WO2023167206A1 - 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体 - Google Patents

防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体 Download PDF

Info

Publication number
WO2023167206A1
WO2023167206A1 PCT/JP2023/007404 JP2023007404W WO2023167206A1 WO 2023167206 A1 WO2023167206 A1 WO 2023167206A1 JP 2023007404 W JP2023007404 W JP 2023007404W WO 2023167206 A1 WO2023167206 A1 WO 2023167206A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
antifogging
agent
silica particles
Prior art date
Application number
PCT/JP2023/007404
Other languages
English (en)
French (fr)
Inventor
龍一郎 福田
麻理 清水
貴大 山中
由理 中根
知里 吉川
智彦 小竹
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023167206A1 publication Critical patent/WO2023167206A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present disclosure relates to an antifogging agent, an antifogging method for a vehicle lamp structure, and a vehicle lamp structure.
  • An anti-fogging film is generally formed by spraying an anti-fogging agent onto an adherend (substrate) and drying the coating film. From the viewpoint of cost and coating efficiency, it is preferable to use a solvent to form a thin antifogging film. It has been found by the inventors' studies that there are cases in which unevenness in quality occurs.
  • One aspect of the present disclosure has been made in view of the above circumstances, and an object thereof is to provide an antifogging agent capable of forming an antifogging film with sufficiently little unevenness in wettability.
  • the contact angle of the antifogging agent is time-dependent because the wettability of the adherend changes as the solvent in the antifogging agent volatilizes. Therefore, the present inventors further studied the relationship between the time dependence of the contact angle of the antifogging agent and the characteristics of the formed antifogging film, and found that the contact angle at a predetermined timing satisfies a specific condition. It has been found that the antifogging agent can form an antifogging film with sufficiently low wettability unevenness.
  • one aspect of the present disclosure is an antifogging agent containing silica particles and a solvent, and when the contact angle is measured using a contact angle meter according to the following condition A, from the time of 50 seconds
  • the antifogging agent has a regression coefficient ⁇ 50 to 100 of less than 0 in a regression line obtained from the contact angle measured until 100 seconds have elapsed and the elapsed time.
  • Condition A In an environment of 25°C and 65% RH, drop 0.5 ⁇ L of the antifogging agent onto the PTFE substrate, and the contact angle is measured every 5 seconds, with the moment when the antifogging agent comes into contact with the PTFE substrate as 0 seconds. to measure.
  • the surface tension measured by the pendant drop method may be 30 mN/m or less.
  • the content of the solvent may be 90% by mass or more based on the total amount of the antifogging agent.
  • Another aspect of the present disclosure is a vehicular lamp comprising the steps of applying the anti-fogging agent to the inner surface of a lens included in a vehicular lamp structure to form a coating film, and drying the coating film.
  • the present invention relates to an anti-fogging method for structures.
  • Another aspect of the present disclosure relates to a vehicle lamp structure including an antifogging film formed from the above antifogging agent on the inner surface of the lens.
  • an antifogging agent capable of forming an antifogging film with sufficiently little unevenness in wettability. Further, according to the present disclosure, it is possible to provide an anti-fogging method for a vehicle lamp structure using an anti-fogging agent, and a vehicle lamp structure provided with an anti-fogging film with sufficiently low wettability unevenness.
  • FIG. 1 is a diagram schematically showing a vehicle lamp structure.
  • FIG. 2 is a diagram showing IR charts before and after synthesis of Compound 1.
  • FIG. 3 is a diagram showing IR charts before and after synthesis of Compound 1.
  • FIG. 4 is a diagram showing IR charts before and after synthesis of Compound 1.
  • FIG. 5 is a graph showing measurement results of contact angles of Example 4 and Comparative Example 2.
  • FIG. 6 is a schematic diagram for explaining the evaluation method of the antifogging agent.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the antifogging agent of this embodiment contains silica particles and a solvent.
  • silica particles The shape of silica particles is not particularly limited. Examples of the shape of the silica particles include beaded (pearl necklace), chain, spherical, cocoon-shaped, association-shaped, and confetti-shaped. The shape of the silica particles may be bead-like (pearl necklace-like) or chain-like from the viewpoint of moisture resistance and water resistance. The silica particles may be colloidal silica.
  • the silica particles may contain metal oxides other than silicon dioxide.
  • metal oxides include alumina.
  • Examples of such silica particles include colloidal silica in which aluminosilicate is firmly formed on the colloidal silica surface for stabilization of silica sol.
  • the silica particles may have an average particle size (average secondary particle size) of 1 to 1000 nm.
  • average particle size is 1 nm or more, the silica particles are less likely to agglomerate in the antifogging agent, and thus the silica particles are more likely to adhere to the substrate.
  • average particle diameter is 1000 nm or less, the specific surface area of the silica particles increases, and the silica particles easily adhere to the substrate. From these points of view, the silica particles may have an average particle size of 3 to 700 nm, 5 to 500 nm, 10 to 300 nm, or 20 to 200 nm.
  • the average particle size of silica particles can be measured, for example, by the following procedure. That is, about 100 ⁇ L (L represents liter, the same shall apply hereinafter) of the silica particle dispersion liquid is measured, and the content of the silica particles is about 0.05% by mass (the transmittance (H) at the time of measurement is 60 to 70%). A diluted solution is obtained by diluting with ion-exchanged water to a certain content).
  • the diluted solution is put into a sample tank of a laser diffraction particle size distribution analyzer (manufactured by Horiba Ltd., trade name: LA-920, refractive index: 1.93, light source: He—Ne laser, absorption 0), The average particle size of silica particles can be measured.
  • a laser diffraction particle size distribution analyzer manufactured by Horiba Ltd., trade name: LA-920, refractive index: 1.93, light source: He—Ne laser, absorption 0
  • the number of silanol groups per gram of silica particles is 10 ⁇ 10 18 to 1000 ⁇ 10 18 /g, 50 ⁇ 10 18 to 800 ⁇ 10 18 /g, or 100 ⁇ 10 18 to 700 ⁇ 10 18 /g. There may be.
  • the number of silanol groups per 1 g of the silica particles is 10 ⁇ 10 18 /g or more, the number of chemical bonding points with the functional groups of the base material increases, so that the adhesion to the base material can be easily improved.
  • the number of silanol groups per 1 g of the silica particles is 1000 ⁇ 10 18 /g or less, the polycondensation reaction between the silica particles during the preparation of the anti-fogging agent can be suppressed, and chemical reaction with the functional groups of the base material can be suppressed. It is possible to suppress the decrease in the number of bonding points.
  • the number of silanol groups ( ⁇ [number/g]) of silica particles can be measured and calculated by the following procedure.
  • BET specific surface area S BET of silica particles is obtained according to the BET specific surface area method.
  • a specific measurement method for example, silica particles are placed in a dryer, dried at 150 ° C., then placed in a measurement cell and vacuum degassed at 120 ° C. for 60 minutes.
  • a BET specific surface area measuring device is used for the sample. , can be obtained by adsorbing nitrogen gas. More specifically, first, silica particles dried at 150° C. are crushed finely with a mortar (made of porcelain, 100 ml), placed in a measurement cell as a measurement sample, and subjected to a BET specific surface area measurement device manufactured by Yuasa Ionics Co., Ltd. (product name: NOVE-1200) is used to measure the BET specific surface area S BET .
  • the degree of association of silica particles in the dispersion of silica particles may be, for example, 5.0 or less, 4.0 or less, 3.0 or less, 2.5 or less, or 2.0 or less.
  • the degree of association of silica particles may be 1.0 or more, 1.3 or more, or 1.5 or more.
  • the degree of association of the silica particles is 1.0 or more, the specific surface area of the silica particles becomes moderately small, and aggregation of the silica particles can be suppressed during the preparation of the antifogging agent.
  • the degree of association of silica particles refers to the ratio of the average particle size (average secondary particle size) of silica particles in a silica particle dispersion to the biaxial average primary particle size of silica particles (average particle size/biaxial average primary particle size).
  • the average primary particle size of silica particles can be measured, for example, with a known transmission electron microscope (eg, product name: H-7100FA manufactured by Hitachi High-Tech Co., Ltd.). Specifically, the average primary particle size of the silica particles is obtained by taking an image of the silica particles using a transmission electron microscope, calculating the biaxial average primary particle size for 20 silica particles, and calculating the average primary particle size of 20 silica particles. can be calculated by the average value of
  • Silica particles are available as a dispersion of silica particles.
  • Dispersion media include water, isopropyl alcohol, 1-methoxy-2-propyl alcohol, ethyl alcohol, methyl alcohol, ethylene glycol, ethylene glycol-n-propyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethylacetamide, N-methylpyrrolidone, toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, ethyl acetate and the like.
  • the dispersion medium may be a mixture of the above dispersion mediums.
  • the dispersion medium for the silica particles may be water from the viewpoint of versatility.
  • the pH of the silica particle dispersion may be 2-10, 4-9, 6-8, or 2-5.
  • the pH is 2 to 10
  • the hydrolysis reaction rate of the alkoxy groups is slowed down, making it easier to form an antifogging film containing silica particles with residual alkoxy groups. Since the polycondensation reaction of silanol groups due to moisture absorption can be suppressed, the antifogging property (hydrophilicity) of the film surface can be easily maintained.
  • the pH of the silica particle dispersion can be measured with a pH meter (for example, manufactured by Denki Kagaku Keiki Co., Ltd., model number: PHL-40).
  • the measured pH values were obtained from standard buffers (phthalate pH buffer pH: 4.01 (25°C), neutral phosphate pH buffer pH: 6.86 (25°C), borate pH buffer After three-point calibration using pH: 9.18 (25° C.), the electrode is placed in the dispersion liquid, and the value after 2 minutes or more has elapsed and stabilized is adopted.
  • the silica particles in the dispersion may have a zeta potential of -50 to 40 mV, -50 to -11 mV, or 11 to 40 mV.
  • the silica particles tend to repel each other in the dispersion liquid, making it easier to suppress aggregation of the silica particles.
  • Anti-fogging property is improved when applied to
  • the zeta potential of silica particles can be measured with a zeta potential measuring instrument (for example, manufactured by Beckman Coulter, model number: Coulter Delsa 440).
  • a zeta potential measuring instrument for example, manufactured by Beckman Coulter, model number: Coulter Delsa 440.
  • pure water is added to a silica particle dispersion liquid so that the concentration of silica particles is 5 ppm based on the total amount of the test liquid, and a test liquid in which the silica particles are dispersed by ultrasonic treatment is prepared. .
  • the test solution is placed in a measuring cell with platinum electrodes attached on both sides, and a voltage of 10 V is applied to both electrodes, the charged silica particles migrate to the electrode side with the opposite polarity to the charge.
  • the zeta potential can be calculated from the moving speed of charged silica particles.
  • the raw material for silica particles may be water glass or alkoxysilane.
  • the step of producing silica particles includes, for example, heating and concentrating sodium silicate by a hydrothermal synthesis method to produce silica particles.
  • the silica particles may be produced by producing aggregates with a three-dimensional network structure in a state in which the growth of the primary particles is suppressed at an acidic pH, and then pulverizing them. It may also be produced by accelerating growth to produce block-like aggregates, which are then pulverized.
  • the step of producing silica particles is, for example, sol-gel synthesis of alkoxysilane to produce silica particles.
  • the silica particles may be produced by promoting the hydrolysis reaction of the alkoxysilane, then promoting the polycondensation reaction to obtain a gel, and then removing the solvent by heat treatment to obtain the gel. After that, the solvent may be replaced with a predetermined solvent.
  • PL-1-IPA PL-1-TOL
  • PL-2L-PGME PL-2L-MEK
  • PL-2L PL-3
  • PL-4 PL-5, PL-1H, PL-3H, PL-5H, BS-2L, BS-3L, BS-5L, HL-2L, HL-3L, HL-4L, PL-3-C, PL-3-D
  • TCSOL800 manufactured by Tama Chemical Industry Co., Ltd.; SI-550 and the like.
  • the content of silica particles is 0.05% by mass or more, 0.1% by mass or more, 0.2% by mass or more, and 0.5% by mass, based on the total amount of the antifogging agent. Above, 0.9 mass % or more, or 1 mass % or more may be sufficient.
  • the content of the silica particles is 20% by mass or less based on the total amount of the antifogging agent, from the viewpoint of suppressing the polycondensation reaction of the silanol groups between the silica particles and making it easier to maintain the antifogging property (hydrophilicity). It may be 15% by mass or less, 10% by mass or less, 8% by mass or less, or 5% by mass or less. From these points of view, the content of silica particles may be 0.1 to 20% by mass, or 1 to 10% by mass, based on the total amount of the antifogging agent.
  • the solvent may be a liquid medium that disperses the silica particles and dissolves the binder compound and the silane coupling agent in the antifogging agent.
  • Organic solvents include methyl alcohol, ethyl alcohol, 1-propanol, isopropyl alcohol (IPA), 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, diacetone alcohol, 1-butoxy-2-propanol, 1-hexanol, 1 - alcohols such as octanol, 2-octanol, 3-methoxy-3-methyl-1-butanol; glycols such as polyethylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono butyl ether, ethylene glycol mono-tert-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol n-propyl ether, propylene glycol monomethyl ether and other glycol ethers; acetone, methyl ethyl alcohol, 1-propanol, isopropyl alcohol (IPA), 1-butyl alcohol,
  • the content of water is 2% by mass or more, 3% by mass or more, 4% by mass or more, 6% by mass or more, 8% by mass or more, 10% by mass or more, 12% by mass or more, or 15% by mass, based on the total amount of the solvent. may be 30% by mass or less, 25% by mass or less, 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, 12% by mass or less, or 10% by mass or less There may be.
  • the content of the organic solvent may be 60% by mass or more, 70% by mass or more, 73% by mass or more, 75% by mass or more, or 80% by mass or more, 98% by mass or less, It may be 97% by mass or less, 96% by mass or less, 82% by mass or less, 81% by mass or less, or 80% by mass or less.
  • the content of alcohols is 5% by mass or more, 10% by mass or more, 13% by mass or more, 15% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, based on the total amount of the solvent.
  • the content of glycol ethers is, based on the total amount of the solvent, 2% by mass or more, 3% by mass or more, 4% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, Or it may be 50% by mass or more, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, 45% by mass or less, 35% by mass or less, 25% by mass or less, 15% by mass or less , or 10% by mass or less.
  • the content of IPA is 4% by mass or more, 6% by mass or more, 8% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass, based on the total amount of the solvent % or more, or 60% by mass or more, 80% by mass or less, 75% by mass or less, 70% by mass or less, 65% by mass or less, 55% by mass or less, 45% by mass or less, 35% by mass or less, 25% by mass or less % by mass or less, 15% by mass or less, or 10% by mass or less.
  • the content of 3-methoxy-3-methyl-1-butanol is 1% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 30% by mass, based on the total amount of the solvent. % or more, 40% by mass or more, 50% by mass or more, or 60% by mass or more, 75% by mass or less, 70% by mass or less, 66% by mass or less, 55% by mass or less, 45% by mass or less, 35 % by mass or less, 25% by mass or less, or 15% by mass or less.
  • the content of ethylene glycol monopropyl ether is 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, based on the total amount of the solvent. , or may be 5% by mass or more, 20% by mass or less, 10% by mass or less, 7% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or 1% by mass % or less.
  • the content of ethylene glycol monobutyl ether is, based on the total amount of the solvent, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, 5% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass or more, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, 45% by mass or less, 35% by mass or less , 25% by mass or less, 15% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the content of 1,2-dimethoxyethane is 0.1% by mass or more, 0.2% by mass or more, 0.4% by mass or more, 1% by mass or more, 5% by mass or more, or It may be 10% by mass or more, 40% by mass or less, 30% by mass or less, 20% by mass or less, 15% by mass or less, 10% by mass or less, 5% by mass or less, or 1% by mass or less. .
