WO2023155805A1 - 集成电路的磁场检测方法、装置及缺陷检测方法、装置 - Google Patents

集成电路的磁场检测方法、装置及缺陷检测方法、装置 Download PDF

Info

Publication number
WO2023155805A1
WO2023155805A1 PCT/CN2023/076215 CN2023076215W WO2023155805A1 WO 2023155805 A1 WO2023155805 A1 WO 2023155805A1 CN 2023076215 W CN2023076215 W CN 2023076215W WO 2023155805 A1 WO2023155805 A1 WO 2023155805A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
integrated circuit
microwave
diamond
signal
Prior art date
Application number
PCT/CN2023/076215
Other languages
English (en)
French (fr)
Inventor
孙峰
方源
万传奇
贺羽
许克标
吴亚
张伟
Original Assignee
国仪量子(合肥)技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210141249.9A external-priority patent/CN114200362B/zh
Priority claimed from CN202210141423.XA external-priority patent/CN114200363B/zh
Application filed by 国仪量子(合肥)技术有限公司 filed Critical 国仪量子(合肥)技术有限公司
Publication of WO2023155805A1 publication Critical patent/WO2023155805A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Definitions

  • the present disclosure relates to the technical field of detection, and in particular to a magnetic field detection method and device for an integrated circuit, and a defect detection method and device.
  • the diamond NV Nonrogen-Vacancy center, nitrogen lattice vacancy center
  • the magnetic field detection technology based on diamond NV color center has incomparable advantages for the line width of nanometer-scale integrated circuits.
  • the structure of the measurement equipment and the steps of the measurement method are relatively simple, but because the internal magnetic field of the integrated circuit is at the mG level, it is difficult to guarantee the accuracy of this scheme for the measurement of such a weak magnetic field;
  • the resonance frequency difference of each NV color center must be measured, even if the resonance frequency difference of multiple NV color centers can be measured at one time, it also needs The fluorescence intensity corresponding to microwaves within a certain frequency range is continuously measured, so the measurement efficiency of this scheme is low.
  • a magnetic field detection method and device for an integrated circuit, and a defect detection method and device The magnetic field detection based on the NV color center has relatively high resolution; in the process of magnetic field detection of the integrated circuit, the microwave resonance frequency is set to perform Detection can improve the detection efficiency, and the detection results and the obtained magnetic signal map can be superimposed step by step, which can intuitively reflect the subtle changes of the magnetic field strength and improve the detection accuracy; in the process of defect detection of integrated circuits Among them, defect detection can be performed on all four axes of the NV color center, and the detection map with the most obvious defect reflection can be obtained through screening. It is suitable for the detection of integrated circuits with various structures and various defects, and has strong applicability ; A low-strength external magnetic field can be set to realize non-destructive magnetic field detection of integrated circuits.
  • the present disclosure proposes a magnetic field detection method for an integrated circuit, the magnetic field detection method includes: applying a voltage to the integrated circuit under test, so that the integrated circuit under test is in a working state, wherein the integrated circuit under test One side of the circuit is provided with a diamond NV color center probe; determine the microwave resonance frequency of the integrated circuit under test, apply a microwave signal and a laser signal to the diamond NV color center probe, and obtain the fluorescence generated by the diamond NV color center probe signal, and obtain the magnetic field information of the integrated circuit under test under the working state according to the fluorescence signal, wherein the frequency of the microwave signal is the microwave resonance frequency; or, the diamond NV color center probe is used for the
  • the integrated circuit under test performs a plurality of cycles of detection to obtain a plurality of magnetic signal diagrams, and according to the plurality of magnetic signal diagrams, the magnetic field distribution on the surface of the integrated circuit under test is obtained, wherein each detection cycle contributes to the The diamond NV color center probe applies microwave signals of different microwave resonance frequencies
  • the magnetic field detection method of an integrated circuit in an embodiment of the present disclosure by applying a microwave signal and a laser signal to the diamond NV color center probe, and fixing the frequency of the microwave signal to the preset microwave resonance frequency, the response of the diamond NV color center probe is obtained.
  • the generated fluorescent signal and then analyzed the obtained fluorescent signal to obtain the magnetic field information of the tested integrated circuit in the working state, which can guarantee The magnetic field measurement accuracy is guaranteed while ensuring the measurement efficiency; in addition, the magnetic field detection based on the NV color center has a high resolution; by setting the microwave resonance frequency for detection, the detection efficiency can be improved, and the obtained magnetic signal map is carried out step by step Superposition processing can more intuitively observe subtle changes in magnetic field strength and improve detection accuracy.
  • the magnetic field detection method of the integrated circuit in the embodiment of the present disclosure may also have the following additional technical features:
  • the determination of the microwave resonant frequency of the integrated circuit under test includes: obtaining a reference magnetic field; under the reference magnetic field, detecting the NV color center of the diamond NV color center probe and the N resonant frequencies, wherein N is an integer greater than or equal to 2 and less than or equal to 8; one of the N resonant frequencies is used as the microwave resonant frequency.
  • the reference magnetic field is the maximum surface magnetic field of the preset qualified integrated circuit in the working state, or the sum of the maximum surface magnetic field and the external magnetic field of the preset qualified integrated circuit in the working state; wherein, when the reference magnetic field includes the external magnetic field, the external magnetic field is also applied to the diamond NV color center probe before acquiring the fluorescence signal generated by the diamond NV color center probe.
  • the magnetic field detection method further includes: scanning the surface of the tested integrated circuit with the diamond NV color center probe;
  • the magnetic field information of the integrated circuit in the working state includes: splicing the fluorescent signals according to the position to form a scanning image; obtaining the magnetic field distribution information of the tested integrated circuit in the operating state according to the scanning image.
  • the integrated circuit under test is arranged on a movable sample stage
  • the scanning of the surface of the integrated circuit under test through the diamond NV color center probe includes: fixing the sample The first axial position of the stage, using a stepping method to control the sample stage along the second axis of the sample stage to drive the integrated circuit under test to move from one side edge to the other side, wherein the step length is a preset length; control the sample stage to step by the preset length along the first axis, and then control the sample stage along the second axis from the integrated circuit under test in a step-by-step manner The other side edge moves to the one side edge, and so on, until the entire surface of the integrated circuit under test is measured by the diamond NV color center probe.
  • the obtaining the magnetic field distribution information of the integrated circuit under test according to the scanning image includes: performing inversion processing on the scanning image;
  • the magnetic field distribution information of the tested integrated circuit in the working state is obtained from the scanning image of the tested integrated circuit.
  • the following operations are performed:
  • the determination of the i-th microwave resonance frequency includes: obtaining a reference magnetic field; under the reference magnetic field, detecting the NV color center in the diamond NV color center probe and N resonant frequencies of microwaves, wherein N is an integer greater than or equal to 2 and less than or equal to 8; one of the N resonant frequencies is used as the ith microwave resonant frequency.
  • the reference magnetic field is the maximum magnetic field on the surface of the integrated circuit under test in working state, or the sum of the maximum magnetic field on the surface of the integrated circuit under test in working state and an applied magnetic field, Or, the minimum surface magnetic field of the integrated circuit under test in the working state, or the sum of the minimum magnetic field on the surface of the integrated circuit under test and the external magnetic field in the working state; wherein, the reference magnetic field includes the external magnetic field , before acquiring the fluorescence signal, the external magnetic field is also applied to the diamond NV color center probe.
  • the determining the i-th microwave resonance frequency includes: obtaining the i-th microwave resonance frequency according to the i-1th microwave resonance frequency.
