layer is 1300 nm
  • the powder particle layer 14 The thickness is 400 ⁇ m.
  • the "spray drying method” is used to distribute the hyperbranched acrylate particles on the surface of the cyanate resin particles.
  • the main process is: disperse the hyperbranched acrylate particles in water to obtain a dispersion; suspend the cyanate resin powder in the atomization cavity; add the hyperbranched acrylate dispersion into the atomization cavity, so that the dispersion is in the mist It is atomized in the chamber, and the atomized dispersion is coated on the surface of the cyanate resin particles and forms a hyperbranched acrylate particle distribution layer.
  • control component 17 controls the liquid jet head 13 to eject the heat-promoting material 15 on the powder particle layer 14 according to the layer printing data, and the heat-promoting material 15 covers at least part of the powder particle layer 14 and penetrates into the powder particle layer 14;
  • the thermal material 15 includes an azobisisobutyronitrile (AIBN) initiator and filler silica.
  • the exothermic promoting material 15 is in contact with the coating material, and the hyperbranched acrylate reacts under the initiation of the azobisisobutyronitrile initiator to release heat, so that the core particles are melted and formed to form the slice layer 16;
  • control component 17 controls the molding platform 12 to drop by one layer thickness, and continues the formation process of the next slice layer 16, and the formed slice layer 16 is superimposed layer by layer to finally form a three-dimensional object;
  • the formed three-dimensional object is placed in a heating furnace, the temperature is increased to 200°C, and the three-dimensional object is heated, so that the active groups in the cyanate resin particles are activated for further curing reaction, and finally the mechanical properties are significantly improved The target three-dimensional object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请提供一种三维物体成型方法和成型装置,涉及3D打印技术。该三维物体成型方法,包括如下步骤:形成粉末颗粒层,其中用于形成粉末颗粒层的粉末颗粒包含内核颗粒以及包覆在内核颗粒至少部分表面上的包覆层;根据层打印数据,在粉末颗粒层上喷射促放热材料,使其与包覆材料接触而释放热量,并使内核颗粒在热量作用下熔融成型,形成切片层;重复执行上述形成粉末颗粒层至形成切片层的步骤,使获得的多个切片层逐层叠加以形成三维物体。本申请提供的三维物体成型方法,通过利用包覆材料与促放热材料接触所释放的热量使包覆材料所包覆的内核颗粒熔融成型,能够降低三维物体打印过程中的能耗。

