WO2023157351A1 - 穿刺針 - Google Patents

穿刺針 Download PDF

Info

Publication number
WO2023157351A1
WO2023157351A1 PCT/JP2022/032362 JP2022032362W WO2023157351A1 WO 2023157351 A1 WO2023157351 A1 WO 2023157351A1 JP 2022032362 W JP2022032362 W JP 2022032362W WO 2023157351 A1 WO2023157351 A1 WO 2023157351A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
nitride layer
thickness
tip
puncture
Prior art date
Application number
PCT/JP2022/032362
Other languages
English (en)
French (fr)
Inventor
航 松本
慎悟 石井
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023157351A1 publication Critical patent/WO2023157351A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles

Definitions

  • the present invention relates to a puncture needle.
  • Puncture needles such as injection needles are used for the purpose of treatment during surgery such as drug injection and polycystic ovarian syndrome (PCOS), for cosmetic purposes, for examination purposes, and for blood donation and prevention. It is used for various purposes such as inoculation. For example, in procedures for inducing follicle growth and cosmetic acupuncture, an operation of puncturing the living body multiple times with the same puncture needle is performed (for example, Japanese Patent Application Laid-Open No. 2019-208962 (US Patent Application Publication No. 2021/0085396). corresponding to the No. statement)).
  • PCOS polycystic ovarian syndrome
  • an object of the present invention is to provide means for improving the strength of a puncture needle (especially the strength of the needle tip).
  • the inventors have conducted intensive research in order to solve the above problems. As a result, the inventors have found that the above problems can be solved by providing a nitride layer with a specific thickness on the needle tip, and have completed the present invention.
  • a puncture needle (cannula) having a nitride layer with a thickness of 0.1 ⁇ m or more and less than 12.0 ⁇ m on at least part of the needle tip (area including the tip of the needle).
  • the puncture needle of (1) above a blade surface is formed on the tip of the needle, and the nitride layer is formed on at least a portion of the blade surface; (3) In the puncture needle of (2) above, the nitride layer is preferably formed on the entire blade surface; (4) In the puncture needle according to any one of (1) to (3) above, the nitride layer preferably has a thickness of 0.2 ⁇ m or more and less than 5.0 ⁇ m; (5)
  • the puncture needle according to any one of the above (1) to (4) includes a needle tube having a blade surface formed on the needle tip, and the ratio of the thickness of the nitride layer to the thickness of the needle tube is 0.
  • the puncture needle according to any one of (1) to (5) above includes a needle tube having a blade surface formed in a region including the needle tip, and the needle tube on the proximal side from the terminal end of the blade surface.
  • the surface has a nitrided layer with a thickness greater than 0 ⁇ m and less than 1.0 ⁇ m or no nitrided layer is formed;
  • the puncture needle according to any one of (1) to (6) above preferably includes a needle tube having a blade surface formed on the tip of the needle, and the needle tube is preferably made of stainless steel;
  • the puncture needle according to any one of (1) to (7) above is preferably used for follicular growth induction, suturing, tibial pedal access, or cosmetology.
  • FIG. 1A shows a puncture needle according to one embodiment of the present disclosure.
  • 2 is the blade surface; 3 is the tip; 4 is the needle tube; 5 is the nitride layer; 6 is the area including the tip of the blade surface; 8 indicates the end of the blade face; and 10 indicates the puncture needle, respectively.
  • FIG. 1B shows a puncture needle according to another embodiment of the present disclosure; 22 the circular face; 23 the tip; 24 the solid cylindrical needle tube; and 25 the nitride layer, respectively.
  • FIG. 2 is a diagram showing an evaluation jig used for puncture durability.
  • FIG. 1A shows a puncture needle according to one embodiment of the present disclosure.
  • 2 is the blade surface
  • 3 is the tip
  • 4 is the needle tube
  • 5 is the nitride layer
  • 6 is the area including the tip of the blade surface
  • 8 indicates the end of the blade face
  • 10 indicates the puncture needle, respectively.
  • FIG. 1B shows a puncture needle according to another embodiment of the
  • FIG. 3 shows front and side microscope images (500 ⁇ ) of needle tips after 30 punctures of injection needles 1-2 of Examples 1-2 and comparative injection needles 1-2 of Comparative Examples 1-2.
  • the range “X to Y” includes X and Y and means “X or more and Y or less”.
  • X and/or Y means including at least one of X and Y, and includes “X alone,” “Y alone,” and “X and Y in combination.” Unless otherwise specified, measurements of operations and physical properties are performed under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 60% RH.
  • a puncture needle having a nitride layer with a thickness of 0.1 ⁇ m or more and less than 12.0 ⁇ m on at least part of the needle tip (region including the tip of the needle).
  • the strength of the puncture needle (especially the strength of the needle tip, more particularly the strength of the tip of the needle) can be improved.
  • the puncture needle according to the present disclosure has a nitrided layer of 0.1 ⁇ m or more and less than 12.0 ⁇ m on the needle tip.
  • a nitride layer (nitriding treatment) can generally impart high strength (hardness).
  • the needle tip has sufficient strength (hardness), and even when punctured multiple times, the needle tip ( tip) can be maintained, and change (increase) in piercing resistance can be suppressed or prevented.
  • a nitrided layer generally lowers the toughness.
  • the thickness of the nitride layer formed on the tip of the needle to be punctured is less than 12.0 ⁇ m, it is possible to suppress the decrease in toughness and suppress/prevent the occurrence of breakage and chipping.
  • the puncture needle of the present disclosure can maintain its shape (excellent in durability) even after repeated puncturing (for example, 5 times or more, 10 times or more). It should be noted that the upper limit of the number of punctures is preferably as high as possible, but usually the maximum is about 30 times.
  • the thickness of the nitride layer formed on at least part of the tip is 0.1 ⁇ m or more and less than 12.0 ⁇ m.
  • the "nitride layer having a thickness of 0.1 ⁇ m or more and less than 12.0 ⁇ m” is also simply referred to as the "nitride layer according to the present invention.
  • the thickness of the nitride layer is less than 0.1 ⁇ m, the strength (hardness) of the nitride layer is not sufficient, and the needle tip (especially the tip) deteriorates (e.g., bending, breaking, chipping) occurs. Therefore, the puncture resistance changes (increases) each time the puncture operation is repeated.
  • the thickness of the nitride layer formed on at least a portion of the needle tip preferably exceeds 0.1 ⁇ m. , more preferably 0.2 ⁇ m or more, still more preferably 1.0 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
  • the thickness of the nitride layer formed on at least part of the needle tip is preferably less than 10.0 ⁇ m, more preferably less than 7.0 ⁇ m, still more preferably less than 5.0 ⁇ m, and particularly preferably less than 5.0 ⁇ m. is 4.0 ⁇ m or less. That is, in one embodiment of the present disclosure, the nitride layer formed on at least a portion of the tip has a thickness greater than 0.1 ⁇ m and less than 10.0 ⁇ m. In one embodiment of the present disclosure, the nitride layer formed on at least a portion of the tip has a thickness of 0.2 ⁇ m or more and less than 7.0 ⁇ m.
  • the nitride layer formed on at least a portion of the tip has a thickness of 0.2 ⁇ m or more and less than 5.0 ⁇ m. In one embodiment of the present disclosure, the nitride layer formed on at least a portion of the tip has a thickness of 1.0 ⁇ m or more and less than 5.0 ⁇ m. In one embodiment of the present disclosure, the nitride layer formed on at least a portion of the tip has a thickness of 2.0 ⁇ m or more and 4.0 ⁇ m or less.
  • the “needle tip” intends the tip region of the puncture needle, including the tip of the puncture needle.
  • the puncture needle 10 has a blade surface 2 at the tip (front end side) of a hollow needle tube 4, and a nitride layer 5 is formed on the needle tube 4 including the blade surface 2. It has the following structure.
  • the “needle tip” means a region including at least the tip 3 , preferably a region 6 including the tip 3 of the blade surface 2 provided in the needle tube 4 .
  • the puncture needle 10 shown in FIG. 1A has a form in which the surface layer portion of the needle tube 4 is transformed into a nitride layer, but it may have a structure in which a separate nitride layer is formed on the needle tube 4.
  • the puncture needle 20 is composed of a solid cylindrical needle tube 24, and a nitride layer 25 is formed on the circular surface 22 of the tip 23 and part of the side surface of the needle tube 24. It has the following structure.
  • the "needle tip” intends the tip region of the puncture needle including at least part of the circular surface 22 of the tip 23 of the needle tube 24, preferably the circular surface 22 of the tip 23 of the needle tube 24.
  • the puncture needle 20 shown in FIG. 1B has a form in which the surface layer of the needle tube 24 is transformed into a nitride layer, but has a structure in which a separate nitride layer is formed on the needle tube 24.
  • Puncture the needle from the tip side Puncture the needle from the tip side.
  • the strength of the tip portion of the puncture needle greatly contributes to puncture operability, especially operability during repeated puncture (for example, suppression/prevention of decrease in puncture resistance). Therefore, the strength of the tip of the puncture needle is particularly important. Therefore, the nitride layer is preferably formed at least at the tip of the puncture needle.
  • nitride layer means a layer (surface layer) containing nitrogen.