  • the content of the solvent may be 90% by mass or more, 93% by mass or more, 95% by mass or more, 97% by mass or more, or 97.5% by mass or more, based on the total amount of the antifogging agent. It may be 5% by mass or less, 98% by mass or less, or 97.8% by mass or less.
  • the antifog agent may further contain a binder compound.
  • the binder compound refers to a compound that binds to silica particles and cross-links to improve the strength of the antifogging film.
  • the binder compound may have one or more functional groups that react with the functional groups of the silane coupling agent.
  • Binder compounds include epoxy compounds, polyvinyl alcohol, modified polyvinyl alcohol, polyacrylic acid, acrylic resins, epoxy resins, urethane resins, polyvinylpyrrolidone, polyvinylpyrrolidone vinyl acetate copolymers (vinyl acetate pyrrolidone copolymers), and polyamine resins. , cellulose, dextrin, cellulose nanofibers, silicate oligomers, silicate polymers, and the like.
  • the binder compound may be an epoxy compound from the viewpoint of excellent anti-fogging properties of the anti-fogging film.
  • epoxy compounds include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and the like.
  • Silane oligomers include Ethyl Silicate 40, Ethyl Silicate 48, EMS-485, Methyl Silicate 51, Methyl Silicate 53A, Colcoat PX, and Colcoat N-103X (manufactured by Colcoat Co., Ltd.).
  • the content of the binder compound is 0.1 parts by mass or more, 0.5 parts by mass or more, or 1 part by mass or more with respect to 100 parts by mass of the silica particles, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. 1000 parts by mass or less, 500 parts by mass or less, or 100 parts by mass or less.
  • the content of the binder compound is 0.1 to 1000 parts by mass, 0.5 to 500 parts by mass, or 1 to 100 parts by mass with respect to 100 parts by mass of silica particles, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. It may be 100 parts by mass.
  • the content of the binder compound is 1% by mass or more, 3% by mass or more, or 5% by mass or more, based on the total solid content of the antifogging agent, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. 30% by mass or less, 20% by mass or less, or 10% by mass or less.
  • the content of the binder compound is 1 to 30% by mass, 3 to 20% by mass, or 5 to 10% by mass, based on the total solid content of the antifogging agent, from the viewpoint of better water resistance and moisture resistance of the antifogging film. % by mass.
  • the antifog agent may further contain a silane coupling agent.
  • the silane coupling agent may be an acid anhydride or a dicarboxylic acid compound. That is, the antifog agent may further contain a silane coupling agent having an acid anhydride group or two carboxy groups.
  • the silane coupling agent that is an acid anhydride may be, for example, a silane coupling agent represented by general formula (1).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1-6 carbon atoms, and a represents an integer of 1-10.
  • R 11 , R 12 and R 13 may be a hydrogen atom, a methyl group, an ethyl group, a propyl group or a butyl group.
  • a may be an integer from 1-8, 1-5, or 1-3.
  • the silane coupling agent that is a dicarboxylic acid compound may be, for example, a silane coupling agent represented by general formula (2).
  • R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • b and c each independently represent an integer of 0 to 10. show.
  • R21 , R22 , R23 and R24 may be a hydrogen atom, a methyl group or an ethyl group.
  • b and c may each independently be an integer of 0-8, 0-5, or 0-3.
  • the anti-fog agent is a silane coupling agent other than an acid anhydride silane coupling agent and a dicarboxylic acid compound silane coupling agent (hereinafter, this silane coupling agent is also referred to as "silane coupling agent A"). It may be contained further.
  • Silane coupling agent A may be, for example, a compound represented by general formula (3).
  • R 31 represents a monovalent organic group
  • R 32 represents an alkyl group having 1 to 3 carbon atoms
  • d represents an integer of 0 to 2
  • a plurality of R 32 may be the same or different.
  • R 31 examples include a C1-C30 branched or straight-chain alkyl group, an alkenyl group, a C3-C10 cycloalkyl group, a C6-C10 aryl group, an epoxy group, an acryloyl group, a methacryloyl group, an amino group, and a ureido. groups, isocyanate groups, isocyanurate groups, mercapto groups, and fluoro groups.
  • Silane coupling agents having a C1 to C30 branched or linear alkyl group include methyltrimethoxysilane (such as KBM-13 manufactured by Shin-Etsu Chemical Co., Ltd.), ethyltrimethoxysilane, and propyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. Co., Ltd. KBM-3033, etc.), butyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.
  • KBM-3063, etc. heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane , decyltrimethoxysilane (KBM-3103C manufactured by Shin-Etsu Chemical Co., Ltd.), undecyltrimethoxysilane, dodecyltrimethoxysilane, tetradecyltrimethoxysilane, stearyltrimethoxysilane, methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.
  • nonyltriethoxysilane decyltriethoxysilane, undecyltriethoxysilane, dodecyltriethoxysilane, tetra decyltriethoxysilane, stearyltriethoxysilane, and the like.
  • silane coupling agent having an alkenyl group examples include vinyltrimethoxysilane (KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.), vinyltriethoxysilane (KBE-1003 manufactured by Shin-Etsu Chemical Co., Ltd.), allyltrimethoxysilane, and allyltriethoxysilane.
  • Silane coupling agents having a C6-C10 aryl group include phenyltrimethoxysilane (KBM-103, KBM-202SS, KBE-103, KBE-202, etc. manufactured by Shin-Etsu Chemical Co., Ltd.), p-styryltrimethoxysilane. (KBM-1403 manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • Silane coupling agents having an epoxy group include 3-glycidyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM-403, etc.), 8-glycidoxyoctyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM- 4803 etc.), 3-glycidyloxypropyltriethoxysilane (KBE-403 etc. manufactured by Shin-Etsu Chemical Co., Ltd.), KBE-402, X-12-981S, X-12-984S (all trade names, Shin-Etsu Chemical Co., Ltd. manufactured by the company).
  • Silane coupling agents having an acryloyl group include 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM-5103, etc.), X-12-1048, X-12-1050 (both trade names, Shin-Etsu manufactured by Kagaku Kogyo Co., Ltd.).
  • Silane coupling agents having a methacryloyl group include 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM-503, etc.), 8-methacryloxyoctyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM-5803 etc.), 3-methacryloxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE-503, etc.), 3-methacryloxypropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd. KBM-502, etc.), 3-methacryloxypropyl Examples thereof include methyldiethoxysilane (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd., etc.).
  • Silane coupling agents having an amino group include 3-aminopropyltrimethoxysilane (such as KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.) and 3-aminopropyltriethoxysilane (such as KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd.). , N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. KBM-603, etc.), N-2-(aminoethyl)-8-aminooctyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.
  • KBM-6803, etc. N-2-(aminoethyl)-3-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE-603, etc.), N-phenyl-3-aminopropyltrimethoxysilane ( Shin-Etsu Chemical Co., Ltd. KBM-573, etc.), N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd. KBM-602, etc.), N-2-(aminoethyl)- 3-aminopropylmethyldiethoxysilane (Shin-Etsu Chemical Co., Ltd.
  • Silane coupling agents having a ureido group include 3-ureidopropyltriethoxysilane (KBE-585A manufactured by Shin-Etsu Chemical Co., Ltd., etc.).
  • silane coupling agent having an isocyanate group examples include 3-isocyanatopropyltriethoxysilane (KBE-9007 manufactured by Shin-Etsu Chemical Co., Ltd.), X-12-1159L (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. be done.
  • Silane coupling agents having an isocyanurate group include tris-(3-trimethoxysilylpropyl) isocyanurate (KBM-9659 manufactured by Shin-Etsu Chemical Co., Ltd., etc.).
  • Silane coupling agents having a mercapto group include 3-mercaptopropyltrimethoxysilane (KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd.) and 3-mercaptopropylmethyldimethoxysilane (KBM-802 manufactured by Shin-Etsu Chemical Co., Ltd.). , X-12-1154, X-12-1156 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Silane coupling agents having a fluoro group include 3,3,3-trifluoropropyltrimethoxysilane (KBM-7103 manufactured by Shin-Etsu Chemical Co., Ltd., etc.).
  • Silane coupling agent A may be a silane coupling agent having a polyether group, or may be a compound represented by general formula (4).
  • R 41 , R 42 , R 43 and R 44 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • L 41 and L 42 each independently represent 1 to 6 carbon atoms.
  • 6 and f represents an integer of 3-25.
  • R 41 , R 42 , R 43 and R 44 may be methyl, ethyl, propyl or butyl groups.
  • L 41 and L 42 may be an ethylene group, a propylene group, or a butylene group.
  • f may be 10-20, or 11-15.
  • Examples of the polyether silane represented by the general formula (4) include A1230 (manufactured by Momentive Performance Materials Co., Ltd.) and X-12-641 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the content of the silane coupling agent may be 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the silica particles, from the viewpoint of excellent fogging resistance of the antifogging film. , 50 parts by mass or less, 30 parts by mass or less, or 20 parts by mass or less.
  • the content of the silane coupling agent may be 10 to 50 parts by mass, or 15 to 30 parts by mass with respect to 100 parts by mass of silica particles.
  • the content of the silane coupling agent is 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the total solid content of the antifogging agent, from the viewpoint of excellent fogging resistance of the antifogging film. 30% by mass or less, 20% by mass or less, or 15% by mass or less.
  • the content of the silane coupling agent may be 1 to 30% by mass, or 10 to 15% by mass, based on the total solid content of the antifogging agent.
  • the binder compound and the silane coupling agent which is an acid anhydride or dicarboxylic acid compound
  • the binder compound and the silane coupling agent which is an acid anhydride or dicarboxylic acid compound
  • a synthetic product with a certain silane coupling agent hereinafter, this synthetic product is also referred to as “composite A”
  • the antifogging agent may further contain the compound A instead of the binder compound and the silane coupling agent that is an acid anhydride or dicarboxylic acid compound, and the binder compound and the acid anhydride or dicarboxylic acid compound Compound A may also be included along with some silane coupling agents.
  • compound A is determined according to the type of binder compound and the type of silane coupling agent.
  • Compound A may contain, for example, a compound represented by general formula (5) or general formula (6).
  • Synthetic product A may contain a condensate of the compound represented by the general formula (5), may contain a condensate of the compound represented by the general formula (6), the general formula (5) Alternatively, it may contain a condensate of a compound represented by general formula (6) and a silane coupling agent that is an acid anhydride or a dicarboxylic acid compound.
  • R 51 , R 52 and R 53 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 54 and R 55 each independently represent a hydrogen atom or 1 represents a valent organic group
  • g represents an integer of 1-10.
  • R 51 , R 52 and R 53 may each independently be a hydrogen atom, a methyl group or an ethyl group.
  • R 54 and R 55 may each independently be a hydrogen atom or a structure represented by general formula (7).
  • g may be an integer from 1-8, 1-5, or 1-3.
  • R 61 , R 62 , R 63 and R 64 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 65 and R 66 each independently represent a hydrogen atom , or a monovalent organic group
  • h and i each independently represent an integer of 0 to 10.
  • R 61 , R 62 , R 63 and R 64 may each independently be a hydrogen atom, a methyl group or an ethyl group.
  • R 65 and R 66 may each independently be a hydrogen atom or a structure derived from a binder compound.
  • h and i may each independently be an integer of 0-8, 0-5, or 0-3.
  • R 65 and R 66 may each be a hydrogen atom or a structure derived from an epoxy compound.
  • R 65 and/or R 66 may be a structure having an ethylene glycol chain, propylene glycol chain, sorbitol chain, or glycerol chain. , an epoxy group, a glycidyl group, or a diol group.
  • Synthetic product A can be prepared, for example, by stirring a binder compound and a silane coupling agent that is an acid anhydride or dicarboxylic acid compound in an environment of 40 to 80° C. for 0.5 to 3 hours. .
  • the mixing ratio of the binder compound and the silane coupling agent A may be 1 to 200 parts by mass or 10 to 30 parts by mass of the silane coupling agent A per 100 parts by mass of the binder compound.
  • the conditions for synthesizing Compound A can be adjusted, for example, by changing the peak position that can be confirmed in the IR chart.
  • the silane coupling agent A is an acid anhydride
  • the peaks at 1780 cm -1 and 1850 cm -1 which are the peaks of the acid anhydride group, are the IR chart after synthesis. It is possible to confirm the progress of the synthesis reaction by disappearance at . In addition, it can be confirmed that a compound having an ester group is obtained by generating a peak at 1735 cm ⁇ 1 in the IR chart after synthesis.
  • the binder compound is an epoxy compound
  • the progress of the synthesis reaction can be confirmed by the decrease in the peak at 910 cm ⁇ 1 , which is the peak of the epoxy group that can be confirmed before the synthesis in the IR chart.
  • the content of the compound A is 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the silica particles, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. may be 50 parts by mass or less, 40 parts by mass or less, or 30 parts by mass or less. The content of the compound A may be 10 to 50 parts by weight, or 20 to 30 parts by weight with respect to 100 parts by weight of silica particles.
  • the content of the compound A is 50 parts by mass or more, 80 parts by mass or more, or 100 parts by mass or more with respect to 100 parts by mass of the silane coupling agent, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. 300 parts by mass or less, 200 parts by mass or less, or 150 parts by mass or less.
  • the content of the compound A may be 50 to 300 parts by mass, or 100 to 150 parts by mass with respect to 100 parts by mass of the silane coupling agent.
  • the content of the composition A is 5% by mass or more, 10% by mass or more, or 15% by mass or more, based on the total solid content of the antifogging agent, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. may be 40% by mass or less, 25% by mass or less, or 20% by mass or less.
  • the content of compound A may be 5 to 40% by weight, or 15 to 20% by weight, based on the total solid content of the antifog agent.
  • the antifog agent may further contain a metal catalyst.
  • the metal catalyst functions as a bonding promoting material, and the inclusion of the metal catalyst in the antifogging agent makes it easier to form an antifogging film with excellent moisture resistance and water resistance.
  • the metal catalyst is not particularly limited and can be selected from known metal catalysts.
  • metal catalysts include zirconium compounds, titanium compounds, nickel compounds, aluminum compounds, tin compounds and the like.
  • zirconium compounds include zirconium tetrakis(acetylacetonate), zirconium bis(butoxy)bis(acetylacetonate), and the like.
  • titanium compounds examples include titanium tetrakis(acetylacetonate) and titanium bis(butoxy)bis(acetylacetonate).
  • nickel compounds examples include CR12 (manufactured by Momentive Performance Materials Japan) and Ni(AcAc) 2 .
  • aluminum compounds include aluminum bis(ethylacetoacetate) mono(acetylacetonate), aluminum tris(acetylacetonate), and aluminum ethylacetoacetate diisopropylate.
  • tin compounds include dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin dioctiate.
  • the metal catalyst may be a zirconium compound, a titanium compound, an aluminum compound, or a nickel compound from the viewpoint of improving the moisture resistance and water resistance of the antifogging film.
  • the antifogging agent has more bonding points with silica particles (for example, colloidal silica), resulting in stronger bonding. becomes easier to form.
  • the metal catalyst may be a commercially available product.
  • ZC-150 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Ti-M manufactured by Kawaken Fine Chemical Co., Ltd.
  • nickel compound examples include acetylacetone nickel (II) hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the content of the metal catalyst is 0.01 parts by mass or more, 0.05 parts by mass or more, and 0.1 parts by mass with respect to 100 parts by mass of the silica particles, from the viewpoint of more excellent moisture resistance and water resistance of the antifogging film. or more, and may be 5 parts by mass or less, 2 parts by mass or less, or 1.5 parts by mass or less.
  • the content of the metal catalyst may be 0.01 to 5 parts by mass, or 0.05 to 2 parts by mass, relative to 100 parts by mass of the silica particles, from the viewpoint of better moisture resistance and water resistance of the antifogging film. parts, or 0.1 to 1.5 parts by mass.
