WO2023157765A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2023157765A1
WO2023157765A1 PCT/JP2023/004544 JP2023004544W WO2023157765A1 WO 2023157765 A1 WO2023157765 A1 WO 2023157765A1 JP 2023004544 W JP2023004544 W JP 2023004544W WO 2023157765 A1 WO2023157765 A1 WO 2023157765A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
annealing
temperature
rolling
Prior art date
Application number
PCT/JP2023/004544
Other languages
English (en)
French (fr)
Inventor
雅紀 竹中
猛 今村
孝明 田中
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023524309A priority Critical patent/JP7338812B1/ja
Publication of WO2023157765A1 publication Critical patent/WO2023157765A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are highly concentrated in the miller index of ⁇ 110 ⁇ on the sheet surface and ⁇ 001> in the rolling direction.
  • a grain-oriented electrical steel sheet is a soft magnetic material, and is mainly used as iron cores of electrical equipment such as transformers.
  • This grain-oriented electrical steel sheet utilizes secondary recrystallization to highly accumulate crystal grains in the ⁇ 110 ⁇ 001> orientation (hereinafter referred to as "Goss orientation"), resulting in low iron loss and high magnetic flux density. It has excellent magnetic properties.
  • a magnetic flux density B 8 (T) at a magnetic field strength of 800 (A/m) and an alternating magnetic field with an excitation frequency of 50 (Hz) are 1.
  • Iron loss W 17/50 (W/kg) per 1 kg of steel sheet when magnetized to 7 (T) is generally used.
  • Patent Document 1 discloses a method using AlN and MnS as inhibitors
  • Patent Document 2 discloses a method using MnS and MnSe as inhibitors, both of which have been industrially put into practical use.
  • it is ideal to disperse the inhibitor uniformly and finely, and therefore, it is necessary to heat the raw material steel slab to a high temperature of 1300 ° C. or higher before hot rolling. ing.
  • Patent Document 7 discloses a method of regulating the final rolling reduction in hot rough rolling
  • Patent Document 8 discloses a method of controlling the casting structure of a slab
  • Patent Document 9 discloses a slab cross-sectional shape. is disclosed.
  • the techniques proposed in Patent Documents 7 to 9 are somewhat effective in preventing edge cracks, they cannot be said to be effective methods for completely preventing edge cracks.
  • Patent Documents 10 to 14 disclose hot rolling methods for grain-oriented silicon steel sheets in which edge cracks are prevented by arranging the side surface shape of the sheet bar during hot rolling.
  • these methods are more effective in preventing cracked edges than the above-described methods, they are still not completely capable of preventing cracked edges.
  • Patent Document 15 proposes a method of performing horizontal reduction in addition to width reduction after slab heating, followed by high-temperature slab heating.
  • Patent Document 15 the technique of performing width reduction processing on the slab before heating the slab at a high temperature disclosed in Patent Document 15 has the effect of significantly suppressing edge cracking of the hot-rolled sheet, but a new problem has arisen. That is, the temperature of the width edges of the slab decreases due to the width reduction, and the heating of the width edges becomes insufficient in the subsequent high-temperature slab heating, resulting in insufficient inhibitor solid solution and uniform finely dispersed precipitation during hot rolling. Become. As a result, there is a problem that a part where secondary recrystallization is incomplete occurs at the width end portion of the product sheet. The incompletely secondary recrystallized portion must be discarded, resulting in a significant decrease in yield.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet using AlN, MnS and/or MnSe as an inhibitor, during hot rolling.
  • the object of the present invention is to propose a technique for effectively preventing occurrence of secondary recrystallization defects at the width end portions of a product sheet while preventing edge cracks from occurring.
  • the inventors have diligently studied measures to solve the above problems.
  • the average temperature increase rate in the width direction between 700 and 900 ° C. in the first annealing applied to the steel plate after hot rolling
  • the present invention based on the above knowledge is a method for producing a grain-oriented electrical steel sheet, wherein the above-mentioned production method includes C: 0.02 to 0.10 mass%, Si: 2.5 to 5.5 mass%, Mn: 0.01 to 0.30 mass%, sol.
  • a steel slab having a chemical composition with the balance being Fe and unavoidable impurities is heated, then hot rolled, and then cold rolled once or cold rolled twice or more with intermediate annealing in between to obtain the final thickness
  • the cold-rolled sheet is subjected to primary recrystallization annealing that also serves as decarburization annealing, an annealing separator is applied to the surface of the steel sheet, and then finish annealing is performed.
  • the temperature rise rate at the center of the width between 700 and 900 ° C. in the temperature rise process of the first annealing after hot rolling is Rc (° C./s)
  • the temperature rise rate of the width end is Re (° C./s)
  • the above Rc and Re are expressed by the following formula (2); Re ⁇ Rc (2) is characterized by satisfying
  • the Tc and Te are expressed by the following formula (3); 10 ⁇ (Tc ⁇ Te) ⁇ 100 (3) and the above Rc and Re are the following formula (4); (Re ⁇ Rc) ⁇ (Tc ⁇ Te)/50 (4) is characterized by satisfying
  • the method for manufacturing the grain-oriented electrical steel sheet according to the present invention is characterized by including any one of the following steps. Note ⁇ After heating the steel slab, after rough rolling in a temperature range of 1100 ° C to 1400 ° C for one pass or more, finish rolling in a temperature range of 800 to 1300 ° C for two passes or more to make a hot rolled sheet, After that, a hot rolling process of winding into a coil at a coiling temperature of 400 to 750 ° C.
  • the intermediate annealing process is cooled from 800 ° C to 350 ° C at 5 to 100 ° C / s ⁇ H2 and N2 included,
  • a primary recrystallization annealing process that also serves as decarburization annealing, in which the temperature range of 750 to 950°C is maintained for 10 seconds or more in a moist atmosphere with a dew point of 20 to 80°C or less.
  • the steel slab used in the method for producing the grain-oriented electrical steel sheet of the present invention further includes Ni: more than 0 mass% and 1.00 mass% or less, Sb: more than 0 mass% and 0.50 mass% or less, Sn: more than 0 mass% and 0.50 mass% or less, Cu: more than 0 mass% and 0.50 mass% or less, Cr: more than 0 mass% and 0.50 mass% or less, P: more than 0 mass% and 0.50 mass% or less, Mo: more than 0 mass% and 0 .50 mass% or less, Nb: 0 mass% to 0.020 mass%, V: 0 mass% to 0.010 mass%, B: 0 mass% to 0.0025 mass%, Bi: 0 mass% to 0.50 mass%, and Zr : characterized by containing at least one selected from more than 0 mass% and 0.10 mass% or less.
  • the steel slab used in the method for producing the grain-oriented electrical steel sheet of the present invention is characterized by further containing Co: more than 0 mass% and 0.0200 mass% or less in addition to the above chemical composition.
  • the steel slab used in the method for producing the grain-oriented electrical steel sheet of the present invention further includes, in addition to the above chemical composition, Ti: more than 0 mass% and 0.0200 mass% or less and W: 0.001 to 0.050 mass% or less characterized by containing at least one selected from
  • the steel slab used in the method for producing the grain-oriented electrical steel sheet of the present invention further includes, in addition to the above chemical composition, Zn: more than 0 mass% and 0.0200 mass% or less, Pb: more than 0 mass% and 0.0100 mass% or less, As: more than 0 mass% and 0.020 mass% or less, Ag: more than 0 mass% and 0.200 mass% or less, Au: more than 0 mass% and 0.200 mass% or less, Ga: more than 0 mass% and 0.0200 mass% or less, Ge: more than 0 mass% and 0 .0200 mass% or less, Ca: more than 0 mass% and 0.0200 mass% or less, Mg: more than 0 mass% and 0.0200 mass% or less, REM: more than 0 mass% and 0.0200 mass% or less, and Hf: more than 0 mass% and 0.020 mass% or less characterized by containing at least one selected from
  • grain-oriented electrical steel sheets can be manufactured at high yield and at low cost.
  • 4 is a graph showing the effects of (Tc-Te) and R on the maximum width of secondary recrystallization defects. 4 is a graph showing the effects of (Tc-Te) and (Re-Rc) on the maximum width of secondary recrystallization defects.
  • Table 1 shows the surface temperature Tc (° C.) at the center of the width of the slab after width reduction and horizontal rolling, the surface temperature Te (° C.) at the edge of the width, and the temperature difference between Tc and Te (Tc ⁇ Te). Indicated.
  • the surface temperature at the center of the slab width means the surface temperature at the center of the width of the upper surface (long side) of the slab, and the surface temperature at the width end means the temperature at the center of the thickness of the side face (short side) of the slab.
  • edge cracks are reduced by width reduction processing.
  • Working strain is introduced into the slab width end by performing a width reduction of 50 mm per side of the steel slab.
  • processing distortion is also introduced by horizontal reduction for correcting the dog-bone shape generated at the slab width end portion by the width reduction processing. As a result, a large working strain was applied to the width end portions of the slab, and the crystal grain size at the width end portions of the slab was reduced.
  • the hot-rolled sheet was soaked at 1150°C for 120 seconds, it was subjected to hot-rolled sheet annealing by water cooling from 800°C to 350°C at 50°C/s.
  • the average temperature increase rate R (° C./s) in the width direction between 700 and 900 ° C. in the temperature increase process of hot-rolled steel annealing, the temperature increase rate Rc (° C./ s) and the temperature rise rate Re (°C/s) at the edge of the sheet width were variously changed as shown in Table 1.
  • the rate of temperature rise in the width direction is the average rate of temperature rise over the entire width of the strip, and the rate of temperature rise at the edge of the width of the strip is the rate of temperature rise at the portion 30 mm inward from both width edges. It is the lower heating rate of the rates.
  • the steel sheet after the hot-rolled sheet annealing was pickled to remove surface scales, and then cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.27 mm.
  • the cold-rolled sheet was subjected to primary recrystallization annealing, which also serves as decarburization annealing, at 800° C. for 60 s in a moist atmosphere containing H 2 and N 2 and having a dew point of 50° C.
  • primary recrystallization annealing which also serves as decarburization annealing, at 800° C. for 60 s in a moist atmosphere containing H 2 and N 2 and having a dew point of 50° C.
  • an annealing separator containing MgO as a main component was applied to the surface of the steel sheet at 5 g/m 2 per side, dried, and wound into a coil.
  • final annealing was performed by holding at a temperature of 1240° C. for 5 hours for purification.
  • the temperature range of 1050° C. or higher was an atmosphere containing H 2 as a main component.
  • a phosphate-based tension imparting insulation coating is applied, and flattened annealing is performed to bake the coating and correct the shape of the steel sheet. was applied to make a product board.
  • FIG. 1 shows the relationship between (Tc ⁇ Te) and R in a coil with a width reduction of 50 mm per side and the maximum width of secondary recrystallization defects.
