WO2023159829A1 - Procédé de photolithographie par interférence laser in situ basé sur une épitaxie par faisceau moléculaire - Google Patents

Procédé de photolithographie par interférence laser in situ basé sur une épitaxie par faisceau moléculaire Download PDF

Info

Publication number
WO2023159829A1
WO2023159829A1 PCT/CN2022/101012 CN2022101012W WO2023159829A1 WO 2023159829 A1 WO2023159829 A1 WO 2023159829A1 CN 2022101012 W CN2022101012 W CN 2022101012W WO 2023159829 A1 WO2023159829 A1 WO 2023159829A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
laser interference
molecular beam
beam epitaxy
situ
Prior art date
Application number
PCT/CN2022/101012
Other languages
English (en)
Chinese (zh)
Inventor
石震武
杨新宁
彭长四
缪力力
庄思怡
耿彪
祁秋月
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023159829A1 publication Critical patent/WO2023159829A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of semiconductors, and in particular relates to an in-situ laser interference photolithography method based on molecular beam epitaxy.
  • III-V compound semiconductor materials have been widely used in the fields of detectors, LEDs, lasers, solar cells, and RF communications. And all device development and manufacturing are inseparable from two links: one is material growth; the other is material processing.
  • the equipment used for material growth mainly includes, for example, molecular beam epitaxy equipment and metal-organic vapor deposition equipment.
  • the main use of material processing is the process of optical lithography, which is currently the most widely used in the industry.
  • the manufacture of the micro-nano structure of the entire material generally goes through (but not limited to) the following steps: substrate surface cleaning, gluing, baking, exposure, development, fixing, etching (dry or wet), degumming and cleaning again.
  • the present invention aims to provide an in-situ laser interference lithography method based on molecular beam epitaxy, which uses traditional laser interference to implement structured photolithography on materials in situ on molecular beam epitaxy systems.
  • the micro-nano processing method of materials has no pollution, no oxidation, low material damage, and the process is extremely simple and efficient; in addition, the etching accuracy of materials in the Z direction can reach the atomic level.
  • the in-situ laser interference lithography method based on molecular beam epitaxy includes the following steps,
  • the substrate is a Ga-based or Al-based material, and the heating temperature is higher than the thermal desorption temperature of the In-based material corresponding to the substrate material;
  • the method provided by the present invention is an in-situ In element-assisted laser interference lithography technology, which is based on the molecular beam epitaxy system using laser interference to write III-V compound semiconductor materials in situ.
  • III-V compound semiconductor materials The thermal stability of In-based materials is usually worse than that of similar Ga-based or Al-based materials (for example, the thermal desorption temperatures of InAs, InSb, and InN are much lower than those of GaAs, GaSb, GaN, AlAs, AlSb, and AlN, respectively.
  • In atoms have the largest atomic size, the doping of In atoms in pure Ga/Al-based materials will introduce a large strain and cause Ga/Al-based materials to become unstable.
  • the material of the substrate is GaAs, GaSb, GaN, AlAs, AlSb or AlN.
  • the substrate is heated at V Under the atmosphere of family elements.
  • the beam current of the group V elements is (1.7-3.0) ⁇ 10 -5 torr.
  • the heating temperature is 10-20° C. higher than the thermal desorption temperature of the In-based material corresponding to the substrate material.
  • the beam current of the In atomic flow is 0.1-0.3 atomic layer/s.
  • the In atoms sprayed onto the surface of the substrate will not form epitaxial films from a macroscopic point of view, but from a microscopic point of view, the In atoms In fact, it will go through the dynamic process of surface adsorption to desorption to leave the surface, but considering that there are always newly sprayed In atoms reaching the surface, it can be considered that there is always a certain amount of In atoms "floating" on the surface. It has been verified by experiments that these In atoms will act as catalysts, greatly improving the activity of Ga/Al atoms in the substrate material.
  • the exposure method is single-pulse exposure.
  • the wavelength of the laser is 532-193 nm
  • the pulse width is 10 ns
  • the energy is 4-50 mJ.
  • step S2 after the exposure, the operation of staying under the heating temperature condition in the step S1 is also included.
  • the remaining In atoms on the surface are completely desorbed, and then the temperature can be lowered normally to take it out.
  • the technical solution of the present invention has the following advantages: the photolithography method of the present invention directly relies on the ultra-high vacuum molecular beam epitaxy system in situ, and utilizes the easy heat of In atoms in the field of epitaxial growth of III-V compound semiconductor materials desorption, thereby proposing a photolithography technology in which In atoms act as surface catalytic active agents, and verifying through experiments: the introduction of this auxiliary catalytic process of In atoms of the present invention can achieve almost no damage to materials (the structure surface still retains typical Epitaxial-level atomic layer step morphology) etching process, and in practice, the material removal can be achieved by simply changing the exposure laser energy to achieve single-atom level etching precision in the z direction, and if there is no auxiliary catalysis of In atoms, direct photo If it is engraved, it will lead to serious material modification damage and the structuring effect obtained by etching is very poor; in addition, this method has no pollution, no oxidation, and