  • the content of the metal catalyst is 0.001% by mass or more, 0.005% by mass or more, or 0.01% by mass, based on the total amount of the antifogging agent, from the viewpoint of more excellent water resistance and moisture resistance of the antifogging film. % or more, and may be 5% by mass or less, 3% by mass or less, or 1.5% by mass or less.
  • the content of the metal catalyst may be 0.005 to 5% by weight, or 0.01 to 1.5% by weight, based on the total amount of the antifog agent.
  • the anti-fogging agent of the present embodiment is at least one additive selected from the group consisting of organic phosphoric acid esters having a branched structure and organic sulfonates having a branched structure, from the viewpoint of excellent anti-fogging properties of the anti-fogging film.
  • the organic phosphate ester may have a branched structure in the ester portion.
  • the branched structure may be a branched alkyl group.
  • R 41 represents an organic group having a branched structure.
  • R 41 may be a branched alkyl group having 1 to 15 carbon atoms.
  • Compounds represented by general formula (AD-1) include trisethylhexyl phosphate.
  • Organic sulfonates having a branched structure include, for example, compounds represented by the following general formula (AD-2).
  • AD-2 compounds represented by the following general formula (AD-2).
  • R 51 ⁇ S( O) 2 O ⁇ ⁇ M + (AD-2)
  • R 51 represents an organic group having a branched structure
  • M represents a metal atom such as Na.
  • Examples of the compound represented by the general formula (AD-2) include sulfosuccinic acid diester salts such as sodium di-2-ethylhexylsulfosuccinate and alkylbenzenesulfonates such as sodium alkyl(C12-14)benzenesulfonate.
  • the content of the additive may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the silica particles from the viewpoint of excellent anti-fogging properties of the antifogging film.
  • the antifog agent may further contain acetic acid or a salt thereof.
  • the total content of acetic acid and its salts may be 1 to 50 parts by mass with respect to 100 parts by mass of silica particles, from the viewpoint of pH adjustment of the solution and properties such as water resistance of the antifogging film. It may be up to 30 parts by mass, or may be 5 to 20 parts by mass.
  • Anti-fogging agents may contain additives such as antioxidants, UV absorbers, and light stabilizers.
  • Antifogging agents include acetic acid, nitric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid sulfate, benzenesulfonic acid, methanesulfonic acid, phenol Sulfonic acid, oxalic acid, maleic acid, malonic acid, tartaric acid, citric acid, malic acid, acetic acid, lactic acid, succinic acid, benzoic acid, ammonia, urea, imidazole, sodium carbonate, calcium carbonate, sodium acetate, and the like may be included. From the viewpoint of adjusting the viscosity of the antifogging agent, the antifogging agent may contain a thickener.
  • the anti-fogging agent may be non-surfactant.
  • non-surfactant system is meant that the content of surfactant, known as a component of the antifogging agent, is 1% by weight or less, based on the total solid content of the antifogging agent.
  • the antifogging agent may contain no surfactant (the content of the surfactant may be substantially 0% by weight based on the total solid content of the antifogging agent).
  • surfactants include surfactants such as anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants.
  • the anti-fogging agent according to the present embodiment when measuring the contact angle using a contact angle meter according to the following condition A, from the contact angle measured from the lapse of 50 seconds to the lapse of 100 seconds and the elapsed time
  • the regression coefficient ⁇ 50-100 of the obtained regression line is smaller than zero.
  • Condition A In an environment of 25°C and 65% RH, drop 0.5 ⁇ L of the antifogging agent onto the PTFE substrate, and the contact angle is measured every 5 seconds, with the moment when the antifogging agent comes into contact with the PTFE substrate as 0 seconds. to measure.
  • contact angle meter and the PTFE base material used when measuring the contact angle those described in Examples below can be used.
  • an antifogging film with sufficiently low wettability unevenness can be formed.
  • an antifogging film having sufficiently low wettability unevenness can be formed, so that an antifogging film having excellent antifogging properties can be easily formed.
  • the regression coefficient (slope) of the above regression line means the rate of change in the contact angle in a specific measurement interval
  • the regression coefficient of the regression line can be calculated by the method of least squares.
  • the regression coefficient ⁇ 50 to 100 of the regression line obtained from the contact angle measured from 50 seconds to 100 seconds elapsed and the elapsed time is the contact angle ⁇ 50 after 50 seconds, 55 seconds after The contact angle ⁇ 55 at 60 seconds, the contact angle ⁇ 60 at 60 seconds, and the contact angle ⁇ 100 at 100 seconds.
  • regression line means the regression coefficient a of the regression line represented by the regression coefficient (slope)
  • b intercept of the regression line
  • the regression coefficient a is calculated by the least squares method from the above 11 contact angle measurement results .
  • the regression coefficient ⁇ T1 to T2 of the regression line in the specific measurement interval T1 to T2 is determined by the following conditions ( In addition to A-1), one or more of the following conditions (A-2) to (A-4) may be satisfied.
  • the condition (A-2) the regression coefficient ⁇ 150 to 300 of the regression line was calculated by the least squares method from 31 contact angles measured from the time of 150 seconds to the time of 300 seconds, and the condition ( For A-3), the regression coefficient ⁇ 10 to 50 of the regression line was calculated by the least squares method from the nine contact angles measured from 10 seconds to 50 seconds, and condition (A-4).
  • the regression coefficients ⁇ 10 to 300 of the regression line are calculated by the method of least squares from 59 contact angles measured from 10 seconds to 300 seconds.
  • the regression coefficients ⁇ T1 to T2 of the regression line are ⁇ 0.01 or less, ⁇ 0.02 or less, or ⁇ 0.03 or less from the viewpoint of making it easier to form an antifogging film with sufficiently low wettability unevenness. may be -0.5 or more, -0.4 or more, -0.3 or more, -0.2 or more, or -0.1 or more. At least one of the regression coefficients ⁇ 50-100 , ⁇ 150-300 , ⁇ 10-50 , and ⁇ 10-300 of the regression line may satisfy the above range.
  • the contact angle ⁇ 75 after 75 seconds is , ⁇ 50 > ⁇ 75 > ⁇ 100 .
  • the antifogging agent has a contact angle of ⁇ 60 > The relationship ⁇ 60 > ⁇ 70 > ⁇ 80 > ⁇ 90 > ⁇ 100 may be satisfied.
  • the contact angle ⁇ T1 and The contact angle ⁇ T2 (where 10 ⁇ T1 ⁇ T2 ⁇ 300) after T2 seconds have passed may satisfy ⁇ T1 > ⁇ T2 .
  • the antifog agent may satisfy the relationship ⁇ 150 > ⁇ 300 when T1 is 150 seconds and T2 is 300 seconds.
  • the antifog agent may satisfy the relationship ⁇ 10 > ⁇ 50 when T1 is 10 seconds and T2 is 50 seconds.
  • the antifog agent may satisfy the relationship ⁇ 10 > ⁇ 300 when T1 is 10 seconds and T2 is 300 seconds.
  • the anti-fogging agent may have a surface tension of 30 mN/m or less as measured by the pendant drop method from the viewpoint of making it easier to form an anti-fogging film with sufficiently little unevenness in wettability.
  • the surface tension may be 20 mN/m or more. Specifically, the surface tension can be measured by the method described in Examples below.
  • the antifogging agent according to this embodiment can be used for antifogging of a vehicle lamp structure.
  • the anti-fogging method of the vehicle lamp structure includes, for example, a step of applying an anti-fog agent to the inner surface of the lens provided in the vehicle lamp structure to form a coating film (coating step), and a step of drying the coating film. (Drying step).
  • a cleaning step may be further provided for the purpose of removing the release agent adhering to the surface of the lens.
  • the cleaning liquid used in the cleaning step is not particularly limited.
  • the surface base material in the lens included in the vehicle lamp structure is polycarbonate
  • any liquid that does not dissolve the polycarbonate base material may be used, such as water or alcohols. More specifically, it may be water, isopropyl alcohol, methanol, ethanol, or the like.
  • the cleaning step may comprise wiping the substrate with a cloth or the like impregnated with the cleaning liquid.
  • the coating step is, for example, a step of applying an anti-fogging agent to the inner surface of the lens provided in the vehicle lamp structure. You may
  • the method of applying the antifogging agent is not particularly limited, and may be, for example, spin coating, dip coating, spray coating, flow coating, bar coating, gravure coating, or the like.
  • the anti-fogging agent may be impregnated into a cloth or the like and applied.
  • the method of applying the anti-fogging agent is the spray coating method from the viewpoints of easy formation of a coating film of uniform thickness even on uneven surfaces to be treated, high productivity, and high usage efficiency of the anti-fogging agent. may These methods may be used alone or in combination of two or more.
  • the coating amount is not limited because it depends on the components of the antifogging agent, its content, etc., but it may be, for example, 10 ⁇ 9 to 10 3 g/m 2 .
  • the temperature of the antifogging agent used in the coating process may be, for example, 1 to 50°C or 10 to 30°C.
  • the treatment time with the antifog agent may be, for example, 1 second to 1 hour, or 5 to 30 minutes.
  • the drying step may be a step of volatilizing the solvent from the antifogging agent after applying the antifogging agent.
  • the solvent can be volatilized by leaving it at room temperature (for example, 20° C.).
  • room temperature for example, 20° C.
  • the temperature of the drying process can be adjusted according to the heat resistance temperature of the lens, and may be, for example, 5 to 300°C or 10 to 200°C. When the temperature is 5° C. or higher, adhesion can be further improved, and when the temperature is 300° C. or lower, deterioration due to heat can be further suppressed.
  • the drying time can be from 30 seconds to 150 hours. By this step, an antifogging film containing silica particles is formed on the inner surface of the lens.
  • the thickness of the antifogging film is not particularly limited, but may be 1 nm to 1000 ⁇ m, 5 nm to 10 ⁇ m, or 10 nm to 1 ⁇ m from the viewpoint of transparency, antifogging properties, and the like.
  • the film thickness of the anti-fogging film can be measured, for example, with a non-contact film thickness gauge Optical Nano Gauge C13027 (manufactured by Hamamatsu Photonics Co., Ltd.).
  • the water contact angle of the antifogging film can be 40° or less with respect to 1 ⁇ L of ultrapure water droplet, and from the viewpoint of excellent antifogging properties, it may be 20° or less or 10° or less.
  • the water contact angle can be calculated from the average value of 10 measurements using a contact angle meter.
  • the visible light transmittance of the antifogging film may be 85% or more, 90% or more, or 95% or more. When the visible light transmittance of the antifogging film is 85% or more, the brightness of the vehicle lamp can be maintained sufficiently high.
  • the visible light transmittance of the antifogging film can be measured, for example, with a U-3500 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.).
  • the haze of the antifogging film may be 6.0 or less, 3.0 or less, or 1.0 or less. When the haze of the antifogging film is 6.0 or less, the brightness of the vehicle lamp can be maintained sufficiently high.
  • the haze of the antifogging film can be measured, for example, with a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the YI of the antifogging film may be 4.0 or less, 3.0 or less, or 1.5 or less.
  • the YI of the antifogging film can be measured, for example, with a chromaticity meter (300A, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • FIG. 1 is a diagram schematically showing a vehicle lamp structure.
  • the inner surface of the lens of the vehicle lamp structure is subjected to antifogging treatment using the antifogging agent according to the present embodiment. That is, the vehicle lamp structure has an antifogging film formed from an antifogging agent on the inner surface of the lens.
  • a lamp structure 10 shown in FIG. 1 includes a lamp housing 3 configured in a concave shape with one side open, and a lens 1 closing the open side of the lamp housing 3 .
  • the material of the lens 1 is polycarbonate, for example.
  • a lamp chamber S is formed by the lamp housing 3 and the lens 1 .
  • a light source 4 arranged in a lamp chamber S is attached to the lamp housing 3 .
  • an incandescent bulb, an LED bulb, a halogen bulb, or the like is appropriately adopted.
  • a reflector 5 functioning as a reflector for the light from the light source 4 may be provided so as to surround the light source 4 from behind.
  • An inner surface of the lens 1, that is, a surface facing the lamp chamber S, is provided with an antifogging film 2 made of the antifogging agent.
  • the anti-fogging film 2 may be provided on the entire inner surface of the lens 1, or may be selectively provided on a part thereof as shown in FIG. According to the lamp structure 10, for example, even when a rubber cover or the like is provided around and/or behind the light source 4, the antifogging film 2 has sufficient antifogging properties over a long period of time. be able to.
  • the present disclosure includes the following ⁇ 1> to ⁇ 5>.
  • ⁇ 1> An antifogging agent containing silica particles and a solvent, When the contact angle is measured using a contact angle meter according to the following condition A, the regression coefficient ⁇ 50 of the regression line obtained from the contact angle measured from the time of 50 seconds to the time of 100 seconds and the elapsed time ⁇ 100 is less than 0 antifogging agent.
  • Condition A 0.5 ⁇ L of the anti-fogging agent is dropped onto the PTFE substrate in an environment of 25° C. and 65% RH, and the moment when the anti-fogging agent contacts the PTFE substrate is defined as 0 second, and every 5 seconds. Measure the contact angle.
  • ⁇ 2> The antifogging agent according to ⁇ 1>, which has a surface tension of 30 mN/m or less as measured by the pendant drop method.
  • ⁇ 3> The antifogging agent according to ⁇ 1> or ⁇ 2>, wherein the content of the solvent is 90% by mass or more based on the total amount of the antifogging agent.
  • ⁇ 4> A step of applying the anti-fogging agent according to any one of ⁇ 1> to ⁇ 3> to the inner surface of the lens of the vehicle lamp structure to form a coating film; and drying the coating film.
  • ⁇ 5> A vehicle lamp structure comprising an antifogging film formed from the antifogging agent according to any one of ⁇ 1> to ⁇ 3> on the inner surface of the lens.
  • Example 1 ⁇ Production of anti-fogging agent> (Example 1) 10.0 g of ST-OUP (manufactured by Nissan Chemical Co., Ltd., 15% by mass), which is a water-dispersed silica sol, 1.5 g of 10% by mass acetic acid aqueous solution, and 10 of a silane coupling agent (manufactured by Momentive, trade name: A1230).
  • IPA solution 3.0 g by mass of IPA solution, 3.75 g of 10% by mass IPA solution of Synthesis 1, 10.0 g of water, and 1% by mass of a metal catalyst (manufactured by Kawaken Fine Chemicals Co., Ltd., trade name: Al-M) 1.5 g of IPA solution was mixed and stirred for 2 hours to obtain a mother liquor.
  • a metal catalyst manufactured by Kawaken Fine Chemicals Co., Ltd., trade name: Al-M
  • water 5.8 g, IPA 4.8 g, ethylene glycol monobutyl ether 55.9 g, ethylene glycol monopropyl ether 0.9 g, 3-methoxy-3-methyl-1-butanol 1.1 g, 1.7 g of 1,2-dimethoxyethane was mixed to obtain a diluted solution.
  • a coating liquid was prepared by mixing the mother liquid and the diluted liquid.
  • Examples 2-6, Comparative Examples 1-4 A coating liquid was obtained in the same manner as in Example 1, except that the blending amount was changed as shown in Table 1 (unit: g). "-" in the table means that the amount is 0.
  • the regression coefficient ⁇ 50 to 100 of the regression line was calculated from the contact angle measured until, and the regression coefficient ⁇ 150 to 300 of the regression line was calculated from the contact angle measured from the time 150 seconds to 300 seconds. .
  • the surface tension of the coating liquid was measured by the pendant drop method using a contact angle meter (LSE-100TW manufactured by Nick Co., Ltd.).
  • the amount of the hanging drop (pendant drop) is 5 to 7 ⁇ L, and the surface tension is measured from the shape of the hanging drop every second using the software attached to the contact angle meter, and the average value of the surface tension measured for 20 seconds is applied. It was taken as the surface tension of the liquid.
  • the specific gravity of the coating liquid was measured with a portable density hydrometer DA-130N (manufactured by Kyoto Electronics Industry).
  • anti-fogging index (anti-fogging index) Using the apparatus shown in FIG. 5, images for antifogging property evaluation and reference images were obtained under the following photographing conditions. Using the obtained evaluation image and reference image, the antifogging index AFI was calculated by the calculation method shown below.
  • SYMBOLS 1 Lens, 2... Anti-fog film, 3... Lamp housing, 4... Light source, 5... Reflector, S... Lamp chamber, 10... Lamp structure, 20... Test apparatus, 30... Sample image, 40... Digital camera, 50 ... test material, 60 ... water.