  • the depth (distance from the width edge) of the secondary recrystallization defect generated at the width edge of the product sheet is the tip (coil outermost winding) and the tail end of each product sheet coil.
  • a sample of 30 mm width was taken from both ends of the sheet (the innermost winding of the coil). It is obtained by measuring the crystal orientation by the SEM-EBSD method after mirror finishing by diamond polishing, alumina polishing, colloidal silica polishing, or the like.
  • an area of 2 mm in the rolling direction ⁇ 30 mm in the sheet width direction is measured in steps of 1 ⁇ m for samples taken using an EBSD measurement system manufactured by EDAX, and an area of 95% or more of the entire measurement area
  • the surface state of the sample, the SEM conditions, and the EBSD conditions were adjusted so as to obtain a Confidence Index>0.1.
  • the obtained data was analyzed by OIM Analysis manufactured by EDAX, and secondary recrystallized grains with a misorientation angle of 20° or less from ⁇ 110 ⁇ 001> and a recrystallized grain size of 1 mm or more were selected.
  • the other regions were determined to be secondary recrystallization defects, and the distance from the edge of the width of the region where the secondary recrystallization defects occurred was defined as the depth of the secondary recrystallization defects.
  • the maximum depth of the secondary recrystallization defect at both the leading edge and the trailing edge of the product sheet was taken as the maximum width of the secondary defective recrystallization area of the coil.
  • the width end portion of the slab whose temperature has decreased during the slab heating process, remains lower in temperature than the width center portion even if the slab is subsequently heated to a high temperature. Moreover, even if the predetermined soaking temperature is reached, the soaking time is shorter than that at the center of the width, so the inhibitor is not completely solid-dissolved. As a result, the amount of precipitates (inhibitors) that precipitate uniformly and finely during the hot rolling process is reduced, making it difficult to create a difference in grain boundary mobility between Goss-oriented grains and other oriented grains. is considered to be in a state where secondary recrystallization is difficult.
  • the heating rate in the heating process of the first annealing after hot rolling is increased, the additionally precipitated precipitates are refined, so that the mobility difference at the grain boundary is reduced. It is thought that it can be imparted and the secondary recrystallization failure is suppressed.
  • the temperature Tc (° C.) at the center of the width of the slab and the temperature Te (° C.) at the edge of the width of the slab after width reduction and horizontal rolling were measured.
  • the slab is put into the heating furnace again, heated to a temperature of 1300° C., held at the temperature for 120 minutes, extracted from the heating furnace, and subjected to rough hot rolling to obtain a sheet bar having a thickness of 30 mm, Furthermore, after finishing hot rolling to obtain a hot-rolled sheet having a sheet thickness of 3.0 mm, the sheet was water-cooled and wound into a coil at a temperature of 700°C.
  • the hot-rolled sheet was pickled without performing hot-rolled sheet annealing to remove scales on the surface, and then cold-rolled for the first time to an intermediate sheet thickness of 0.7 mm.
  • intermediate annealing is performed by water cooling from 800°C to 350°C at 30°C/s
  • pickling is performed to remove scales on the surface
  • cold rolling is performed for the second time to achieve a final thickness of 0.23 mm. cold-rolled sheet.
  • the heating rate Re (°C/s) of the part was changed as shown in Table 2.
  • the cold-rolled sheet is subjected to primary recrystallization annealing, which also serves as decarburization annealing, at 900°C for 120 seconds in a moist atmosphere containing H 2 and N 2 at a dew point of 60°C, and then separated by annealing containing MgO as the main component.
  • the agent was applied to the surface of the steel sheet at 3 g/m 2 per side, dried, and wound into a coil.
  • the steel sheet was held at a temperature of 1150°C for 20 hours to undergo final annealing for purification. did.
  • the atmosphere in the temperature range of 900° C. or higher was an atmosphere containing H 2 as a main component.
  • a phosphate-based tension imparting insulation coating is applied, and flattened annealing is performed to bake the coating and correct the shape of the steel sheet. was applied to make a product board.
  • FIG. 2 shows the relationship between (Re--Rc), (Tc--Te) and the maximum width of secondary recrystallization defects.
  • the secondary recrystallization defect that occurs at the width edge of the product sheet can be reduced by increasing the temperature increase rate in the heating process of the first annealing after hot rolling.
  • the reason why it can be suppressed is as described in ⁇ Experiment 1>.
  • the temperature rising rate at the edge of the width is actively increased more than the temperature rising rate at the center of the width, and the above equations (2) to (4)
  • the inventors believe that the reason why the effect of the present invention becomes more remarkable by heating while satisfying is as follows.
  • the temperature increase rate in the temperature increase process of the first annealing after hot rolling is such that the temperature increase rate at the edge of the width is higher than the temperature increase rate at the center of the width as shown in equation (2),
  • the temperature within the range of the formula (4) it is possible to refine the precipitates that are additionally precipitated during the temperature rising process. As a result, the effect of suppressing secondary recrystallization defects in the final annealing step becomes remarkable.
  • C 0.02 to 0.10 mass%
  • C is an element necessary for improving the hot-rolled sheet structure by utilizing the austenite-ferrite transformation that occurs during hot rolling and soaking in hot-rolled sheet annealing. If the C content is less than 0.02 mass%, the grain boundary strengthening effect of C is lost, causing defects such as cracks in the slab that hinder production. On the other hand, if the C content exceeds 0.10 mass%, not only will the decarburization load increase, but the decarburization itself will be incomplete, which may cause magnetic aging in the product sheet. Therefore, the C content should be in the range of 0.02 to 0.10 mass%. It is preferably in the range of 0.03 to 0.08 mass%.
  • Si 2.5 to 5.5 mass%
  • Si is an element that is extremely effective in increasing the resistivity of steel and reducing eddy current loss that constitutes a part of core loss. If the Si content is less than 2.5 mass%, the reduction effect is small, and good iron loss characteristics cannot be obtained. On the other hand, the specific resistance of steel increases monotonously up to a Si content of 11 mass%, but when the Si content exceeds 5.5 mass%, the workability drops significantly, making it difficult to manufacture by rolling. Therefore, the Si content should be in the range of 2.5 to 5.5 mass%. It is preferably in the range of 3.0 to 4.0 mass%.
  • Mn 0.01-0.30 mass%
  • Mn forms MnS and MnSe and functions as an inhibitor that suppresses normal grain growth during the temperature rising process of final annealing, so it is an important element in the production of grain-oriented electrical steel sheets.
  • the Mn content is less than 0.01 mass%, the absolute amount of the inhibitor becomes insufficient, and the ability to suppress normal grain growth becomes insufficient.
  • the Mn content exceeds 0.30 mass%, it becomes difficult to sufficiently dissolve the Mn by heating the slab, and the magnetic properties deteriorate. Therefore, the content of Mn should be in the range of 0.01 to 0.30 mass%. It is preferably in the range of 0.05 to 0.20 mass%.
  • At least one of S and Se 0.001 to 0.040 mass% in total S and Se combine with Mn to form MnS and MnSe, which act as inhibitors.
  • the total content of S and Se is less than 0.001 mass %, the amount of inhibitor will be insufficient and the effect of improving magnetic properties will not be sufficiently obtained.
  • the total content exceeds 0.040 mass %, it becomes difficult to achieve a sufficient solid solution by heating the slab, and the magnetic properties are greatly deteriorated.
  • S exceeds 0.040 mass% edge cracking occurs during hot rolling. Therefore, in order to achieve both magnetic properties and manufacturability, the total content of S and Se should be in the range of 0.001 to 0.040 mass%. It is preferably in the range of 0.002 to 0.015 mass%.
  • sol. Al 0.010 to 0.040 mass%
  • Al is an element that forms and precipitates AlN, functions as an inhibitor that suppresses normal grain growth in secondary recrystallization annealing, and is an important element in grain-oriented electrical steel sheets.
  • the Al content is less than 0.010 mass% in terms of acid-soluble Al (sol. Al)
  • the absolute amount of the inhibitor is insufficient, and the ability to suppress normal grain growth is insufficient.
  • sol. If Al exceeds 0.040 mass%, it cannot be dissolved sufficiently by heating the slab, and fine dispersion in the steel cannot be achieved, resulting in significant deterioration in magnetic properties. Therefore, the Al content is sol.
  • Al should be in the range of 0.010 to 0.040 mass%. It is preferably in the range of 0.015 to 0.030 mass%.
  • N 0.004 to 0.020 mass% N binds and precipitates with Al to form AlN, which acts as an inhibitor. However, if the content is less than 0.004 mass%, the absolute amount of the inhibitor is insufficient, and the ability to suppress normal grain growth is insufficient. On the other hand, if it exceeds 0.020 mass%, the slab may swell during hot rolling. Therefore, the content of N should be in the range of 0.004 to 0.020 mass%. It is preferably in the range of 0.006 to 0.010 mass%.
  • the steel material used in the present invention may contain the following components in addition to the essential components described above. Ni: more than 0 mass% and 1.00 mass% or less, Sb: more than 0 mass% and 0.50 mass% or less, Sn: more than 0 mass% and 0.50 mass% or less, Cu: more than 0 mass% and 0.50 mass% or less, Cr: more than 0 mass% and 0 .50 mass% or less, P: 0 mass% to 0.50 mass%, Mo: 0 mass% to 0.50 mass%, Nb: 0 mass% to 0.020 mass%, V: 0 mass% to 0.010 mass%, B : more than 0 mass% and 0.0025 mass% or less, Bi: more than 0 mass% and 0.50 mass% or less, and Zr: more than 0 mass% and 0.10 mass% or less. can be contained as appropriate. However, if the amount of each element added exceeds the above upper limit, the growth of secondary recrystallized grains is suppressed and the magnetic properties are rather deteriorat
  • Co More than 0 mass% and 0.0200 mass% or less Co is an element effective in improving the primary recrystallization texture and improving the magnetic properties of the product sheet, so it can be contained as appropriate. However, when the above upper limit is exceeded, the effect of improving the magnetic properties is saturated, leading to an increase in raw material costs.
  • Ti more than 0 mass% and 0.0200 mass% or less and W: at least one selected from 0.001 to 0.050 mass% or less Ti and W form fine carbides and nitrides, and crystals after annealing Since it refines the grain size, it has the effect of improving brittleness and suppressing problems in sheet threading, so it can be contained as appropriate. However, when the above upper limit is exceeded, the above effect is saturated, and the raw material cost is increased.
  • Zn more than 0 mass% and 0.0200 mass% or less
  • Pb more than 0 mass% and 0.0100 mass% or less
  • Ca more than 0 mass% and 0.0200 mass% or less
  • Mg more than 0 mass% and 0.0200 mass% or less
  • REM more than 0 mass% and 0.0200 mass% or less
  • Hf more than 0 mass% and 0.020 mass% or less Since it has the effect of strengthening boundaries and suppressing defects caused by intergranular fracture, it can be contained as appropriate. However, when the above upper limit is exceeded, the above effect is saturated, and the raw material cost is increased.