  • the following operations are also performed:
  • the obtaining the fluorescence signals generated by the diamond NV color center probe at different positions on one side of the integrated circuit under test includes: The surface of the integrated circuit is scanned to obtain fluorescence signals generated by the diamond NV color center probe at different positions on one side of the integrated circuit under test.
  • the magnetic signal graph is a graph after phase inversion processing of the fluorescent image corresponding to the corresponding fluorescent signal, and the magnetic field on the surface of the integrated circuit under test is obtained according to the multiple magnetic signal graphs
  • the distribution situation includes: obtaining the maximum brightness L in the i-th magnetic signal map and the position K corresponding to the maximum brightness; corresponding the position K to the j-th magnetic signal reference map to obtain the j-th magnetic signal
  • the present disclosure proposes a magnetic field detection device for an integrated circuit, the magnetic field detection device includes: a diamond NV color center probe, the diamond NV color center probe is arranged on one side of the integrated circuit under test; a control component is used It is used to implement the magnetic field detection method of the integrated circuit described in the above-mentioned embodiments of the present disclosure.
  • the diamond NV color center probe scans the surface of the tested integrated circuit to obtain fluorescence signals generated by the diamond NV color center probe at different positions on one side of the tested integrated circuit, And by implementing the magnetic field detection method of the integrated circuit described in the above embodiments, the magnetic field conditions at different positions of the integrated circuit under test can be observed more clearly.
  • the present disclosure proposes a defect detection method for an integrated circuit, including: using the magnetic field detection method for an integrated circuit according to the above-mentioned embodiments of the present disclosure to obtain magnetic field information of the integrated circuit under test in a working state; The magnetic field information is compared with the preset reference information, and the defect information of the tested integrated circuit is obtained according to the comparison result.
  • the defect detection method of an integrated circuit by comparing the magnetic field information with the preset reference information, and obtaining the defect information of the tested integrated circuit according to the comparison result, the defect existing in the integrated circuit can be accurately and quickly detected, and Strong applicability.
  • defect detection method for an integrated circuit in the embodiment of the present disclosure may also have the following additional technical features:
  • the microwave resonance frequency is detected under a reference magnetic field
  • the reference magnetic field is the sum of the maximum surface magnetic field and the external magnetic field of a preset qualified integrated circuit in a working state
  • the defect detection method further includes Including: determining the target magnetic field direction of the applied magnetic field, wherein the target magnetic field direction is M of the four axes of the NV color center, and M is an integer greater than or equal to 1 and less than or equal to 4;
  • the determination of the target magnetic field direction of the applied magnetic field includes: performing defect detection on preset defective integrated circuits four times to obtain four magnetic field information, wherein the applied magnetic field applied by each defect detection The direction of the magnetic field is different, and they are all the same as the axial direction of the NV color center; according to the significance of the four magnetic field information on the defect reflection in the preset defective integrated circuit, the target magnetic field information is screened out; the said The magnetic field direction corresponding to the target magnetic field information is used as the target magnetic field direction.
  • the embodiment of the fourth aspect of the present disclosure proposes a defect detection device for integrated circuits, including: a diamond NV color center probe, the diamond NV color center probe is arranged on one side of the integrated circuit under test; an excitation component, It is used to provide microwave signals and laser signals to the diamond NV color center probe, so that the diamond NV color center probe generates fluorescence signals, wherein the frequency of the microwave signals is the microwave resonance frequency; the fluorescence collector is used to collect The fluorescent signal; a main control unit, configured to apply a voltage to the integrated circuit under test, so that the integrated circuit under test is in a working state, and obtain the integrated circuit under test in a working state according to the fluorescent signal magnetic field information, and compare the magnetic field information with preset reference information, and obtain the defect information of the tested integrated circuit according to the comparison result.
  • the defect detection device of the integrated circuit of the embodiment of the present disclosure by obtaining the magnetic field information of the entire surface of the integrated circuit under test, it is convenient to comprehensively analyze the defects of the integrated circuit under test; in addition, the detection based on the diamond NV color center probe makes the The detection result of the device has a higher resolution, which can more intuitively reflect the subtle changes of the magnetic field strength, and ensure the accuracy of defect detection.
  • FIG. 1 is a flowchart of a magnetic field detection method for an integrated circuit according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of step S101 of an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of the detection principle of the surface maximum magnetic field according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a magnetic field detection method for an integrated circuit according to another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for obtaining a magnetic signal map in step S12 of an embodiment of the present disclosure
  • FIG. 6 is a flowchart of step S21 of a specific embodiment of the present disclosure.
  • FIG. 7 is a flowchart of step S21 of another specific embodiment of the present disclosure.
  • Fig. 8 is a graph showing the relationship between microwave frequency and fluorescence intensity in a specific embodiment of the present disclosure.
  • Fig. 9 is a first-order differential result diagram of the relationship between microwave frequency and fluorescence intensity in a specific embodiment of the present disclosure.
  • FIG. 10 is a flowchart of step S13 of an embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of a magnetic field detection device for an integrated circuit according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for detecting defects in an integrated circuit according to an embodiment of the present disclosure
  • FIG. 13 is a flow chart of determining a target magnetic field direction of an applied magnetic field according to an embodiment of the present disclosure
  • FIG. 14 is a structural diagram of a defect detection device for an integrated circuit according to an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of an integrated circuit defect detection device according to another embodiment of the present disclosure.
  • Fig. 16 is a structural diagram of an excitation component according to yet another embodiment of the present disclosure.
  • FIG. 17 is a structural diagram of an integrated circuit defect detection device according to a specific embodiment of the present disclosure.
  • 1-integrated circuit under test 2-movable sample stage, 3-power supply circuit, 601-diamond NV color center probe, 602-excitation component, 603-fluorescence collector, 604-main control unit, 705-magnetic field generator, 706-offset mechanism, 801-radiating part, 802-microwave unit, 803-laser generator, 804-diphasic mirror, 805-central hole, 907-translation mechanism.
  • FIG. 1 is a flowchart of a magnetic field detection method for an integrated circuit according to an embodiment of the present disclosure.
  • the magnetic field detection method of an integrated circuit may include:
  • FIG. 2 is a flow chart of step S101 in an embodiment of the present disclosure.
  • the process of determining the microwave resonance frequency of the integrated circuit under test may include:
  • the reference magnetic field may be the maximum surface magnetic field of the preset qualified integrated circuit in the working state, or the sum of the maximum surface magnetic field of the preset qualified integrated circuit in the working state and the external magnetic field.
  • the maximum surface magnetic field of the preset qualified integrated circuit in the working state can be obtained by using a magnetic field detection method whose measurement parameter is the microwave resonance frequency difference generated by energy level splitting.
  • N is an integer greater than or equal to 2 and less than or equal to 8.
  • Fig. 3 is a schematic diagram of the detection principle of the surface maximum magnetic field according to an embodiment of the present disclosure.
  • the microwave resonance frequency difference generated by energy level splitting for magnetic field detection the fluorescent valley corresponding to the energy level splitting of the magnetic field in any area of the surface can be obtained through detection.
  • the microwave frequency corresponding to these two fluorescence valleys is the resonance frequency, which can be compared
  • the maximum magnetic field on the surface is obtained by comparing the difference between the two resonant frequencies.
  • two resonant frequencies corresponding to the maximum magnetic field on the surface can be obtained.
  • the reference magnetic field may be the sum of the maximum surface magnetic field and the external magnetic field of the preset qualified integrated circuit in the working state.