Abstract

防曇剤は、シリカ粒子と、溶媒と、を含有し、下記の条件Aに従って接触角計を用いて接触角を測定したときに、50秒経過時から100秒経過時までに測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100が、0より小さい。 条件A:25℃、65%RH環境下で、PTFE基材上に防曇剤を0.5μL滴下し、防曇剤がPTFE基材に接触した瞬間を0秒として、5秒毎に接触角を測定する。

Description

防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体
 本開示は、防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体に関する。
 結露による曇りが発生する虞のある、自動車等の車両用ランプ構造体の灯室内に、界面活性剤を含む防曇剤組成物を塗布する方法が知られている(例えば、特許文献1参照)。界面活性剤を含む防曇剤により形成された防曇膜に水分が付着すると、界面活性剤の効果により水分が瞬時に水膜となり、曇りの発生が抑制される。
特開2016-027134号公報
 防曇膜は、一般的に、被着体(基材)に対して防曇剤をスプレー塗布し、塗膜を乾燥することにより形成される。コストの観点及び塗布効率の観点から、溶媒を用いて薄膜の防曇膜を形成することが好ましいところ、スプレー塗布直後の塗膜が均一であっても、乾燥後に形成される防曇膜において濡れ性のムラが生じる場合があることが本発明者らの検討により判明した。
 本開示の一側面は、上記事情に鑑みてなされたものであり、濡れ性のムラが充分少ない防曇膜を形成することができる防曇剤を提供することを目的とする。
 本発明者らが検討したところ、被着体に対する濡れ性が防曇剤中の溶媒の揮発に伴い変化することで、防曇剤の接触角に時間依存性があることを見出した。そこで、本発明者らは、防曇剤の接触角の時間依存性と、形成される防曇膜の特性との関係について、更に検討したところ、所定のタイミングにおける接触角が特定の条件を満たす防曇剤が、濡れ性のムラが充分少ない防曇膜を形成することができることを見出した。
 すなわち、本開示の一側面は、シリカ粒子と、溶媒と、を含有する防曇剤であって、下記の条件Aに従って接触角計を用いて接触角を測定したときに、50秒経過時から100秒経過時までに測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100が、0より小さい、防曇剤に関する。
 条件A:25℃、65%RH環境下で、PTFE基材上に防曇剤を0.5μL滴下し、防曇剤がPTFE基材に接触した瞬間を0秒として、5秒毎に接触角を測定する。
 上記の防曇剤によれば、濡れ性のムラが充分少ない防曇膜を形成することができる。
 防曇剤の一態様において、ペンダントドロップ法により測定される表面張力が30mN/m以下であってもよい。
 防曇剤の一態様において、溶媒の含有量が、前記防曇剤の全量を基準として、90質量%以上であってもよい。
 本開示の他の側面は、車両用ランプ構造体が備えるレンズ内表面に、上記の防曇剤を塗布して塗膜を形成する工程と、塗膜を乾燥させる工程と、を備える車両用ランプ構造体の防曇方法に関する。
 本開示の別の側面は、レンズ内表面に、上記の防曇剤から形成される防曇膜を備える、車両用ランプ構造体に関する。
 本開示によれば、濡れ性のムラが充分少ない防曇膜を形成することができる防曇剤を提供することができる。また、本開示によれば、防曇剤を用いた車両用ランプ構造体の防曇方法、及び濡れ性のムラが充分少ない防曇膜を備える車両用ランプ構造体を提供することができる。
図1は、車両用ランプ構造体を模式的に表す図である。 図2は、合成物1の合成前後のIRチャートを示す図である。 図3は、合成物1の合成前後のIRチャートを示す図である。 図4は、合成物1の合成前後のIRチャートを示す図である。 図5は、実施例4及び比較例2の接触角の測定結果を示すグラフである。 図6は、防曇剤の評価方法を説明するための模式図である。
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
<防曇剤>
 本実施形態の防曇剤は、シリカ粒子と、溶媒と、を含有する。
(シリカ粒子)
 シリカ粒子の形状は特に制限されない。シリカ粒子の形状としては、例えば、数珠状(パールネックレス状)、鎖状、球状、繭型、会合型、金平糖型が挙げられる。シリカ粒子の形状は、耐湿性及び耐水性の観点から、数珠状(パールネックレス状)又は鎖状であってもよい。シリカ粒子は、コロイダルシリカであってもよい。
 シリカ粒子は、二酸化ケイ素以外の金属酸化物を含有していてもよい。金属酸化物としては、例えば、アルミナが挙げられる。このようなシリカ粒子としては、シリカゾルの安定化のためにアルミノシリケイトがコロイダルシリカ表面に強固に形成されたコロイダルシリカが挙げられる。
 シリカ粒子の平均粒子径(平均二次粒子径)は、1~1000nmであってもよい。平均粒子径が1nm以上であることにより、防曇剤中でシリカ粒子が凝集し難くなるため、基材にシリカ粒子が密着し易くなる。一方、平均粒子径が1000nm以下であることにより、シリカ粒子の比表面積が大きくなり、基材にシリカ粒子が密着し易くなる。これらの観点から、シリカ粒子の平均粒子径は、3~700nm、5~500nm、10~300nm、又は20~200nmであってもよい。
 シリカ粒子の平均粒子径は、例えば、下記の手順により測定することができる。すなわち、シリカ粒子の分散液を100μL(Lはリットルを表す。以下同じ。)程度量り取り、シリカ粒子の含有量が0.05質量%前後(測定時透過率(H)が60~70%である含有量)になるようにイオン交換水で希釈して希釈液を得る。次いで、希釈液をレーザ回折式粒度分布計(株式会社堀場製作所製、商品名:LA-920、屈折率:1.93、光源:He-Neレーザ、吸収0)の試料槽に投入して、シリカ粒子の平均粒子径を測定することができる。
 シリカ粒子の1g当りのシラノール基数は、10×1018~1000×1018個/g、50×1018~800×1018個/g、又は100×1018~700×1018個/gであってもよい。シリカ粒子の1g当りのシラノール基数が10×1018個/g以上であることにより、基材の官能基との化学結合点が増加するため、基材との密着性が向上し易くなる。一方、シリカ粒子の1g当りのシラノール基数が1000×1018個/g以下であることにより、防曇剤の調製時におけるシリカ粒子同士の重縮合反応を抑制でき、基材の官能基との化学結合点が減少することを抑制することができる。
 シリカ粒子のシラノール基数(ρ[個/g])は、下記の手順により測定及び算出することができる。
[1]まず、予め質量を測定した容器(X[g])に、シリカ粒子を15g量りとり、適量(100mL以下)の水に分散させる。シリカ粒子が、水等の媒体に分散している分散液の状態である場合は、シリカ粒子の量が15gとなるように、分散液を容器に量りとる。
[2]0.1mol/L塩酸でpHを3.0~3.5に調整し、このときの容器の質量(Y[g])を測定し、液体の総質量(Y-X[g])を求める。
[3]上記[2]で得られた質量の1/10にあたる量((Y-X)/10[g])の液体を別の容器に量りとる。この段階で液体に含まれるシリカ粒子(A[g])は1.5gである。
[4]量りとった液体に、塩化ナトリウムを30g添加し、更に超純水を添加して全量を150gにする。これを、0.1mol/L水酸化ナトリウム溶液でpHを4.0に調整し、滴定用サンプルとする。
[5]滴定用サンプルに0.1mol/L水酸化ナトリウムをpHが9.0になるまで滴下し、pHが4.0から9.0になるまでに要した水酸化ナトリウム量(B[mol])を求める。
[6]下記式(1A)よりシリカ粒子のシラノール基数を算出する。
  ρ=B・N/A・SBET ・・・(1A)
(式(1A)中、N[個/mol]はアボガドロ数を示す。SBET[m/g]はシリカ粒子のBET比表面積を示す。)
 シリカ粒子のBET比表面積SBETは、BET比表面積法に従って求める。具体的な測定方法としては、例えば、シリカ粒子を乾燥機に入れ、150℃で乾燥させた後、測定セルに入れて120℃で60分間真空脱気した試料について、BET比表面積測定装置を用い、窒素ガスを吸着させることにより求めることができる。より具体的には、まず150℃で乾燥したシリカ粒子を、乳鉢(磁製、100ml)で細かく砕いて測定用試料として測定セルに入れ、ユアサアイオニクス株式会社製BET比表面積測定装置(製品名NOVE-1200)を用いて、BET比表面積SBETを測定する。
 シリカ粒子の分散液におけるシリカ粒子の会合度は、例えば、5.0以下、4.0以下、3.0以下、2.5以下、又は2.0以下であってもよい。シリカ粒子の会合度が5.0以下であると、シリカ粒子の比表面積が適度に大きくなるため、基材との密着性が向上する。また、このような会合度を有するシリカ粒子は入手し易い。シリカ粒子の会合度は、1.0以上、1.3以上、又は1.5以上であってもよい。シリカ粒子の会合度が1.0以上であると、シリカ粒子の比表面積が適度に小さくなることにより、防曇剤の調製時において、シリカ粒子の凝集を抑制することができる。
 シリカ粒子の会合度とは、シリカ粒子の分散液におけるシリカ粒子の平均粒子径(平均二次粒子径)と、シリカ粒子の二軸平均一次粒子径との比(平均粒子径/二軸平均一次粒子径)を意味する。シリカ粒子の平均一次粒子径は、例えば、公知の透過型電子顕微鏡(例えば、株式会社日立ハイテク製の商品名:H-7100FA)により測定することができる。シリカ粒子の平均一次粒子径は、具体的には、透過型電子顕微鏡を用いてシリカ粒子の画像を撮影し、20個のシリカ粒子について二軸平均一次粒子径を算出し、20個のシリカ粒子の平均値により算出することができる。
 シリカ粒子は、シリカ粒子の分散液として入手可能である。分散媒としては、水、イソプロピルアルコール、1-メトキシ-2-プロピルアルコール、エチルアルコール、メチルアルコール、エチレングリコール、エチレングリコール-n-プロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、N-メチルピロリドン、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、酢酸エチル等が挙げられる。分散媒は、上記の分散媒の混合液であってもよい。シリカ粒子の分散媒は、汎用性の観点から水であってもよい。
 シリカ粒子の分散液のpHは2~10、4~9、6~8、又は2~5であってもよい。pHが2~10であることにより、シリカ粒子の表面にアルコキシ基が存在する場合、アルコキシ基の加水分解反応速度が遅くなるため、アルコキシ基が残存したシリカ粒子を含む防曇膜を形成し易くなり、吸湿によるシラノール基の重縮合反応が抑制できることから、膜表面の防曇性(親水性)を維持し易い。
 シリカ粒子の分散液のpHは、pHメーター(例えば、電気化学計器株式会社製、型番:PHL-40)で測定することができる。pHの測定値は、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性りん酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))を用いて、3点校正した後、電極を分散液に入れて、2分以上経過して安定した後の値を採用する。
 分散液中のシリカ粒子のゼータ電位は-50~40mVであってもよく、-50~-11mV、又は11~40mVであってもよい。シリカ粒子のゼータ電位が-50~-11mV、又は11~40mVであることにより、分散液中でシリカ粒子同士が反発し易くなり、シリカ粒子の凝集を抑制し易くなり、防曇剤を基材に塗布した際に、防曇性が向上する。
 シリカ粒子のゼータ電位は、ゼータ電位測定器(例えば、ベックマン・コールター社製、型番:Coulter Delsa 440)で測定することができる。ゼータ電位の測定方法としては、シリカ粒子の濃度が試験液の全量基準で5ppmになるようにシリカ粒子の分散液に純水を加え、超音波処理によりシリカ粒子を分散させた試験液を準備する。次いで、両側に白金製電極を取り付けてある測定セルに試験液を入れ、両電極に10Vの電圧を印加すると、電荷を持ったシリカ粒子は、その電荷と反対の極を持つ電極側に移動する。電荷を持ったシリカ粒子の移動速度によりゼータ電位を算出することができる。
 シリカ粒子の原料としては、水ガラス又はアルコキシシランであってもよい。原料が水ガラスの場合、シリカ粒子の作製工程は、例えば、珪酸ナトリウムを水熱合成法で加熱及び濃縮してシリカ粒子を作製する。具体的には、シリカ粒子は、酸性pHで一次粒子の成長を抑えた状態で三次元網目構造の凝集体を作製し、これを解砕して作製してもよく、アルカリ性pHで一次粒子の成長を速くしてブロック状の凝集体を作製し、これを解砕して作製してもよい。原料がアルコキシシランの場合、シリカ粒子の作製工程は、例えば、アルコキシシランをゾルゲル合成してシリカ粒子を作製する。具体的には、シリカ粒子は、アルコキシシランの加水分解反応を促進させた後に、重縮合反応を促進してゲルを得た後、熱処理により溶媒を取り除いて作製してもよく、ゲルを得た後、所定の溶剤にて溶媒置換をして作製してもよい。
 シリカ粒子の分散液としては市販品を用いてよく、例えば、日産化学株式会社製のST-PS-SO、ST-PS-MO、ST-PS-M、ST-PS-S、ST-UP、ST-OUP、IPA-ST-UP、MA-ST-UP、PGM-ST-UP、MEK-ST-UP、IPA-ST、IPA-ST-L、IPA-ST-ZL、MA-ST-M、MA-ST-L、MA-ST-ZL、EG-ST、EG-ST-XL-30、NPC-ST-30、PGM-ST、DMAC-ST、DMAC-ST-ZL、NMP-ST、TOL-ST、MEK-ST-40、MEK-ST-L、MEK-ST-ZL、MIBK-ST、MIBK-ST-L、CHO-ST-M、EAC-ST、PMA-ST、MEK-EC-2130Y、MEK-EC-2430Z、MEK-EC-2140Z、MEK-AC-4130Z、MEK-AC-5140Z、PGM-AC-2140Y、PGM-AC-4130Y、MIBK-AC-2140Z、MIBK-SD-L、ST-XS、ST-OXS、ST-NXS、ST-CXS、ST-S、ST-OS、ST-NS、ST-30、ST-O、ST-N、ST-C、ST-AK、ST-50-T、ST-O-40、ST-N-40、ST-CM、ST-30L、ST-OL、ST-AK-L、ST-YL、ST-OYL、ST-AK-YL、ST-ZL、MP-1040、MP-2040、MP-4540M;扶桑化学株式会社製のPL-1-IPA、PL-1-TOL、PL-2L-PGME、PL-2L-MEK、PL-2L、PL-3、PL-4、PL-5、PL-1H、PL-3H、PL-5H、BS-2L、BS-3L、BS-5L、HL-2L、HL-3L、HL-4L、PL-3-C、PL-3-D;多摩化学工業株式会社製のTCSOL800;日揮触媒化成株式会社製のSI-40、SI-50、SI-45P、SI-80P、SIK-23、S-30H、SIK-15、SI-550等が挙げられる。
 シリカ粒子の含有量は、防曇性が優れる観点から、防曇剤の全量を基準として、0.05質量%以上、0.1質量%以上、0.2質量%以上、0.5質量%以上、0.9質量%以上、又は1質量%以上であってもよい。シリカ粒子の含有量は、シリカ粒子同士のシラノール基の重縮合反応が抑制され、防曇性(親水性)が維持し易くなる観点から、防曇剤の全量を基準として、20質量%以下、15質量%以下、10質量%以下、8質量%以下、又は5質量%以下であってもよい。これらの観点から、シリカ粒子の含有量は、防曇剤の全量を基準として、0.1~20質量%、又は1~10質量%であってもよい。
(溶媒)
 溶媒は、防曇剤中にてシリカ粒子の分散、並びに、バインダー化合物及びシランカップリング剤の溶解等を担う液状媒体であってもよい。