  • the balance other than the above components is Fe and unavoidable impurities.
  • the above-mentioned unavoidable impurities mean elements that are unavoidably mixed from raw materials, scraps, smelting pots, etc. when steel is smelted.
  • the steel material (slab) used for manufacturing the grain-oriented electrical steel sheet of the present invention is produced by melting steel having the above-described chemical composition by a commonly known refining process and then by a commonly known ingot casting method or continuous casting method.
  • a thin slab having a thickness of 100 mm or less may be produced by a direct casting method.
  • the above slabs and thin cast pieces are subjected to hot rolling after being heated by a normal method, but it is desirable that the slab heating temperature before hot rolling is 1300°C or higher so that the inhibitor-forming components are completely dissolved.
  • the slab may be heated to 1300° C. or higher in one heating furnace, or may be heated using two or more heating furnaces.
  • a heating method a known method such as a combustion gas heating method, an electric heating method, or an induction heating method can be adopted.
  • the slab heating step the slab is heated to a temperature range of 900 to 1300° C., and then width reduction is performed within a range of 50 to 200 mm per side.
  • Horizontal rolling horizontal reduction
  • the crystal grain size at the width end portion of the slab is refined, and edge cracking in subsequent hot rolling can be remarkably suppressed.
  • a width reduction of 50 mm or more per side is required.
  • the upper limit is set to about 200 mm.
  • a preferable width reduction amount is in the range of 100 to 150 mm.
  • the processing method for width reduction is not particularly limited as long as it is suitable for this purpose, and known processing techniques such as press, vertical roll, and edger can be used.
  • the horizontal rolling that follows the width reduction process is performed for the purpose of correcting and flattening the dog-bone shape caused by the width reduction process, but the pressure reduction may be performed within a range that does not hinder productivity.
  • the slabs and thin cast pieces subjected to width reduction and horizontal rolling are heated at a high temperature of 1300 to 1450°C for 0 to 120 minutes, and then subjected to hot rolling consisting of rough rolling and finish rolling.
  • Rough rolling is preferably carried out in the range of 1100 to 1400° C. with one pass or more.
  • the finish rolling subsequent to the rough rolling is preferably carried out in the range of 800 to 1300° C. under conditions of two or more passes.
  • the coiling temperature after finish rolling is preferably in the range of 400 to 750° C. from the viewpoint of controlling the form of precipitated carbides and preventing cracks in the steel sheet. More preferably, it is in the range of 500 to 700°C.
  • the steel sheet (hot-rolled sheet) after the hot rolling is subjected to hot-rolled sheet annealing at a temperature of 900 to 1250° C. for 5 seconds or more from the viewpoint of homogenizing the steel sheet structure and reducing the variation in magnetic properties. preferably applied.
  • a more preferable soaking condition is a condition in which a temperature of 950 to 1150° C. is maintained for 10 to 180 seconds. After the soaking, it is preferable to cool the temperature range from 800° C. to 350° C. at a cooling rate of 5 to 100° C./s from the viewpoint of optimizing the morphology of the second phase and precipitates. More preferably, it is in the range of 15 to 80°C/s.
  • the steel sheet (hot-rolled sheet) after hot rolling or after hot-rolled sheet annealing is preferably descaled in order to remove the oxide film formed on the surface of the steel sheet during hot rolling.
  • known methods such as a pickling method using a heated acid, a mechanical descaling method for mechanically removing scale, and a combination of these methods can be used.
  • the hot-rolled sheet from which the scale has been removed is cold-rolled once or cold-rolled twice or more with intermediate annealing to obtain a cold-rolled sheet having a final thickness.
  • the soaking conditions for the intermediate annealing are preferably such that the temperature is kept at 900 to 1250° C. for 5 seconds or longer. If the soaking temperature is less than 900° C., the recrystallized grains become too fine, the number of Goss nuclei in the primary recrystallized structure decreases, and the magnetic properties may deteriorate. On the other hand, if the temperature exceeds 1250° C., rapid growth and decomposition of the inhibitor occur, which may also lead to deterioration of the magnetic properties. More preferably, the temperature is maintained at 900 to 1150° C. for 10 to 180 seconds.
  • the cooling after the soaking is preferably from 800°C to 350°C at a rate of 5 to 100°C/s from the viewpoint of controlling the morphology of the second phase and precipitates. More preferably, it is 15 to 80°C/s.
  • it is preferable to remove the rolling oil before the intermediate annealing.
  • it is desirable to remove the scale on the surface of the steel sheet caused by the annealing.
  • a descaling method a known method such as a pickling method using a heated acid, a mechanical descaling method for mechanically removing scale, or a combination thereof can be used.
  • the average temperature increase rate R (° C./s) in the plate width direction between ° C. is the following (1) formula; R ⁇ 5+(Tc ⁇ Te)/20 (1) It means that it is necessary to control so as to satisfy
  • Tc and Te are expressed by the following formula (3); 10 ⁇ (Tc ⁇ Te) ⁇ 100 (3) and the above Rc and Re are the following formula (4); (Re ⁇ Rc) ⁇ (Tc ⁇ Te)/50 (4) It is preferable to satisfy
  • the first annealing performed on the steel sheet after hot rolling means hot-rolled sheet annealing when hot-rolled sheet annealing is performed, and intermediate annealing is performed between cold rolling without hot-rolled sheet annealing. If it is performed, it refers to intermediate annealing, and if neither hot-rolled sheet annealing nor intermediate annealing is performed, it refers to primary recrystallization annealing that also serves as decarburization annealing after cold rolling.
  • the method for making the temperature rise rate Re at the strip width edge faster than the temperature rise rate Rc at the strip width center is not particularly limited as long as it is suitable for this purpose.
  • the edge of the width of the strip is locally heated, the surface condition is devised to increase the heat absorption of the edge of the width of the strip, and heat retention measures are taken to suppress heat extraction from the edge of the width of the strip. etc., a known method can be used.
  • the total rolling reduction of the cold rolling is preferably in the range of 50 to 92%.
  • the total rolling reduction of each cold rolling is in the range of 50 to 92%.
  • the steel sheet (cold-rolled sheet) cold-rolled to the final thickness is then subjected to primary recrystallization annealing that also serves as decarburization annealing, but before that, degreasing and pickling are performed to clean the surface of the steel sheet.
  • Decarburization annealing in the primary recrystallization annealing is preferably carried out at a temperature of 750 to 950° C. for 10 seconds or longer. More preferable conditions are 800-900° C. ⁇ 30-180 s.
  • the atmosphere during the decarburization annealing is preferably a moist atmosphere containing H 2 and N 2 and having a dew point of 20 to 80°C. A more preferred dew point is in the range of 40-70°C.
  • the steel sheet is preferably coated with an annealing separator containing MgO as a main component on the surface of the steel sheet in a basis weight of 3 g/m 2 or more per side.
  • the upper limit of the basis weight is not particularly limited, it is preferably about 10 g/m 2 from the viewpoint of manufacturing cost.
  • MgO may be applied to the surface of the steel sheet in the form of a slurry, or may be dry-applied by electrostatic coating. When the slurry is applied, it is preferable to keep the slurry solution at a constant temperature of 15° C. or less in order to suppress the viscosity increase of the slurry.
  • MgO as a main component means that the content of MgO is 60 mass % or more with respect to the entire annealing separator.
  • the steel sheet coated with the annealing separator is wound into a coil, placed in an up-ended state, subjected to final annealing, secondary recrystallization, and a forsterite coating formed on the surface of the steel sheet. At this time, in order to prevent the outer winding of the coil from unwinding, it is desirable to wind a band or the like around the outer circumference of the coil.
  • the atmosphere in a part of the temperature range of 800° C. or higher including the purification treatment in which the temperature is kept at 1050 to 1300° C. for 3 hours or more is an atmosphere containing H 2 .
  • the steel sheet subjected to the above finish annealing is then washed with water, brushed, or pickled in order to remove the unreacted annealing separator. It is preferable to perform flattening annealing in order to reduce the
  • grain-oriented electrical steel sheets are often used by laminating steel sheets, and in order to ensure insulation in that case, it is preferable to coat the surface of the steel sheet with an insulating coating. It is preferable to employ a tension applying type for the insulating coating, which has an effect of reducing iron loss.
  • the insulating coating may be formed on the surface of the steel sheet by applying a coating liquid before flattening annealing and baking the steel sheet by flattening annealing, or by performing the above treatment on a separate line.
  • a tension-imparting insulation coating is formed via a binder, and inorganic substances are deposited on the surface of the steel sheet using physical vapor deposition or chemical vapor deposition.
  • a method of forming a coating may be employed.
  • grooves are formed on the surface of the steel sheet by etching or the like, or after forming an insulating coating, in one of the processes after cold rolling, heat such as laser or plasma is applied to the surface of the steel sheet.
  • the magnetic domain refining treatment may be performed by irradiating an energy beam to form a thermally strained region, or by pressing a roll having projections or the like against the steel sheet surface to form a work strained region.
  • a steel slab with a thickness of 220 mm was produced containing the various components shown in Table 3, with the balance being Fe and unavoidable impurities. It was extracted from the heating furnace, subjected to a width reduction process of 100 mm per side, and then subjected to horizontal rolling for flattening by correcting the dog-bone shape produced by the width reduction process. At this time, the amount of temperature drop at the width edge of the slab was varied by changing the contact time between the slab and the width reduction equipment. Table 4 shows the temperature Tc (° C.) at the center of the width of the slab after the width reduction and the horizontal rolling, the temperature Te (° C.) at the edge of the width, and the difference between Tc and Te (Tc ⁇ Te).
  • the steel slab was put into the heating furnace again, heated at 1400° C. for 20 minutes, subjected to rough hot rolling to obtain a sheet bar having a thickness of 50 mm, and further subjected to hot finish rolling to have a thickness of 2.8 mm.
  • After making a hot-rolled sheet it was water-cooled and wound into a coil at a temperature of 500°C.
  • both width edges of the hot-rolled sheet are continuously photographed inline, and from the images, the maximum width of edge cracks occurring at the width edges is measured. The results are shown in Table 4.
  • the hot-rolled sheet was soaked at 1000°C for 10 seconds, it was subjected to hot-rolled sheet annealing by water cooling from 800°C to 350°C at 20°C/s.
  • the first cold rolling was performed to make the intermediate sheet thickness 2.0 mm, and after soaking at 1100 ° C.
  • the intermediate thickness steel plate was pickled to remove surface scales, and then subjected to second cold rolling to obtain a cold-rolled steel plate having a final thickness of 0.23 mm.
  • the cold-rolled sheet is subjected to primary recrystallization annealing that also serves as decarburization annealing at 850° C. for 120 s in a moist atmosphere containing H 2 and N 2 with a dew point of 55° C., and then an annealing separator containing MgO as a main component. was applied to the surface of a steel plate at 8 g/m 2 per side, dried, and wound into a coil. After that, the steel sheet wound around the coil was subjected to secondary recrystallization, and then subjected to final annealing in which the steel sheet was held at a temperature of 1200° C. for 10 hours for purification.