  • the direction of the applied magnetic field can include up to four, which correspond to the four axes of the diamond NV color center. These four directions can correspond to two different fluorescence valleys, and the fluorescence valleys in different directions can be different, so , at most 8 different fluorescence valleys can be obtained, corresponding to 8 different microwave frequencies. That is, up to eight resonance frequencies can be obtained.
  • the microwave resonant frequency of the integrated circuit under test that is, the microwave resonant frequency can be detected under the reference magnetic field.
  • the microwave resonant frequency can be obtained in advance through steps S201-S203, and then the pre-obtained microwave resonant frequency can be directly used when performing magnetic field detection and defect detection on other integrated circuits of the same model as the preset qualified integrated circuit, Thereby, the detection efficiency can be improved.
  • the laser signal can be applied by a laser generator.
  • the power of the laser signal emitted by the laser generator can be 100-150 mW
  • the wavelength is 532 nm
  • the laser spot size can be 0.35-0.75 mm 2 .
  • both the microwave signal and the laser signal applied to the diamond NV color center probe in S103 can be regarded as excitation signals, which are used to excite the diamond NV color center probe to make the diamond NV color center probe generate fluorescence signals.
  • the generated fluorescent signal can be collected by a fluorescent collector.
  • the fluorescence collector can be selected according to actual work requirements, including CCD (Charge Coupled Device, Charge Coupled Device) lens, CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) sensor or sCMOS (scentific CMOS, scientific research grade Complementary Metal Oxide Semiconductor) sensors.
  • the part where the magnetic field intensity on the surface of the integrated circuit under test is lower than the reference magnetic field can cause the microwave resonance frequency to shift, which is reflected in the increase of the fluorescence signal intensity.
  • the increase of the fluorescent signal intensity will be more obvious, thus the magnetic field at any position on the surface of the integrated circuit can be obtained under the working state, and the detection accuracy is high.
  • the corresponding fluorescent signal generated by the diamond NV color center probe can be obtained, and then the obtained The magnetic field information of the integrated circuit under test can be obtained by analyzing the fluorescent signal obtained.
  • the reference magnetic field may further include an external magnetic field.
  • the strength of the applied magnetic field may be greater than 20Gs and less than the upper limit of anti-magnetic interference of the integrated circuit under test.
  • the magnetic field strength provided by the external magnetic field in the embodiments of the present disclosure can be achieved at a relatively low
  • the magnetic field detection of the tested integrated circuit under the magnetic field strength can protect the tested integrated circuit to a certain extent.
  • the diamond NV color center probe when the reference magnetic field includes an external magnetic field, before the above-mentioned step S104 of the magnetic field detection method for integrated circuits, that is, before acquiring the fluorescence signal generated by the diamond NV color center probe, the diamond NV color center probe can also be applied to the diamond NV color center probe. Apply an external magnetic field, and then obtain the magnetic field information of the tested integrated circuit in the working state under the condition that the reference magnetic field includes the external magnetic field according to the fluorescence signal generated by the diamond NV color center probe.
  • the method for detecting the magnetic field of an integrated circuit may further include: scanning the surface of the tested integrated circuit with a diamond NV color center probe.
  • the integrated circuit to be tested can be set on a movable sample stage.
  • scanning the surface of the tested integrated circuit with a diamond NV color center probe may include:
  • the preset length may be a side length of a square inscribed in the laser spot included in the above laser signal.
  • the diamond NV color center probe can generate a corresponding fluorescence signal at the corresponding position, so that the fluorescence signals generated by the diamond NV color center probe on the entire surface of the integrated circuit under test can be obtained.
  • the sample stage moves the integrated circuit under test so that the entire surface of the integrated circuit under test is measured by the diamond NV color center probe may include: when the sample stage moves, the position of one axis (such as the x-axis) can be fixed first, and the position along the other axis can be fixed.
  • the axis (such as the y-axis) moves from one edge of the integrated circuit under test to the other edge, and then the x-axis steps by one unit (the unit can be the side length of the inscribed square of the above-mentioned laser spot), and then along the y
  • the axis moves from the other edge of the integrated circuit under test to one edge, and so on, until the length of the integrated circuit under test in the x-axis is all measured, and the y-axis also moves in steps, and the step unit is also It may be the side length of the inscribed square of the above-mentioned laser spot, and the execution process is the same as the method for measuring the x-axis, and will not be repeated here.
  • the step S105 in the process of detecting the magnetic field of the integrated circuit above, that is, obtaining the magnetic field information of the integrated circuit under test according to the fluorescent signal in the working state may include:
  • S1051 splicing the fluorescent signals according to positions to form a scan image.
  • the surface of the integrated circuit under test is scanned by the diamond NV color center probe, so that the entire surface of the integrated circuit under test is measured by the diamond NV color center probe.
  • the diamond NV color center probe every time the sample stage moves a preset length, the diamond NV color center probe generates a corresponding fluorescence signal at this position, and the fluorescence signals at all positions are spliced according to their corresponding positions to form the entire surface of the integrated circuit under test. Scan map.
  • obtaining the magnetic field distribution information of the integrated circuit under test from the scan image may include: performing inversion processing on the scan image; The magnetic field distribution information below.
  • the phase inversion processing may include: displaying a dark color at a position with a strong fluorescent signal, and displaying a bright color at a position with a weak fluorescent signal.
  • the contrast of the scanned image after the inversion process is higher, which can more clearly reflect the magnetic field distribution information of the tested integrated circuit in the working state. That is to say, by inverting the scanned image of the entire surface of the integrated circuit under test formed by splicing, and then analyzing the corresponding position information, the magnetic field distribution information of the integrated circuit under test in the working state can be obtained.
  • the magnetic field detection method of the integrated circuit in the embodiment of the present disclosure in the process of detecting the magnetic field of the integrated circuit, by setting the microwave resonance frequency for detection, the detection efficiency can be improved, and the detection result can intuitively reflect the magnetic field strength The subtle changes improve the detection accuracy.
  • the strength of the external magnetic field is low, and the magnetic field distribution information of the tested integrated circuit can be detected under a relatively low magnetic field strength, which can protect the tested integrated circuit to a certain extent.
  • the disclosure also proposes a magnetic field detection method for an integrated circuit.
  • FIG. 4 is a flowchart of a magnetic field detection method for an integrated circuit according to another embodiment of the present disclosure.
  • the magnetic field detection method of the integrated circuit may also include:
  • the NV color center in the diamond NV color center probe can include four axes.
  • the diamond NV color center probe performs multiple cycles of detection on the tested integrated circuit, and each time a cycle of magnetic field detection is performed, a corresponding magnetic field signal diagram can be obtained.
  • This detection method based on the magnetic field detection of the NV color center, has a high resolution; by setting the microwave resonance frequency for detection, the detection efficiency can be improved, and the acquired magnetic signal map can be superimposed step by step, which can be more intuitive Observation of subtle changes in magnetic field strength improves detection accuracy.
  • Fig. 5 is a flow chart of the method for obtaining the magnetic signal map in step S12 of an embodiment of the present disclosure.
  • the diamond NV color center probe when step S12 in the magnetic field detection method of the above-mentioned integrated circuit is performed, the diamond NV color center probe can obtain the magnetic signal diagram corresponding to the cycle every time the diamond NV color center probe detects the integrated circuit under test. Specifically, Referring to Figure 5, for the i-th detection cycle, the following operations can be performed to obtain the magnetic signal map:
  • i is a positive integer greater than or equal to 1.
  • microwave signals of different microwave resonance frequencies can be applied to the diamond NV color center probe in each detection cycle, that is, one detection cycle corresponds to one microwave resonance frequency, and different detection cycles correspond to different microwave resonance frequencies.