  • Figure 1 is a schematic diagram of the method of the present invention.
  • FIG. 2 is a diagram of AFM test results in Example 1.
  • Fig. 3 is a diagram of AFM test results in Examples 2-4.
  • Embodiment 1 etching GaAs material substrate
  • Step 1 as shown in Figure 1a, set the base temperature of the GaAs substrate on which the GaAs buffer layer has been grown to 545°C (about 15°C higher than the thermal desorption of InAs), and then set the As pressure (As 4 ) to 2.0 ⁇ 10 -5 torr;
  • Step 2 as shown in Figure 1b, set the beam current of the In source to 0.2 atomic layers/s, and then open the In shutter;
  • Step 3 as shown in Figure 1c, introduce single-pulse double-beam interference in situ to irradiate the GaAs substrate at this time.
  • the laser parameters used are: wavelength 532nm, pulse width 10ns, energy 18mJ, and immediately turn off the In Shutter and stay at this temperature for 3 minutes, then cool down and take it out.
  • Embodiment 2 etching GaAs material substrate
  • Step 1 Set the base temperature of the GaAs substrate on which the GaAs buffer layer has been grown to 545°C (about 15°C higher than the thermal desorption of InAs), and then set the As pressure (As 4 ) to 2.0 ⁇ 10 -5 torr ;
  • Step 2 set the beam current of the In source to 0.2 atomic layer/s, and then open the In shutter;
  • Step 3 Introduce single-pulse double-beam interference in situ to irradiate the GaAs substrate at this time.
  • the laser parameters used are: wavelength 532nm, pulse width 10ns, energy 4.5mJ. After staying for 3 minutes, cool down and take it out.
  • Embodiment 3 etching GaAs material substrate
  • Step 1 as shown in Figure 1a, set the base temperature of the GaAs substrate on which the GaAs buffer layer has been grown to 545°C (about 15°C higher than the thermal desorption of InAs), and then set the As pressure (As 4 ) to 2.0 ⁇ 10 -5 torr;
  • Step 2 as shown in Figure 1b, set the beam current of the In source to 0.2 atomic layers/s, and then open the In shutter
  • Step 3 as shown in Figure 1c, introduce single-pulse double-beam interference in situ to irradiate the GaAs substrate at this time.
  • the laser parameters used are: wavelength 532nm, pulse width 10ns, energy 6mJ, and immediately turn off the In Shutter and stay at this temperature for 3 minutes, then cool down and take it out.
  • Embodiment 4 etching GaAs material substrate
  • Step 1 as shown in Figure 1a, set the base temperature of the GaAs substrate on which the GaAs buffer layer has been grown to 545°C (about 15°C higher than the thermal desorption of InAs), and then set the As pressure (As 4 ) to 2.0 ⁇ 10 -5 torr;
  • Step 2 as shown in Figure 1b, set the beam current of the In source to 0.2 atomic layers/s, and then open the In shutter;
  • Step 3 introduce single-pulse double-beam interference in situ to irradiate the GaAs substrate at this time.
  • the laser parameters used are: wavelength 532nm, pulse width 10ns, energy 8mJ, and immediately turn off the In Shutter and stay at this temperature for 3 minutes, then cool down and take it out.
  • the laser energy is 4.5mJ, 6mJ and 8mJ, and the laser interference processed grooves with a depth of about 1, 2 and 3 atomic layers, respectively.
  • Embodiment 5 etching AlSb material substrate
  • the base temperature of the AlSb substrate on which the AlSb buffer layer has been grown to about 10°C higher than the thermal desorption of InSb, and then set the Sb pressure to 1.7 ⁇ 10 -5 torr;
  • Step 2 set the beam current of the In source to 0.1 atomic layer/s, and then open the In shutter;
  • the third step is to introduce single-pulse double-beam interference in situ to irradiate the AlSb substrate at this time.
  • the laser parameters used are: wavelength 355nm, pulse width 10ns, and energy 18mJ. Cool down and take out after staying for 2min.
  • Embodiment 6 etching GaN material substrate
  • Step 1 Set the base temperature of the GaN substrate on which the GaN buffer layer has been grown to about 20°C higher than the thermal desorption of InN, and then set the N pressure (N 2 ) to 3.0 ⁇ 10 -5 torr;
  • Step 2 set the beam current of the In source to 0.3 atomic layer/s, and then open the In shutter;
  • Step 3 Introduce single-pulse double-beam interference in situ to irradiate the GaN substrate at this time.
  • the laser parameters used are: wavelength 355nm, pulse width 10ns, energy 18mJ. Cool down and take out after staying for 5min.
  • an in-situ molecular beam epitaxy system is proposed for different etching substrates by providing a special thermodynamic epitaxial growth environment, that is, in the higher V group elements ( Determined by the composition of group V elements of the processing object) under the protection of the beam atmosphere, the temperature of the substrate is raised above the thermal analysis temperature of the corresponding In atoms, and then a certain beam of In atoms is sprayed onto the surface of the substrate to act as a "catalyst"
  • the role of the method, and then use the mature laser interference method to directly achieve fast and nearly non-destructive lithography on the substrate, and the control accuracy of the etching depth of this solution can reach the atomic layer level in the Z direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