  • primary recrystallization annealing that also serves as decarburization annealing at 850° C. for 120 s in a moist atmosphere containing H 2 and N 2 with a dew point of 55° C.
  • an annealing separator containing MgO as a main component was applied to the surface of
  • the atmosphere in the temperature range of 950° C. or higher was an atmosphere containing H 2 as the main component.
  • a phosphate-based tension imparting insulation coating is applied, and flattened annealing is performed to bake the coating and correct the shape of the steel sheet. was applied to make a product board.
  • the crystal orientation was measured by the SEM-EBSD method at both the front end and the tail end of the product coil thus obtained, and the maximum width of the secondary recrystallization defect part of each coil was obtained.
  • a test piece for measuring magnetic properties was taken from the entire width of the innermost and outermost windings of the product sheet coil with the rolling direction as the measurement direction, and the magnetic flux density B 8 at a magnetizing force of 800 A / m was measured according to JIS C2550- 1 (2011), and the value with the lowest magnetic flux density was taken as the in-coil guaranteed value.
  • the grain-oriented electrical steel sheets manufactured under the conditions suitable for the present invention using steel slabs having chemical compositions suitable for the present invention all have edge cracks suppressed to less than 10 mm.
  • the maximum width of the secondary recrystallization defect part at the sheet width end is suppressed to 5 mm or less, and the magnetic flux density B8 at the sheet end is also 1.93 T or more, which is good magnetic properties. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

インヒビター形成成分を含有する鋼スラブを加熱し、熱間圧延し、必要に応じて熱延板焼鈍し、冷間圧延し、脱炭焼鈍を兼ねた一次再結晶焼鈍し、焼鈍分離剤を塗布した後、仕上焼鈍を施して方向性電磁鋼板の製造する際、上記鋼スラブの加熱工程では、鋼スラブを900~1300℃の温度に加熱した後、片側あたり50~200mmの幅圧下加工し、水平圧延した後、再加熱するとともに、上記水平圧延後のスラブの幅中央部の表面温度をTc(℃)、幅端部の表面温度をTe(℃)、熱間圧延後の鋼板に最初の焼鈍を施すときの昇温過程における700~900℃間の板幅方向の平均昇温速度をR(℃/s)としたとき、上記RがR≧5+(Tc-Te)/20を満たすよう制御することで、熱間圧延で発生する耳割れを効果的に防止しつつ、製品板の板幅端部の二次再結晶不良の発生を防止する方向性電磁鋼板の製造方法。

Description

方向性電磁鋼板の製造方法
 本発明は、結晶粒がミラー指数で板面に{110}、圧延方向に<001>に高度に集積した、いわゆる方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、軟磁性材料であり、主に変圧器等の電気機器の鉄芯として用いられている。この方向性電磁鋼板は、二次再結晶を利用して、結晶粒を{110}<001>方位(以降、「ゴス方位」という)に高度に集積させることで、低鉄損で高磁束密度という優れた磁気特性を付与している。なお、方向性電磁鋼板の磁気特性を評価する指標としては、磁場の強さが800(A/m)における磁束密度B(T)と、励磁周波数が50(Hz)の交流磁場で1.7(T)まで磁化したときの鋼板1kgあたりの鉄損W17/50(W/kg)が一般的に用いられている。
 上記の方向性電磁鋼板の製造方法としては、インヒビターと呼ばれる微細な析出物を最終仕上焼鈍中に析出させて結晶粒界に易動度差を付与することで、ゴス方位粒のみを優先的に成長させる方法が一般的に使用されている。例えば、特許文献1には、インヒビターとしてAlN、MnSを利用する方法が、特許文献2には、インヒビターとしてMnS、MnSeを利用する方法が開示されており、いずれも工業的に実用化されている。これらのインヒビターを用いる方法は、インヒビターを均一微細に分散させることが理想的であり、そのため、熱間圧延を行う前に素材である鋼スラブを1300℃以上の高温に加熱することが必要とされている。
 一方、スラブを高温度で長時間加熱すると、スラブの結晶組織が粗大化して組織の不均一化を助長するという問題が発生する。この問題に対しては、特許文献3に開示されているように、1300~1450℃程度の高温に短時間で加熱する方法が提案され、現在、主流になっている。上記のスラブ加熱方式としては、特許文献4や特許文献5に開示されている誘導加熱や通電加熱がある。この技術を適用することで、結晶組織の粗大化を抑えることが可能となるだけでなく、スラブを個別に処理できるため、熱間圧延チャンスの自由度が増すこと、また、生産効率の面、さらには設備の建設費や維持・管理コストの面でも有利であるとされている。
 ところで、方向性電磁鋼板は、上記したような磁気特性の向上に加えて、製品を安価に供給することも強く望まれており、高品質な製品を歩留り良く製造することが製造者サイドにおいては重要な課題となっている。歩留り向上の課題としては、例えば、熱間圧延時に発生する鋼板端部の耳割れを防止することが挙げられる。
 熱間圧延時に発生する耳割れを防止する方策については、従来から多くの技術が提案されている。例えば、特許文献6には、一方向性珪素鋼連鋳片の熱間圧延工程において、仕上圧延開始温度と仕上圧延終了温度との差、すなわち熱間仕上圧延中の温度低下を220℃以下とする方法が提案されている。しかし、仕上圧延の開始温度と終了温度との差をこのような範囲に規制しても、粗圧延時や仕上圧延の前段で発生する耳割れを防止することはできていない。
 また、特許文献7には、熱間粗圧延の最終圧下率を規制する方法が、特許文献8には、スラブの鋳込組織を制御する方法が、さらに、特許文献9には、スラブ断面形状を特殊形状にする方法が開示されている。しかし、上記特許文献7~9で提案された技術は、耳割れ防止に対して多少の効果はあるが、耳割れを完全に防止する有効な方法とは言えなかった。また、特許文献10~14には、熱間圧延時のシートバーの側面形状を整えることで耳割れを防止する方向性珪素鋼板の熱間圧延方法が開示されている。しかし、これらの方法も、上記の方法に比べて耳割れ防止効果は大きいものの、完全に耳割れを防止できるまでには至っていない。そこで、特許文献15には、スラブ加熱後に幅圧下に加えてさらに水平圧下を行った後、高温スラブ加熱を行う方法が提案されている。
特公昭40-015644号公報 特公昭51-013469号公報 特開昭60-190520号公報 実公昭58-024397号公報 特開昭60-145318号公報 特開昭55-062124号公報 特開昭54-031024号公報 特開平03-243244号公報 特開昭61-003837号公報 特開昭60-145204号公報 特開昭60-200916号公報 特開昭61-071104号公報 特開昭62-196328号公報 特開平05-138207号公報 特開平03-133501号公報
 しかしながら、上記特許文献15に開示された、高温スラブ加熱前にスラブに幅圧下加工を行う技術は、熱延板の耳割れを顕著に抑制する効果があるものの、新たな問題が発生した。すなわち、幅圧下加工によってスラブ幅端部の温度が低下し、その後の高温スラブ加熱において幅端部の加熱が不十分となり、インヒビターの固溶および熱間圧延時の均一微細分散析出が不十分となる。その結果、製品板の板幅端部に二次再結晶が不完全な部分が発生するという問題である。上記の二次再結晶が不完全な部分は、切り捨てる必要があるため、大きな歩留り低下を招くことになる。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、AlN、MnSおよび/またはMnSeをインヒビターとして利用する方向性電磁鋼板の製造方法において、熱間圧延時に発生する耳割れを防止しつつ、製品板の板幅端部の二次再結晶不良の発生をも効果的に防止する技術を提案することにある。
 発明者らは、上記の課題を解決する方策について、鋭意検討を重ねた。その結果、高温スラブ加熱前の幅圧下加工によるスラブ幅端部の温度低下量に応じて、熱間圧延後の鋼板に施す最初の焼鈍における700~900℃間の板幅方向の平均昇温速度を適切に管理することで、熱間圧延時に発生する耳割れ防止と、製品板板幅端部の二次再結晶不良の発生防止を同時に達成することができることを見出し、本発明を開発するに至った。
 上記知見に基づく本発明は、方向性電磁鋼板の製造方法において、上記製造方法は、C:0.02~0.10mass%、Si:2.5~5.5mass%、Mn:0.01~0.30mass%、sol.Al:0.010~0.040mass%、N:0.004~0.020mass%を含有し、さらに、SおよびSeのうちの少なくとも1種:合計で0.001~0.040mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを加熱した後、熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、焼鈍分離剤を鋼板表面に塗布した後、仕上焼鈍を施す工程を含み、上記鋼スラブの加熱工程では、鋼スラブを900~1300℃の温度に加熱した後、片側あたり50~200mmの幅圧下加工し、上記幅圧下加工により発生したドッグボーン形状を水平圧延により平坦化した後、再加熱して1300~1450℃の高温度で0~120min間保持するとともに、上記幅圧下加工および水平圧延後のスラブの幅中央部の表面温度をTc(℃)、幅端部の表面温度をTe(℃)、熱間圧延後の鋼板に最初の焼鈍を施すときの昇温過程における700~900℃間の板幅方向の平均昇温速度をR(℃/s)としたとき、上記Rが下記(1)式;
 R≧5+(Tc-Te)/20 ・・・(1)
を満たすことを特徴とする方向性電磁鋼板の製造方法を提案する。
 本発明の上記方向性電磁鋼板の製造方法は、上記熱間圧延後の最初の焼鈍の昇温過程における700~900℃間の板幅中央部の昇温速度をRc(℃/s)、板幅端部の昇温速度をRe(℃/s)としたとき、上記RcおよびReが下記(2)式;
 Re≧Rc ・・・(2)