  • the methods for determining the microwave resonance frequency are also different, including:
  • Fig. 6 is a flowchart of step S21 of a specific embodiment of the present disclosure.
  • determining the i-th microwave resonance frequency at this time may include:
  • the reference magnetic field may be the maximum magnetic field on the surface of the integrated circuit under test in a working state, or the minimum magnetic field on the surface of the integrated circuit under test in a working state.
  • the surface maximum magnetic field and the surface minimum magnetic field can be measured by a magnetic field meter with a measurement accuracy of mG level and a resolution of less than 1mm.
  • the surface of the integrated circuit in the working state can be measured to find out the area with the largest magnetic field and measure its magnetic field strength. , find the area with the smallest magnetic field and measure its magnetic field strength.
  • the reference magnetic field may include an externally applied magnetic field.
  • the reference magnetic field may be the sum of the maximum magnetic field on the surface of the integrated circuit under test and the external magnetic field, or the minimum magnetic field on the surface of the integrated circuit under test under the working state. and the sum of the applied magnetic field.
  • N is an integer greater than or equal to 2 and less than or equal to 8.
  • the reference magnetic field is the maximum magnetic field on the surface of the tested integrated circuit in the working state, or, when the surface minimum magnetic field of the tested integrated circuit is in the working state, it can be obtained by detection that the tested integrated circuit is in the working state , the fluorescence valley corresponding to the energy level splitting of the magnetic field in any region of the surface, there are two fluorescence valleys, and the microwave frequency corresponding to these two fluorescence valleys is the resonance frequency.
  • the reference magnetic field is the sum of the maximum surface magnetic field (or surface minimum magnetic field) and the external magnetic field of the integrated circuit under test in the working state. These four directions can correspond to two different fluorescence valleys, and the fluorescence valleys in different directions can be different, thus, up to 8 different fluorescence valleys can be obtained, which can correspond to 8 different microwave frequencies. That is, a maximum of 8 resonance frequencies can be obtained.
  • determining the i-th microwave resonance frequency may include: obtaining the i-th microwave resonance frequency according to the i-1th microwave resonance frequency.
  • Fig. 7 is a flow chart of step S21 of another specific embodiment of the present disclosure.
  • the ith microwave resonance frequency is determined when the above i>1, that is Obtaining the i-th microwave resonance frequency according to the i-1th microwave resonance frequency may include:
  • the purpose of performing first-order differentiation is to obtain the slope of the relationship curve between the microwave frequency and the fluorescence intensity corresponding to the i-1th microwave resonance frequency. According to the size of the slope, the response range of the fluorescence intensity with the microwave frequency can be judged. .
  • Fig. 8 is a graph showing the relationship between microwave frequency and fluorescence intensity according to a specific embodiment of the present disclosure.
  • Fig. 9 is a first-order differential result diagram of the relationship between microwave frequency and fluorescence intensity according to a specific embodiment of the present disclosure.
  • the second microwave resonance frequency according to the first microwave resonance frequency, which may include:
  • Figure 9 is obtained by performing first-order differentiation on the curve in Figure 8. Observing Figure 9, it can be concluded that the valley close to the first microwave resonance frequency a corresponds to The microwave frequency is b, then record b as the microwave reference frequency, that is, b can be used as the second microwave resonance frequency. Corresponding to Figure 9, it can also be seen from Figure 8 that the fluorescence intensity between b and a varies greatly with the microwave frequency. In practical applications, it can be more intuitive to detect the magnetic field distribution information of the tested integrated circuit Reflect changes in magnetic field strength.
  • the second microwave resonance frequency can also be selected as the microwave frequency corresponding to the position shifted from b to the left by p, refer to c in FIG. 9 .
  • p may be 3/4 of the interval of ab.
  • the second microwave resonance frequency can be obtained according to the first microwave resonance frequency
  • the methods for obtaining the next third, fourth, and nth microwave resonance frequencies can refer to the above-mentioned methods for obtaining the second microwave resonance frequency method, which will not be repeated here.
  • the reference magnetic field includes the maximum magnetic field on the surface of the integrated circuit in the working state.
  • the obtained magnetic field intensity corresponding to the i-th microwave resonance frequency can also be measured by a magnetic field meter with a measurement accuracy of mG level.
  • the magnetic field conditions at all positions on the surface of the integrated circuit under working conditions can be accurately obtained.
  • the microwave resonance frequency corresponding to the i-th detection cycle can be obtained in advance through steps S31-S33, and then the microwave resonance frequency obtained in advance can be directly used when performing magnetic field detection on other chips of the same type as the integrated circuit under test , which can improve the detection efficiency.
  • the laser signal can be applied by a laser generator.
  • the power of the laser signal emitted by the laser generator can be 100-150 mW
  • the wavelength is 532 nm
  • the laser spot size can be 0.35-0.75 mm 2 .
  • acquiring the fluorescence signal may include: scanning the surface of the integrated circuit under test with a diamond NV color center probe to obtain fluorescence signals generated by the diamond NV color center probe at different positions on one side of the integrated circuit under test.
  • obtaining the i-th magnetic signal map according to the fluorescent signal may include: performing inversion processing on the obtained fluorescent image corresponding to the fluorescent signal to obtain the corresponding magnetic signal map.
  • the phase inversion processing may include: the part with strong fluorescent signal is displayed in dark color, and the part with weak fluorescent signal is displayed in bright color. The contrast of the fluorescent image after inversion processing is higher, and the magnetic field conditions at different positions of the tested integrated circuit can be observed more clearly.
  • a laser signal and a microwave signal of the microwave resonance frequency of the corresponding detection period can be applied to the diamond NV color center probe to excite the diamond NV color center probe to make the diamond
  • the NV color center probe generates corresponding fluorescent signals at different positions on one side of the integrated circuit under test, and then inverts the fluorescent image corresponding to the fluorescent signal to obtain the magnetic signal map of the corresponding detection cycle.
  • the reference magnetic field includes an external magnetic field.
  • the diamond NV The color center probe applies the external magnetic field; then execute S23 to obtain the magnetic signal diagram corresponding to each detection period when the reference magnetic field includes the external magnetic field.
  • the strength of the applied magnetic field may be greater than 20Gs and less than the upper limit of anti-magnetic interference of the tested sample.
  • the magnetic field strength provided by the external magnetic field is compared with the conventional NV color center magnetic measurement scheme in the related art, which needs to set an external magnetic field of hundreds of G or more. The detection can protect the integrated circuit under test to a certain extent.
  • Fig. 10 is a flow chart of step S13 of an embodiment of the present disclosure.
  • the obtained multiple magnetic signal diagrams can be superimposed step by step. That is, when performing the above-mentioned magnetic field detection method of an integrated circuit, according to a plurality of magnetic signal diagrams, obtaining the magnetic field distribution on the surface of the tested integrated circuit may specifically include:
  • the magnetic signal diagram 2 corresponding to the second detection period in multiple magnetic signal diagrams is obtained, and the magnetic signal diagram 1 corresponding to the first detection period can be used as the first A magnetic signal reference plot.
  • the brightness in the signal diagram 1 is recorded as L', and the brightness of the part K' whose brightness is greater than L' in the magnetic signal diagram 1 is increased, and the increase range is L-L', and the brightness of the raised part K is 'Magnetic signal map 2 is overlaid according to the position, and the magnetic signal map 3 is obtained, and the map 3 is used as the magnetic field distribution map corresponding to the second magnetic signal map, and as the second magnetic signal reference map, and the same steps are performed.