 溶媒としては、例えば、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としてはメチルアルコール、エチルアルコール、1-プロパノール、イソプロピルアルコール(IPA)、1-ブチルアルコール、2-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール、1-ブトキシ-2-プロパノール、1-ヘキサノール、1-オクタノール、2-オクタノール、3-メトキシ-3-メチル-1-ブタノール等のアルコール類;ポリエチレングリコール等のグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノ-tert-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールn-プロピルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;アセトン、メチルエチルケトン等のケトン類;1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;シクロヘキサン等の環状炭化水素類;アセトニトリルなどが挙げられる。
 水の含有量は、溶媒の全量を基準として、2質量%以上、3質量%以上、4質量%以上、6質量%以上、8質量%以上、10質量%以上、12質量%以上、又は15質量%以上であってもよく、30質量%以下、25質量%以下、20質量%以下、18質量%以下、16質量%以下、14質量%以下、12質量%以下、又は10質量%以下であってもよい。
 有機溶媒の含有量は、溶媒の全量を基準として、60質量%以上、70質量%以上、73質量%以上、75質量%以上、又は80質量%以上であってもよく、98質量%以下、97質量%以下、96質量%以下、82質量%以下、81質量%以下、又は80質量%以下であってもよい。
 アルコール類の含有量は、溶媒の全量を基準として、5質量%以上、10質量%以上、13質量%以上、15質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、又は70質量%以上であってもよく、80質量%以下、77質量%以下、75質量%以下、65質量%以下、55質量%以下、45質量%以下、35質量%以下、25質量%以下、18質量%以下、又は15質量%以下であってもよい。
 グリコールエーテル類の含有量は、溶媒の全量を基準として、2質量%以上、3質量%以上、4質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、又は50質量%以上であってもよく、70質量%以下、65質量%以下、60質量%以下、55質量%以下、45質量%以下、35質量%以下、25質量%以下、15質量%以下、又は10質量%以下であってもよい。
 IPAの含有量は、溶媒の全量を基準として、4質量%以上、6質量%以上、8質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、又は60質量%以上であってもよく、80質量%以下、75質量%以下、70質量%以下、65質量%以下、55質量%以下、45質量%以下、35質量%以下、25質量%以下、15質量%以下、又は10質量%以下であってもよい。
 3-メトキシ-3-メチル-1-ブタノールの含有量は、溶媒の全量を基準として、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、又は60質量%以上であってもよく、75質量%以下、70質量%以下、66質量%以下、55質量%以下、45質量%以下、35質量%以下、25質量%以下、又は15質量%以下であってもよい。
 エチレングリコールモノプロピルエーテルの含有量は、溶媒の全量を基準として、0.1質量%以上、0.5質量%以上、1質量%以上、2質量%以上、3質量%以上、4質量%以上、又は5質量%以上であってもよく、20質量%以下、10質量%以下、7質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、又は1質量%以下であってもよい。
 エチレングリコールモノブチルエーテルの含有量は、溶媒の全量を基準として、0.5質量%以上、1質量%以上、1.5質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、又は50質量%以上であってもよく、70質量%以下、65質量%以下、60質量%以下、55質量%以下、45質量%以下、35質量%以下、25質量%以下、15質量%以下、10質量%以下、又は5質量%以下であってもよい。
 1,2-ジメトキシエタンの含有量は、溶媒の全量を基準として、0.1質量%以上、0.2質量%以上、0.4質量%以上、1質量%以上、5質量%以上、又は10質量%以上であってもよく、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下、5質量%以下、又は1質量%以下であってもよい。
 溶媒の含有量は、防曇剤の全量を基準として、90質量%以上、93質量%以上、95質量%以上、97質量%以上、又は97.5質量%以上であってもよく、99.5質量%以下、98質量%以下、又は97.8質量%以下であってもよい。
(バインダー化合物)
 防曇剤は、バインダー化合物を更に含有してもよい。本明細書において、バインダー化合物とは、シリカ粒子と結合し、架橋することで防曇膜の強度を向上させる化合物を指す。バインダー化合物は、防曇剤がシランカップリング剤を含有する場合、シランカップリング剤が有する官能基と反応する官能基を1又は2以上有するものであってもよい。バインダー化合物としては、エポキシ化合物、ポリビニルアルコール、変性ポリビニルアルコール、ポリアクリル酸、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリビニルピロリドン、ポリビニルピロリドン酢酸ビニル共重合体(酢酸ビニルピロリドン共重合体)、ポリアミン系樹脂、セルロース、デキストリン、セルロースナノファイバー、シリケートオリゴマー、シリケートポリマー等が挙げられる。
 バインダー化合物は、防曇膜の耐フォギング性が優れる観点から、エポキシ化合物であってもよい。エポキシ化合物としては、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。
 シランオリゴマーとしては、エチルシリケート40、エチルシリケート48、EMS-485、メチルシリケート51、メチルシリケート53A、コルコートPX、コルコートN-103X(以上、コルコート株式会社製。)等が挙げられる。
 バインダー化合物の含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、シリカ粒子100質量部に対して、0.1質量部以上、0.5質量部以上、又は1質量部以上であってもよく、1000質量部以下、500質量部以下、又は100質量部以下であってもよい。バインダー化合物の含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、シリカ粒子100質量部に対して、0.1~1000質量部、0.5~500質量部、又は1~100質量部であってもよい。
 バインダー化合物の含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、防曇剤の固形分の全量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってもよく、30質量%以下、20質量%以下、又は10質量%以下であってもよい。バインダー化合物の含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、防曇剤の固形分の全量を基準として、1~30質量%、3~20質量%、又は5~10質量%であってもよい。
(シランカップリング剤)
 防曇剤は、シランカップリング剤を更に含有してもよい。シランカップリング剤としては、酸無水物又はジカルボン酸化合物であってもよい。すなわち、防曇剤は、酸無水物基又は2つのカルボキシ基を有するシランカップリング剤を更に含有してもよい。
 酸無水物であるシランカップリング剤は、例えば、一般式(1)で表されるシランカップリング剤であってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R11、R12、及びR13は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、aは、1~10の整数を示す。
 式(1)中、R11、R12、及びR13は、水素原子、メチル基、エチル基、プロピル基、又はブチル基であってもよい。aは、1~8、1~5、又は1~3の整数であってもよい。
 ジカルボン酸化合物であるシランカップリング剤は、例えば、一般式(2)で表されるシランカップリング剤であってもよい。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R21、R22、R23及びR24は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、b及びcは、それぞれ独立に0~10の整数を示す。
 式(2)中、R21、R22、R23及びR24は、水素原子、メチル基、又はエチル基であってもよい。b及びcは、それぞれ独立に0~8、0~5、又は0~3の整数であってもよい。
 防曇剤は、酸無水物であるシランカップリング剤及びジカルボン酸化合物であるシランカップリング剤以外のシランカップリング剤(以下、このシランカップリング剤を「シランカップリング剤A」ともいう)を更に含有してもよい。
 シランカップリング剤Aは、例えば、一般式(3)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R31は、1価の有機基を示し、R32は炭素数1~3のアルキル基を示し、dは0~2の整数を示し、eは1~3の整数を示し、且つd+e=4である。
 式(3)中、eが2以上の場合、複数あるR32は同じであってもよく、異なっていてもよい。
 R31としては、例えば、C1~C30の分岐又は直鎖のアルキル基、アルケニル基、C3~C10のシクロアルキル基、C6~C10のアリール基、エポキシ基、アクリロイル基、メタクリロイル基、アミノ基、ウレイド基、イソシアネート基、イソシアヌレート基、メルカプト基、及びフルオロ基が挙げられる。
 C1~C30の分岐又は直鎖のアルキル基を有するシランカップリング剤としては、メチルトリメトキシシラン(信越化学工業株式会社製KBM-13等)、エチルトリメトキシシラン、プロピルトリメトキシシラン(信越化学工業株式会社製KBM-3033等)、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン(信越化学工業株式会社製KBM-3063等)、ヘプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン(信越化学工業株式会社製KBM-3103C等)、ウンデシルトリメトキシシラン、ドデシルトリメトキシシラン、テトラデシルトリメトキシシラン、ステアリルトリメトキシシラン、メチルトリエトキシシラン(信越化学工業株式会社製KBE-13等)、エチルトリエトキシシラン、プロピルトリエトキシシラン(信越化学工業株式会社製KBE-3033等)、ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン(信越化学工業株式会社製KBE-3063等)、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン(信越化学工業株式会社製KBE-3083等)、ノニルトリエトキシシラン、デシルトリエトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ステアリルトリエトキシシランなどが挙げられる。
 アルケニル基を有するシランカップリング剤としては、ビニルトリメトキシシラン(信越化学工業株式会社製KBM-1003等)、ビニルトリエトキシシラン(信越化学工業株式会社製KBE-1003等)、アリルトリメトキシシラン、アリルトリエトキシシランなどが挙げられる。
 C6~C10のアリール基を有するシランカップリング剤としては、フェニルトリメトキシシラン(信越化学工業株式会社製KBM-103,KBM-202SS,KBE-103,KBE-202等)、p―スチリルトリメトキシシラン(信越化学工業株式会社製KBM-1403等)などが挙げられる。
 エポキシ基を有するシランカップリング剤としては、3-グリシジルオキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-403等)、8-グリシドキシオクチルトリメトキシシラン(信越化学工業株式会社製KBM-4803等)、3-グリシジルオキシプロピルトリエトキシシラン(信越化学工業株式会社製KBE-403等)、KBE-402、X-12-981S、X-12-984S(いずれも商品名、信越化学工業株式会社製)などが挙げられる。
 アクリロイル基を有するシランカップリング剤としては、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-5103等)、X-12-1048、X-12-1050(いずれも商品名、信越化学工業株式会社製)などが挙げられる。
 メタクリロイル基を有するシランカップリング剤としては、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503等)、8-メタクリロキシオクチルトリメトキシシラン(信越化学工業株式会社製KBM-5803等)、3-メタクリロキシプロピルトリエトキシシラン(信越化学工業株式会社製KBE-503等)、3-メタクリロキシプロピルメチルジメトキシシラン(信越化学工業株式会社製KBM-502等)、3-メタクリロキシプロピルメチルジエトキシシラン(信越化学工業株式会社製KBE-502等)などが挙げられる。
 アミノ基を有するシランカップリング剤としては、3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM-903等)、3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製KBE-903等)、N―2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM-603等)、N―2-(アミノエチル)-8-アミノオクチルトリメトキシシラン(信越化学工業株式会社製KBM-6803等)、N―2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製KBE-603等)、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM-573等)、N―2-(アミノエチル)―3-アミノプロピルメチルジメトキシシラン(信越化学工業株式会社製KBM-602等)、N―2-(アミノエチル)―3-アミノプロピルメチルジエトキシシラン(信越化学工業株式会社製KBE-602等)、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM-575等)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(信越化学工業株式会社製KBE-9103P等)、X-12-972F(商品名、信越化学工業株式会社製)などが挙げられる。
 ウレイド基を有するシランカップリング剤としては、3-ウレイドプロピルトリエトキシシラン(信越化学工業株式会社製KBE-585A等)などが挙げられる。
 イソシアネート基を有するシランカップリング剤としては、3-イソシアネートプロピルトリエトキシシラン(信越化学工業株式会社製KBE-9007等)、X-12-1159L(商品名、信越化学工業株式会社製)などが挙げられる。
 イソシアヌレート基を有するシランカップリング剤としては、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート(信越化学工業株式会社製KBM-9659等)などが挙げられる。
 メルカプト基を有するシランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製KBM-803等)、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製KBM-802等)、X-12-1154、X-12-1156(商品名、信越化学工業株式会社製)などが挙げられる。
 フルオロ基を有するシランカップリング剤としては、3,3,3―トリフルオロプロピルトリメトキシシラン(信越化学工業株式会社製KBM-7103等)などが挙げられる。