を満たすことを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法は、上記TcおよびTeが下記(3)式;
 10≦(Tc-Te)≦100 ・・・(3)
を満たし、かつ、上記RcおよびReが下記(4)式;
 (Re-Rc)≧(Tc-Te)/50 ・・・(4)
を満たすことを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法は、下記のいずれか1の工程を有することを特徴とする。
          記
 ・鋼スラブを加熱した後、1100℃~1400℃の温度域で1パス以上の粗圧延をした後、800~1300℃の温度域で2パス以上の仕上圧延をして熱延板とし、その後、400~750℃の巻取温度でコイルに巻き取る熱間圧延工程
 ・900~1250℃の温度域で5s以上保持した後、800℃から350℃まで5~100℃/sで冷却する熱延板焼鈍工程
 ・冷間圧延を1回行う場合は、その総圧下率を50~92%の範囲とし、冷間圧延を2回以上行う場合は、各々の総圧下率を50~92%の範囲とする冷間圧延工程
 ・900~1250℃の温度域に5s以上保持した後、800℃から350℃まで5~100℃/sで冷却する中間焼鈍工程
 ・HとNとを含み、かつ露点が20~80℃以下の湿潤雰囲気下で、750~950℃の温度域で10s以上保持する脱炭焼鈍を兼ねた一次再結晶焼鈍工程
 ・MgOを主成分とする焼鈍分離剤を鋼板表面に片面当たり3g/m以上塗布する焼鈍分離剤塗布工程
 ・少なくとも1050~1300℃の温度に3hr以上保持する純化処理を含む、800℃以上の温度域の一部の雰囲気をH含有雰囲気とする仕上焼鈍工程
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ni:0mass%超え1.00mass%以下、Sb:0mass%超え0.50mass%以下、Sn:0mass%超え0.50mass%以下、Cu:0mass%超え0.50mass%以下、Cr:0mass%超え0.50mass%以下、P:0mass%超え0.50mass%以下、Mo:0mass%超え0.50mass%以下、Nb:0mass%超え0.020mass%以下、V:0mass%超え0.010mass%以下、B:0mass%超え0.0025mass%以下、Bi:0mass%超え0.50mass%以下およびZr:0mass%超え0.10mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Co:0mass%超え0.0200mass%以下を含有することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ti:0mass%超え0.0200mass%以下およびW:0.001~0.050mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Zn:0mass%超え0.0200mass%以下、Pb:0mass%超え0.0100mass%以下、As:0mass%超え0.020mass%以下、Ag:0mass%超え0.200mass%以下、Au:0mass%超え0.200mass%以下、Ga:0mass%超え0.0200mass%以下、Ge:0mass%超え0.0200mass%以下、Ca:0mass%超え0.0200mass%以下、Mg:0mass%超え0.0200mass%以下、REM:0mass%超え0.0200mass%以下およびHf:0mass%超え0.020mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする。
 本発明によれば、熱間圧延時に発生する耳割れと、製品板の板幅端部の二次再結晶不良の発生とを効果的に防止することができるので、高磁束密度・低鉄損の方向性電磁鋼板を、高歩留まりで、安価に製造することが可能となる。
二次再結晶不良部の最大幅に及ぼす(Tc-Te)とRの影響を示すグラフである。 二次再結晶不良部の最大幅に及ぼす(Tc-Te)と(Re-Rc)の影響を示すグラフである。
 まず、本発明を開発するに至った実験について説明する。
<実験1>
 C:0.05mass%、Si:3.1mass%、Mn:0.09~0.10mass%、sol.Al:0.020~0.021mass%、N:0.009mass%、S:0.002~0.003mass%およびSe:0.009~0.010mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、厚さが260mmの鋼スラブを18本製造した。次いで、上記スラブを加熱炉へ装入して1000℃まで加熱した後、加熱炉から抽出し、9本のスラブは片側あたり20mm、残りの9本のスラブは片側あたり50mmの幅圧下加工した後、水平圧下(水平圧延)してスラブのドッグボーン形状を矯正して平坦化した。なお、上記幅圧下加工においては、スラブと幅圧下加工設備との接触時間を変更することでスラブの幅方向端部の温度降下量を変化させた。また、幅圧下加工および水平圧延後のスラブの幅中央部の表面温度Tc(℃)、幅端部の表面温度Te(℃)および上記TcとTeの温度差(Tc-Te)を表1に示した。なお、上記スラブ幅中央部の表面温度とはスラブ上面(長辺)の幅中央部の表面温度を、幅端部の表面温度とはスラブ側面(短辺)の厚み中央部の温度を指す。
 その後、上記鋼スラブを再び加熱炉へ装入して1350℃に加熱し、該温度に5min間保持した後、熱間粗圧延して厚さ40mmのシートバーとし、さらに、熱間仕上圧延して板厚2.8mmの熱延板とし、水冷して600℃の温度でコイルに巻き取った。この際、熱間仕上圧延機の出側において、熱延板の両板幅端部をインラインで連続的に写真撮影し、得られた画像から板幅端部に発生した耳割れの最大幅を測定し、その結果を表1に示した。表1から、片側あたり50mmの幅圧下加工を行うことで耳割れが軽減されることがわかった。
 上記のように、幅圧下加工により耳割れが軽減される理由は、以下のように考えている。鋼スラブの片側あたり50mmの幅圧下加工を行うことでスラブ幅端部に加工歪が導入される。さらに、上記幅圧下加工でスラブ幅端部に生じたドックボーン形状を矯正するための水平圧下によっても加工歪が導入される。その結果、スラブ幅端部には大きな加工歪が付加されて、スラブの幅端部の結晶粒径が微細されたためであると考えられる。
Figure JPOXMLDOC01-appb-T000001
 次いで、上記熱延板を1150℃×120sの均熱処理後、800℃から350℃まで50℃/sで水冷する熱延板焼鈍を施した。この際、それぞれの鋼板について、熱延板焼鈍の昇温過程における700~900℃間の板幅方向の平均昇温速度R(℃/s)、板幅中央部の昇温速度Rc(℃/s)および板幅端部の昇温速度Re(℃/s)を表1に示したように種々に変化させた。なお、上記板幅方向の昇温速度は、全板幅の平均昇温速度であり、また、板幅端部の昇温速度は、両板幅端部から30mm内側に入った部分の昇温速度のうちの低い方の昇温速度である。
 次いで、上記熱延板焼鈍後の鋼板を酸洗して表面のスケールを除去した後、冷間圧延して最終板厚0.27mmの冷延板とした。次いで、上記冷延板にHとNを含む露点50℃の湿潤雰囲気下で800℃×60sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。次いで、MgOを主成分とする焼鈍分離剤を鋼板表面に片面あたり5g/mで塗布し、乾燥してコイルに巻き取った。その後、二次再結晶させた後、1240℃の温度に5hr保持して純化処理する仕上焼鈍を施した。なお、上記仕上焼鈍では、1050℃以上の温度域は、Hを主成分とする雰囲気とした。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸塩系の張力付与型の絶縁被膜を塗布し、被膜の焼付けと鋼板の形状矯正を兼ねた平坦化焼鈍を施して製品板とした。
 斯くして得た製品板コイルの先端部(コイル最外巻部)および尾端部(コイル最内巻部)の両板幅端部をSEM-EBSD法にて結晶方位を測定し、各コイルの二次再結晶不良部の最大幅を求め、その結果を表1に併記した。また、図1には、片側あたりの幅圧下量が50mmのコイルにおける(Tc-Te)およびRと二次再結晶不良部の最大幅との関係を示した。これらの結果から、下記(1)式;
 R≧5+(Tc-Te)/20 ・・・(1)
を満たすように熱間圧延前の幅圧下加工、幅圧下加工後のスラブ表面温度および熱間圧延後の最初の焼鈍である熱延板焼鈍の昇温速度を制御することで、熱間圧延時の耳割れの発生を防止しつつ、製品板の幅方向端部の二次再結晶不良を抑制できることがわかった。
 なお、製品板の板幅端部に発生した二次再結晶不良部の深さ(板幅端部からの距離)は、各製品板コイルの先端部(コイル最外巻部)および尾端部(コイル最内巻部)の両板幅端部からそれぞれ30mm幅のサンプルを採取し、被膜を除去した後、片面にテープを貼り、化学研磨で片面から板厚中心層まで減厚した面をダイヤモンド研磨、アルミナ研磨およびコロイダルシリカ研磨等で鏡面に仕上げた後、SEM-EBSD法で結晶方位を測定することで得られる。具体的には、本発明では、EDAX社製のEBSD測定システムを用いて採取したサンプルについて、1μmステップで圧延方向2mm×板幅方向30mmの領域を測定し、測定領域全体の95%以上の領域で信頼性指数(Confidence Index)>0.1が得られるよう、サンプルの表面状態、SEM条件およびEBSD条件を調整して測定した。次いで、得られたデータをEDAX社製のOIM Analysisで解析し、{110}<001>からの方位差角が20°以内、かつ、再結晶粒径が1mm以上のものを二次再結晶粒とし、それ以外の領域は二次再結晶不良部と判定し、上記二次再結晶不良部の発生領域の板幅端部からの距離を二次再結晶不良部深さとした。そして、製品板の先端部および尾端部の両板幅端部の二次再結晶不良部深さの最大値をそのコイルの二次再結晶不良部の最大幅とした。
 上記したように、スラブ加熱工程途中の幅圧下加工および水平圧延後のスラブの(Tc-Te)に応じて、熱間圧延後の鋼板に施す最初の焼鈍の昇温過程における700~900℃間の板幅方向の平均昇温速度Rを適正範囲に制御する、すなわち、スラブ幅端部の温度が低い場合には、熱間圧延後の最初の焼鈍の昇温過程における昇温速度を高めることで製品板の板幅端部に発生し易い二次再結晶不良を抑制できる理由について、発明者らは次のように考えている。
 スラブ加熱工程の途中で温度が低下したスラブの幅端部は、その後、スラブを高温に加熱しても幅中央部に比べて温度が低いままである。また、たとえ所定の均熱温度に到達したとしても、幅中央部に比べて均熱時間が短くなるため、インヒビターが完全に固溶した状態になっていない。その結果、熱間圧延工程で均一微細に析出する析出物(インヒビター)の量が少なくなって、Goss方位粒とその他の方位粒との粒界の易動度差がつき難くなり、ゴス方位粒が二次再結晶し難い状態になっていると考えられる。しかし、ここで、熱間圧延後の最初の焼鈍の昇温過程における昇温速度を高めた場合には、追加して析出する析出物が微細化されるため、粒界に易動度差を付与することができ、二次再結晶不良が抑制されると考えている。
<実験2>
 C:0.08mass%、Si:3.7mass%、Mn:0.06mass%、sol.Al:0.028mass%、N:0.009mass%およびS:0.025mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、厚さが260mmの鋼スラブを9本製造し、加熱炉へ装入して1250℃まで加熱した後、加熱炉から抽出し、片側あたり200mmの幅圧下加工した後、水平圧延してスラブのドッグボーン形状を平坦化した。この際、上記幅圧下加工時のスラブと幅圧下加工設備との接触時間を変えることで、スラブの幅方向端部の温度降下量を変化せた。また、幅圧下加工および水平圧延後のスラブの幅中央部の温度Tc(℃)、幅端部の温度Te(℃)を測定し、その結果を表2に示した。その後、上記スラブを再び加熱炉へ装入して1300℃の温度に加熱し、該温度に120min間保持した後、加熱炉から抽出し、熱間粗圧延して厚さ30mmのシートバーとし、さらに、熱間仕上圧延して板厚3.0mmの熱延板とした後、水冷して700℃の温度でコイルに巻き取った。この際、熱間仕上圧延機の出側において、熱延板の両板幅端部をインラインで連続的に写真撮影し、得られた画像から板幅端部に発生した耳割れの最大幅を測定し、その結果を表2に併記した。表2から、いずれの熱延板においても、耳割れの最大幅が10mm以下に抑制されていることがわかる。