Description

三维物体成型方法和成型装置
本申请要求于2019年6月11日提交中国专利局、申请号为201910500876.5、申请名称为“三维物体成型方法和成型装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,尤其涉及一种三维物体成型方法和成型装置。
背景技术
3D打印技术被称为快速成型技术、快速原型制造技术、加式制造技术等,其基本原理都是基于切片软件对3D模型进行切片,数据处理器将3D模型的切片数据转换成层打印数据,控制器根据层打印数据控制打印装置进行逐层打印,并叠加形成3D物体。
现阶段3D打印技术较为主流的成型过程为:铺粉部件在支撑平台上铺设粉末颗粒层,控制器根据层打印数据控制喷墨打印头在粉末颗粒层上选择性喷射粘接剂,使粘接剂将粉末颗粒粘接在一起形成切片层或成型层,然后重复上述铺粉和喷墨打印步骤逐层成型并叠加形成三维物体。然而,通过该成型方法打印得到的3D物体的机械强度较低。
为提高3D物体的机械强度,目前多采用将3D物体置于加热炉中进行加热处理,进一步熔融其中的粉末颗粒,增强粉末颗粒之间的结合力,从而提高3D物体的机械强度。但是,采用上述加热处理的方式,往往需要消耗大量的热能,使3D打印制品的能耗及制造成本都较高。
发明内容
针对上述缺陷,本申请提供一种三维物体成型方法,能够降低3D打印制品制造过程中的能耗及制造成本。
本申请还提供一种三维物体成型装置,用于实施前述三维物体成型方 法。
为实现上述目的,本申请的一个方面是提供一种三维物体成型方法,包括如下步骤:
形成粉末颗粒层,其中用于形成粉末颗粒层的粉末颗粒包含内核颗粒以及包覆在所述内核颗粒至少部分表面上的包覆层;
根据层打印数据,在粉末颗粒层上喷射促放热材料,使促放热材料与用于形成包覆层的包覆材料接触而释放热量,并使内核颗粒在该热量作用下熔融成型,形成切片层;
重复执行上述形成粉末颗粒层至形成切片层的步骤,使获得的多个切片层逐层叠加以形成三维物体。
具体的,在三维物体成型过程中,可首先采用切片软件对3D模型进行切片,通过数据处理器将切片数据转换成层打印数据;通过供粉部件向成型平台上供应粉末颗粒以在成型平台上形成具有要求厚度的粉末颗粒层;根据层打印数据,采用液体喷射头将促放热材料喷射在粉末颗粒层上,促放热材料渗透进入粉末颗粒层而与包覆材料充分接触而放出热量,使内核材料在该热量的作用下熔融成型,从而在成型平台上形成切片层。然后重复上述形成粉末颗粒层至形成切片层的操作,使形成的多个切片层逐层叠加,最终形成三维物体。
因此,本申请提供的三维物体成型方法,内核颗粒利用包覆材料与促放热材料之间接触所释放的热量进行熔融成型。相较于现阶段对3D物体进行加热以使其中的粉末颗粒熔融的方式,采用本申请的三维物体成型方法,显著降低了3D物体打印过程中的能耗,降低了3D物体的制造成本,还能提高3D物体的打印精度。
本申请的另一个方面是提供一种三维物体成型装置,用于实施上述三维物体成型方法,该三维物体成型装置至少包括供粉部件、成型平台和液体喷射头,其中:供粉部件用于在成型平台上形成粉末颗粒层;液体喷射头用于根据层打印数据,在粉末颗粒层上喷射促放热材料。
具体的,可采用供粉部件,向成型平台上供应粉末颗粒以形成具有要求厚度的粉末颗粒层;采用液体喷射头,根据层打印数据,在粉末颗粒层上喷射促放热材料。促放热材料渗透进粉末颗粒层内,与包覆材料接触而 放出热量,内核颗粒在该热量的作用下熔融成型,形成切片层。然后使成型平台下降一个或多个切片层的高度,或者使供粉部件和/或液体喷射头上升一个或多个切片层的高度,继续下一个切片层的形成过程,最终切片层逐层叠加而形成目标三维物体。
本申请提供的三维物体成型方法,用于形成三维物体实体结构的粉末颗粒包含与促放热材料接触而放热的包覆材料、被包覆材料所包覆的内核颗粒。将促放热材料喷射到粉末颗粒层表面,在落点位置以及渗透到粉末颗粒层内的过程中,促放热材料与包覆材料接触而释放热量,内核颗粒能够在该热量下熔融成型。因此,本申请提供的三维物体成型方法,在保证了三维物体的成型精度的前提下,充分利用了热量,避免了热量在传递过程中的大量散失,此外也节约了通过加热使粉末颗粒熔融需要的能耗,因此降低了三维物体的制造成本。
本申请提供的三维物体成型装置,用于实施前述三维物体成型方法,能够降低三维物体制造过程中的能耗及制造成本。
附图说明
图1为本申请一具体实施例所提供的三维物体成型方法示意图;
图2为本申请中粉末颗粒的结构示意图;
图3为本申请中粉末颗粒的另一结构示意图;
图4为本申请一具体实施例所提供的三维物体成型装置结构示意图。
附图标记说明:
11-供粉部件;                 12-成型平台;
13-液体喷射头;               14-粉末颗粒层;
15-促放热材料;               16-切片层;
17-控制部件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本实施例提供一种三维物体成型方法,如图1所示,包括如下步骤:
S1、形成粉末颗粒层,其中用于形成粉末颗粒层的粉末颗粒包含内核颗粒以及包覆在所述内核颗粒至少部分表面上的包覆层;