L'invention concerne un procédé de photolithographie par interférence laser in situ basé sur épitaxie par faisceau moléculaire. Le procédé comprend les étapes suivantes consistant à : S1 : chauffer un substrat, le substrat étant constitué d'un matériau à base de Ga ou à base d'Al, et la température de chauffage étant supérieure à une température de désorption thermique d'un matériau à base d'In correspondant au matériau du substrat ; et S2 : introduire un flux d'atomes d'In pour servir de catalyseur de surface, et introduire une interférence laser pour exposer le substrat, achevant ainsi le traitement photolithographique. La photolithographie structurée sur un matériau est réalisée in situ dans un système d'épitaxie par faisceau moléculaire à l'aide d'une interférence laser classique. Par rapport à d'autres moyens de micro-nano-traitement de matériau non in situ existants, il n'y a ni pollution ni oxydation, les dommages matériels sont faibles, et le processus est extrêmement simple et efficace. De plus, la précision de gravure du matériau à un niveau atomique dans une direction Z peut être réalisée.
PCT/CN2022/101012 2022-02-24 2022-06-24 Procédé de photolithographie par interférence laser in situ basé sur une épitaxie par faisceau moléculaire WO2023159829A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210177492.6A CN114654097B (zh) 2022-02-24 2022-02-24 基于分子束外延原位激光干涉光刻方法
CN202210177492.6 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023159829A1 true WO2023159829A1 (fr) 2023-08-31

Family

ID=82026589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101012 WO2023159829A1 (fr) 2022-02-24 2022-06-24 Procédé de photolithographie par interférence laser in situ basé sur une épitaxie par faisceau moléculaire

Country Status (2)