 次いで、上記熱延板を、熱延板焼鈍を施すことなく、酸洗して表面のスケールを除去した後、1回目の冷間圧延をして中間板厚0.7mmとし、1000℃×60sの均熱処理後、800℃から350℃まで30℃/sで水冷する中間焼鈍を施し、酸洗して表面のスケールを除去した後、2回目の冷間圧延をして最終板厚0.23mmの冷延板とした。この際、上記中間焼鈍の昇温過程における700~900℃間の板幅方向の平均昇温速度R(℃/s)、板幅中央部の昇温速度Rc(℃/s)および板幅端部の昇温速度Re(℃/s)を表2に示したように変化させた。
 次いで、上記冷延板にHとNを含む露点60℃の湿潤雰囲気下で900℃×120sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に片面あたり3g/mで塗布し、乾燥し、コイルに巻き取った、その後、二次再結晶させた後、1150℃の温度に20hr保持して純化処理する仕上焼鈍を施した。なお、上記仕上焼鈍では、900℃以上の温度域の雰囲気は、Hを主成分とする雰囲気とした。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸塩系の張力付与型の絶縁被膜を塗布し、被膜の焼付けと鋼板の形状矯正を兼ねた平坦化焼鈍を施して製品板とした。
 斯くして得た製品板コイルの先端部および尾端部の両板幅端部を、前述した実験1と同様にしてSEM-EBSD法にて結晶方位を測定し、各コイルの二次再結晶不良部の最大幅を求め、その結果を表2に併記した。また、図2には、(Re-Rc)と(Tc-Te)と二次再結晶不良部の最大幅との関係を示した。これらの結果から、下記(2)~(4)式;
 Re≧Rc ・・・(2)
 10≦(Tc-Te)≦100 ・・・(3)
 (Re-Rc)≧(Tc-Te)/50 ・・・(4)
を満たすように熱間圧延前の幅圧下加工におけるスラブ表面温度および熱間圧延後の最初の焼鈍である中間焼鈍における昇温速度を制御することで、製品板の板幅端部の二次再結晶不良を顕著に抑制できることがわかった。
Figure JPOXMLDOC01-appb-T000002
 ここで、スラブ幅端部の温度が低い場合に、熱間圧延後の最初の焼鈍の昇温過程における昇温速度を高めることで製品板の板幅端部に発生する二次再結晶不良を抑制できる理由については、<実験1>において述べた通りである。さらに、上記熱間圧延後の最初の焼鈍の昇温過程において、板幅中央部の昇温速度よりも板幅端部の昇温速度を積極的に高め、上記(2)~(4)式を満たして加熱することで、本発明の効果がより顕著になる理由について、発明者らは以下のように考えている。
 まず、熱間圧延工程における幅圧下加工および水平圧延後のスラブの幅中央部の温度と幅エッジ部の温度の差を(3)式の範囲に制御することで、水平圧延後における幅方向でのインヒビターの析出挙動の違いを最小化できる。その上で、熱間圧延後の最初の焼鈍の昇温過程における昇温速度を、(2)式のように板幅端部の昇温速度を板幅中央部の昇温速度よりも高め、かつ、(4)式の範囲に制御することで、昇温過程で追加して析出する析出物を微細化することができる。その結果、仕上焼鈍工程における二次再結晶不良を抑制する効果が顕著となる。
 次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成の限定理由について説明する。
C:0.02~0.10mass%
 Cは、熱間圧延時および熱延板焼鈍の均熱時に起こるオーステナイト-フェライト変態を利用して熱延板組織の改善を図るために必要な元素である。また、C含有量が0.02mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を引き起こす。一方、C含有量が0.10mass%を超えると、脱炭処理の負荷が増大するばかりでなく、脱炭自体が不完全となり、製品板において磁気時効を起こす原因ともなる。そのため、Cの含有量は0.02~0.10mass%の範囲とする。好ましくは0.03~0.08mass%の範囲である。
Si:2.5~5.5mass%
 Siは、鋼の比抵抗を高めて鉄損の一部を構成する渦電流損を低減するのに極めて有効な元素である。Si含有量が2.5mass%未満では、上記低減効果が小さく、良好な鉄損特性を得ることができない。一方、鋼の比抵抗は、Si含有量が11mass%までは単調に増加するものの、5.5mass%を超えると加工性が著しく低下し、圧延して製造することが困難となる。そのため、Siの含有量は2.5~5.5mass%の範囲とする。好ましくは3.0~4.0mass%の範囲である。
Mn:0.01~0.30mass%
 Mnは、MnSおよびMnSeを形成し、仕上焼鈍の昇温過程で正常粒成長を抑制するインヒビターとして機能するため、方向性電磁鋼板の製造においては重要な元素である。しかし、Mn含有量が0.01mass%に満たないと、インヒビターの絶対量が不足し、正常粒成長の抑制力が不十分となる。一方、Mn含有量が0.30mass%を超えると、スラブ加熱で十分に固溶させることが難しくなり、磁気特性が劣化するようになる。そのため、Mnの含有量は0.01~0.30mass%の範囲とする。好ましくは0.05~0.20mass%の範囲である。
SおよびSeのうちの少なくとも1種:合計で0.001~0.040mass%
 SおよびSeは、Mnと結合してインヒビターとなるMnSやMnSeを形成する。しかし、SとSeの合計含有量が0.001mass%に満たないと、インヒビター量が不足し、磁気特性向上効果が十分に得られない。一方、合計含有量が0.040mass%を超えると、スラブ加熱で十分に固溶させることが難しくなり、磁気特性が大きく劣化するようになる。また、Sは0.040mass%を超えると、熱間圧延時に耳割れを引き起こすようになる。そこで、磁気特性と製造性を両立するため、SとSeの合計含有量は0.001~0.040mass%の範囲とする。好ましくは0.002~0.015mass%の範囲である。
sol.Al:0.010~0.040mass%
 Alは、AlNを形成して析出し、二次再結晶焼鈍において、正常粒成長を抑制するインヒビターとして機能する元素であり、方向性電磁鋼板においては重要な元素である。しかし、Al含有量が、酸可溶性Al(sol.Al)で0.010mass%に満たないと、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、sol.Alで0.040mass%を超えると、スラブ加熱で十分に固溶させることができなくなり、鋼中への微細分散が達成されず、磁気特性が大きく劣化するようになる。そのため、Alの含有量はsol.Alで0.010~0.040mass%の範囲とする。好ましくは0.015~0.030mass%の範囲である。
N:0.004~0.020mass%
 Nは、Alと結合・析出してインヒビターとなるAlNを形成するが、含有量が0.004mass%未満では、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、0.020mass%を超えると、熱間圧延時にスラブが膨れを起こすおそれがある。そのため、Nの含有量は0.004~0.020mass%の範囲とする。好ましくは0.006~0.010mass%の範囲である。
 本発明に用いる鋼素材は、上記必須とする成分以外に、以下の成分を含有することができる。
Ni:0mass%超え1.00mass%以下、Sb:0mass%超え0.50mass%以下、Sn:0mass%超え0.50mass%以下、Cu:0mass%超え0.50mass%以下、Cr:0mass%超え0.50mass%以下、P:0mass%超え0.50mass%以下、Mo:0mass%超え0.50mass%以下、Nb:0mass%超え0.020mass%以下、V:0mass%超え0.010mass%以下、B:0mass%超え0.0025mass%以下、Bi:0mass%超え0.50mass%以下およびZr:0mass%超え0.10mass%以下のうちから選ばれる少なくとも1種
 上記の成分は、磁気特性の向上に有効な成分であるので適宜含有することができる。しかし、それぞれの元素の添加量が上記上限値を超えると、二次再結晶粒の発達が抑制され、却って磁気特性が劣化するようになるので、添加する場合は上記範囲とするのが好ましい。
Co:0mass%超え0.0200mass%以下
 Coは、一次再結晶集合組織が改善して、製品板の磁気特性を向上するのに有効な元素であるので適宜含有することができる。しかし、上記上限値を超えると磁気特性向上記効果が飽和し、原料コストの上昇を招くようになるので、添加する場合は上記範囲とするのが好ましい。
Ti:0mass%超え0.0200mass%以下およびW:0.001~0.050mass%以下のうちから選ばれる少なくとも1種
 TiおよびWは、微細な炭化物や窒化物を形成して、焼鈍後の結晶粒径を微細化するので、脆性を改善して通板トラブルを抑制する効果があるので適宜含有することができる。しかし、上記上限値を超えると上記効果が飽和し、逆に原料コストの上昇を招くので、添加する場合は上記範囲とするのが好ましい。
Zn:0mass%超え0.0200mass%以下、Pb:0mass%超え0.0100mass%以下、As:0mass%超え0.020mass%以下、Ag:0mass%超え0.200mass%以下、Au:0mass%超え0.200mass%以下、Ga:0mass%超え0.0200mass%以下、Ge:0mass%超え0.0200mass%以下、Ca:0mass%超え0.0200mass%以下、Mg:0mass%超え0.0200mass%以下、REM:0mass%超え0.0200mass%以下およびHf:0mass%超え0.020mass%以下のうちから選ばれる少なくとも1種
 上記を元素は、結晶粒界に濃化したり化合物を形成して存在することで粒界を強化し、粒界破壊起因の欠陥を抑制したりする効果があるので適宜含有することができる。しかし、上記上限値を超えると上記効果が飽和し、逆に原料コストの上昇を招くので、添加する場合は上記範囲とするのが好ましい。
 なお、本発明に用いる鋼スラブは、上記成分以外の残部はFeおよび不可避的不純物である。ここで、上記不可避的不純物とは、鋼を溶製する際、原料やスクラップ、溶製用の鍋等から不可避的に混入してくる元素のことを意味する。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上記した成分組成を有する鋼を通常公知の精錬プロセスで溶製した後、通常公知の造塊法あるいは連続鋳造法で製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
 上記のスラブや薄鋳片は、通常の方法で加熱した後、熱間圧延に供するが、熱間圧延前のスラブ加熱温度は1300℃以上としてインヒビター形成成分を完全に固溶させることが望ましい。スラブ加熱は、一つの加熱炉で1300℃以上まで加熱してもよいし、二つ以上の加熱炉を使用して加熱してもよい。加熱方式は、燃焼ガス加熱方式、通電加熱方式、誘導加熱方式など、公知の方式を採用することができる。
 ここで、本発明において重要なことは、上記スラブの加熱工程において、スラブを900~1300℃の温度範囲に加熱した後、片側当たり50~200mmの範囲内で幅圧下加工を行い、次いで、この幅圧下加工により発生したドッグボーン形状を水平圧延(水平圧下)によって平坦化することである。幅圧下加工および水平圧延を施すことで、スラブの幅端部の結晶粒径が微細化し、続く熱間圧延での耳割れを顕著に抑制することができる。上記耳割れ防止効果を得るためには、片側あたり50mm以上の幅圧下が必要である。ただし、過度の幅圧下は、生産性を阻害するようになるので、上限は200mm程度とする。好ましい幅圧下量は100~150mmの範囲である。
 なお、幅圧下の加工方法は、この目的に適合するものであれば特に制限はなく、プレス、縦型ロール、エッジャー等、公知の加工技術を用いることができる。
 また、幅圧下加工に続く水平圧延は、幅圧下加工で生じたドッグボーン形状を矯正して平坦化する目的で行うが、生産性を阻害しない範囲で高圧下してもよい。