S2、根据层打印数据,在粉末颗粒层上喷射促放热材料,使促放热材料与用于形成包覆层的包覆材料接触而释放热量,并使内核颗粒在热量作用下熔融成型,形成切片层;
S3、重复执行上述形成粉末颗粒层至形成切片层的步骤,使获得的多个切片层逐层叠加以形成三维物体。
具体的,上述三维物体成型方法的执行主体可以是成型装置,成型装置通过控制供应粉末颗粒层、喷射促放热材料、多个切片层逐层叠加实现上述步骤S1、S2和S3,最终制造出目标三维物体。
具体的,上述步骤S1,可以采用供粉部件在成型平台上形成粉末颗粒层。本实施例中,粉末颗粒层的厚度可根据目标三维物体的精度需求合理设定,此外还应确保促放热材料能够渗透到粉末颗粒层当前层的底部,以使促放热材料与包覆材料能够充分接触。在具体实施过程中,一般将粉末颗粒层的厚度控制在5~500μm。
请进一步参考图1,在实施步骤S2之前,还可以首先执行步骤S1':对粉末颗粒层进行预热。具体的,是对粉末颗粒层当前层进行加热。
通过对粉末颗粒层进行预热,一方面,可提供部分热量,加上促放热材料与包覆材料接触所释放出的热量,以确保有足够的热量使打印区域中的内核颗粒充分熔融成型,提高成型速率;另一方面,该预热过程还能够使后续促放热材料与包覆材料在适宜的温度下接触,顺利释放热量。
可以理解,预热的温度应低于粉末颗粒的熔点,此外预热的温度还取决于促放热材料与包覆材料接触所释放的热量大小等因素。
具体在步骤S2中,可根据层打印数据,采用液体喷射头将促放热材料喷射在粉末颗粒层上,促放热材料在粉末颗粒层上准确落点,并进入到粉末颗 粒之间的缝隙中,与包裹在内核颗粒外的包覆材料发生接触而释放热量,释放的热量直接被内核颗粒所吸收而熔融成型,从而实现了能量的充分利用,减少了能量散失。
具体的,在实施步骤S2时,粉末颗粒层分为多个区域,在不同区域上所喷射的促放热材料的体积可以相同或不同。在具体实施过程中,可以根据层打印数据,在粉末颗粒层的整个打印区域上均匀地喷射促放热材料,使形成的切片层乃至整个三维物体具有非常一致的机械性能;或者,也可以在粉末颗粒层的不同区域上喷射不同量的促放热材料,使得在不同区域范围内,促放热材料与包覆材料发生接触所释放的热量不同,导致内核颗粒的熔融程度不同,最终切片层的不同区域乃至三维物体的不同区域具有不同的机械性能,更好的满足实际三维物体的需求。相较于现有技术中通过喷射多种喷射材料和/或采用多个喷射头的方式以调整三维物体的机械性能的方式,采用本实施例的方法,减少了喷射头的使用数量以及喷射材料的种类,降低了三维物体成型装置的制造成本以及三维物体的打印成本。
重复执行上述步骤S1、S1’、S2和S3,以相应形成多个切片层,且多个切片层逐层叠加,最终得到目标三维物体。
本申请形成的粉末颗粒层中最好仅包含一种类型的粉末颗粒,该粉末颗粒,包括内核颗粒以及包覆在所述内核颗粒至少部分表面上的包覆层,其中形成所述包覆层的包覆材料包括能参与放热的组分,内核颗粒吸收热量熔融成型。由于仅使用单一种类的粉末颗粒,所以在形成粉末颗粒层的过程中不存在由于多种类型的粉末颗粒混合不均匀,导致形成的粉末颗粒层中粉末颗粒分布不均匀的现象,由此也可以从源头减小影响目标物体成型精度的因素之一。
不难理解,粉末颗粒的粒径不宜过小,否则促放热材料很难在较短时间内渗透到粉末颗粒层当前层的底部,也不利于促放热材料与粉末颗粒的包覆材料接触而放热;粉末颗粒的粒径也不宜过大,否则粉末颗粒之间的间隙太大,会影响三维物体的成型精度。所以本实施例中,粉末颗粒的直径一般可控制在1~300μm。
粉末颗粒的结构示意图具体可参见图2和图3。如图2所示,包覆材料在内核颗粒表面形成连续的包覆层;当然,包覆材料也可以在内核颗粒的部分表 面形成连续的包覆层。其中,包覆层的厚度可以是均匀或者不均匀的。本实施例对于包覆层的厚度不做特别限定,只要能够确保包覆材料与促放热材料在接触过程中放出的热量足以使内核颗粒熔融成型即可。可以理解,若包覆层的厚度较小,则参与放热反应的组分含量太少,释放的热量难以使内核颗粒熔融,而若包覆层的厚度较大,即内核颗粒之间的间距较大,熔融成型后,三维物体收缩变形增大,精度降低。因此,一般控制包覆层的厚度为50~1500nm。
或者如图3所示,包覆层包括多个围绕在内核颗粒表面的离散的珠粒。也就是说,包覆材料以珠粒的方式包覆或粘结在内核颗粒表面,且珠粒之间间隔设置。比如多个珠粒均匀或不均匀地间隔分布在内核颗粒外表面。本实施例对于用于形成包覆层的珠粒的粒径不做特别限定,只要能够确保包覆在内核颗粒表面的多个珠粒与促放热材料在接触过程中放出的热量足以使内核颗粒熔融成型即可,一般珠粒的直径为50~1500nm。
本实施例对于如何将包覆材料包覆或粘结在内核颗粒表面以制得上述粉末颗粒的具体方式不做特别限定,可以根据实际需求选择适宜的方法。例如,乳液聚合法、聚合物沉淀法、涂布法或电聚合等,其中涂布法又可包括喷雾干燥法、浸渍干燥法、搅拌混合添加法等,可以使用公开已知的市售涂布机、成粒机等实施。
本实施例中,促放热材料与包覆材料通过接触而放热的实现形式可以有多种,本实施例对此不做特别限定,只要促放热材料与包覆材料接触能放出热量,且释放的热量能够使内核颗粒熔融成型即可。举例而言,实现接触放热的方式可以是引发放热、催化放热、氧化还原放热、溶解放热等。