  • the next magnetic field distribution diagram is obtained until the magnetic field distribution diagram corresponding to the last magnetic signal diagram is obtained, so that the magnetic field distribution on the surface of the integrated circuit under test can be obtained.
  • the magnetic field detection method of the integrated circuit proposed by the embodiment of the present disclosure has lower requirements on the strength of the applied magnetic field, and can protect the tested integrated circuit to a certain extent; and the detection is based on the NV color center, and at the same time, it is set such as 0.35-0.75mm 2 laser spots irradiate the diamond NV color center probe, so that the detection method has a higher resolution and a larger detection field of view during the detection process; in addition, the present disclosure detects by setting the microwave resonance frequency, The detection efficiency can be improved, and the obtained magnetic signal map is superimposed step by step to improve the image contrast. Compared with the scheme of directly measuring the change of the fluorescence intensity at the non-resonant frequency with the magnetic field in the prior art, the discrimination of the difference of the magnetic field change is better Large, improving the magnetic field detection accuracy.
  • the present disclosure proposes a magnetic field detection device for an integrated circuit.
  • FIG. 11 is a structural block diagram of a magnetic field detection device for an integrated circuit according to an embodiment of the present disclosure.
  • the integrated circuit magnetic field detection device 100 may include: a diamond NV color center probe 110 and a control component 120 .
  • the diamond NV color center probe 110 can be arranged on one side of the integrated circuit under test, so as to facilitate scanning the surface of the integrated circuit under test.
  • the control component 120 is configured to execute the integrated circuit magnetic field detection method proposed in the above embodiments.
  • the present disclosure proposes a defect detection method of an integrated circuit.
  • FIG. 12 is a flowchart of a defect detection method for an integrated circuit according to an embodiment of the present disclosure.
  • the defect detection method for an integrated circuit may include:
  • the preset reference information can be the magnetic field information of the preset qualified integrated circuit, and can be obtained before the defect detection of the preset defective integrated circuit, and can be used as comparison standard information in the defect detection process of the integrated circuit, which is convenient for analysis The defect condition of the defective integrated circuit.
  • the microwave resonance frequency when implementing the magnetic field detection method of the integrated circuit, can be detected under the reference magnetic field.
  • the reference magnetic field may be the sum of the maximum surface magnetic field and the external magnetic field of the preset qualified integrated circuit in the working state.
  • the above defect detection method may further include:
  • the target magnetic field direction can be M in the four axial directions of the NV color center, and M is an integer greater than or equal to 1 and less than or equal to 4; each time the magnetic field of the integrated circuit as described above is executed
  • an external magnetic field corresponding to the direction of the target magnetic field is applied, and the microwave resonance frequency can be one of the two resonance frequencies of the NV color center whose axial direction is consistent with the direction of the target magnetic field.
  • the value of M can be selected according to requirements.
  • FIG. 13 is a flowchart of determining a target magnetic field direction of an applied magnetic field according to an embodiment of the present disclosure.
  • the above-mentioned determination of the target magnetic field direction of the applied magnetic field may include:
  • the magnetic field information in four directions of the predetermined defective integrated circuit after obtaining the magnetic field information in four directions of the predetermined defective integrated circuit, it can be compared with the above-mentioned predetermined reference information, and the magnetic field information with high significance of defect reflection can be obtained as the target magnetic field information through screening.
  • the microwave resonant frequency such as one of a and a' in Fig. 3
  • the above-mentioned determination of the target magnetic field direction of the applied magnetic field may include :
  • A. Set the direction of the external magnetic field so that it is the same as the direction of the diamond NV color center-axis (X), apply a voltage to the preset defective integrated circuit, so that the preset defective integrated circuit is in a working state, and apply a voltage to the diamond NV color center
  • the probe applies microwave signals and laser signals, and moves the integrated circuit under test through the sample stage so that the entire surface of the integrated circuit under test is detected.
  • Inverted phase processing the strong fluorescence is displayed in dark colors, and the weak fluorescence is displayed in bright colors, and the magnetic field distribution information figure 1 is obtained.
  • the frequency of the applied microwave signal is one of the two resonant frequencies corresponding to the X-axis, and the resonant frequency is measured under the sum of the maximum magnetic field on the surface of the predetermined defective integrated circuit and the external magnetic field in the X-axis.
  • the frequency of the microwave signal applied in this step is one of the two resonant frequencies corresponding to the Y-axis, and the resonant frequency is measured under the sum of the maximum magnetic field on the surface of the preset defect integrated circuit and the external magnetic field in the Y-axis .
  • the frequency of the microwave signal applied in this step is one of the two resonance frequencies corresponding to the Z-axis, and the resonance frequency is measured under the sum of the maximum magnetic field on the surface of the preset defective integrated circuit and the external magnetic field in the Z-axis .
  • the frequency of the microwave signal applied in this step is one of the two resonance frequencies corresponding to the W axis, and the resonance frequency is measured under the sum of the maximum magnetic field on the surface of the preset defective integrated circuit and the external magnetic field on the W axis .
  • the preset qualified integrated circuits can be tested in advance to obtain comparison standard information, and then various preset defective integrated circuits can be measured, and the acquired Figures 1 to 4 can be screened.
  • Figure 1 it is possible to compare the Figure 1 obtained by various preset defective integrated circuits with the Figure 1 obtained by preset qualified integrated circuits, whether there is a significant difference, and whether the difference can reflect the location or nature of the defect, and if so, the Figure 1 is filtered out.
  • the screening results may include the following situations:
  • Figures 1 to 4 have almost the same significance for the defect reflection, so in the subsequent inspection work, one of the pictures in Figures 1 to 4 can be directly selected for testing, and the steps for other pictures can be omitted;
  • the microwave resonance frequency since one of the two resonant frequencies of the NV color center whose axial direction is consistent with the target magnetic field direction is set in advance as the microwave resonant frequency, similarly, the resonant frequency not selected before the other When it is used as the microwave resonance frequency, the above-mentioned steps of determining the target magnetic field direction of the applied magnetic field should also be carried out, and four magnetic field distribution information maps will also be obtained, and Figures 5 to 8 can be obtained, and the screening method is the same as above.
  • each magnetic field distribution information map in the screened target magnetic field information corresponds to a magnetic field direction, and the corresponding magnetic field direction can be used as the target magnetic field direction.
  • the determination of the target magnetic field direction of the applied magnetic field is completed.
  • the maximum magnetic field on the surface of the tested integrated circuit in the working state can be predetermined before the start of the defect detection (in order to obtain the corresponding two resonant frequencies), and Perform the screening of the above-mentioned Figures 1 to 8, and then use it in the defect detection process of the integrated circuit to directly carry out the corresponding defect detection on the tested integrated circuit according to the microwave resonance frequency and the screened pictures.
  • the defect detection method for an integrated circuit according to the embodiment of the present disclosure can accurately and quickly detect defects existing in an integrated circuit, and has strong applicability.
  • the present disclosure proposes a defect detection device for integrated circuits.
  • FIG. 14 is a structural diagram of a defect detection device for an integrated circuit according to an embodiment of the present disclosure.
  • the defect detection device 600 of an integrated circuit includes: a diamond NV color center probe 601, an excitation component 602, a fluorescent a light collector 603 and a main control unit 604 .
  • the diamond NV color center probe 601 is arranged on one side of the integrated circuit 1 under test, and the NV color center has four different axes.
  • the integrated circuit 1 under test can be placed on the movable sample stage 2 , and the diamond NV color center probe 601 is arranged above the movable sample stage 2 .