  • the nitrided layer (the boundary between the puncture needle surface on which the nitrided layer is formed and the nitrided layer) is determined by observing the polished surface on which the sample (puncture needle) is embedded and polished with an optical microscope or an electron microscope. If it is difficult to distinguish between the nitrided layer and the non-nitrided layer, a metal corrosive solution (e.g. nitric acid ethanol solution, marble solution) can be used to accelerate the corrosion. The boundary between and can be clearly distinguished. Alternatively, the nitride layer can be identified by glow discharge spectroscopy (GDS).
  • GDS glow discharge spectroscopy
  • the “thickness of the nitrided layer” refers to embedding and polishing of the sample (puncture needle), and using an optical microscope or an electron microscope to determine the boundary between the nitrided layer and the puncture needle (non-nitrided layer) of the polished surface.
  • the puncture needle may have a solid structure or a hollow structure, which can be appropriately selected depending on the application.
  • the puncture needle may be one with a blade surface (bevel) or one without a blade surface (e.g., cylindrical shape, rectangular parallelepiped shape, etc.), which is appropriately selected according to the application.
  • the puncture needle has a blade surface at the needle tip. That is, in one embodiment of the present disclosure, a blade surface is formed on the tip of the puncture needle, and the nitride layer is formed on at least part of the blade surface. At this time, the nitride layer may be formed on at least a portion of the blade surface, but is preferably formed on the entire blade surface.
  • the nitride layer is formed on the entire blade surface.
  • a nitride layer is formed on the blade surface means that a nitride layer is formed on the surface of the needle tube that constitutes the blade surface.
  • a nitride layer is formed on the entire blade surface means that the nitride layer 5 is formed on the entire outer surface of the needle tube region 6 forming the blade surface 2 .
  • the needle tip shape of the puncture needle is not particularly limited, and a known structure can be applied.
  • the shape of the needle tip of the puncture needle is a bevel shape in which a blade surface having an acute-angled cut surface with respect to the longitudinal axis is formed on the needle tip, a shape in which the needle tip is cut at a right angle (90°), a needle Cone shape with a conical tip, Dome shape with a rounded tip, Pyramid shape with a polygonal pyramid shape such as a triangular or quadrangular pyramid, etc. be.
  • the needle tip structure of the bevel-shaped puncture needle is not particularly limited, and a known structure can be applied.
  • the tip of a puncture needle has various structures such as a lancet type, a semi-lancet type, and a back cut type.
  • FIG. 1A is a diagram for explaining a puncture needle according to one embodiment of the present disclosure.
  • the puncture needle 10 includes a needle tube 4 having a blade surface 2 formed at the tip of the needle.
  • the relationship between the thickness of the nitride layer 5 (“X” in FIG. 1A) and the thickness of the needle tube constituting the puncture needle (“Y” in FIG. 1A) is, for example, the thickness of the needle tube (“Y” in FIG. 1A).
  • the ratio of the thickness of the nitride layer to the thickness of the needle tube is more than 0.05% and less than 8.00% (0.05 ⁇ (X ⁇ 100)/Y ⁇ 8.00).
  • a needle tube having a blade surface formed on the needle tip is provided, and the ratio of the thickness of the nitride layer to the thickness of the needle tube is more than 0.07% and less than 5.00% (0 .07 ⁇ (X ⁇ 100)/Y ⁇ 5.00)
  • a needle tube having a needle tip formed with a blade surface is provided, and the thickness of the nitride layer with respect to the wall thickness of the needle tube is ratio is more than 0.10% and 3.00% or less (0.10 ⁇ (X ⁇ 100)/Y ⁇ 3.00).
  • the needle tip is formed with a blade surface.
  • a ratio of the thickness of the nitride layer to the thickness of the needle tube is more than 1.40% and less than 3.00% (1.40 ⁇ (X ⁇ 100)/Y ⁇ 3.00 ).
  • a needle tube having a needle tip formed with a blade surface is provided, and the ratio of the thickness of the nitride layer to the thickness of the needle tube is 1.33% or more and 2.67% or less. (1.33 ⁇ (X ⁇ 100)/Y ⁇ 2.67).
  • a nitride layer is formed on at least a part of the blade surface (region “6” in FIG. 1A), and the blade surface (Region “6” in FIG. 1A)
  • a nitride layer is preferably formed on the entire outer surface.
  • a nitride layer may be formed on the surface of the needle tube on the proximal side of the blade surface (region "7" in FIG. 1A), but the surface of the needle tube on the proximal side of the blade surface does not have a nitride layer. It is preferably not substantially formed. Nitriding generally improves hardness, but reduces toughness.
  • a nitride layer is formed on the blade surface that is particularly involved in repeated puncture, while the needle tube portion on the proximal side of the blade surface that is highly likely to bend. is preferably substantially free of the nitride layer. This suppresses the deterioration of damage resistance against repeated bending (for example, damage resistance in the damage (break) evaluation when repeatedly bending the body at a specified number of times and at a specified angle in the breakage resistance test described in ISO9626). can do.
  • a nitride layer (nitride layer according to the present invention) having a thickness of 0.1 ⁇ m or more and less than 12.0 ⁇ m is formed in the region from the tip of the needle to the end of the blade surface (end 8 in FIG. 1A).
  • the nitride layer according to the present invention is formed in the region from the tip of the needle to the end of the blade surface, and in the region on the proximal side thereof, a nitride layer having a thickness of less than 1.0 ⁇ m (lower limit: 0 ⁇ m) is formed. be.
  • the nitride layer according to the present invention is formed in the area from the tip of the needle to the end of the blade surface, and the nitride layer having a thickness of less than 0.5 ⁇ m (lower limit: 0 ⁇ m) is formed in the area on the proximal side.
  • a needle tube having a blade surface formed on the needle tip is provided, and the surface of the needle tube on the proximal side from the terminal end of the blade surface has a thickness of more than 0 ⁇ m and less than 2.0 ⁇ m.
  • the needle tube is provided with a blade surface formed on the needle tip, and the surface of the needle tube on the proximal side from the end of the blade surface has a thickness of more than 0 ⁇ m and less than 1.0 ⁇ m. With or without nitride layer.
  • the needle tube is provided with a blade surface formed on the needle tip, and the surface of the needle tube on the proximal side from the end of the blade surface has a thickness of more than 0 ⁇ m and less than 0.5 ⁇ m. With or without nitride layer.
  • a needle tube having a blade surface formed on a needle tip is provided, and a nitride layer is not formed on the surface of the needle tube on the proximal side from the end of the blade surface.
  • the nitride layer essentially contains nitrogen, but may contain other components.
  • other components include, for example, titanium, chromium, molybdenum, aluminum, vanadium, etc. from the viewpoint of being easily bonded to nitrogen atoms.
  • the above-mentioned other components may be contained singly or in combination of two or more. That is, in one embodiment of the present disclosure, the nitride layer further contains at least one selected from the group consisting of titanium, chromium, molybdenum, aluminum and vanadium.
  • the content of the other components is not particularly limited and can be appropriately selected according to the desired effect.
  • the material constituting the puncture needle is not particularly limited, and known materials can be applied in the same manner.
  • the needle tube may be made of any material as long as it is rigid enough to be pierced into a living body, and metal materials such as stainless steel, aluminum or aluminum alloys, titanium or titanium alloys, and ceramics are preferably used. can.
  • stainless steel is preferable for the needle tube. That is, in one embodiment of the present disclosure, a needle tube having a needle tip formed with a blade surface is provided, and the needle tube is made of stainless steel.
  • a hub may be provided at the proximal end of the puncture needle.
  • the material constituting the hub for example, polyolefins such as polyethylene and polypropylene, and thermoplastic resins such as polycarbonate, polyamide, polysulfone, and polyarylate can be suitably used.
  • a lubricant such as silicone oil may be applied to the surface of the puncture needle (needle tube).
  • the structure of the puncture needle can be the same as the known one, except that a nitride layer is formed on at least part of the tip of the puncture needle.
  • a nitride layer is formed on at least part of the tip of the puncture needle.
  • the structure disclosed in Japanese Unexamined Patent Application Publication No. 2012-30010 can be applied in the same manner or with appropriate modifications.
  • a desired portion of the puncture needle having a known structure as described above may be subjected to a nitriding treatment, which will be described in detail below.
  • the puncture needle Nitriding treatment may be performed on a desired portion of the .
  • the nitrided layer can be formed by known nitriding treatments such as radical nitriding (ion nitriding) treatment, plasma nitriding treatment, gas nitriding treatment, gas soft nitriding treatment, salt bath nitriding treatment, and vacuum nitriding treatment.
  • the gas nitriding treatment or gas nitrocarburizing treatment is carried out by using a nitriding or nitrocarburizing atmosphere, that is, ammonia (NH 3 ) as a nitrogen source, and optionally nitrogen gas, carbon monoxide gas, carbon dioxide gas or hydrogen gas.