Country Link
CN (1) CN114654097B (fr)
WO (1) WO2023159829A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033425A1 (en) * 2002-05-16 2004-02-19 Koops Hans Wilfried Peter Procedure for etching of materials at the surface with focussed electron beam induced chemical reactions at said surface
US20140008767A1 (en) * 2011-03-14 2014-01-09 Lianhe Li Oxide removal from semiconductor surfaces
CN108364859A (zh) * 2018-02-11 2018-08-03 苏州华维纳纳米科技有限公司 一种采用激光直写的原子层刻蚀方法
CN108751254A (zh) * 2018-06-01 2018-11-06 苏州大学 原位无损剥离量子点的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542327B1 (fr) * 1983-03-07 1986-03-07 Bensoussan Marcel
JPH05259079A (ja) * 1992-03-12 1993-10-08 Nec Corp 半導体成長方法および半導体レーザの製造方法
US5407531A (en) * 1994-02-15 1995-04-18 At&T Corp. Method of fabricating a compound semiconductor device
CN102122686A (zh) * 2011-01-17 2011-07-13 泉州市金太阳电子科技有限公司 发光二极管的制造方法
CN102838082A (zh) * 2012-09-24 2012-12-26 复旦大学 一种基于激光干涉光刻在材料表面制作微纳结构的方法
CN103022303A (zh) * 2012-12-28 2013-04-03 山东大学 一种利用双光束干涉辅助湿法腐蚀实现发光二极管表面图形制备的方法
CN106444297B (zh) * 2016-11-01 2019-02-22 兰州理工大学 一种基于样品旋转和激光双光束干涉的微纳结构刻写装置
CN108919398B (zh) * 2018-05-31 2020-07-07 同济大学 一种二维原子光刻栅格结构制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033425A1 (en) * 2002-05-16 2004-02-19 Koops Hans Wilfried Peter Procedure for etching of materials at the surface with focussed electron beam induced chemical reactions at said surface
US20140008767A1 (en) * 2011-03-14 2014-01-09 Lianhe Li Oxide removal from semiconductor surfaces
CN108364859A (zh) * 2018-02-11 2018-08-03 苏州华维纳纳米科技有限公司 一种采用激光直写的原子层刻蚀方法
CN108751254A (zh) * 2018-06-01 2018-11-06 苏州大学 原位无损剥离量子点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, LINYUN: "In-Situ In-Atom Assisted Laser Etching of GaAs Surface", MASTER'S THESIS, vol. 14, no. 04, 1 May 2019 (2019-05-01), CN, pages 1 - 61, XP009548274, DOI: 10.27351/d.cnki.gszhu.2019.001084 *

Also Published As

Publication number Publication date
CN114654097A (zh) 2022-06-24
CN114654097B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US20060073681A1 (en) Nanoheteroepitaxy of Ge on Si as a foundation for group III-V and II-VI integration
US8691011B2 (en) Method for metal-free synthesis of epitaxial semiconductor nanowires on si
US5700703A (en) Method of fabricating buried control elements in semiconductor devices
US7579263B2 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
JP2691721B2 (ja) 半導体薄膜の製造方法
CN108155090A (zh) 一种高质量AlN外延薄膜及其制备方法和应用
KR101209151B1 (ko) 양자점 제조방법 및 양자점을 포함하는 반도체 구조물
CN101373714A (zh) 用于氮化物外延生长的纳米级图形衬底的制作方法
JPH0794420A (ja) 化合物半導体結晶基板の製造方法
US20110263108A1 (en) Method of fabricating semiconductor quantum dots
TWI725418B (zh) 磊晶於異質基板之結構及其製備方法
WO2023159829A1 (fr) Procédé de photolithographie par interférence laser in situ basé sur une épitaxie par faisceau moléculaire
TWI449659B (zh) 外延結構體的製備方法
JP4750728B2 (ja) 半導体装置の製造方法
JPH09181349A (ja) 半導体デバイスの製造方法
WO2023173619A1 (fr) Procédé et dispositif de préparation de points quantiques semi-conducteurs ordonnés
CN115084308B (zh) 锗衬底-砷化镓/锗异质结薄膜复合结构及其制法和应用
CN114990692B (zh) 一种纳米图案化硅衬底、半导体薄膜及其制备方法
Martín-Sánchez et al. Improvement of InAs quantum dots optical properties in close proximity to GaAs (0 0 1) substrate surface
CN111681948A (zh) 一种图形化衬底及其制备方法
TWI387999B (zh) Compound semiconductor epitaxial wafer and method of manufacturing the same
CN115083885A (zh) 一种激光诱导原位生长周期性纳米结构的方法
JP2897107B2 (ja) 結晶成長方法
CN117577730A (zh) 一种基于SOI平台的InAs波导探测系统及其制备方法
JPS62115831A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928099

Country of ref document: EP

Kind code of ref document: A1