具体对于引发放热,促放热材料中含有引发剂,包覆材料在引发剂的引发下反应而放出热量。该引发剂比如可以是过氧化苯甲酰、过氧化二异丙苯、过氧化环己酮、过硫酸钾、过硫酸铵、偶氮二异丁腈、偶氮二异庚腈等中的至少一种;包覆材料中含有带有乙烯基基团的化合物,比如可以是聚酯丙烯酸酯、聚氨酯丙烯酸酯、环氧丙烯酸酯、超支化丙烯酸酯、不饱和聚酯、三(2-羟乙基)异氰尿酸三丙烯酸酯等中的至少一种。
具体对于催化放热,促放热材料和包覆材料中至少其一中含有催化剂,促放热材料和包覆材料中的另一在催化剂催化下发生反应而放出热量,即促 放热材料或包覆材料中含有能够在催化剂催化下发生放热反应的组分。比如促放热材料中含有双氧水,包覆材料中含有二氧化锰。促放热材料中的双氧水在二氧化锰的催化下反应分解生成水和氧气,并放出大量的热量。再比如,促放热材料中含有金属催化剂,包覆材料中含有带有羟基的化合物,在氧气存在下,带有羟基的化合物在金属催化剂的作用下反应而放出热量。满足上述条件的金属催化剂比如可以是铜、银、钯等中的至少一种;带有羟基的化合物比如可以是聚乙烯醇、聚醚多元醇、聚酯多元醇、羟基丙烯酸树脂等中的至少一种。上述带有羟基的化合物在金属催化剂的催化作用下,被氧化而生成二氧化碳和水,并释放出大量的热量。
具体对于氧化还原放热,促放热材料和包覆材料中其一中含有氧化剂,另一含有还原剂,氧化剂和还原剂发生氧化还原反应而放出热量。其中,该氧化剂比如可以选自高锰酸钾、高氯酸钾、硝酸铵、高氯酸铵、三氯化铁、重铬酸钾等中的至少一种;还原剂选自蔗糖、山梨糖醇、甘露糖醇、葡萄糖、果糖等中的至少一种。
具体对于溶解放热,促放热材料为水或者含有水的溶液,包覆材料中含有至少一种氢氧化物,该氢氧化物能够溶解于水或者含有水的溶液中而释放出热量。其中,氢氧化物比如可以是氢氧化锂、氢氧化钠、氢氧化钾、氢氧化钡、氢氧化钙、氢氧化铝等中的至少一种,促放热材料比如可以是水、盐酸水溶液等。氢氧化物溶于水中,或者氢氧化物溶于含有水的溶液中发生酸碱中和反应而释放出热量。
根据目标三维物体的颜色需求,本实施例中的促放热材料还可以包含有着色剂,该着色剂可以是目前三维物体中所常用的着色剂,比如染料和颜料中的至少一种,优选颜料,尤其是自分散型纳米级颜料色浆。由于自分散型纳米级颜料色浆的表面经过了化学修饰,因此能够防止颜料发生絮凝聚沉,从而保证了第一材料的稳定性。
在具体实施时,所使用的自分散型纳米级颜料色浆可以是自分散型纳米级无机颜料色浆或自分散型纳米级有机颜料色浆。其中,自分散型纳米级无机颜料色浆具体可以是白色颜料色浆,比如二氧化钛、氧化锌、锌钡白、铅白等;也可以是黑色颜料色浆,比如炭黑、石墨、氧化铁黑、苯胺黑,炭黑等。自分散型纳米级有机颜料色浆可以是彩色颜料色浆,比如有金光红(PR21)、 立索尔大红(PR49:1)、颜料红G(PR37)、颜料红171(PR171)、耐晒黄G(PY1)、汉沙黄R(PY10)、永固黄GR(PY13)、颜料黄129(PY129)、颜料黄150(PY150)、颜料黄185(PY185)、酞菁蓝(PB15)、靛蒽酮(PB60)等。
本实施例中的促放热材料还可以包含有介质材料,介质材料用于溶解或分散促放热材料中除介质材料之外的其它组分,或者用于调整促放热材料的喷射性能。具体可以根据促放热材料的实际情况选择适宜的介质材料,比如可以是水、乙醇、异丙醇、乙二醇、丙二醇、乙二醇甲醚,乙二醇乙醚,乙二醇丁醚,二乙二醇甲醚,三乙二醇丁醚,丙二醇丁醚,丙二醇甲醚,二丙二醇甲醚、乙酸乙酯、醋酸丁酯、正丁醚、石油醚、环己烷、丁酮等中的至少一种。
本实施例中的促放热材料还可以包含有分散剂,用于将不溶于介质材料的颜料、固体颗粒等均匀分散到介质材料中,其具体种类不受限制。可以选自BYK公司的ANTI-TERRA-U 100、BYK-9076、BYK-9077、BYKJET-9131、BYKJET-9142、BYKJET-9151、BYKJET-9171、DISPERBYK-106、DISPERBYK-118等,TEGO公司的TEGO Dispers 670、Tego Dispers 610S、Tego Dispers 650、Tego Dispers 651、Tego Dispers 700、Tego Dispers 715W、Tego Dispers 735W等中的至少一种。
本实施例中的促放热材料还可以包含有表面活性剂,以调整促放热材料的表面张力。本实施例对于表面活性剂的具体种类不作限制,可以根据促放热材料的具体组成选择适宜的表面活性剂,比如可以选自BYK公司的BYK-307、BYK-333、BYK-337、BYK-348、BYK-371、BYK-377、BYK1798、BYK-DYNWET 800 N等中的至少一种,和/或TEGO公司的Tego wet 270、TEGO wet 500、Tego Glide 450等中的至少一种。
本实施例中的促放热材料还可以包含有填料,在喷射促放热材料液滴时,液滴中细小粒径的填料填充在粉末颗粒的间隙中,从而减小熔融成型后的三维物体的收缩变形。具体的,所用的填料尤其可以是无机填料,包括碳酸钙、硫酸钡、硫酸钙、高岭土、石英粉、滑石粉、云母粉、蒙脱土、铝粉、铜粉、锌粉、铁粉、石墨、金刚石、氧化铝、氧化锆、氧化镁、陶瓷质、碳素、硅酸盐、硼酸盐、磷酸盐、二氧化硅、二氧化钛等中的至少一种。