  • the excitation component 602 is configured to provide microwave signals and laser signals to the diamond NV color center probe 601 to make the diamond NV color center probe 601 generate fluorescence signals, wherein the frequency of the microwave signal is the microwave resonance frequency.
  • Fluorescence collector 603, configured to collect fluorescence signals.
  • the main control unit 604 is used to apply a voltage to the integrated circuit 1 under test, so that the integrated circuit 1 under test is in a working state, obtain the magnetic field information of the integrated circuit 1 under test according to the fluorescence signal, and compare the magnetic field information with the The preset reference information is compared, and the defect information of the tested integrated circuit 1 is obtained according to the comparison result.
  • the main control unit can apply voltage to the integrated circuit 1 under test by controlling and turning on the power supply circuit 3 to make it in a working state.
  • the integrated circuit defect detection device 600 of the embodiment of the present disclosure can obtain the magnetic field information of the entire surface of the tested integrated circuit 1, which is convenient for comprehensively analyzing the defects of the tested integrated circuit 1; in addition, based on the diamond NV color center probe 601 The detection makes the detection results of the device have a higher resolution, which can more intuitively reflect the subtle changes of the magnetic field strength, and ensure the accuracy of defect detection.
  • FIG. 15 is a structural diagram of an integrated circuit defect detection device according to another embodiment of the present disclosure.
  • the integrated circuit defect detection device 600 may further include:
  • the magnetic field generator 705 is mainly used to apply an external magnetic field.
  • the direction of the external magnetic field can be consistent with the axial direction of the diamond NV color center probe 601.
  • the number of magnetic field generators can be consistent with the number of the above-mentioned target magnetic field directions, which can be M of the four axes of the NV color center, M is an integer greater than or equal to 1 and less than or equal to 4.
  • the number of magnetic field generators and the positions of the magnetic field generators can be selected according to actual needs.
  • the main control unit 604 can also be used to: perform M defect detections on the tested integrated circuit, control a magnetic field generator to work each time a defect detection is performed, and obtain M magnetic signal diagrams; according to M The defects of the integrated circuit under test can be obtained from a magnetic signal map.
  • the offset mechanism 706 , the offset mechanism 706 is rotatably arranged, and the magnetic field generator 705 can be arranged on the offset mechanism 706 .
  • the offset mechanism 706 can be used to fix the magnetic field generator 705 and adjust the direction of the applied magnetic field according to the detection requirements.
  • the rotation of the offset mechanism 706 can be controlled by the main control unit 604 .
  • Fig. 16 is a structural diagram of an excitation component according to yet another embodiment of the present disclosure.
  • the excitation component 602 in the defect detection device 600 for an integrated circuit may include: a radiation component 801 , a microwave unit 802 , a laser generator 803 , and a dichroic mirror 804 .
  • the laser generator 803 can be used to provide a laser signal to the diamond NV color center probe 601.
  • the power of the laser signal can be 100-150 mW
  • the wavelength is 532 nm
  • the laser spot size can be 0.35-0.75 mm 2 .
  • the device since the size of the laser spot emitted by the laser generator 803 can be between 0.35-0.75 mm 2 , the device can have a higher resolution and a larger detection field of view.
  • the radiating part 801 is arranged above the diamond NV color center probe 601, and has a central hole 805, and the size of the central hole 805 can be consistent with the size of the above-mentioned laser spot.
  • the microwave unit 802 is connected to the radiating part 801, and the microwave unit 802 can provide excitation of microwave signals to the diamond through the radiating part 801.
  • the dichroic mirror 804 is arranged above the central hole 805 of the radiating part 801, and forms a first preset angle, such as 45°, with the extension of the central hole 805, and is used to reflect the laser signal to the diamond through the central hole 805.