 シランカップリング剤Aは、ポリエーテル基を有するシランカップリング剤であってもよく、一般式(4)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R41、R42、R43及びR44は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、L41及びL42は、それぞれ独立に炭素数1~6のアルキレン基を示し、fは、3~25の整数を示す。
 R41、R42、R43及びR44は、メチル基、エチル基、プロピル基、又はブチル基であってもよい。L41及びL42は、エチレン基、プロピレン基、又はブチレン基であってもよい。fは、10~20であってもよく、11~15であってもよい。
 一般式(4)で表されるポリエーテルシランとしては、A1230(モメンティブ・パフォーマンス・マテリアルズ合同株式会社製)、X-12-641(信越化学工業株式会社製)等が挙げられる。
 シランカップリング剤の含有量は、防曇膜の耐フォギング性が優れる観点から、シリカ粒子100質量部に対して、10質量部以上、15質量部以上、又は20質量部以上であってもよく、50質量部以下、30質量部以下、又は20質量部以下であってもよい。シランカップリング剤の含有量は、シリカ粒子100質量部に対して、10~50質量部、又は15~30質量部であってもよい。
 シランカップリング剤の含有量は、防曇膜の耐フォギング性が優れる観点から、防曇剤の固形分の全量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってもよく、30質量%以下、20質量%以下、又は15質量%以下であってもよい。シランカップリング剤の含有量は、防曇剤の固形分の全量を基準として、1~30質量%、又は10~15質量%であってもよい。
(合成物A)
 防曇剤において、バインダー化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤とは、他の成分と混合する前に予め反応させて、バインダー化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤との合成物(以下、この合成物を「合成物A」ともいう)としてもよい。すなわち、防曇剤は、バインダー化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤に代えて合成物Aを更に含有してもよく、バインダー化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤と共に合成物Aを更に含有してもよい。
 合成物Aの構造は、バインダー化合物の種類、及び、シランカップリング剤の種類に応じて決定される。合成物Aは、例えば、一般式(5)又は一般式(6)で表される化合物を含んでいてもよい。合成物Aは、一般式(5)で表される化合物の縮合物を含んでいてもよく、一般式(6)で表される化合物の縮合物を含んでいてもよく、一般式(5)又は一般式(6)で表される化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤との縮合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R51、R52、及びR53は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、R54、及びR55は、それぞれ独立に水素原子、又は1価の有機基を示し、gは、1~10の整数を示す。
 式(5)中、R51、R52、及びR53は、それぞれ独立に水素原子、メチル基、又はエチル基であってもよい。R54及びR55は、それぞれ独立に水素原子、又は一般式(7)で表される構造であってもよい。gは、1~8、1~5、又は1~3の整数であってもよい。
Figure JPOXMLDOC01-appb-C000006
 式(6)中、R61、R62、R63、及びR64は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、R65、及びR66は、それぞれ独立に水素原子、又は1価の有機基を示し、h及びiは、それぞれ独立に0~10の整数を示す。
 式(6)中、R61、R62、R63、及びR64は、それぞれ独立に水素原子、メチル基、又はエチル基であってもよい。R65及びR66は、それぞれ独立に水素原子、又はバインダー化合物に由来する構造であってもよい。h及びiは、それぞれ独立に0~8、0~5、又は0~3の整数であってもよい。
 R65及びR66は、バインダー化合物がエポキシ化合物である場合、それぞれ、水素原子、又はエポキシ化合物に由来する構造であってもよい。R65及び/又はR66が、エポキシ化合物に由来する構造である場合、R65及び/又はR66は、エチレングリコール鎖、プロピレングリコール鎖、ソルビトール鎖、又はグリセロール鎖を有する構造であってもよく、エポキシ基、グリシジル基、又はジオール基を有する構造であってもよい。
 合成物Aは、例えば、バインダー化合物と、酸無水物又はジカルボン酸化合物であるシランカップリング剤と、を40~80℃の環境下で0.5~3時間撹拌することにより作製することができる。バインダー化合物とシランカップリング剤Aとの混合比率は、バインダー化合物100質量部に対して、シランカップリング剤Aが1~200質量部、又は10~30質量部であってもよい。合成物Aを合成するときの条件は、例えば、IRチャートにおいて確認できるピーク位置の変化により調整することができる。具体的には、シランカップリング剤Aが酸無水物である場合、合成前のIRチャートにおいて、酸無水物基のピークである1780cm-1、及び1850cm-1のピークが、合成後のIRチャートにおいて消失していることにより合成反応の進行を確認することができる。また、合成後のIRチャートにおいて、1735cm-1のピークが生じることにより、エステル基を有する化合物が得られていることを確認できる。また、バインダー化合物がエポキシ化合物である場合、IRチャートにおいて合成前に確認できるエポキシ基のピークである910cm-1のピークの減少により合成反応の進行を確認することができる。
 合成物Aの含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、シリカ粒子100質量部に対して、10質量部以上、15質量部以上、又は20質量部以上であってもよく、50質量部以下、40質量部以下、又は30質量部以下であってもよい。合成物Aの含有量は、シリカ粒子100質量部に対して、10~50質量部、又は20~30質量部であってもよい。
 合成物Aの含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、シランカップリング剤100質量部に対して、50質量部以上、80質量部以上、又は100質量部以上であってもよく、300質量部以下、200質量部以下、又は150質量部以下であってもよい。合成物Aの含有量は、シランカップリング剤100質量部に対して、50~300質量部、又は100~150質量部であってもよい。
 合成物Aの含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、防曇剤の固形分の全量を基準として、5質量%以上、10質量%以上、又は15質量%以上であってもよく、40質量%以下、25質量%以下、又は20質量%以下であってもよい。合成物Aの含有量は、防曇剤の固形分の全量を基準として、5~40質量%、又は15~20質量%であってもよい。
(金属触媒)
 防曇剤は、金属触媒を更に含有してよい。金属触媒は、結合促進材料として機能し、防曇剤が金属触媒を含有することにより、耐湿性及び耐水性に優れた防曇膜をより形成し易くなる。
 金属触媒としては特に制限されず、公知の金属触媒から選択することができる。金属触媒としては、例えば、ジルコニウム化合物、チタン化合物、ニッケル化合物、アルミ化合物、スズ化合物等が挙げられる。
 ジルコニウム化合物としては、例えば、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)等が挙げられる。
 チタン化合物としては、例えば、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)等が挙げられる。
 ニッケル化合物としては、例えば、CR12(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製)、Ni(AcAc)等が挙げられる。
 アルミ化合物としては、例えば、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムエチルアセトアセテートジイソプロピレート等が挙げられる。
 スズ化合物としては、例えば、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクチエート等が挙げられる。
 金属触媒は、防曇膜の耐湿性及び耐水性がより優れる観点から、ジルコニウム化合物、チタン化合物、アルミ化合物、ニッケル化合物であってもよい。防曇剤が金属触媒としてジルコニウム化合物、チタン化合物及びアルミ化合物からなる群より選ばれる少なくとも一種を含有することにより、シリカ粒子(例えば、コロイダルシリカ)との結合点が多くなるため、より強固な結合を形成し易くなる。
 金属触媒は、市販品であってもよい。例えば、ジルコニウム化合物としてはZC-150(マツモトファインケミカル株式会社製)、チタン化合物としてはTC-310(マツモトファインケミカル株式会社製)、アルミ化合物としてはAl-M(川研ファインケミカル株式会社製)、ニッケル化合物としてはアセチルアセトンニッケル(II)水和物(東京化成工業株式会社製)などが挙げられる。
 金属触媒の含有量は、防曇膜の耐湿性及び耐水性がより優れる観点から、シリカ粒子100質量部に対して、0.01質量部以上、0.05質量部以上、0.1質量部以上であってもよく、5質量部以下、2質量部以下、又は1.5質量部以下であってもよい。金属触媒の含有量は、防曇膜の耐湿性及び耐水性がより優れる観点から、シリカ粒子100質量部に対して、0.01~5質量部であってもよく、0.05~2質量部であってもよく、0.1~1.5質量部であってもよい。
 金属触媒の含有量は、防曇膜の耐水性及び耐湿性がより優れる観点から、防曇剤の全量を基準として、0.001質量%以上、0.005質量%以上、又は0.01質量%以上であってもよく、5質量%以下、3質量%以下、又は1.5質量%以下であってもよい。金属触媒の含有量は、防曇剤の全量を基準として、0.005~5質量%、又は0.01~1.5質量%であってもよい。
(その他の添加剤)
 本実施形態の防曇剤は、防曇膜の耐フォギング性が優れる観点から、分岐構造を有する有機リン酸エステル及び分岐構造を有する有機スルホン酸塩からなる群より選択される少なくとも一種の添加剤を更に含んでいてもよい。有機リン酸エステルは、エステル部に分岐構造を有してもよい。分岐構造としては、分岐状のアルキル基であってもよい。
 分岐構造を有する有機リン酸エステルとしては、例えば、下記一般式(AD-1)で表される化合物が挙げられる。
P(=O)(OR41   …(AD-1)
 式(AD-1)中、R41は、分岐構造を有する有機基を示す。R41としては、炭素数1~15の分岐状のアルキル基であってもよい。一般式(AD-1)で表される化合物としては、リン酸トリスエチルヘキシルが挙げられる。
 分岐構造を有する有機スルホン酸塩としては、例えば、下記一般式(AD-2)で表される化合物が挙げられる。
51-S(=O)・M   …(AD-2)
 式(AD-1)中、R51は、分岐構造を有する有機基を示し、MはNa等の金属原子を示す。一般式(AD-2)で表される化合物としては、ジ-2-エチルヘキシルスルホコハク酸ナトリウム等のスルホコハク酸ジエステル塩、アルキル(C12-14)ベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩が挙げられる。
 添加剤の含有量は、防曇膜の耐フォギング性が優れる観点から、シリカ粒子100質量部に対して、0.1~10質量部であってもよい。
 防曇剤は、酢酸又はその塩を更に含有してもよい。酢酸及びその塩の合計の含有量は、溶液のpH調整及び防曇膜の耐水性等の特性の観点から、シリカ粒子100質量部に対して、1~50質量部であってもよく、3~30質量部であってもよく、5~20質量部であってもよい。
 防曇剤は、酸化防止剤、紫外線吸収剤、光安定剤等の添加剤を含んでよい。防曇剤は、原料を調製する際に用いられる消泡剤、触媒等として、酢酸の他に、硝酸、塩酸、硝酸、リン酸、硫酸パラトルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、フェノールスルホン酸、シュウ酸、マレイン酸、マロン酸、酒石酸、クエン酸、りんご酸、酢酸、乳酸、コハク酸、安息香酸、アンモニア、尿素、イミダゾール、炭酸ナトリウム、炭酸カルシウム、酢酸ナトリウム等を含んでもよい。防曇剤の粘度を調整する観点から、防曇剤は増粘剤を含有してもよい。
 防曇剤(及び後述の親水化剤)は、非界面活性剤系としてもよい。非界面活性剤系とは、防曇剤の成分として知られている界面活性剤の含有量が、防曇剤の固形分の全量を基準として、1質量%以下であることを意味する。防曇剤は、界面活性剤を含有しなくてもよい(界面活性剤の含有量が、防曇剤の固形分の全量を基準として、実質的に0質量%であってもよい)。界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等の界面活性剤が挙げられる。
 本実施形態に係る防曇剤は、下記の条件Aに従って接触角計を用いて接触角を測定したときに、50秒経過時から100秒経過時まで測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100が、0より小さい。
 条件A:25℃、65%RH環境下で、PTFE基材上に防曇剤を0.5μL滴下し、防曇剤がPTFE基材に接触した瞬間を0秒として、5秒毎に接触角を測定する。
 なお、接触角測定時に用いる接触角計、PTFE基材としては、後述の実施例に記載のものを使用することができる。
 本実施形態の防曇剤によれば、濡れ性のムラが充分少ない防曇膜を形成することができる。また、本実施形態の防曇剤によれば、濡れ性のムラが充分少ない防曇膜を形成することができることから、優れた防曇性を有する防曇膜を形成しやすい。
 このような効果が奏される理由について本発明者らは以下のとおり推察する。すなわち、上記の回帰直線の回帰係数(傾き)は、特定の測定区間における接触角の変化率を意味するが、特定の測定区間における回帰直線の回帰係数が0より小さくなる防曇剤は、当該特定の測定区間における接触角の変化率が0より小さいことから、溶媒が揮発している最中であっても基材に対する濡れ性が充分に維持され得ると考えられ、これにより、濡れ性のムラが充分少ない防曇膜を形成することができたと推察される。
 回帰直線の回帰係数は、最小二乗法により算出することができる。例えば、50秒経過時から100秒経過時までに測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100は、50秒経過時の接触角θ50、55秒経過時の接触角θ55、60秒経過時の接触角θ60、・・・、及び100秒経過時の接触角θ100の合計11個の接触角の測定結果について、経過時間をx(上記の場合、50+5n(nは、0~10の整数))、接触角をy(上記の場合、θ50+5n(nは、0~10の整数))としたときに、y=ax+b(a:回帰直線の回帰係数(傾き)、b:回帰直線の切片)で表される回帰直線の回帰係数aを意味し、回帰係数aは、上記の11個の接触角測定結果から最小二乗法により算出される。
 本実施形態に係る防曇剤は、条件Aに従って接触角計を用いて接触角を測定したときに、特定の測定区間T1~T2における回帰直線の回帰係数ΔθT1~T2は、下記の条件(A-1)に加えて、下記の条件(A-2)~条件(A-4)のうちの一つ以上を更に満たしていてもよい。なお、条件(A-2)については、150秒経過時から300秒経過時までに測定された31個の接触角から最小二乗法により回帰直線の回帰係数Δθ150~300が算出され、条件(A-3)については、10秒経過時から50秒経過時までに測定された9個の接触角から最小二乗法により回帰直線の回帰係数Δθ10~50が算出され、条件(A-4)については、10秒経過時から300秒経過時までに測定された59個の接触角から最小二乗法により回帰直線の回帰係数Δθ10~300が算出される。
 条件(A-1):Δθ50~100<0
 条件(A-2):Δθ150~300<0