本实施例中,内核颗粒通过熔融成型而得到切片层乃至三维物体,其具体可以是热塑性塑料颗粒和/或热固性塑料颗粒。其中,热塑性塑料颗粒比如可以选自聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚丙烯腈-丁二烯-苯乙烯、聚酰胺、聚酰亚胺、聚碳酸酯、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯、聚醚醚酮、聚砜、聚醚砜和聚苯砜颗粒中的至少一种;热固性塑料颗粒比如可以选自环氧树脂、不饱和聚酯树脂、丙烯酸酯树脂、酚醛树脂、氰酸酯树脂、改性聚酰亚胺树脂、双马来酰亚胺颗粒等中的至少一种。
请进一步参考图1,当内核颗粒中包括热固性塑料颗粒时,前述三维物体成型方法还可以包括对三维物体进行加热的步骤,即步骤S4,使形成的三维物体进行二次固化。其中,加热的温度可根据内核颗粒的材质合理设定,比如可以是70~350℃。具体地,可采用升温加热方式对三维物体进行加热,比如程序升温方式,即加热分为多个阶段,每个阶段包括依次进行的升温段和保温段。采取升温加热方式,有助于热固性塑料颗粒上的可引发热聚合的活性基团缓慢充分反应,从而提升三维物体的性能。
请进一步参考图1,前述三维物体成型方法,还可以包括步骤S3′:将未熔融成型的粉末颗粒去除。
在实际三维物体制造过程中,促放热材料在粉末颗粒层上的喷射区域(或称为打印区域)的形状和面积是根据层打印数据确定,而粉末颗粒层的总面积应至少不小于打印区域的面积,即一般是在粉末颗粒层的部分区域上喷射促放热材料,因此难以避免地会有部分区域的粉末颗粒层不参与三维物体的成型。这部分不参与成型的粉末颗粒最好予以去除,确保目标三维物体的质量。
具体的,可采用机械自动化方式自动分离,或人工操作分离未被促放热材料覆盖和渗透的粉末颗粒,在此不做限制,使最终得到的三维物体生坯上不包含或基本不包含未熔融成型的粉末颗粒。
实施例二
本实施例提供一种三维物体成型装置,用于实施前述实施例一中的三维物体成型方法,如图4所示,该三维物体成型装置至少包括供粉部件11、成型平台12和液体喷射头13,其中:
供粉部件11用于在成型平台12上形成粉末颗粒层14;
液体喷射头13用于根据层打印数据,在粉末颗粒层14上喷射促放热材料15。
具体的,采用三维物体成型装置打印三维物体的过程为:采用供粉部件11,在成型平台12供应粉末颗粒而形成粉末颗粒层14,其中该粉末颗粒内核颗粒和包覆材料;之后,根据层打印数据,液体喷射头13在粉末颗粒层14上选择性喷射促放热材料15,促放热材料15覆盖并渗透到粉末颗粒层14内,与包覆材料接触而释放热量;释放的热量使内核颗粒熔融成型,从而在成型平台12上形成切片层16。
每形成一层切片层16或多层切片层16后,使成型平台12向下移动一个或多个层厚的距离,然后继续下一层或几层的供粉和喷射促放热材料15,使多个切片层16在图4所示的z方向上(即高度方向上)层叠,最终得到三维物体。
本实施例对于上述供粉部件11的结构不做特别限定,其只要能够向成型平台12供应粉末颗粒,以在成型平台12上形成要求厚度的粉末颗粒层14即可。供粉部件11的数量可以是一个,还可以是两个或更多个。当供粉部件11为两个以上时,其可以设置在成型平台12的不同侧。
本实施例中,成型平台12用于为三维物体的打印提供支撑,其可以是普通3D打印过程中所用的支撑平台。可以理解,为方便打印,成型平台12最好能够上下运动。
本实施例对于液体喷射头13的种类及规格不做特别限定,可以是单喷孔或多喷孔的液体喷射头13,也可以是压电打印头或热气泡式打印头。液体喷射头13的数量可根据待打印的三维物体的颜色需求等因素来确定。
进一步地,上述三维成型装置还可以包括预热部件(图4中未示出),该预热部件用于在喷射促放热材料15之前对粉末颗粒层14进行预热。具体的,该预热部件可设置在粉末颗粒层14的上方,通过提前预热粉末颗粒层14,可以降低对放热反应释放的热量的要求,使打印区域中的粉末颗粒能快速熔融定形,提高成型精度。
请进一步参考图4,上述三维成型装置还可以包括控制部件17,用于控制供粉部件11、成型平台12和液体喷射头13中至少其一的工作。优选 的,控制部件17控制上述供粉部件11、成型平台12、液体喷射头13以及预热部件按照上述步骤工作,完成三维物体的自动化打印。
为进一步说明本申请的技术方案,下面结合具体的应用实施例,对前述实施例的方案做进一步阐述。
应用实施例1
本应用实施例按照前述实施例一中的三维物体成型方法,采用实施例二中的三维物体成型装置,进行三维物体加工制造,具体包括如下步骤:
首先,控制部件17控制供粉部件11在成型平台12上供应粉末颗粒,形成厚度约为50μm的粉末颗粒层14。该粉末颗粒的内核颗粒为聚丙烯腈-丁二烯-苯乙烯(ABS),包覆材料为葡萄糖,包覆层的厚度为100nm。
上述粉末颗粒是采用“喷雾干燥法”,将葡萄糖包覆在聚丙烯腈-丁二烯-苯乙烯颗粒表面。主要过程为:将葡萄糖溶解于水中,得到包覆液;将ABS粉体悬浮于雾化腔中;向雾化腔中加入葡萄糖包覆液,使得包覆液在雾化腔中雾化,雾化后的包覆液包覆在ABS颗粒的表面并形成包覆层。
接着,控制部件17根据层打印数据控制液体喷射头13在粉末颗粒层14上喷射促放热材料15,促放热材料15覆盖至少部分粉末颗粒层14并渗透到粉末颗粒层14内。