 次いで、上記の幅圧下加工および水平圧延したスラブや薄鋳片は、1300~1450℃の高温度で0~120min間加熱した後、粗圧延と仕上圧延からなる熱間圧延に供する。粗圧延は、1100~1400℃の範囲内において1パス以上の条件で行うのが好ましい。上記粗圧延に続く仕上圧延は、熱延板の組織を適正化するため、800~1300℃の範囲内において2パス以上の条件で行うのが好ましい。また、仕上圧延後のコイル巻取温度は、析出する炭化物の形態制御と、鋼板の割れ等を防止する観点から、400~750℃の範囲とするのが好ましい。より好ましくは500~700℃の範囲である。
 次いで、上記熱間圧延後の鋼板(熱延板)は、鋼板組織を均一化し、磁気特性のばらつきを小さくする観点から、900~1250℃の温度で5s以上均熱保持する熱延板焼鈍を施すことが好ましい。より好ましい均熱条件は、950~1150℃の温度で10~180s間保持する条件である。また、上記均熱処理後は、第二相や析出物の形態を適正化する観点から、800℃から350℃までの温度域を5~100℃/sの冷却速度で冷却するのが好ましい。より好ましくは15~80℃/sの範囲である。
 次いで、上記熱間圧延後または熱延板焼鈍後の鋼板(熱延板)は、熱間圧延時に生成した鋼板表面の酸化膜を除去するため、脱スケールするのが好ましい。脱スケールの方法は、加熱した酸を用いて酸洗する方法、機械的にスケールを除去するメカニカルデスケーリング方法、また、それらを組み合わせた方法など、公知の方法を用いることができる。
 次いで、スケールを除去した熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の均熱条件は、900~1250℃の温度で5s以上保持する条件で行うのが好ましい。均熱温度が900℃未満では、再結晶粒が細かくなり過ぎ、一次再結晶組織におけるGoss核が減少し、磁気特性が劣化する虞れがある。一方、1250℃を超えると、インヒビターの急激な成長や分解が生じるため、やはり、磁気特性の劣化を招く虞れがある。より好ましくは900~1150℃の温度で10~180s間保持する条件である。
 上記均熱処理後の冷却は、第二相や析出物の形態制御の観点から、800℃から350℃までを5~100℃/sの速度で冷却するのが好ましい。より好ましくは15~80℃/sである。なお、中間焼鈍を行う場合は、その前に、圧延油を除去することが好ましい。また、中間焼鈍後は、焼鈍で生じた鋼板表面のスケールを除去することが望ましい。脱スケールの方法は、加熱された酸を用いて酸洗する方法、機械的にスケールを除去するメカニカルデスケーリング方法、また、それらを組み合わせた方法など、公知の方法を用いることができる。
 ここで、本発明において重要なことは、熱間圧延後の鋼板に最初に施す焼鈍において、昇温過程の700~900℃間の平均昇温速度を適正に制御することである。具体的には、先述したスラブの幅圧下加工および水平圧延によって生じた幅中央部と幅端部の温度差(Tc-Te)(℃)と、熱間圧延後の最初の焼鈍における700~900℃間の板幅方向の平均昇温速度R(℃/s)が下記の(1)式;
 R≧5+(Tc-Te)/20 ・・・(1)
を満たすように制御する必要があるということである。
 また、本発明において、もう一つの重要なことは、熱間圧延後の鋼板に最初に施す焼鈍において、昇温過程における700~900℃間の板幅方向中央部の昇温速度をRc(℃/s)、板幅端部の昇温速度をRe(℃/s)としたとき、上記RcおよびReが下記(2)式;
 Re≧Rc ・・・(2)
を満たすのが好ましいということである。
 また、さらに本発明において重要なことは、熱間圧延後の鋼板に最初に施す焼鈍において、前述したTcおよびTeが下記(3)式;
 10≦(Tc-Te)≦100 ・・・(3)
を満たし、かつ、上記したRcおよびReが下記(4)式;
 (Re-Rc)≧(Tc-Te)/50 ・・・(4)
を満たすのが好ましいということである。
 ここで、上記熱間圧延後の鋼板に施す最初の焼鈍とは、熱延板焼鈍を施す場合は熱延板焼鈍のことを、熱延板焼鈍を施さずに冷間圧延間で中間焼鈍を施す場合は中間焼鈍のことを、熱延板焼鈍も中間焼鈍も行わない場合は、冷間圧延後の脱炭焼鈍を兼ねた一次再結晶焼鈍のことをいう。
 また、板幅端部の昇温速度Reを板幅中央部の昇温速度Rcよりも速くする方法は、この目的に適合するものであれば特に制限はないが、例えば、誘導加熱やバーナー等で板幅端部を局所的に加熱したり、板幅端部の熱吸収を高めるように表面状態を工夫したり、板幅端部の抜熱を抑制するように保熱対策を行ったりする等、公知の方法を利用することができる。
 また、上記冷間圧延では、圧延荷重の低減と圧延後の鋼板形状を向上するため、圧延油等の潤滑剤を使用することが望ましい。また、組織制御の観点から、1回の冷間圧延で最終板厚とする場合は、該冷間圧延の総圧下率を50~92%の範囲とするのが好ましい。一方、冷間圧延を2回以上行う場合は、各々の冷間圧延の総圧下率を50~92%の範囲とするのが好ましい。
 最終板厚に冷間圧延した鋼板(冷延板)は、その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施すが、その前に、脱脂や酸洗を行い、鋼板表面を清浄化しておくことが好ましい。一次再結晶焼鈍における脱炭焼鈍は、750~950℃の温度に10s以上保持する条件とするのが好ましい。より好ましい条件は800~900℃×30~180sの範囲である。また、上記脱炭焼鈍時の雰囲気は、HとNからなる、露点が20~80℃の湿潤雰囲気とすることが好ましい。より好ましい露点は40~70℃の範囲である。上記脱炭焼鈍を施すことで、鋼中のCは磁気時効が起こらない0.0050mass%以下に低減される。
 上記した一次再結晶焼鈍後の鋼板は、その後、MgOを主成分とする焼鈍分離剤を鋼板表面に片面あたり3g/m以上の目付量で塗布することが好ましい。目付量の上限は特に制限しないが、製造コストの観点から、10g/m程度とするのが好ましい。なお、MgOは、スラリー状にして鋼板表面に塗布してもよいし、静電塗装で乾式塗布してもよい。スラリーで塗布する場合は、スラリーの粘度上昇を抑制するため、スラリー溶液を15℃以下の一定温度に保持することが好ましい。また、スラリー濃度を一定に維持するため、スラリー溶液は、調合用のタンクと、塗布に供するタンクとを分けて管理することが望ましい。なお、MgOが主成分とは、焼鈍分離剤全体に対するMgOの含有量が60mass%以上であることをいう。
 焼鈍分離剤を塗布した鋼板は、コイルに巻き取り、アップエンドの状態にして、仕上焼鈍を施し、二次再結晶させるととともに、鋼板表面にフォルステライト被膜を形成させる。この際、コイルの外巻が巻ほぐれるのを防止するため、コイル外周にバンド等を巻き付けることが望ましい。
 上記仕上焼鈍は、二次再結晶を完了させるためには、800℃以上の温度に加熱することが好ましい。また、鋼板表面にフォルステライト被膜を形成させる場合は、1050℃以上に加熱することが好ましい。さらに、インヒビター形成成分や不純物を鋼中から排除し、良好な磁気特性を得るためには、1050~1300℃の温度で3hr以上保持する純化処理を施すことが好ましい。上記純化処理を施すことで、インヒビター形成成分は不純物レベルまで低減することができる。この際、少なくとも1050~1300℃の温度に3hr以上保持する純化処理を含む、800℃以上の温度域の一部の雰囲気は、Hを含む雰囲気とするのが好ましい。
 上記仕上焼鈍を施した鋼板は、その後、未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を施した後、仕上焼鈍時の鋼板の巻き癖等を矯正したり、鉄損を低減したりするため、平坦化焼鈍を施すことが好ましい。
 なお、方向性電磁鋼板は、鋼板を積層して使用することが多いが、その場合の絶縁性を確保するため、鋼板表面に絶縁被膜を被成することが好ましい。上記絶縁被膜は、鉄損を低減する効果のある張力付与型を採用するのが好ましい。上記絶縁被膜の鋼板表面への被成は、平坦化焼鈍前に被膜液を塗布し、平坦化焼鈍で焼き付けて形成してもよいし、別のラインで上記処理を行ってもよい。また、被膜密着性を高めて鉄損低減効果をより高めるため、バインダーを介して張力付与型の絶縁被膜を形成したり、物理蒸着法や化学蒸着法を用いて無機物を鋼板表層に蒸着させて被膜を形成する方法を採用したりしてもよい。
 さらに、より鉄損を低減する観点から、冷間圧延後のいずれかの工程で、鋼板表面にエッチング等で溝を形成したり、絶縁被膜を形成した後、鋼板表面にレーザーやプラズマ等の熱エネルギービームを照射して熱歪領域を形成したり、突起を有するロール等を鋼板表面に押し当てて加工歪領域を形成したりすることで、磁区細分化処理を施してもよい。
 表3に示した種々の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、厚さ220mmの鋼スラブを製造し、加熱炉に装入して1200℃まで加熱した後、加熱炉から抽出し、片側あたり100mmの幅圧下加工した後、上記幅圧下加工によって生じたドッグボーン形状を矯正して平坦化する水平圧延を施した。このとき、スラブと幅圧下加工設備との接触時間を変更することでスラブの幅端部の温度降下量を種々に変化させた。上記幅圧下加工および水平圧延後のスラブの幅中央部の温度Tc(℃)、幅端部の温度Te(℃)および上記TcとTeとの差(Tc-Te)を表4に示した。その後、上記鋼スラブを再び加熱炉へ装入して1400℃で20min間加熱した後、熱間粗圧延して厚さ50mmのシートバーとし、さらに、熱間仕上圧延して板厚2.8mmの熱延板とした後、水冷して500℃の温度でコイルに巻き取った。この際、熱間仕上圧延機の出側において、熱延板の両板幅端部をインラインで連続的に写真撮影し、その画像から、板幅端部に発生した耳割れの最大幅を測定し、その結果を表4に示した。
 次いで、上記熱延板を1000℃×10sの均熱処理後、800℃から350℃まで20℃/sで水冷する熱延板焼鈍を施した。この熱延板焼鈍の昇温過程における700~900℃間の板幅方向の平均昇温速度R(℃/s)、板幅中央部の昇温速度Rc(℃/s)および板幅端部の昇温速度Re(℃/s)を表4に示した。次いで、上記熱延板焼鈍後の鋼板を酸洗して表面のスケールを除去した後、1回目の冷間圧延して中間板厚2.0mmとし、1100℃×60sの均熱処理した後、800℃から350℃まで80℃/sで水冷する中間焼鈍を施した。次いで、上記中間板厚の鋼板を酸洗して表面のスケールを除去した後、2回目の冷間圧延して最終板厚0.23mmの冷延板とした。
 次いで、上記冷延板にHとNを含む露点55℃の湿潤雰囲気下で850℃×120sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施し後、MgOを主成分とする焼鈍分離剤を鋼板表面に片面あたり8g/mで塗布、乾燥し、コイルに巻き取った。その後、上記コイルに巻き取った鋼板に、二次再結晶させた後、1200℃の温度に10hr保持して純化処理する仕上焼鈍を施した。なお、上記仕上焼鈍では、950℃以上の温度域の雰囲気はHを主成分とする雰囲気とした。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸塩系の張力付与型の絶縁被膜を塗布し、被膜の焼付けと鋼板の形状矯正を兼ねた平坦化焼鈍を施して製品板とした。
 斯くして得た製品板コイルの先端部および尾端部の両板幅端部をSEM-EBSD法にて結晶方位を測定し、各コイルの二次再結晶不良部の最大幅を求めた。また、製品板コイルの最内巻部および最外巻部の全幅から圧延方向を測定方向とする磁気特性測定用の試験片を採取し、磁化力800A/mにおける磁束密度BをJIS C2550-1(2011)に記載の方法で測定し、磁束密度が最も低い値をコイル内保証値とした。
 上記の結果を表4に併記した。この結果から、本発明に適合する成分組成を有する鋼スラブを用いて、本発明に適合する条件で製造した方向性電磁鋼板は、いずれも耳割れが10mm未満に抑制されている。また、板幅端部の二次再結晶不良部の最大幅が5mm以下に抑制されており、板端部の磁束密度Bも1.93T以上の良好な磁気特性が得られていることがわかる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 

Claims (8)