  • a nitriding or nitrocarburizing atmosphere that is, ammonia (NH 3 ) as a nitrogen source, and optionally nitrogen gas, carbon monoxide gas, carbon dioxide gas or hydrogen gas.
  • the salt bath nitriding treatment is a method in which a puncture needle is heated and held in a salt bath containing cyanide or cyanic acid as a main component.
  • Radical nitriding is performed by glow discharge of a mixed gas of ammonia (NH 3 ) and hydrogen gas to generate highly active radicals (active species) while generating plasma with a low ion density and low energy state. It is a method of processing.
  • the radical nitriding treatment is suitable for forming a thin (for example, 2.0 ⁇ m or less thick) nitrided layer, and is excellent in terms of thickness (film thickness) control.
  • the radical nitriding treatment cracking of the nitrided layer can be suppressed, and the decrease in surface roughness is small. Since the radical nitriding process is accompanied by temperature rise by an external heater, stable temperature control is possible. Furthermore, the passive film is hardly destroyed during treatment (thus, deterioration of corrosion resistance can be suppressed/prevented).
  • a high-energy plasma is generated by direct current glow discharge of a mixed gas of nitrogen gas and hydrogen gas, and the generated ions such as nitrogen molecules activate the surface of the base material (puncture needle) when it is heated. , is a method in which radicals formed in the plasma cause the nitriding reaction.
  • Plasma nitridation is suitable for forming relatively thick nitrided layers (eg, thickness greater than 2.0 ⁇ m, preferably greater than 2.0 ⁇ m, and more preferably greater than 3.0 ⁇ m). Therefore, it is preferable to select radical nitriding treatment or plasma nitriding treatment depending on the thickness of the nitrided layer, and from the viewpoint of easier temperature control (thus film thickness control) and corrosion resistance, radical nitriding treatment is preferred. more preferred.
  • a specific description will be given of a form in which the nitride layer is formed by radical nitridation or plasma nitridation.
  • the present invention is not limited by the following forms.
  • the thickness of the nitrided layer varies depending on the type of nitriding, the workpiece, the jig, etc., but the treatment time, treatment temperature, gas ratio, gas flow rate, furnace pressure (treatment pressure). , plasma output, voltage/current, heating/cooling time, etc.
  • the thickness of the nitride layer is controlled by processing time, processing temperature and gas ratio.
  • the treatment time is, for example, 5 minutes to 60 hours, preferably 20 to 90 minutes, more preferably 30 to 60 minutes.
  • the treatment temperature is, for example, 300-500°C, preferably 350-450°C, more preferably 380-420°C.
  • the gas ratio (mixing volume ratio of ammonia (NH 3 ) gas and hydrogen gas) is, for example, 1:1-10, preferably 1:3-5.
  • Conditions such as gas flow rate, furnace pressure (treatment pressure), plasma output, voltage/current, temperature rise/cooling time, etc., are the same as those for normal conditions, and appropriate conditions are applied according to the desired thickness of the nitrided layer. can be adjusted to A predetermined portion of the puncture needle may be masked to prevent formation of a nitride layer on the surface of the needle tube on the proximal side of the blade surface.
  • a masking method there are a method of using a jig for exposing only a desired portion, a method of applying a substance for preventing nitridation to portions other than the desired portion, and the like.
  • the thickness of the nitrided layer varies depending on the type of nitriding, workpiece, jig, etc., but processing time, processing temperature, plasma voltage, gas ratio, gas atmosphere pressure, furnace pressure. , voltage/current, heating/cooling time, etc.
  • the thickness of the nitride layer is controlled by processing time, processing temperature and gas ratio.
  • the treatment time is, for example, 5 to 270 minutes, preferably 30 to 120 minutes, more preferably 60 to 90 minutes.
  • the treatment temperature is, for example, 300 to 500°C (or 300 to 450°C), preferably 350 to 400°C, preferably 350 to 380°C.
  • the gas ratio (mixing volume ratio of nitrogen gas and hydrogen gas) is, for example, 0.1 to 10:1, preferably 2 to 4:1.
  • Conditions such as plasma voltage, gas atmosphere pressure, furnace pressure, voltage/current, heating/cooling time, etc., are the same as normal conditions, and are adjusted appropriately according to the desired thickness of the nitrided layer.
  • can be A predetermined portion of the puncture needle may be masked to prevent formation of a nitride layer on the surface of the needle tube on the proximal side of the blade surface.
  • a masking treatment method there are a method of using a jig for exposing only a desired portion, and a method of applying a substance for preventing nitridation to portions other than the desired portion.
  • the puncture needle according to the present disclosure can be used for normal applications.
  • the puncture needle according to the present disclosure includes injection needles, blood collection needles, suture needles, winged needles, indwelling needles, acupuncture (for example, acupuncture for treating polycystic ovary syndrome), cosmetic acupuncture, and tibial pedals. It can also be applied to access and the like.
  • the puncture needle according to the present disclosure has high strength and can maintain its shape (excellent durability) even after repeated puncture (for example, 5 times or more, 10 times or more). .
  • the puncture needle according to the present disclosure is suitable for applications that require repeated puncture, such as follicular growth induction (ovarian puncture acupuncture), suturing (suture needle), tibial pedal access or cosmetic (cosmetic acupuncture). It can be used particularly preferably. That is, in one embodiment of the present disclosure, the puncture needle according to the present disclosure is used for follicular growth induction, suturing, or beauty (used as ovarian puncture acupuncture, suture needle, or cosmetic acupuncture).
  • the puncture needle of the present disclosure is used for follicle development induction, suturing, tibial pedal access or cosmetic (ovarian puncture needle, suture needle, tibial pedal ) used as access needles or cosmetic acupuncture).
  • the injection needle after the masking process is hereinafter simply referred to as "injection needle NN-1838R".
  • plasma nitriding treatment was performed by heating at a temperature of 380° C. for 90 minutes, and an injection needle 1 was obtained.
  • Injection needle 1 had a nitride layer with a thickness of 4.0 ⁇ m formed on the blade surface, but no nitride layer was formed on the needle tube portion on the proximal side from the blade surface.
  • Example 4 An injection needle 4 was obtained by subjecting injection needle NN-1838R to radical nitriding treatment under the following conditions. Injection needle 4 had a nitride layer with a thickness of 2.0 ⁇ m formed on the blade surface, but no nitride layer was formed on the needle tube portion on the proximal side from the blade surface. Also, the ratio of the thickness of the nitriding layer to the thickness of the needle tube of the injection needle 4 is about 1.33%.
  • Example 5 An injection needle 5 was obtained by subjecting injection needle NN-1838R to radical nitriding treatment under the following conditions. Injection needle 5 had a nitride layer with a thickness of 0.2 ⁇ m formed on the blade surface, but no nitride layer was formed on the needle tube portion on the proximal side from the blade surface. Also, the ratio of the thickness of the nitriding layer to the thickness of the needle tube of the injection needle 5 is about 0.13%.
  • Example 6 An injection needle 6 was obtained by subjecting injection needle NN-1838R to radical nitridation under the following conditions. Injection needle 6 had a nitride layer with a thickness of 0.1 ⁇ m formed on the blade surface, but no nitride layer was formed on the needle tube portion on the proximal side from the blade surface. Also, the ratio of the thickness of the nitriding layer to the thickness of the needle tube of the injection needle 6 is about 0.07%.
  • An injection needle 7 was obtained by subjecting the injection needle to radical nitriding treatment under the following conditions.
  • the injection needle 7 had a 2.0 ⁇ m-thick nitride layer formed over the blade surface and the entire needle tube. Also, the ratio of the thickness of the nitriding layer to the thickness of the needle tube of the injection needle 7 is about 1.33%.
  • a nitride layer having a thickness of 27.0 ⁇ m was formed on the blade surface, but no nitride layer was formed on the needle tube portion on the proximal side from the blade surface.
  • the ratio of the thickness of the nitride layer to the thickness of the needle tube of Comparative Injection Needle 2 is 18.00%.
  • the shape of the needle tip of the injection needle after each puncturing operation is observed under an optical microscope (500x magnification) and evaluated according to the following criteria. Since the maximum number of punctures is 30 in a normal procedure, the number of punctures was set to 30 in this evaluation.
  • injection needles of Examples have excellent puncture durability.
  • the shape of the needle tip can be maintained even after 30 punctures, or even when it is partially curved, it can be broken. No cracking or chipping was observed, and it is considered that the puncture durability can be further improved.
  • Examples 4 and 7 have similar results.
  • the injection needles 4 and 7 were repeatedly subjected to a bending test. As a result, both injection needles were within the permissible range, but injection needle 4 had a larger number of times until breakage or breakage was observed. From this result, it is considered that it is preferable from the standpoint of breakage resistance to perform masking treatment so that nitriding treatment is not performed on the needle tube portion on the proximal side of the blade surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