促放热材料15中含有氧化剂高锰酸钾,与包覆材料葡萄糖接触,发生氧化还原反应释放热量,使内核颗粒熔融成型,形成切片层16;
最后,控制部件17控制成型平台12下降一个层厚的高度,继续进行下一个切片层16的形成过程,且形成的切片层16逐层叠加最终形成目标三维物体。
应用实施例2
本应用实施例与应用实施例1的差别在于:本应用实施例中粉末颗粒的内核颗粒为氰酸酯树脂,包覆材料为超支化丙烯酸酯,包覆层的厚度为1300nm,粉末颗粒层14的厚度是400μm。
本应用实施例中,采用“喷雾干燥法”将超支化丙烯酸酯颗粒分布在氰酸酯树脂颗粒表面。主要过程为:将超支化丙烯酸酯颗粒分散于水中,得到 分散液;将氰酸酯树脂粉体悬浮于雾化腔中;向雾化腔中加入超支化丙烯酸酯分散液,使得分散液在雾化腔中雾化,雾化后的分散液包覆在氰酸酯树脂颗粒的表面并形成超支化丙烯酸酯颗粒分布层。
接着,控制部件17根据层打印数据控制液体喷射头13在粉末颗粒层14上喷射促放热材料15,促放热材料15覆盖至少部分粉末颗粒层14并渗透到粉末颗粒层14内;促放热材料15包括偶氮二异丁腈(AIBN)引发剂和填料二氧化硅。
促放热材料15与包覆材料接触,超支化丙烯酸酯在偶氮二异丁腈引发剂的引发下反应而释放热量,使内核颗粒熔融成型,形成切片层16;
其次,控制部件17控制成型平台12下降一个层厚的高度,继续进行下一个切片层16的形成过程,且形成的切片层16逐层叠加,最终形成三维物体;
最后,将形成的三维物体置于加热炉中,温度升高至200℃,对三维物体进行加热,使氰酸酯树脂颗粒中的活性基团被激活进一步进行固化反应,最后得到机械性能明显改善的目标三维物体。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种三维物体成型方法,其中,包括如下步骤:
    形成粉末颗粒层,其中用于形成所述粉末颗粒层的粉末颗粒包含内核颗粒以及包覆在所述内核颗粒至少部分表面上的包覆层;
    根据层打印数据,在所述粉末颗粒层上喷射促放热材料,使所述促放热材料与用于形成所述包覆层的包覆材料接触而释放热量,并使所述内核颗粒在所述热量作用下熔融成型,形成切片层;
    重复执行上述形成粉末颗粒层至形成切片层的步骤,使获得的多个切片层逐层叠加以形成三维物体。
  2. 根据权利要求1所述的三维物体成型方法,其中,所述促放热材料中含有引发剂,所述包覆材料在所述引发剂的引发下反应而放出热量;
    或者,所述促放热材料和所述包覆材料中至少其一含有催化剂,所述促放热材料和所述包覆材料中的另一在所述催化剂催化下发生反应而放出热量;
    或者,所述促放热材料和所述包覆材料中其一含有氧化剂,另一含有还原剂,所述氧化剂和所述还原剂发生氧化还原反应而放出热量;
    或者,所述包覆材料中含有能够溶解于所述促放热材料中而放出热量的成分。
  3. 根据权利要求2所述的三维物体成型方法,其中,所述促放热材料中含有引发剂;所述包覆材料中含有带有乙烯基基团的化合物。
  4. 根据权利要求3所述的三维物体成型方法,其中,所述引发剂选自过氧化苯甲酰、过氧化二异丙苯、过氧化环己酮、过硫酸钾、过硫酸铵、偶氮二异丁腈和偶氮二异庚腈中的至少一种;
    所述包覆材料中含有聚酯丙烯酸酯、聚氨酯丙烯酸酯、环氧丙烯酸酯、超支化丙烯酸酯、不饱和聚酯和三(2-羟乙基)异氰尿酸三丙烯酸酯中的至少一种。
  5. 根据权利要求2所述的三维物体成型方法,其中,所述促放热材料中含有双氧水,所述包覆材料中含有二氧化锰;或者,
    所述促放热材料中含有金属催化剂,所述包覆材料中含有带有羟基的化合物,在氧气存在下,所述带有羟基的化合物在所述金属催化剂的作用 下反应而放出热量。
  6. 根据权利要求5所述的三维物体成型方法,其中,所述金属催化剂选自铜、银和钯中的至少一种;所述带有羟基的化合物选自聚乙烯醇、聚醚多元醇、聚酯多元醇和羟基丙烯酸树脂中的至少一种。
  7. 根据权利要求2所述的三维物体成型方法,其中,所述氧化剂选自高锰酸钾、高氯酸钾、硝酸铵、高氯酸铵、三氯化铁和重铬酸钾中的至少一种;所述还原剂选自蔗糖、山梨糖醇、甘露糖醇、葡萄糖和果糖中的至少一种。
  8. 根据权利要求2所述的三维物体成型方法,其中,所述促放热材料为水或者含有水的溶液;所述包覆材料中含有至少一种氢氧化物;所述氢氧化物能够溶解于水或者所述含有水的溶液中而放出热量。
  9. 根据权利要求8所述的三维物体成型方法,其中,所述氢氧化物选自氢氧化锂、氢氧化钠、氢氧化钾、氢氧化钡、氢氧化钙和氢氧化铝中的至少一种。
  10. 根据权利要求1-9任一项所述的三维物体成型方法,其中,所述促放热材料中还含有填料、着色剂、表面活性剂、分散剂和介质材料中的至少一种;其中所述介质材料用于溶解或分散促放热材料中的其它组分。
  11. 根据权利要求1所述的三维物体成型方法,其中,所述包覆层为覆盖在所述内核颗粒部分或全部表面上的连续膜层,其中所述包覆层的厚度为50~1500nm,所述粉末颗粒的直径为1~300μm;或者,
    所述包覆层包括多个围绕在内核颗粒表面的离散的珠粒,其中所述珠粒的直径为50~1500nm,所述粉末颗粒的直径为1~300μm。