  • the NV color center probe 601 transmits the fluorescent signal emitted through the central hole 805 to the fluorescent collector 603 .
  • the above-mentioned main control unit 604 is used to modulate the frequency of the microwave signal to a preset microwave resonance frequency by controlling the microwave unit 802 in the excitation component 602 when performing defect detection on the integrated circuit under test, And control the laser generator 803 to generate a laser signal.
  • FIG. 17 is a structural diagram of an integrated circuit defect detection device according to a specific embodiment of the present disclosure.
  • the integrated circuit defect detection device 600 may further include:
  • the translation mechanism 907 specifically, the movable sample stage 2 can be arranged on the translation mechanism 907, so as to adjust the relative position of the integrated circuit 1 under test and the diamond NV color center probe 601, so that the diamond NV color center probe 601 can control the measured IC 1 conducts full-frame scanning.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, as it may be possible, for example, by optically scanning the paper or other medium, followed by editing, interpreting, or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种集成电路的磁场检测方法、装置及缺陷检测方法、装置,该磁场检测方法包括:确定被测集成电路的微波共振频率(S101);为被测集成电路施加电压,以使被测集成电路处于工作状态(S102);向金刚石NV色心探头施加微波信号和激光信号,其中,微波信号的频率为微波共振频率,金刚石NV色心探头设置在被测集成电路的一侧(S103);获取金刚石NV色心探头产生的荧光信号(S104),根据荧光信号得到被测集成电路在工作状态下的磁场信息(S105);或者,通过金刚石NV色心探头对被测集成电路执行多个周期的检测,以得到多个磁信号图,根据多个磁信号图,得到被测集成电路表面的磁场分布情况,其中,每个检测周期向金刚石NV色心探头施加不同微波共振频率的微波信号。磁场检测方法在对集成电路进行磁场检测的过程中,检测效率、检测精度高,适用性强。

Description

集成电路的磁场检测方法、装置及缺陷检测方法、装置
相关申请的交叉引用
本公开要求于2022年02月16日提交的申请号202210141423.X、名称为“集成电路的磁场检测方法及缺陷检测方法、装置”和申请号202210141249.9、名称为“基于NV色心的芯片磁场检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及检测技术领域,具体涉及一种集成电路的磁场检测方法、装置及缺陷检测方法、装置。
背景技术
就磁场测量领域而言,金刚石NV(Nitrogen-Vacancy center,氮晶格空位中心)色心不仅仅具有较高的极限灵敏度,而且具有超高分辨率,因此适合对集成电路内部进行无损检测,尤其是在集成电路的加工能力日渐趋近摩尔极限的时候,对于集成电路纳米量级的线条宽度,基于金刚石NV色心的磁场检测技术具有无可比拟的优势。
为此,相关技术中提出了基于测量参数为荧光强度的检测方案和基于测量参数为能级劈裂产生的微波共振频率差的检测方案。然而,上述方案存在如下问题:
(1)对于测量参数为荧光强度的检测方案,测量设备结构以及测量方法步骤相对较为精简,但由于集成电路的内部磁场在mG水平,对于这种弱磁场的测量,该方案难以保证精度;
(2)对于测量参数为能级劈裂产生的微波共振频率差的方案,每一个NV色心的共振频率差都要测量,即便可以一次性测多个NV色心的共振频率差,也需要对一定频率范围内的微波所对应的荧光强度进行连续测量,因此该方案测量效率较低。
另外,相关技术中提出将金刚石NV色心磁测量方案应用于集成电路的EMC(Electromagnetic Compatibility,电磁兼容性)优化设计场景中,但在实现过程中存在如下问题:金刚石NV色心进行磁测量时,通常需要设置较高强度的磁场,用于实现NV色心能级免交叉点效应,以保证测量准确性;而高强度磁场在调整位置和方向的时候,会对集成电路造成一定的损伤,即便是在放置集成电路之前调整好磁场,集成电路在进入磁场的时候也会产生较大的感生电动势,从而对集成电路本身和检测可参考性产生不利影响。
发明内容
一种集成电路的磁场检测方法、装置及缺陷检测方法、装置,基于NV色心进行的磁场检测,具有较高的分辨率;在对集成电路进行磁场检测的过程中,通过设置微波共振频率进行检测,可以提高检测效率的同时,且检测结果和将获取的磁信号图进行逐级叠加处理,均可直观地反映磁场强度的细微变化,提高了检测精度;在进行集成电路的缺陷检测的过程中,可以对NV色心的四个轴向都进行缺陷检测,可通过筛选获得缺陷反映最显著的检测图,适用于各种不同结构的集成电路检测以及各种不同缺陷的检测,适用性强;可设置强度较低的外加磁场,实现集成电路无损磁场检测。
第一方面,本公开提出一种集成电路的磁场检测方法,所述磁场检测方法包括:为被测集成电路施加电压,以使所述被测集成电路处于工作状态,其中,所述被测集成电路的一侧设置有金刚石NV色心探头;确定所述被测集成电路的微波共振频率,向所述金刚石NV色心探头施加微波信号和激光信号,获取所述金刚石NV色心探头产生的荧光信号,并根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,其中,所述微波信号的频率为所述微波共振频率;或者,通过所述金刚石NV色心探头对所述被测集成电路执行多个周期的检测,以得到多个磁信号图,根据所述多个磁信号图,得到所述被测集成电路表面的磁场分布情况,其中,每个检测周期向所述金刚石NV色心探头施加不同微波共振频率的微波信号。
根据本公开实施例的集成电路的磁场检测方法,通过对金刚石NV色心探头施加微波信号和激光信号,且固定微波信号的频率为预先设置的微波共振频率,进而获取到金刚石NV色心探头相应产生的荧光信号,再对获取到的荧光信号进行分析便可得到被测集成电路在工作状态下的磁场信息,能够在保证 磁场测量精度的同时保证测量效率;另外,基于NV色心进行的磁场检测,具有较高的分辨率;通过设置微波共振频率进行检测,可以提高检测效率,且将获取的磁信号图进行逐级叠加处理,可以更直观地观察出磁场强度的细微变化,提高了检测精度。
另外,本公开实施例的集成电路的磁场检测方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述确定被测集成电路的微波共振频率,包括:获取基准磁场;在所述基准磁场下,检测得到所述金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数;将所述N个共振频率中的一者作为所述微波共振频率。
根据本公开的一个实施例,所述基准磁场为预设合格集成电路在工作状态下的表面最大磁场,或者,所述预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和;其中,所述基准磁场包含所述外加磁场时,在所述获取所述金刚石NV色心探头产生的荧光信号之前,还向所述金刚石NV色心探头施加所述外加磁场。
根据本公开的一个实施例,所述磁场检测方法还包括:通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面;其中,所述根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,包括:将所述荧光信号按位置拼接形成扫面图;根据所述扫面图得到所述被测集成电路在工作状态下的磁场分布信息。
根据本公开的一个实施例,所述被测集成电路设置在可移动样品台上,所述通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面,包括:固定所述样品台的第一轴向位置,采用步进方式控制所述样品台沿所述样品台的第二轴向带动所述被测集成电路从一侧边缘移动至另一侧边,其中,步进长度为预设长度;控制所述样品台沿所述第一轴向步进所述预设长度,之后采用步进方式控制所述样品台沿所述第二轴向从所述被测集成电路的所述另一侧边缘移动至所述一侧边缘,以此类推,直至所述被测集成电路表面全部被所述金刚石NV色心探头测量。
根据本公开的一个实施例,所述根据所述扫面图得到所述被测集成电路在工作状态下的磁场分布信息,包括:对所述扫面图进行反相处理;根据反相处理后的扫面图得到所述被测集成电路在工作状态下的磁场分布信息。
根据本公开的一个实施例,针对第i个检测周期,执行如下操作:
确定第i个微波共振频率;向所述金刚石NV色心探头施加微波信号和激光信号,其中,所述微波信号的频率为所述第i个微波共振频率;获取所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号,并根据所述荧光信号得到第i个磁信号图。
根据本公开的一个实施例,i=1时,所述确定第i个微波共振频率,包括:获取基准磁场;在所述基准磁场下,检测得到所述金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数;将所述N个共振频率中的一者作为所述第i个微波共振频率。
根据本公开的一个实施例,所述基准磁场为所述被测集成电路在工作状态下的表面最大磁场,或者,所述被测集成电路在工作状态下的表面最大磁场与外加磁场之和,或者,所述被测集成电路在工作状态下的表面最小磁场,或者,所述被测集成电路在工作状态下的表面最小磁场与外加磁场之和;其中,所述基准磁场包含所述外加磁场时,在获取荧光信号之前,还向所述金刚石NV色心探头施加所述外加磁场。