 条件(A-3):Δθ10~50<0
 条件(A-4):Δθ10~300<0
 回帰直線の回帰係数ΔθT1~T2は、濡れ性のムラが充分少ない防曇膜をより形成しやすい観点から、-0.01以下、-0.02以下、又は-0.03以下であってもよく、-0.5以上、-0.4以上、-0.3以上、-0.2以上、又は-0.1以上であってもよい。回帰直線の回帰係数Δθ50~100、Δθ150~300、Δθ10~50、及びΔθ10~300の少なくともいずれか一つが上記の範囲を満たすものであってもよい。
 防曇剤は、濡れ性のムラが充分少ない防曇膜をより形成しやすい観点から、条件Aに従って接触角計を用いて接触角を測定したときに、75秒経過時における接触角θ75が、θ50>θ75>θ100の関係を満たしていてもよい。防曇剤は、60秒経過時、70秒経過時、80秒経過時、及び90秒経過時における接触角がそれぞれθ60、θ70、θ80、及びθ90であるときに、θ50>θ60>θ70>θ80>θ90>θ100の関係を満たしていてもよい。
 防曇剤は、濡れ性のムラが充分少ない防曇膜をより形成しやすい観点から、条件Aに従って接触角計を用いて接触角を測定したときに、T1秒経過時における接触角θT1及びT2秒経過時における接触角θT2(但し、10≦T1<T2≦300)が、θT1>θT2を満たしていてもよい。例えば、防曇剤は、T1が150秒であり、T2が300秒であるとき、θ150>θ300の関係を満たしていてもよい。例えば、防曇剤は、T1が10秒であり、T2が50秒であるとき、θ10>θ50の関係を満たしていてもよい。例えば、防曇剤は、T1が10秒であり、T2が300秒であるとき、θ10>θ300の関係を満たしていてもよい。
 防曇剤は、濡れ性のムラが充分少ない防曇膜をより形成しやすい観点から、ペンダントドロップ法により測定される表面張力が30mN/m以下であってよい。表面張力は、20mN/m以上であってもよい。表面張力は、具体的には、後述の実施例に記載の方法で測定することができる。
<車両用ランプ構造体の防曇方法>
 本実施形態に係る防曇剤は、車両用ランプ構造体の防曇に用いることができる。車両用ランプ構造体の防曇方法としては、例えば、車両用ランプ構造体が備えるレンズ内表面に防曇剤を塗布し、塗膜を形成する工程(塗布工程)と、塗膜を乾燥させる工程(乾燥工程)と、を備えてよい。塗布工程に先立ち、レンズの表面に付着している離型剤を除去する目的で洗浄工程を更に備えてもよい。
(洗浄工程)
 洗浄工程にて使用する洗浄液は特に限定されない。車両用ランプ構造体が備えるレンズ内の表面基材がポリカーボネートである場合、ポリカーボネート基材を溶かさない液体であればよく、例えば、水、アルコール類等であってもよい。より具体的には、水、イソプロピルアルコール、メタノール、エタノール等であってもよい。洗浄工程は、洗浄液を染み込ませた布等を用いて基材を拭く工程を備えてよい。
(塗布工程)
 塗布工程は、例えば、車両用ランプ構造体が備えるレンズ内表面に防曇剤を塗布する工程であり、防曇剤は、レンズ内表面全体に塗布してもよく、選択的に一部に塗布してもよい。
 防曇剤の塗布方法は特に限定されず、例えば、スピンコート法、ディップコート法、スプレーコート法、フローコート法、バーコート法、グラビアコート法等であってもよい。防曇剤を布等に染み込ませて塗布してもよい。防曇剤の塗布方法は、凹凸のある被処理面にも均一な厚さの塗膜を形成し易い観点、生産性が高く、防曇剤の使用効率が高い観点から、スプレーコート法であってもよい。これらの方法は、単独で、又は2種類以上を併用してもよい。
 塗布量は防曇剤の成分、その含有量等に依るため限定されるものではないが、例えば、10-9~10g/mであってもよい。
 塗布工程で用いる防曇剤の温度は、例えば、1~50℃、又は10~30℃であってもよい。防曇剤の温度が1℃以上であることにより、防曇性と密着性とを更に向上し易く、50℃以下であることにより、防曇膜の透明性が向上し易い。防曇剤による処理時間は、例えば、1秒間~1時間、又は5~30分間であってもよい。
(乾燥工程)
 乾燥工程では、防曇剤を塗布した後、防曇剤から溶媒を揮発させる工程であってもよい。溶媒は、常温(例えば20℃)で放置することで揮発させることができる。乾燥工程は、より高温で実施することにより、レンズ内表面と防曇膜の密着性を更に向上させることができる。乾燥工程の温度は、レンズの耐熱温度に応じて調整することができ、例えば、5~300℃、又は10~200℃であってもよい。温度が5℃以上であることにより、密着性をより向上させることができ、300℃以下であることにより、熱による劣化をより抑制することができる。乾燥時間は30秒間~150時間とすることができる。本工程により、レンズ内表面に、シリカ粒子を含む防曇膜が形成される。
 防曇膜の厚さは、特に限定されるものではないが、透明性、防曇性等の観点から、1nm~1000μm、5nm~10μm、又は10nm~1μmであってもよい。防曇膜の膜厚は、例えば、非接触式膜厚計Optical NanoGauge C13027(浜松ホトニクス株式会社製)により測定することができる。
 防曇膜の水接触角は、超純水の液滴1μLに対し40°以下とすることができ、防曇性が優れる観点から、20°以下、又は10°以下であってもよい。水接触角は、接触角計を用いた10回の測定の平均値により算出することができる。
 防曇膜の可視光透過率は、85%以上、90%以上、又は95%以上であってもよい。防曇膜の可視光透過率が85%以上であることにより、車両用ランプの輝度を充分に高く維持することができる。防曇膜の可視光透過率は、例えば、U-3500型自記分光光度計(株式会社日立製作所製)により測定することができる。
 防曇膜のヘイズは、6.0以下、3.0以下、又は1.0以下であってもよい。防曇膜のヘイズが6.0以下であることにより、車両用ランプの輝度を充分に高く維持することができる。防曇膜のヘイズは、例えば、ヘイズメーター(NDH2000 日本電色工業株式会社製)により測定することができる。
 防曇膜のYIは、4.0以下、3.0以下、又は1.5以下であってもよい。防曇膜のYIが4.0以下であることにより、車両用ランプの輝度を充分に高く維持することができる。防曇膜のYIは、例えば、色度計測器(300A、日本電色工業株式会社製)により測定することができる。
 図1は、車両用ランプ構造体を模式的に表す図である。当該車両用ランプ構造体のレンズ内表面には、本実施形態に係る防曇剤を用いて防曇処理が施されている。すなわち、車両用ランプ構造体は、レンズ内表面に、防曇剤から形成される防曇膜を備える。図1に示すランプ構造体10は、一方が開放された凹部状に構成されたランプハウジング3と、ランプハウジング3の開放側を塞ぐレンズ1と、を備える。レンズ1の材質は、例えばポリカーボネートである。ランプハウジング3とレンズ1とにより、灯室Sが形成される。ランプハウジング3には、灯室S内に配置される光源4が取り付けられている。光源4としては、白熱バルブ、LEDバルブ、ハロゲンバルブ等が適宜採用される。灯室S内には、図に示すように、光源4の光に対する反射板として機能するリフレクタ5が、光源4を後側から包囲するように設けられていてよい。レンズ1の内表面、すなわち灯室Sと対向する面には、上記防曇剤により形成された防曇膜2が設けられている。防曇膜2は、レンズ1内表面全体に設けられていてもよく、図1に示すように一部に選択的に設けられていてもよい。ランプ構造体10によれば、例えば、光源4の周囲及び/又は後側にゴム材のカバー等が設けられている場合であっても、防曇膜2は長期にわたって充分な防曇性を有することができる。
 本開示は、以下の<1>~<5>を含む。
<1>シリカ粒子と、溶媒と、を含有する防曇剤であって、
 下記の条件Aに従って接触角計を用いて接触角を測定したときに、50秒経過時から100秒経過時までに測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100が、0より小さい、防曇剤。
 条件A:25℃、65%RH環境下で、PTFE基材上に前記防曇剤を0.5μL滴下し、前記防曇剤が前記PTFE基材に接触した瞬間を0秒として、5秒毎に接触角を測定する。
<2>ペンダントドロップ法により測定される表面張力が30mN/m以下である、<1>に記載の防曇剤。
<3>前記溶媒の含有量が、前記防曇剤の全量を基準として、90質量%以上である、<1>又は<2>に記載の防曇剤。
<4>車両用ランプ構造体が備えるレンズ内表面に、<1>~<3>のいずれか一つに記載の防曇剤を塗布して塗膜を形成する工程と、
 前記塗膜を乾燥させる工程と、を備える車両用ランプ構造体の防曇方法。
<5>レンズ内表面に、<1>~<3>のいずれか一つに記載の防曇剤から形成される防曇膜を備える、車両用ランプ構造体。
 次に、下記の実施例により本開示を更に詳しく説明するが、これらの実施例は本開示を制限するものではない。
<合成物の作製>
(合成物1)
 酸無水物であるシランカップリング剤(信越化学株式会社製、商品名:X-12-967C)3.00gと、トリフェニルホスフィン(信越化学工業株式会社製)3.00gを溶解させた2-プロパノールと、をそれぞれ反応器に投入し、60℃にて1時間攪拌した。次いで、エポキシ化合物(ナガセケムテックス株式会社製、商品名:EX830)6.02gを添加し、反応容器中の温度が60℃の状態で約2時間撹拌を続行した後、室温まで冷却し、合成物1を得た。合成物1の合成前後のIRチャートを図2~4に示す。図2~4から、合成前のIRチャートにおける酸無水物基のピークである1780cm-1、及び1850cm-1のピークの消失、及びエポキシ基のピークである910cm-1のピークの減少により合成反応が進行していることを確認でき、合成後のIRチャートにおいて、1735cm-1のピークが生じたによりエステル基を有する化合物が得られていることを確認できた。
<防曇剤の作製>
(実施例1)
 水分散シリカゾルであるST-OUP(日産化学株式会社製、15質量%)10.0gと、10質量%酢酸水溶液1.5gと、シランカップリング剤(モメンティブ社製、商品名:A1230)の10質量%IPA溶液3.0gと、合成物1の10質量%IPA溶液3.75gと、水10.0gと、金属触媒(川研ファインケミカル株式会社製、商品名:Al-M)の1質量%IPA溶液1.5gと、を混合し、2時間攪拌し、母液を得た。
 希釈液として、水5.8gと、IPA4.8gと、エチレングリコールモノブチルエーテル55.9gと、エチレングリコールモノプロピルエーテル0.9gと、3-メトキシ-3-メチル-1-ブタノール1.1gと、1,2-ジメトキシエタン1.7gと、を混合し希釈液を得た。母液と希釈液とを混合して塗布液を作製した。
(実施例2~6、比較例1~4)
 表1(単位:g)のように配合量を変更したこと以外は、実施例1と同様にして塗布液を得た。なお、表中の「-」は、配合量が0であることを意味する。
<評価>
 実施例1~5及び比較例1~4で得た防曇剤について、以下の評価を行った。結果を表2に示す。なお、表2中の各成分の数値は、質量%を意味し、「-」は、配合量が0であることを意味する。
(接触角の測定)
 25℃、65%RHの環境下で、PTFE板(ニチアス製、ナフロンシート、TOMBO9000)に塗布液を0.5μL滴下し、塗布液がPTFE板に接触した瞬間を0秒として、接触角計(株式会社ニック製、LSE-100TW)を用いて接触角を5秒毎に測定した。実施例4及び比較例2の接触角の測定結果をそれぞれ図5の(a)及び(b)に示す。塗布液をPTFE板に滴下してから10秒経過時から50秒後経過時までに測定された接触角から回帰直線の回帰係数Δθ10~50を算出し、50秒経過時から100秒経過時までに測定された接触角から回帰直線の回帰係数Δθ50~100を算出し、150秒経過時から300秒経過時までに測定された接触角から回帰直線の回帰係数Δθ150~300を算出した。
(表面張力)
 25℃、65%RHの環境下で、接触角計(株式会社ニック製、LSE-100TW)を用いて、ペンダントドロップ法により塗布液の表面張力を測定した。懸滴(ペンダントドロップ)の量は5~7μLとし、1秒毎に懸滴の形状から接触角計に付属のソフトウェアにより表面張力を測定し、20秒間測定したときの表面張力の平均値を塗布液の表面張力とした。このとき塗布液の比重はポータブル密度比重計DA-130N(京都電子工業製)により測定した。
(濡れ性)
 25℃、65%RHの環境下で、塗膜の厚さが300nmになるようにPTFE板にスプレー塗布した。乾燥後の塗膜にハジキがない場合を「A」、乾燥後の塗膜にハジキがある場合を「B」と評価した。
(防曇指数)
 図5に示す装置を用い、下記の撮影条件で防曇性評価用画像及び基準画像を得た。得られた評価用画像及び基準画像を用いて下記に示す算出方法で防曇指数AFIを算出した。
[撮像条件]
サンプル画像:黒色の正方形と白色の正方形との市松模様、正方形の辺の長さ0.5mm
水の温度:40℃
距離D1:1.5cm
深さD2:1cm
距離D3:17cm(サンプル画像から最前のレンズの中央表面までの距離)
デジタルカメラ:Canon PowerShot SX70 HS(35mmフィルム換算での焦点距離:15mm、保存画像:大きさ1824×1824ピクセル、保存形式jpg)、1824×1824ピクセルの画像中に正方形が4900個含まれるように撮像。
防曇性評価用画像:供試材を配置して10秒経過後に撮影。
基準画像:防曇剤で処理していないポリカーボネート基板を配置した直後(配置して0秒後)(画像O)と、10秒経過後(画像N)に撮影。
圧縮方法:820×820ピクセルにリサイズし、圧縮率20%で出力。
[防曇指数AFIの算出]
 防曇性評価用画像を上記の圧縮方法で圧縮したときのファイル容量S1、画像Nを上記の圧縮方法で圧縮したときのファイル容量S2、画像Oを上記の圧縮方法で圧縮したときのファイル容量S0から、下記式によって防曇指数AFIを算出した。
AFI=(S1-S2)×10/(S0-S2)
(水膜均一性指数)
 図5に示す装置を用い、下記の撮影条件で評価用画像及び基準画像を得た。得られた評価用画像及び基準画像を用いて下記に示す画像処理を行い、水膜均一性指数WEを算出した。
[撮像条件]
サンプル画像:黒色の正方形と白色の正方形との市松模様、正方形の辺の長さ0.5mm
水の温度:40℃
距離D1:1.5cm
深さD2:1cm
距離D3:17cm(サンプル画像から最前のレンズの中央表面までの距離)
デジタルカメラ:Canon PowerShot SX70 HS(35mmフィルム換算での焦点距離:15mm、保存画像:大きさ1824×1824ピクセル、保存形式jpg)、1824×1824ピクセルの画像中に正方形が4900個含まれるように撮像。
評価用画像:供試材を配置して40秒経過後に撮影。
基準画像:防曇剤で処理していないポリカーボネート基板を配置した直後(配置して0秒後)に撮影。
[画像処理]
(1)画像処理ソフトウェア(ImageJ)を用いて、評価用画像及び基準画像を読み込み、8bitに変換する(Image→type→8bit)。
(2)境界の閾値を「90~255」に設定する(Image→Adjust→Threshold→「90~255」に設定→apply)。
(3)2値化する(Process→Binary→Make Binary)。
(4)測定条件として「Area」を設定する(Analyze→Set Measurements→Areaにチェックを入れる)。
(5)粒子解析を用いて、1ピクセル角以上の面積を算出する(Analyze→Analyze Particles→「Size」を「1-Infinity」に、「Show」を「Outlines」に設定し、「Display results」、「Clear Results」にチェックを入れ、OKをクリック)。
(6)基準画像の(5)の情報から、面積分布として、0~1000ピクセルの範囲で、20ピクセル刻みの度数分布を作成し、頻度が全頻度の5%以上となる面積範囲RAを得る。
(7)評価用画像の(5)の情報から、面積分布として、0~1000ピクセルの範囲で、20ピクセル刻みの度数分布を作成し、全粒子数(頻度の合計)に対する、(6)の面積範囲に含まれる粒子数(頻度)の割合(%)を算出し、これを水膜均一性指数WEとする。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 1…レンズ、2…防曇膜、3…ランプハウジング、4…光源、5…リフレクタ、S…灯室、10…ランプ構造体、20…試験装置、30…サンプル画像、40…デジタルカメラ、50…供試材、60…水。