穿刺針の強度を向上する手段を提供する。本発明は、針先の少なくとも一部に厚さが0.1μm以上12.0μm未満である窒化層を有する穿刺針に関する。

Description

穿刺針
 本発明は、穿刺針に関する。
 注射針などの穿刺針(カヌラ)は、薬液注入や多嚢胞性卵巣症候群(PCOS:Polycystic ovarian syndrome)等の手術時に治療を目的として、美容を目的として、検査を目的として、さらには献血や予防接種等など、様々な用途で使用されている。例えば、卵胞発育を誘導する手技や美容鍼では、同一の穿刺針で複数回、生体を穿刺する操作が行われている(例えば、特開2019-208962号公報(米国特許出願公開第2021/0085396号明細書に対応))。
 しかしながら、従来の穿刺針(カヌラ)では、複数回穿刺した場合、針先(先端)の劣化(折れ、曲がり)により刺通抵抗(穿通抵抗ともいう)が変化(上昇)するなど、強度(特に針先の強度)が十分ではなかった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、穿刺針の強度(特に針先の強度)を向上する手段を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意研究を行った。その結果、針先に特定の厚さの窒化層を設けることにより、上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、上記目的は、(1)針先(針の先端を含む領域)の少なくとも一部に厚さが0.1μm以上12.0μm未満である窒化層を有する穿刺針(カヌラ)によって達成できる。
 ここで、本発明の実施形態では、
 (2)上記(1)の穿刺針では、針先に刃面が形成され、上記窒化層は上記刃面の少なくとも一部に形成されることが好ましい;
 (3)上記(2)の穿刺針では、上記窒化層は上記刃面の全面に形成されることが好ましい;
 (4)上記(1)~(3)のいずれかに記載の穿刺針では、上記窒化層の厚さが0.2μm以上5.0μm未満であることが好ましい;
 (5)上記(1)~(4)のいずれかに記載の穿刺針では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が0.07%を超え5.00%未満であることが好ましい;
 (6)上記(1)~(5)のいずれかに記載の穿刺針では、針先を含む領域に刃面が形成された針管を備え、上記刃面の終端より基端側の上記針管の表面には厚さが0μmを超え1.0μm未満である窒化層を有するまたは窒化層が形成されないことが好ましい;
 (7)上記(1)~(6)のいずれかに記載の穿刺針では、針先に刃面が形成された針管を備え、上記針管はステンレス鋼製であることが好ましい;
 (8)上記(1)~(7)のいずれかに記載の穿刺針は、卵胞発育誘導、縫合、脛骨ペダル(Tibial Pedal)アクセスまたは美容のために使用されることが好ましい。
図1Aは、本開示の一実施形態に係る穿刺針を示す。図1A中、2は刃面を;3は先端を;4は針管を;5は窒化層を;6は刃面の先端を含む領域を;7は刃面より基端側の針管の領域を;8は刃面の終端を;および10は穿刺針を、それぞれ、示す。 図1Bは、本開示の他の実施形態に係る穿刺針を示す。図1B中、20は穿刺針を;22は円形面を;23は先端を;24は中実で円筒形の針管を;および25は窒化層を、それぞれ、示す。 図2は、穿刺耐久性に使用する評価治具を示す図である。図2中、100は評価治具を;101は注射針を;および102はポリエチレンテレフタレート(PET)膜102(厚さ=0.05mm)を、それぞれ、示す。 図3は、実施例1~2の注射針1~2および比較例1~2の比較注射針1~2の30回穿刺後の針先の正面および側面の顕微鏡画像(500倍)を示す。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下の実施の形態のみには限定されず、特許請求の範囲内で種々改変することができる。本明細書に記載される実施形態は、任意に組み合わせることにより、他の実施形態とすることができる。
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。本明細書において、「Xおよび/またはY」とは、XおよびYの少なくとも一方を含むことを意味し、「X単独」、「Y単独」および「XおよびYの組み合わせ」を包含する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~60%RHの条件で測定する。
 また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられると理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含む)が優先する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むと理解されるべきである。したがって、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むと理解されるべきである。
 <穿刺針>
 本発明の第一の態様によると、針先(針の先端を含む領域)の少なくとも一部に厚さが0.1μm以上12.0μm未満である窒化層を有する穿刺針が提供される。本発明によれば、穿刺針の強度(特に針先、さらに特には針の先端の強度)を向上できる。
 従来の穿刺針は、複数回穿刺した場合、針先(先端)の劣化(折れ、曲がり)により刺通抵抗が変化(上昇)する。このため、刺通抵抗の変化により、術者が適切に手技を行うことが困難となるケースがある。これに対して、本開示に係る穿刺針は、針先に0.1μm以上12.0μm未満である窒化層を有する。窒化層(窒化処理)は、一般的に高い強度(硬度)を付与できる。このため、特に穿刺の対象となる針先に0.1μm以上の窒化層を設けることにより、針先は十分な強度(硬度)を有し、複数回穿刺した場合であっても、針先(先端)の形状を維持でき、刺通抵抗の変化(上昇)を抑制・防止できる。一方、窒化層(窒化処理)は、一般的に靭性を低下させる。しかし、特に穿刺の対象となる針先に形成される窒化層の厚さを12.0μm未満とすることにより、靭性の低下を抑制し、折れや欠けの発生を抑制・防止できる。ゆえに、本開示の穿刺針であれば、繰り返し(例えば、5回以上、10回以上)穿刺した後であっても、その形状を維持できる(耐久性に優れる)。なお、穿刺回数の上限は、高いほど好ましいが、通常、最大で30回くらいである。
 本開示において、針先の少なくとも一部に形成される窒化層の厚さは、0.1μm以上12.0μm未満である。本明細書において、「0.1μm以上12.0μm未満の窒化層」を単に「本発明に係る窒化層」とも称する。ここで、窒化層の厚さが0.1μm未満であると、窒化層の強度(硬度)が十分でなく、穿刺時(特に複数回穿刺後)に針先(特に先端)の劣化(例えば、曲がり、折れ、欠け)が生じる。このため、穿刺操作を重ねるごとに刺通抵抗が変化(上昇)してしまう。窒化層の厚さが12.0μmを超えると、針先の靭性が低下して、1回の穿刺で針先(特に先端)に劣化(例えば、折れ、欠け)が生じてしまう。本発明による効果(例えば、複数回穿刺時の刺通抵抗の維持)のさらなる向上などの観点から、針先の少なくとも一部に形成される窒化層の厚さは、好ましくは0.1μmを超え、より好ましくは0.2μm以上であり、さらに好ましくは1.0μm以上であり、特に好ましくは2.0μm以上である。また、針先の少なくとも一部に形成される窒化層の厚さは、好ましくは10.0μm未満であり、より好ましくは7.0μm未満であり、さらに好ましくは5.0μm未満であり、特に好ましくは4.0μm以下である。すなわち、本開示の一実施形態では、針先の少なくとも一部に形成される窒化層の厚さは、0.1μmを超え10.0μm未満である。本開示の一実施形態では、針先の少なくとも一部に形成される窒化層の厚さは、0.2μm以上7.0μm未満である。本開示の一実施形態では、針先の少なくとも一部に形成される窒化層の厚さは、0.2μm以上5.0μm未満である。本開示の一実施形態では、針先の少なくとも一部に形成される窒化層の厚さは、1.0μm以上5.0μm未満である。本開示の一実施形態では、針先の少なくとも一部に形成される窒化層の厚さは、2.0μm以上4.0μm以下である。
 本開示において、「針先」とは、穿刺針の先端を含む、穿刺針の先端領域を意図する。例えば、図1Aに示される穿刺針の場合では、穿刺針10は、中空の針管4の先端(先端側)に刃面2を有し、刃面2を含む針管4に窒化層5が形成されてなる構造を有する。当該穿刺針10では、「針先」は、先端3を少なくとも含む領域を意図し、好ましくは針管4に備えられた刃面2の先端3を含む領域6である。図1Aに示される穿刺針10は、針管4の表層部分が窒化層に変質している形態であるが、針管4の上に別途窒化層が形成される構造を有していてもよい。