  12. 根据权利要求1-9任一项所述的三维物体成型方法,其中,所述内核颗粒包括热塑性塑料颗粒和/或热固性塑料颗粒。
  13. 根据权利要求12所述的三维物体成型方法,其中,所述热塑性塑料颗粒选自聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚丙烯腈-丁二烯-苯乙烯、聚酰胺、聚酰亚胺、聚碳酸酯、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯、聚醚醚酮、聚砜、聚醚砜和聚苯砜颗粒中的至少一种;
    所述热固性塑料颗粒选自环氧树脂、不饱和聚酯树脂、丙烯酸酯树脂、酚醛树脂、氰酸酯树脂、改性聚酰亚胺树脂和双马来酰亚胺颗粒中的至少 一种。
  14. 根据权利要求12所述的三维物体成型方法,其中,所述内核颗粒包括热固性塑料颗粒,所述三维物体成型方法还包括对所述三维物体进行加热的步骤;所述加热的温度为70~350℃。
  15. 根据权利要求1-9任一项所述的三维物体成型方法,其中,在所述粉末颗粒层上喷射促放热材料之前,还包括:对所述粉末颗粒层进行预热。
  16. 根据权利要求15所述的三维物体成型方法,其中,所述预热的温度低于所述粉末颗粒的熔点。
  17. 根据权利要求1-9任一项所述的三维物体成型方法,其中,所述粉末颗粒层分为多个区域,在不同区域上所喷射的促放热材料的体积相同或不同。
  18. 一种三维物体成型装置,用于实施权利要求1-17中任一项所述的三维物体成型方法,其中,所述三维物体成型装置至少包括供粉部件、成型平台和液体喷射头,其中:
    所述供粉部件用于在成型平台上形成所述粉末颗粒层;
    所述液体喷射头用于根据层打印数据,在所述粉末颗粒层上喷射所述促放热材料。
  19. 根据权利要求18所述的三维物体成型装置,其中,所述三维物体成型装置还包括预热部件,所述预热部件用于对所述粉末颗粒层进行预热。
  20. 根据权利要求18或19所述的三维物体成型装置,其中,所述三维物体成型装置还包括控制部件,所述控制部件用于控制供粉部件、成型平台和液体喷射头中至少其一的工作。
PCT/CN2020/081532 2019-06-11 2020-03-27 三维物体成型方法和成型装置 WO2020248653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910500876.5 2019-06-11
CN201910500876.5A CN112060572A (zh) 2019-06-11 2019-06-11 三维物体成型方法和成型装置

Publications (1)

Publication Number Publication Date
WO2020248653A1 true WO2020248653A1 (zh) 2020-12-17

Family

ID=73658307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081532 WO2020248653A1 (zh) 2019-06-11 2020-03-27 三维物体成型方法和成型装置

Country Status (2)

Country Link
CN (1) CN112060572A (zh)
WO (1) WO2020248653A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723553A (zh) * 2013-12-18 2015-06-24 佳能株式会社 图案制造方法及制造设备、结构体制造方法及制造设备
CN105764672A (zh) * 2013-09-30 2016-07-13 株式会社理光 用于三维物品形成的粉末材料、硬化液体和三维物品形成套件,以及三维物品的形成方法和形成装置
CN107107494A (zh) * 2014-10-05 2017-08-29 Eos有限公司电镀光纤系统 3d打印机和用于3d打印机的原料
US20180022025A1 (en) * 2015-04-30 2018-01-25 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
CN108136502A (zh) * 2016-01-29 2018-06-08 惠普发展公司有限责任合伙企业 三维(3d)打印

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434572B2 (en) * 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
CN104923781B (zh) * 2015-06-25 2017-03-29 武汉大学 一种基于自蔓延反应的3d打印方法
CN109451732A (zh) * 2015-07-21 2019-03-08 应用材料公司 用于增材制造的放热粉末
WO2017094345A1 (ja) * 2015-11-30 2017-06-08 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