 

Claims (5)

  1.  シリカ粒子と、溶媒と、を含有する防曇剤であって、
     下記の条件Aに従って接触角計を用いて接触角を測定したときに、50秒経過時から100秒経過時までに測定された接触角と、経過時間とから得られる回帰直線の回帰係数Δθ50~100が、0より小さい、防曇剤。
     条件A:25℃、65%RH環境下で、PTFE基材上に前記防曇剤を0.5μL滴下し、前記防曇剤が前記PTFE基材に接触した瞬間を0秒として、5秒毎に接触角を測定する。
  2.  ペンダントドロップ法により測定される表面張力が30mN/m以下である、請求項1に記載の防曇剤。
  3.  前記溶媒の含有量が、前記防曇剤の全量を基準として、90質量%以上である、請求項1に記載の防曇剤。
  4.  車両用ランプ構造体が備えるレンズ内表面に、請求項1~3のいずれか一項に記載の防曇剤を塗布して塗膜を形成する工程と、
     前記塗膜を乾燥させる工程と、を備える車両用ランプ構造体の防曇方法。
  5.  レンズ内表面に、請求項1~3のいずれか一項に記載の防曇剤から形成される防曇膜を備える、車両用ランプ構造体。

     
PCT/JP2023/007404 2022-03-02 2023-02-28 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体 WO2023167206A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-031857 2022-03-02
JP2022031857 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167206A1 true WO2023167206A1 (ja) 2023-09-07

Family

ID=87883810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007404 WO2023167206A1 (ja) 2022-03-02 2023-02-28 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体

Country Status (1)

Country Link
WO (1) WO2023167206A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510576A (ja) * 1994-12-12 1998-10-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー 反射防止特性および防曇特性を有する塗料
JPH11152445A (ja) * 1997-11-25 1999-06-08 Matsushita Electric Works Ltd 親水性無機塗料とそれを用いた親水性塗装品
JP2003064313A (ja) * 2001-08-23 2003-03-05 Toto Ltd 防曇材及びその製造方法並びに防曇コーティング剤セット
WO2021141044A1 (ja) * 2020-01-10 2021-07-15 株式会社ネオス 防曇塗料組成物及び防曇塗膜ならびに防曇物品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510576A (ja) * 1994-12-12 1998-10-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー 反射防止特性および防曇特性を有する塗料
JPH11152445A (ja) * 1997-11-25 1999-06-08 Matsushita Electric Works Ltd 親水性無機塗料とそれを用いた親水性塗装品
JP2003064313A (ja) * 2001-08-23 2003-03-05 Toto Ltd 防曇材及びその製造方法並びに防曇コーティング剤セット
WO2021141044A1 (ja) * 2020-01-10 2021-07-15 株式会社ネオス 防曇塗料組成物及び防曇塗膜ならびに防曇物品

Similar Documents

Publication Publication Date Title
JP5591530B2 (ja) シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材
US20230407075A1 (en) Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
JP2008266043A (ja) 透明酸化チタンゾルおよびその製造法
WO2010143645A1 (ja) 常温硬化性近赤外線遮蔽コーティング剤及びそれを用いた近赤外線遮蔽膜並びにその製造方法
WO2018181241A1 (ja) 鉄含有ルチル型酸化チタン微粒子分散液の製造方法、鉄含有ルチル型酸化チタン微粒子およびその用途
KR101141955B1 (ko) 저굴절 중공 복합체, 그 제조 방법 및 이를 포함하는 코팅액
JP2009035594A (ja) 透明被膜付基材および透明被膜形成用塗料
JP2010128309A (ja) 反射防止膜付基材および反射防止膜形成用塗布液
JP5713668B2 (ja) ハードコート層膜形成用塗料組成物
JP2018123043A (ja) シリカ系粒子分散液の製造方法、シリカ系粒子分散液、透明被膜形成用塗布液及び透明被膜付基材
WO2023167206A1 (ja) 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体
WO2009099106A1 (ja) コーティング液、硬化膜及び樹脂積層体
WO2023166761A1 (ja) 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体
US20230407134A1 (en) Antifogging agent, hydrophilizing agent, and antifogging method for vehicular lamp structure
JP2009185196A (ja) コーティング液、硬化膜及び樹脂積層体
EP4089154A1 (en) Anti-fog method for vehicle lamp structure, anti-fogging agent, and hydrophilic agent
WO2022107878A1 (ja) 車両用ランプ構造体の防曇方法、防曇剤、親水化剤、防曇膜、及び車両用ランプ構造体
US20230393055A1 (en) Water film evaluation method, and antifogging agent evaluation method
WO2022107320A1 (ja) 防曇剤及び車両用ランプ構造体の防曇方法
CN107523101B (zh) 涂膜、涂膜的制造方法以及涂布组合物
CN116724093A (zh) 防雾剂、亲水化剂、及车辆用灯结构体的防雾方法
JP5700944B2 (ja) 金平糖状のシリカ系微粒子の分散ゾル、該分散ゾルを含む塗料組成物、および金平糖状のシリカ系微粒子分散ゾルの製造方法。
JP2015017012A (ja) 油性分散液並びに薄膜及びその製造方法
WO2021100763A1 (ja) 無機酸化物分散体および塗料
WO2023282102A1 (ja) コーティング用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763463

Country of ref document: EP

Kind code of ref document: A1