 また、図1Bに示される穿刺針の場合では、穿刺針20は、中実で円筒形の針管24からなり、先端23の円形面22および針管24の側面の一部に窒化層25が形成されてなる構造を有する。当該穿刺針20では、「針先」は、針管24の先端23の円形面22の少なくとも一部を含む、穿刺針の先端領域を意図し、好ましくは針管24の先端23の円形面22である。図1Aと同様、図1Bに示される穿刺針20は、針管24の表層部分が窒化層に変質している形態であるが、針管24の上に別途窒化層が形成される構造を有していてもよい。
 穿刺針は先端側から穿刺する。穿刺針の先端部の強度が穿刺操作性、特に繰り返し穿刺時の操作性(例えば、穿通抵抗低下の抑制・防止)に大きく寄与する。このため、穿刺針の先端の強度が特に重要である。ゆえに、窒化層は少なくとも穿刺針の先端に形成されていることが好ましい。
 本開示において、「窒化層」とは、窒素を含む層(表面層)を意図する。窒化層(窒化層が形成された穿刺針表面と窒化層との境界)の判別は、試料(穿刺針)を包埋研磨した研磨面の光学顕微鏡または電子顕微鏡での観察により行われる。なお、窒化層と非窒化層との区別が困難な場合には、金属腐食液(例えば、硝酸エタノール液、マーブル液)により腐食を促すことで、耐腐食性の違いから窒化層と非窒化層との境界が明確に判別できる。または、窒化層の判別を、グロー放電発光分析装置(GDS)によって行うこともできる。具体的には、窒化層の分析領域(直径=約1mm)の深さ方向に対しグロー放電発光分析し、表層から、分析領域の窒素量が基材(針管)の平均窒素濃度まで下がった地点までの領域を、「窒化層」と判断する。
 本明細書において、「窒化層の厚さ」は、試料(穿刺針)を包埋研磨し、研磨面を光学顕微鏡または電子顕微鏡を用いて窒化層と穿刺針(非窒化層)との境界を決定し、統計学的に十分な針先部分(例えば、300箇所)について上記境界と窒化層最表面との距離(μm)(図1A中の「X」、図1B中の「X’」)を測定し、その平均値を算出することによって求められる。なお、平均値が小数点第2位以下である場合には、小数点第2位を四捨五入して小数点第1位まで求めた値を「窒化層の厚さ」として採用する。
 本開示において、穿刺針は、中実構造であってもまたは中空構造であってもよく、用途に応じて適切に選択されうる。また、穿刺針は、刃面(ベベル)を有するものであってもまたは刃面を持たないもの(例えば、円筒形状、直方体形状などの柱状)であってもよく、用途に応じて適切に選択されうる。好ましくは、穿刺針は、針先に刃面を有する。すなわち、本開示の一実施形態では、穿刺針の針先に刃面が形成され、窒化層は前記刃面の少なくとも一部に形成される。この際、窒化層は、刃面の少なくとも一部に形成されればよいが、刃面の全面に形成されることが好ましい。刃面から穿刺操作が開始されるため、穿刺針の刃面全面が穿刺の操作性に大きく関与する。このため、刃面全面に窒化層を設けることにより、穿刺操作性、特に繰り返し穿刺時の操作性(例えば、穿通抵抗低下の抑制・防止)をさらに効果的に向上できる。すなわち、本開示の好ましい実施形態では、窒化層は刃面の全面に形成される。本明細書において、「窒化層が刃面に形成される」とは、刃面を構成する針管の表面に窒化層が形成されることを意味する。例えば、図1Aでは、「窒化層が刃面の全面に形成される」とは、窒化層5が刃面2を構成する針管領域6の外表面全面に形成されることを意味する。
 本開示において、穿刺針の針先形状は、特に限定されず、公知の構造が適用できる。例えば、穿刺針の針先形状は、長手軸に対し鋭角の切断面を有する刃面が針先に形成されるベベル(Bevel)形状、針先が直角(90°)にカットされた形状、針先が円錐形になっているコーン(Cone)形状、針先端が丸みをおびたドーム(Dome)形状、針先が三角錐形、四角錐形などの多角錐形になっているピラミッド形状などがある。また、ベベル(Bevel)形状の場合の穿刺針の針先構造もまた、特に限定されず、公知の構造が適用できる。例えば、穿刺針の針先は、ランセット型、セミランセット型、バックカット型等の種々の構造がある。
 図1Aは、本開示の一実施形態に係る穿刺針を説明するための図である。本実施形態において、穿刺針10は、図1Aに示されるように、針先に刃面2が形成された針管4を備える。この際、窒化層5の厚さ(図1A中の「X」)と、穿刺針を構成する針管の肉厚(図1A中の「Y」)との関係は、例えば、針管の肉厚(μm)に対する窒化層の厚さ(μm)の比(%)[(=(窒化層の厚さ×100)/針管の肉厚]が、0.05%を超える、好ましくは0.07%を超える、より好ましくは0.10%を超える、さらに好ましくは1.33%以上であり、特に好ましくは1.40%を超える。また、針管の肉厚(μm)に対する窒化層の厚さ(μm)の比(%)[(=(窒化層の厚さ×100)/針管の肉厚]は、例えば、8.00%未満であり、好ましくは5.00%未満であり、より好ましくは3.00%以下であり、さらに好ましくは3.00%未満であり、特に好ましくは2.67以下である。すなわち、本開示の一実施形態では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が、0.05%を超え8.00%未満である(0.05<(X×100)/Y<8.00)。本開示の一実施形態では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が、0.07%を超え5.00%未満である(0.07<(X×100)/Y<5.00)。本開示の一実施形態では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が、0.10%を超え3.00%以下である(0.10<(X×100)/Y≦3.00)。本開示の一実施形態では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が、1.40%を超え3.00%未満である(1.40<(X×100)/Y<3.00)。本開示の一実施形態では、針先に刃面が形成された針管を備え、上記針管の肉厚に対する上記窒化層の厚さの比が、1.33%以上2.67%以下である(1.33≦(X×100)/Y≦2.67)。
 また、穿刺針が針先に刃面が形成された針管を備える構造を有する場合、刃面(図1A中の「6」の領域)の少なくとも一部に窒化層が形成されており、刃面(図1A中の「6」の領域)外表面全体に窒化層が形成されていることが好ましい。一方、刃面より基端側の針管の表面(図1A中の「7」の領域)には窒化層が形成されてもよいが、刃面より基端側の針管の表面には窒化層が実質的に形成されていないことが好ましい。窒化処理は、一般的に、硬度を向上できる反面、靭性が低下する。このため、針先以外の靭性(耐久性)維持の観点から、繰り返し穿刺に特に関与する刃面には窒化層が形成される一方、湾曲する可能性が高い刃面より基端側の針管部分には窒化層を実質的に設けないことが好ましい。これにより、繰り返し曲げに対する耐破損性(例えば、ISO9626に記載の耐破損性試験における胴部の規定回数・規定角度での繰り返し曲げ時の破損(折れ)評価での耐破損性)の低下を抑制することができる。具体的には、0.1μm以上12.0μm未満の窒化層(本発明に係る窒化層)が針先から刃面の終端(図1A中の終端8)までの領域で形成され、それより基端側の領域では厚さが2.0μm未満(下限:0μm)の窒化層が形成される。好ましくは、本発明に係る窒化層が針先から刃面の終端までの領域で形成され、それより基端側の領域では厚さが1.0μm未満(下限:0μm)の窒化層が形成される。特に好ましくは、本発明に係る窒化層が針先から刃面の終端までの領域で形成され、それより基端側の領域では厚さが0.5μm未満(下限:0μm)の窒化層が形成される。すなわち、本開示の一実施形態では、針先に刃面が形成された針管を備え、前記刃面の終端より基端側の前記針管の表面には厚さが0μmを超え2.0μm未満である窒化層を有するまたは窒化層が形成されない。本開示の一実施形態では、針先に刃面が形成された針管を備え、前記刃面の終端より基端側の前記針管の表面には厚さが0μmを超え1.0μm未満である窒化層を有するまたは窒化層が形成されない。本開示の一実施形態では、針先に刃面が形成された針管を備え、前記刃面の終端より基端側の前記針管の表面には厚さが0μmを超え0.5μm未満である窒化層を有するまたは窒化層が形成されない。本開示の一実施形態では、針先に刃面が形成された針管を備え、前記刃面の終端より基端側の前記針管の表面には窒化層が形成されない。