  1. 方向性電磁鋼板の製造方法において、
    上記製造方法は、C:0.02~0.10mass%、Si:2.5~5.5mass%、Mn:0.01~0.30mass%、sol.Al:0.010~0.040mass%、N:0.004~0.020mass%を含有し、さらに、SおよびSeのうちの少なくとも1種:合計で0.001~0.040mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを加熱した後、熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、焼鈍分離剤を鋼板表面に塗布した後、仕上焼鈍を施す工程を含み、
    上記鋼スラブの加熱工程では、鋼スラブを900~1300℃の温度に加熱した後、片側あたり50~200mmの幅圧下加工し、上記幅圧下加工により発生したドッグボーン形状を水平圧延により平坦化した後、再加熱して1300~1450℃の高温度で0~120min間保持するとともに、
    上記幅圧下加工および水平圧延後のスラブの幅中央部の表面温度をTc(℃)、幅端部の表面温度をTe(℃)、熱間圧延後の鋼板に最初の焼鈍を施すときの昇温過程における700~900℃間の板幅方向の平均昇温速度をR(℃/s)としたとき、上記Rが下記(1)式を満たすことを特徴とする方向性電磁鋼板の製造方法。
         記
     R≧5+(Tc-Te)/20 ・・・(1)
  2. 上記熱間圧延後の最初の焼鈍の昇温過程における700~900℃間の板幅中央部の昇温速度をRc(℃/s)、板幅端部の昇温速度をRe(℃/s)としたとき、上記RcおよびReが下記(2)式を満たすことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
         記
     Re≧Rc ・・・(2)
  3. 上記TcおよびTeが下記(3)式を満たし、かつ、上記RcおよびReが下記(4)式を満たすことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
         記
     10≦(Tc-Te)≦100 ・・・(3)
     (Re-Rc)≧(Tc-Te)/50 ・・・(4)
  4. 下記のいずれか1の工程を有することを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板の製造方法。
              記
     ・鋼スラブを加熱した後、1100℃~1400℃の温度域で1パス以上の粗圧延をした後、800~1300℃の温度域で2パス以上の仕上圧延をして熱延板とし、その後、400~750℃の巻取温度でコイルに巻き取る熱間圧延工程
     ・900~1250℃の温度域で5s以上保持した後、800℃から350℃まで5~100℃/sで冷却する熱延板焼鈍工程
     ・冷間圧延を1回行う場合は、その総圧下率を50~92%の範囲とし、冷間圧延を2回以上行う場合は、各々の総圧下率を50~92%の範囲とする冷間圧延工程
     ・900~1250℃の温度域に5s以上保持した後、800℃から350℃まで5~100℃/sで冷却する中間焼鈍工程
     ・HとNとを含み、かつ露点が20~80℃以下の湿潤雰囲気下で、750~950℃の温度域で10s以上保持する脱炭焼鈍を兼ねた一次再結晶焼鈍工程
     ・MgOを主成分とする焼鈍分離剤を鋼板表面に片面当たり3g/m以上塗布する焼鈍分離剤塗布工程
     ・少なくとも1050~1300℃の温度に3hr以上保持する純化処理を含む、800℃以上の温度域の一部の雰囲気をH含有雰囲気とする仕上焼鈍工程
  5. 上記鋼スラブは、上記成分組成に加えてさらに、Ni:0mass%超え1.00mass%以下、Sb:0mass%超え0.50mass%以下、Sn:0mass%超え0.50mass%以下、Cu:0mass%超え0.50mass%以下、Cr:0mass%超え0.50mass%以下、P:0mass%超え0.50mass%以下、Mo:0mass%超え0.50mass%以下、Nb:0mass%超え0.020mass%以下、V:0mass%超え0.010mass%以下、B:0mass%超え0.0025mass%以下、Bi:0mass%超え0.50mass%以下およびZr:0mass%超え0.10mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする請求項1~4のいずれか1項に記載の方向性電磁鋼板の製造方法。
  6. 上記鋼スラブは、上記成分組成に加えてさらに、Co:0mass%超え0.0200mass%以下を含有することを特徴とする請求項1~5のいずれか1項に記載の方向性電磁鋼板の製造方法。
  7. 上記鋼スラブは、上記成分組成に加えてさらに、Ti:0mass%超え0.0200mass%以下およびW:0.001~0.050mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする請求項1~6のいずれか1項に記載の方向性電磁鋼板の製造方法。
  8. 上記鋼スラブは、上記成分組成に加えてさらに、Zn:0mass%超え0.0200mass%以下、Pb:0mass%超え0.0100mass%以下、As:0mass%超え0.020mass%以下、Ag:0mass%超え0.200mass%以下、Au:0mass%超え0.200mass%以下、Ga:0mass%超え0.0200mass%以下、Ge:0mass%超え0.0200mass%以下、Ca:0mass%超え0.0200mass%以下、Mg:0mass%超え0.0200mass%以下、REM:0mass%超え0.0200mass%以下およびHf:0mass%超え0.020mass%以下のうちから選ばれる少なくとも1種を含有することを特徴とする請求項1~7のいずれか1項に記載の方向性電磁鋼板の製造方法。
PCT/JP2023/004544 2022-02-15 2023-02-10 方向性電磁鋼板の製造方法 WO2023157765A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023524309A JP7338812B1 (ja) 2022-02-15 2023-02-10 方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022021370 2022-02-15
JP2022-021370 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023157765A1 true WO2023157765A1 (ja) 2023-08-24

Family

ID=87578166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004544 WO2023157765A1 (ja) 2022-02-15 2023-02-10 方向性電磁鋼板の製造方法

Country Status (2)

Country Link
JP (1) JP7338812B1 (ja)
WO (1) WO2023157765A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140650A (ja) * 1991-11-18 1993-06-08 Kawasaki Steel Corp 均一かつ良好な磁気特性を有する方向性けい素鋼板の製造方法
JPH07224325A (ja) * 1994-02-08 1995-08-22 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する方向性珪素鋼板の製造方法
JPH116015A (ja) * 1997-06-13 1999-01-12 Kawasaki Steel Corp 低鉄損方向性電磁鋼板の製造方法
KR20060074646A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 고자속밀도 방향성 전기강판의 제조방법
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
WO2022250112A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140650A (ja) * 1991-11-18 1993-06-08 Kawasaki Steel Corp 均一かつ良好な磁気特性を有する方向性けい素鋼板の製造方法
JPH07224325A (ja) * 1994-02-08 1995-08-22 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する方向性珪素鋼板の製造方法
JPH116015A (ja) * 1997-06-13 1999-01-12 Kawasaki Steel Corp 低鉄損方向性電磁鋼板の製造方法
KR20060074646A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 고자속밀도 방향성 전기강판의 제조방법
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
WO2022250112A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JP7338812B1 (ja) 2023-09-05
JPWO2023157765A1 (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
US9214275B2 (en) Method for manufacturing grain oriented electrical steel sheet
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
JP7197069B1 (ja) 方向性電磁鋼板の製造方法
JP6432671B2 (ja) 方向性電磁鋼板の製造方法
CN109923222B (zh) 取向性电磁钢板的制造方法
JP5565419B2 (ja) 無方向性電磁鋼板の製造方法
JP3931842B2 (ja) 無方向性電磁鋼板の製造方法
WO2023157765A1 (ja) 方向性電磁鋼板の製造方法
JP7028215B2 (ja) 方向性電磁鋼板の製造方法
JP7239077B1 (ja) 方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP7439943B2 (ja) 方向性電磁鋼板の製造方法
JP2009155731A (ja) 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
JP7197068B1 (ja) 方向性電磁鋼板の製造方法
JP6676952B2 (ja) 一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法
WO2022255259A1 (ja) 方向性電磁鋼板の製造方法
JP7264322B1 (ja) 方向性電磁鋼板の製造方法
WO2023149287A1 (ja) 無方向性電磁鋼板用熱延鋼板の製造方法、無方向性電磁鋼板の製造方法、および無方向性電磁鋼板用熱延鋼板
JP6607176B2 (ja) 方向性電磁鋼板の製造方法
JP2003027139A (ja) 方向性電磁鋼板の製造方法
KR20230159874A (ko) 방향성 전자 강판의 제조 방법
KR20230159875A (ko) 방향성 전자 강판의 제조 방법
JPH08215710A (ja) 表面性状に優れるけい素鋼熱延板の製造方法
KR20040056259A (ko) 응력제거소둔 후 철손특성이 우수한 무방향성 전기강판의제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023524309

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756291

Country of ref document: EP

Kind code of ref document: A1