WO2017163834A1 (ja) * 2016-03-23 2017-09-28 コニカミノルタ株式会社 粉末材料、および立体造形物の製造方法
JP6866602B2 (ja) * 2016-10-03 2021-04-28 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法
US11292061B2 (en) * 2016-10-19 2022-04-05 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
WO2018106237A1 (en) * 2016-12-08 2018-06-14 Hewlett-Packard Development Company, L.P. Material sets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764672A (zh) * 2013-09-30 2016-07-13 株式会社理光 用于三维物品形成的粉末材料、硬化液体和三维物品形成套件,以及三维物品的形成方法和形成装置
CN104723553A (zh) * 2013-12-18 2015-06-24 佳能株式会社 图案制造方法及制造设备、结构体制造方法及制造设备
CN107107494A (zh) * 2014-10-05 2017-08-29 Eos有限公司电镀光纤系统 3d打印机和用于3d打印机的原料
US20180022025A1 (en) * 2015-04-30 2018-01-25 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
CN108136502A (zh) * 2016-01-29 2018-06-08 惠普发展公司有限责任合伙企业 三维(3d)打印

Also Published As

Publication number Publication date
CN112060572A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
JP7232329B2 (ja) 三次元物体成形方法及び成形装置
CN111976134B (zh) 三维物体增材制造方法及装置、存储介质、计算机设备
JP2004538184A (ja) 三次元構造印刷
KR20160082280A (ko) 3차원 인쇄를 위한 잉크 조성물, 3차원 프린터 및 3차원 프린터의 제어 방법
US9597914B2 (en) Ink jet recording method and ink jet recording apparatus
JP2016539786A (ja) インクジェット印刷を用いたポリマ粒子および粗いコーティングの作製
CN111978707B (zh) 三维成型用材料、三维物体及其切片层
US9309429B2 (en) Ink jet recording apparatus
CN113478822B (zh) 三维物体打印方法及设备、存储介质、计算机设备
JP2021518284A (ja) 磁気色可変マイクロカプセルを含む印刷装置および組成物
JP2013241565A (ja) インク及びその利用
JP2010228103A (ja) 三次元造形用材料、三次元造形物の製造方法及び三次元造形物
WO2020248653A1 (zh) 三维物体成型方法和成型装置
US20140192104A1 (en) Image forming apparatus and image forming method
CN114619668B (zh) 三维物体打印方法及装置、三维打印材料
CN114193764B (zh) 三维成型用材料、三维物体及其打印方法
CN116141682A (zh) 3d打印设备、打印控制方法及装置
TW201012635A (en) Additive fabrication-3-D print
JP2013119574A (ja) 紫外線硬化型水性インク、記録方法、インクカートリッジ、及び記録装置
JP6357294B2 (ja) インクジェット記録方法
WO2020044475A1 (ja) 印刷物の製造方法
CN114316153B (zh) 一种喷墨粘合剂的制备方法
EP3827956A1 (en) Printed matter producing method and printed matter producing apparatus
JP2021070317A (ja) 印刷物の製造方法、印刷物の製造装置
JP2014046226A (ja) インクジェット法を用いた化学プロセス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823610

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20823610

Country of ref document: EP

Kind code of ref document: A1