 窒化層は、窒素を必須に含むが、さらに他の成分を含んでもよい。この際、他の成分としては、窒素原子と結合しやすいとの観点から、例えば、チタン、クロム、モリブデン、アルミニウム、バナジウムなどが挙げられる。上記他の成分は、1種を単独で含んでも、または2種以上を含んでもよい。すなわち、本開示の一実施形態では、窒化層は、チタン、クロム、モリブデン、アルミニウムおよびバナジウムからなる群より選択される少なくとも一種をさらに含む。窒化層が他の成分を含む場合の、他の成分の含有量は、特に制限されず、所望の効果に応じて適切に選択できる。
 穿刺針を構成する材料は、特に制限されず、公知の材料が同様にして適用できる。例えば、針管を構成する材料は、生体に穿刺可能な剛性が得られる材料であればよく、ステンレス鋼、アルミニウムまたはアルミニウム合金、チタンまたはチタン合金のような金属材料、セラミックスなどを好適に用いることができる。これらのうち、針管を構成する材料はステンレス鋼であることが好ましい。すなわち、本開示の一実施形態では、針先に刃面が形成された針管を備え、前記針管はステンレス鋼製である。
 また、穿刺針の基端にハブ(針もと)が設けられてもよい。この場合のハブを構成する材料としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリカーボネート、ポリアミド、ポリスルホン、ポリアリレートなどの熱可塑性樹脂を好適に用いることができる。
 また、穿刺針(針管)表面にシリコーン油などの潤滑剤が塗布されていてもよい。
 穿刺針の針先の少なくとも一部に窒化層が形成される以外は、穿刺針の構造は、公知と同様でありうる。具体的には、特開2012-30010号公報等に開示される構造が同様にしてまたは適宜変更して適用できる。上記したような公知の構造の穿刺針の所望の部位に下記にて詳述する窒化処理を行ってもよい。または、市販の穿刺針(例えば、テルモ株式会社製の注射針、TERUMO INTERVENTIONAL SYSTEMS社製のGlidesheath Slender(登録商標) Tibial Pedal Kit (Hydrophilic Coated Sheath) TIBIAL PEDAL ACCESSのCustom Needle)を用い、当該穿刺針の所望の部位に下記にて詳述する窒化処理を行ってもよい。
 (窒化層の形成方法)
 本開示において、窒化層は、ラジカル窒化(イオン窒化)処理、プラズマ窒化処理、ガス窒化処理、ガス軟窒化処理、塩浴窒化処理、真空窒化処理などの、公知の窒化処理によって形成できる。これらのうち、ガス窒化処理またはガス軟窒化処理は、窒化あるいは軟窒化する雰囲気、すなわち、アンモニア(NH)を窒素源として、必要に応じて窒素ガス、一酸化炭素ガス、二酸化炭素ガスまたは水素ガスなどを混合させた雰囲気中で、穿刺針を加熱保持する方法である。塩浴窒化処理は、シアンないしはシアン酸を主成分とする塩浴中で、穿刺針を加熱保持する方法である。ラジカル窒化処理は、アンモニア(NH)と水素ガスとの混合ガスのグロー放電により、イオン密度が小さく、低いエネルギー状態のプラズマを発生させながら高活性なラジカル(活性種)を生成させることで窒化処理を行う方法である。ラジカル窒化処理は、薄い(例えば、厚さが2.0μm以下の)窒化層の形成に好適であり、厚さ(膜厚)制御の面で優れている。ラジカル窒化処理によれば、窒化層の割れを抑制できるとともに、表面粗さの低下が少ない。ラジカル窒化処理は、外部ヒーターによる昇温を伴うため、安定した温度制御ができる。さらに、処理中の不働態皮膜の破壊がほとんど起こらない(ゆえに、耐食性低下を抑制・防止できる)。プラズマ窒化処理は、窒素ガスと水素ガスとの混合ガスの直流グロー放電によって高エネルギー状態のプラズマを生成し、生成した窒素分子などのイオンが基材(穿刺針)の加熱時に表面を活性化して、プラズマ中に形成されたラジカルが窒化反応を引き起こす方法である。プラズマ窒化処理は、比較的厚い(例えば、厚さが2.0μm以上の、好ましくは2.0μm超の、より好ましくは3.0μm以上の)窒化層の形成に好適である。このため、窒化層の厚さによって、ラジカル窒化処理またはプラズマ窒化処理を選択することが好ましく、温度制御(ゆえに、膜厚制御)がより容易である点や耐食性などの観点から、ラジカル窒化処理がより好ましい。以下では、窒化層をラジカル窒化処理またはプラズマ窒化処理によって形成する形態に関し具体的に説明する。しかし、本発明が下記形態によっては限定されない。
 窒化層をラジカル窒化処理によって形成する形態において、窒化層の厚さは、窒化種やワーク、治具等により異なるが、処理時間、処理温度、ガス比率、ガス流量、炉内圧力(処理圧力)、プラズマ出力、電圧・電流、昇温・冷却時間などによって制御できる。好ましくは、窒化層の厚さは、処理時間、処理温度、ガス比率によって制御される。処理時間は、例えば、5分~60時間、好ましくは20~90分、より好ましくは30~60分である。処理温度は、例えば、300~500℃、好ましくは350~450℃、より好ましくは380~420℃である。ガス比率(アンモニア(NH)ガスと水素ガスとの混合体積比)は、例えば、1:1~10であり、好ましくは1:3~5である。ガス流量、炉内圧力(処理圧力)、プラズマ出力、電圧・電流、昇温・冷却時間などの諸条件は、通常の条件と同様の条件が適用され、窒化層の所望の厚みに応じて適切に調節されうる。なお、刃面より基端側の針管の表面への窒化層の形成を予防するためのマスキング処理を、穿刺針の所定の部位に施してもよい。ここで、マスキング処理方法としては、所望の部位のみを露出させる治具を使用する方法、所望の部位以外に窒化を防止する物質を塗布する方法などがある。
 窒化層をプラズマ窒化処理によって形成する形態において、窒化層の厚さは、窒化種やワーク、治具等により異なるが、処理時間、処理温度、プラズマ電圧、ガス比率、ガス雰囲気圧力、炉内圧力、電圧・電流、昇温・冷却時間などによって制御できる。好ましくは、窒化層の厚さは、処理時間、処理温度、ガス比率によって制御される。処理時間は、例えば、5~270分、好ましくは30~120分、より好ましくは60~90分である。処理温度は、例えば、300~500℃(または300℃以上450℃未満)、好ましくは350~400℃、好ましくは350~380℃である。ガス比率(窒素ガスと水素ガスとの混合体積比)は、例えば、0.1~10:1であり、好ましくは2~4:1である。プラズマ電圧、ガス雰囲気圧力、炉内圧力、電圧・電流、昇温・冷却時間などなどの諸条件は、通常の条件と同様の条件が適用され、窒化層の所望の厚みに応じて適切に調節されうる。なお、刃面より基端側の針管の表面への窒化層の形成を予防するためのマスキング処理を、穿刺針の所定の部位に施してもよい。ここで、マスキング処理方法としては、所望の部位のみを露出させる治具を使用する方法、所望の部位以外に窒化を防止する物質を塗布するなどがある。
 (穿刺針の用途)
 本開示に係る穿刺針は、通常の用途に使用できる。具体的には、本開示に係る穿刺針は、注射針、採血針、縫合針、翼状針、留置針、鍼(例えば多嚢胞性卵巣症候群治療用鍼)、美容鍼、脛骨ペダル(Tibial Pedal)アクセス等にも適用することができる。上述したように、本開示に係る穿刺針は、高い強度を有し、繰り返し(例えば、5回以上、10回以上)穿刺した後であっても、その形状を維持できる(耐久性に優れる)。このため、本開示に係る穿刺針は、卵胞発育誘導(卵巣穿刺鍼)、縫合(縫合針)、脛骨ペダル(Tibial Pedal)アクセスまたは美容(美容鍼)などの、繰り返し穿刺を必要とする用途に特に好適に使用できる。すなわち、本開示の一実施形態では、本開示に係る穿刺針は、卵胞発育誘導、縫合または美容のために使用される(卵巣穿刺鍼、縫合針または美容鍼として使用される)。本開示の一実施形態では、本開示に係る穿刺針は、卵胞発育誘導、縫合、脛骨ペダル(Tibial Pedal)アクセスまたは美容のために使用される(卵巣穿刺鍼、縫合針、脛骨ペダル(Tibial Pedal)アクセス用針または美容鍼として使用される)。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。
 実施例1
 注射針(テルモ株式会社製、商品名:テルモ注射針NN-1838R、針先:ランセットポイント(刺通抵抗を小さくするために針先の角度を2段にしてある)、針管部分:ステンレス鋼製、サイズ:18G(外径=1.20mm、内径=0.90mm、肉厚=0.15mm)、R・B(レギュラーベベル)、刃面の角度(ベベル角度)=12°、長さ=38mm)を準備し、刃面より基端側の針管部分は下記窒化処理が施されないようにマスキング処理した。上記マスキング処理後の注射針を、以下では、単に「注射針NN-1838R」と称する。
 処理炉に注射針NN-1838Rを設置し、処理炉を380℃まで加熱した後、窒素ガスと水素ガスとの窒素水素混合ガス(窒素ガス:水素ガス=7:3(体積比))を供給した。その後、380℃の温度で90分間、加熱することにより、プラズマ窒化処理を施し、注射針1を得た。注射針1は、刃面に厚さ4.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針1の、針管の肉厚に対する窒化層の厚さの比(=窒化層の厚さ×100/針管の肉厚;以下、同様)は、約2.67%である。
 実施例2
 処理炉に注射針NN-1838Rを設置し、処理炉を350℃まで加熱した後、窒素ガスと水素ガスとの窒素水素混合ガス(窒素ガス:水素ガス=7:3(体積比))を供給した。その後、350℃の温度で90分間、加熱することにより、プラズマ窒化処理を施し、注射針2を得た。注射針2は、刃面に厚さ3.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針2の、針管の肉厚に対する窒化層の厚さの比は、2.00%である。
 実施例3
 処理炉に注射針NN-1838Rを設置し、処理炉を400℃まで加熱した後、窒素ガスと水素ガスとの窒素水素混合ガス(窒素ガス:水素ガス=7:3(体積比))を供給した。その後、400℃の温度で90分間、加熱することにより、プラズマ窒化処理を施し、注射針3を得た。注射針3は、刃面に厚さ7.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針3の、針管の肉厚に対する窒化層の厚さの比は、約4.67%である。
 実施例4
 注射針NN-1838Rに対し、下記条件でラジカル窒化処理を施し、注射針4を得た。注射針4は、刃面に厚さ2.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針4の、針管の肉厚に対する窒化層の厚さの比は、約1.33%である。
 (ラジカル窒化処理条件)
 導入ガス:アンモニアガスと水素ガスとのアンモニア水素混合ガス
      (アンモニアガス:水素ガス=1:4(体積比))
 温度:420℃
 時間:60分
 実施例5
 注射針NN-1838Rに対し、下記条件でラジカル窒化処理を施し、注射針5を得た。注射針5は、刃面に厚さ0.2μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針5の、針管の肉厚に対する窒化層の厚さの比は、約0.13%である。
 (ラジカル窒化処理条件)
 導入ガス:アンモニアガスと水素ガスとのアンモニア水素混合ガス
      (アンモニアガス:水素ガス=1:4(体積比))
 温度:380℃
 時間:60分
 実施例6
 注射針NN-1838Rに対し、下記条件でラジカル窒化処理を施し、注射針6を得た。注射針6は、刃面に厚さ0.1μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、注射針6の、針管の肉厚に対する窒化層の厚さの比は、約0.07%である。
 (ラジカル窒化処理条件)
 導入ガス:アンモニアガスと水素ガスとのアンモニア水素混合ガス
      (アンモニアガス:水素ガス=1:4(体積比))
 温度:380℃
 時間:30分
 実施例7
 注射針(テルモ株式会社製、商品名:テルモ注射針NN-1838R、針先:ランセットポイント(刺通抵抗を小さくするために針先の角度を2段にしてある)、針管部分:ステンレス鋼製、サイズ:18G(外径=1.20mm、内径=0.90mm、肉厚=0.15mm)、R・B(レギュラーベベル)、刃面の角度(ベベル角度)=12°、長さ=38mm)を準備した。上記注射針に対し、下記条件でラジカル窒化処理を施し、注射針7を得た。注射針7は、刃面および針管全面にわたって、厚さ2.0μmの窒化層が形成されていた。また、注射針7の、針管の肉厚に対する窒化層の厚さの比は、約1.33%である。
 (ラジカル窒化処理条件)
 導入ガス:アンモニアガスと水素ガスとのアンモニア水素混合ガス
      (アンモニアガス:水素ガス=1:4(体積比))
 温度:420℃
 時間:60分
 比較例1
 処理炉に注射針NN-1838Rを設置し、処理炉を450℃まで加熱した後、窒素ガスと水素ガスとの窒素水素混合ガス(窒素ガス:水素ガス=7:3(体積比))を供給した。その後、450℃で90分間、加熱することにより、プラズマ窒化処理を施し、比較注射針1を得た。比較注射針1は、刃面に厚さ12.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、比較注射針1の、針管の肉厚に対する窒化層の厚さの比は、8.00%である。
 比較例2
 処理炉に注射針NN-1838Rを設置し、処理炉を500℃まで加熱した後、窒素ガスと水素ガスとの窒素水素混合ガス(窒素ガス:水素ガス=7:3(体積比))を供給した。その後、500℃で90分間、加熱することにより、プラズマ窒化処理を施し、比較注射針2を得た。比較注射針2は、刃面に厚さ27.0μmの窒化層が形成されていたが、刃面より基端側の針管部分には窒化層が形成されていなかった。また、比較注射針2の、針管の肉厚に対する窒化層の厚さの比は、18.00%である。
 比較例3
 注射針(テルモ株式会社製、商品名:テルモ注射針NN-1838R、針先:ランセットポイント(刺通抵抗を小さくするために針先の角度を2段にしてある)、針管部分:ステンレス鋼製、サイズ:18G(外径=1.20mm、内径=0.90mm、肉厚=0.15mm)、R・B(レギュラーベベル)、刃面の角度(ベベル角度)=12°、長さ=38mm)を準備し、比較注射針3(未処理サンプル)とした。比較注射針3は、刃面および針管全面に窒化層が形成されていない(窒化層の厚さ=0μm)。また、比較注射針
3の、針管の肉厚に対する窒化層の厚さの比は、0%である。
 [穿刺耐久性の評価]
 実施例1~7の注射針1~7および比較例1~3の比較注射針1~3について、図2に示される評価治具100を用い、下記方法に従って、穿刺耐久性を評価した。結果を下記表1に示す。
 評価治具100の上面に備えられたポリエチレンテレフタレート(PET)膜102(厚さ=0.05mm)に対して、各注射針101を垂直に500mm/分の速度で30回穿刺する。各穿刺操作後の注射針の針先の形状を光学顕微鏡(500倍)下で観察し、下記基準に従って、評価する。なお、通常の手技において、最大穿刺回数が30回であることから、本評価における穿刺回数を30回に設定した。
 (評価基準)
 〇:針先の形状が維持されている
 △:針先の一部に曲げが観察される
 ×:針先の折れまたは欠けが観察される。
 また、実施例1~2の注射針1~2および比較例1~2の比較注射針1~2の30回穿刺後の針先の正面および側面の顕微鏡画像(500倍)を図3に示す。
 上記表1および図3から、実施例の注射針は穿刺耐久性に優れることが分かる。実施例の注射針のうち、注射針3(窒化層の厚さ=7.0μm)は、5回穿刺までは針先の形状が維持されたが、6回以降の穿刺では針先に僅かな欠けが観察された。また、注射針6(窒化層の厚さ=0.1μm)は、5回穿刺までは針先の形状が維持されたが、6回以降の穿刺では針先に若干の曲がりが観察された。これらの結果から、特に窒化層の厚さを0.2~4.0μmの場合には、30回の穿刺時でも針先形状が維持される、または一部湾曲した場合であっても、折れや欠けなどは観察されず、穿刺耐久性をさらに向上できることが考察される。
 また、実施例4および7は同様の結果となっている。一方、注射針4、7について繰り返し折り曲げ試験を行った。その結果、双方の注射針とも許容範囲内であったが、注射針4の方が破損や折れが認められるまでの回数が多かった。この結果から、刃面より基端側の針管部分には窒化処理が行われないようにマスキング処理することが耐破損性の観点から好ましいことが考察される。
 これに対して、窒化層の厚さが本発明から外れる比較注射針1、2では、1回目の穿刺で針先に明らかな欠けが認められた。また、比較例3の未処理サンプルでは、強度が十分でなく、1回の穿刺で針先が湾曲してしまった。
 本出願は、2022年2月16日に出願された日本特許出願番号2022-022048号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  10、20…穿刺針、
  2…刃面、
  22…円形面、
  4、24…針管、
  5、25…窒化層、
  100…評価治具、
  101…注射針、
  102…ポリエチレンテレフタレート膜。

Claims (8)

  1.  針先の少なくとも一部に厚さが0.1μm以上12.0μm未満である窒化層を有する穿刺針。
  2.  前記針先に刃面が形成され、前記窒化層は前記刃面の少なくとも一部に形成される、請求項1に記載の穿刺針。
  3.  前記窒化層は前記刃面の全面に形成される、請求項2に記載の穿刺針。
  4.  前記窒化層の厚さが0.2μm以上5.0μm未満である、請求項1~3のいずれか1項に記載の穿刺針。
  5.  前記針先に刃面が形成された針管を備え、前記針管の肉厚に対する前記窒化層の厚さの比が0.07%を超え5.00%未満である、請求項1~4のいずれか1項に記載の穿刺針。
  6.  前記針先に刃面が形成された針管を備え、前記刃面の終端より基端側の前記針管の表面には厚さが0μmを超え1.0μm未満である窒化層を有するまたは窒化層が形成されない、請求項1~5のいずれか1項に記載の穿刺針。
  7.  前記針先に刃面が形成された針管を備え、前記針管はステンレス鋼製である、請求項1~6のいずれか1項に記載の穿刺針。
  8.  卵胞発育誘導、縫合、脛骨ペダル(Tibial Pedal)アクセスまたは美容のために使用される、請求項1~7のいずれか1項に記載の穿刺針。
PCT/JP2022/032362 2022-02-16 2022-08-29 穿刺針 WO2023157351A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-022048 2022-02-16
JP2022022048 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023157351A1 true WO2023157351A1 (ja) 2023-08-24

Family

ID=87578229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032362 WO2023157351A1 (ja) 2022-02-16 2022-08-29 穿刺針

Country Status (1)

Country Link
WO (1) WO2023157351A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279331A (ja) * 1996-04-12 1997-10-28 Mitsubishi Electric Corp 医療・衛生用具の表面処理方法及び装置
JP2004290410A (ja) * 2003-03-27 2004-10-21 Citizen Watch Co Ltd 穿刺針とその製造方法
US20090041924A1 (en) * 2005-05-02 2009-02-12 Gregory Steube Hard coated cannula and methods of manufacturing same
WO2013003087A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies Llc Flexible biopsy needle
US20160331365A1 (en) * 2015-05-15 2016-11-17 National Taiwan University Of Science And Technology Thin film metallic glass coated needle
JP2018519125A (ja) * 2015-07-06 2018-07-19 ノボ・ノルデイスク・エー/エス 表面硬化した注射針及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279331A (ja) * 1996-04-12 1997-10-28 Mitsubishi Electric Corp 医療・衛生用具の表面処理方法及び装置
JP2004290410A (ja) * 2003-03-27 2004-10-21 Citizen Watch Co Ltd 穿刺針とその製造方法
US20090041924A1 (en) * 2005-05-02 2009-02-12 Gregory Steube Hard coated cannula and methods of manufacturing same
WO2013003087A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies Llc Flexible biopsy needle
US20160331365A1 (en) * 2015-05-15 2016-11-17 National Taiwan University Of Science And Technology Thin film metallic glass coated needle
JP2018519125A (ja) * 2015-07-06 2018-07-19 ノボ・ノルデイスク・エー/エス 表面硬化した注射針及びその製造方法

Similar Documents

Publication Publication Date Title
CA2651641C (en) Medical device having diamond-like thin film and method for manufacturing thereof
DE68905331T2 (de) Scharfes medizinisches werkzeug und verfahren fuer seine herstellung.
JP5354827B1 (ja) 穿刺針、その製造方法およびその製造装置
RU2467713C2 (ru) Медицинская шовная игла
KR20150091374A (ko) 의료용 주사기 카트리지 등의 pecvd 증착 균일성 제어
JPH07204207A (ja) 外科用針のための高モジユラス材料
JP2006077313A (ja) 医療用針又は刃物
WO2023157351A1 (ja) 穿刺針
US20240180577A1 (en) Human soft tissue cutting wire, and method for manufacturing same
US11633301B2 (en) Medical instrument, medical device, method of manufacturing medical instrument, and metal article
JP5335814B2 (ja) 表面着色されたタングステン合金縫合針
CN107708776B (zh) 表面硬化注射针及其制造方法
JP7229458B2 (ja) 非晶質炭素膜とその製造方法
CH675353A5 (en) Diamantine surface coating for surgical instrument - is formed by plasma deposition from mixed hydrogen and gaseous hydrocarbon
Grenadyorov et al. Stability of a‐C: H: SiOx coating on polypropylene to chemical sterilization
JP6266727B1 (ja) 医療機器用金属線
RU218468U1 (ru) Блокируемый интрамедуллярный штифт для ветеринарии
CN113106381B (zh) 一种奥氏体不锈钢医用缝合针盐浴氮化配方及其加工方法
JP5935027B2 (ja) 非晶質炭素膜への機能性材料の固定方法
WO1999053988A1 (fr) Fil-guide pour catheter
WO2021166091A1 (ja) インプラント
JP2004528926A (ja) 外科手術器具
RU71547U1 (ru) Металлический имплантат
Guerra Neto et al. Experimental study of plasma nitriding dental implant surfaces
KR20170127461A (ko) 과탄성 바늘의 개선

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024500935

Country of ref document: JP