根据本公开的一个实施例,i>1时,所述确定第i个微波共振频率,包括:根据第i-1个微波共振频率得到所述第i个微波共振频率。
根据本公开的一个实施例,所述N个共振频率由M对共振频率组成,N=2*M,当第1个微波共振频率取所述M对共振频率中任一对中的较大值时,所述根据第i-1个微波共振频率得到所述第i个微波共振频率,包括:对所述第i-1个微波共振频率对应的微波频率与荧光强度的关系曲线进行一阶微分;获取一阶微分结果中靠近所述第i-1个微波共振频率的波谷对应的微波频率,记为微波参考频率;将所述微波参考频率作为所述第i个微波共振频率,或者,将在所述微波参考频率远离所述第i-1个微波共振频率的一侧,且距离所述微波参考频率3/4*特定间距的微波频率作为所述第i个微波共振频率,其中,所述特定间距为所述微波参考频率与所述第i-1个微波共振频率的间距。
根据本公开的一个实施例,所述基准磁场包含所述表面最大磁场时,针对第i个检测周期,还执行如下操作:
判断所述第i个微波共振频率对应的磁场强度是否小于所述表面最小磁场;如果是则结束检测,如果否则继续执行当前周期的检测。
根据本公开的一个实施例,所述获取所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号,包括:通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面,得到所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号。
根据本公开的一个实施例,所述磁信号图为相应荧光信号对应的荧光图像经反相处理后的图,所述根据所述多个磁信号图,得到所述被测集成电路表面的磁场分布情况,包括:获取第i个磁信号图中的最大亮度L和所述最大亮度对应的位置K;将所述位置K对应到第j个磁信号参考图中,得到所述第j个磁信号参考图中对应所述位置K处的亮度L’,其中,第1个磁信号参考图为第1个磁信号图;对所述第j个磁信号参考图中亮度大于L’的位置K’进行亮度提升,且提升幅度为L-L’;将亮度提升后的位置K’对应覆盖到所述第i个磁信号图中,得到所述第i个磁信号图对应的磁场分布图,并作为第j+1个磁信号参考图;令i加1,并重复执行上述步骤,直至得到最后一个磁信号图对应的磁场分布图;根据所述最后一个磁信号图对应的磁场分布图,得到所述被测集成电路表面的磁场分布情况。
第二方面,本公开提出了一种集成电路的磁场检测装置,所述磁场检测装置包括:金刚石NV色心探头,所述金刚石NV色心探头设置在被测集成电路一侧;控制组件,用于执行本公开上述实施例所述的集成电路的磁场检测方法。
根据本公开实施例的集成电路的磁场检测装置,通过金刚石NV色心探头对被测集成电路表面进行扫面,得到金刚石NV色心探头在被测集成电路的一侧不同位置产生的荧光信号,并且通过执行上述实施例所述的集成电路的磁场检测方法,可以更加清楚的观察被测集成电路不同位置的磁场情况。
第三方面,本公开提出了一种集成电路的缺陷检测方法,包括:利用本公开上述实施例的集成电路的磁场检测方法,得到所述被测集成电路在工作状态下的磁场信息;将所述磁场信息与预设基准信息进行比较,并根据比较结果得到所述被测集成电路的缺陷信息。
根据本公开实施例的集成电路的缺陷检测方法,通过将磁场信息与预设基准信息进行比较,并根据比较结果得到被测集成电路的缺陷信息,可准确快速检测出集成电路存在的缺陷,且适用性强。
另外,本公开实施例的集成电路的缺陷检测方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述微波共振频率在基准磁场下检测得到,所述基准磁场为预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和,所述缺陷检测方法还包括:确定所述外加磁场的目标磁场方向,其中,所述目标磁场方向为所述NV色心的四个轴向中的M个,M为大于等于1小于等于4的整数;在每次执行本公开上述实施例的集成电路的磁场检测方法时,施加相应目标磁场方向的外加磁场,且所述微波共振频率为轴向与所述目标磁场方向一致的NV色心的两个共振频率之一。
根据本公开的一个实施例,所述确定所述外加磁场的目标磁场方向,包括:对预设缺陷集成电路进行四次缺陷检测,得到四个磁场信息,其中,每次缺陷检测施加的外加磁场的磁场方向不同,且均与所述NV色心的轴向相同;根据所述四个磁场信息对所述预设缺陷集成电路中缺陷反映的显著性情况,筛选出目标磁场信息;将所述目标磁场信息对应的磁场方向作为所述目标磁场方向。
为达到上述目的,本公开第四方面实施例提出了一种集成电路的缺陷检测装置,包括:金刚石NV色心探头,所述金刚石NV色心探头设置在被测集成电路一侧;激励组件,用于向所述金刚石NV色心探头提供微波信号和激光信号,以使所述金刚石NV色心探头产生荧光信号,其中,所述微波信号的频率为微波共振频率;荧光采集器,用于采集所述荧光信号;主控单元,用于为所述被测集成电路施加电压,以使所述被测集成电路处于工作状态,并根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,以及将所述磁场信息与预设基准信息进行比较,并根据比较结果得到所述被测集成电路的缺陷信息。
根据本公开实施例的集成电路的缺陷检测装置,通过获取到被测集成电路的全部表面的磁场信息,便于全面分析被测集成电路的缺陷情况;另外,基于金刚石NV色心探头的检测使得该装置的检测结果具有较高的分辨率,可以更直观的反映磁场强度的细微变化,保证缺陷检测精度。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一个实施例的集成电路的磁场检测方法的流程图;
图2是本公开一个实施例的步骤S101的流程图;
图3是本公开一个实施例的表面最大磁场检测原理的示意图;
图4是本公开另一个实施例的集成电路的磁场检测方法的流程图;
图5是本公开一个实施例的步骤S12获取磁信号图的方法的流程图;
图6是本公开一个具体实施例的步骤S21的流程图;
图7是本公开另一个具体实施例的步骤S21的流程图;
图8是本公开一个具体实施例的微波频率与荧光强度关系图;
图9是本公开一个具体实施例微波频率与荧光强度关系的一阶微分结果图;
图10是本公开一个实施例的步骤S13的流程图;
图11是本公开实施例的集成电路的磁场检测装置的结构框图;
图12是本公开实施例集成电路的缺陷检测方法的流程图;
图13为本公开实施例的确定外加磁场的目标磁场方向的流程图;
图14是本公开实施例的集成电路的缺陷检测装置的结构图;
图15是本公开另一个实施例的集成电路的缺陷检测装置的结构图;
图16是本公开又一个实施例的激励组件的结构图;
图17是本公开一个具体实施例的集成电路的缺陷检测装置的结构图。
附图中,各标号所代表的部件列表如下:
1-被测集成电路,2-可移动样品台,3-供电回路,601-金刚石NV色心探头,602-激励组件,603-荧光采集器,604-主控单元,705-磁场发生器,706-偏移机构,801-辐射部件,802-微波单元,803-激光发生器,804-二相色镜,805-中心孔,907-平移机构。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图1-17以及具体的实施方法描述本公开实施例的集成电路的磁场检测方法、装置及缺陷检测方法、装置。
图1是本公开一个实施例的集成电路的磁场检测方法的流程图。
如图1所示,集成电路的磁场检测方法可包括:
S101,确定被测集成电路的微波共振频率。
图2是本公开一个实施例的步骤S101的流程图。
具体地,参见图2,确定被测集成电路的微波共振频率的流程可包括:
S201,获取基准磁场。
其中,基准磁场可为预设合格集成电路在工作状态下的表面最大磁场,也可为预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和。
可选地,预设合格集成电路在工作状态下的表面最大磁场,可采用测量参数为能级劈裂产生的微波共振频率差的磁场检测方法进行获取。
S202,在基准磁场下,检测得到金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数。
图3是本公开一个实施例的表面最大磁场检测原理的示意图。
具体地,在采用测量参数为能级劈裂产生的微波共振频率差进行磁场检测时,可通过检测得到预设合格集成电路在工作状态下,表面任意区域磁场对应的能级劈裂的荧光谷值,荧光谷值有两个,参见图3中的a和a’两个位置所对应的荧光强度值,这两个荧光谷值所对应的微波频率为共振频率,可通过比 较两共振频率差得到表面最大磁场。同时,可得到表面最大磁场对应的两个共振频率。
在本公开的另外一些实施例中,基准磁场可为预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和。外加磁场的方向最多可包括四个,分别对应金刚石NV色心的四个轴向,这四个方向上可分别对应两个不同的荧光谷值,且不同方向的荧光谷值可不同,由此,最多便可得到8个不同的荧光谷值,对应8个不同的微波频率。即,最多可获取到八个共振频率。
S203,将N个共振频率中的一者作为微波共振频率。
具体地,在获取到基准磁场之后,可在基准磁场下进行检测从而获取荧光谷值对应的微波频率作为共振频率,进而从所获取的预设合格集成电路的N个共振频率中选择其中的一个作为被测集成电路的微波共振频率,即微波共振频率可在基准磁场下检测得到。需要说明的是,微波共振频率可通过步骤S201-S203预先得到,进而在对其他与预设合格集成电路同型号的集成电路进行磁场检测、缺陷检测时,可直接使用预先得到的微波共振频率,从而可提高检测效率。
S102,为被测集成电路施加电压,以使被测集成电路处于工作状态。
S103,向金刚石NV色心探头施加微波信号和激光信号,其中,微波信号的频率为微波共振频率,金刚石NV色心探头设置在被测集成电路的一侧。
作为一种可行的实施方式,激光信号可由激光发生器施加。例如,该激光发生器发出的激光信号的功率可为100~150mW,波长为532nm,发出的激光光斑大小可为0.35~0.75mm2
S104,获取金刚石NV色心探头产生的荧光信号。
具体地,S103中向金刚石NV色心探头施加的微波信号和激光信号均可被认为是激励信号,用以激励金刚石NV色心探头以使金刚石NV色心探头产生荧光信号。
作为一个可行的实施方式,为了更好的获取金刚石NV色心探头产生的荧光信号,可由荧光采集器对产生的荧光信号进行采集。具体地,荧光采集器可根据实际工作需求选择,可包括CCD(Charge Coupled Device,电荷耦合器件)镜头、CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)传感器或者是sCMOS(scentific CMOS,科研级互补金属氧化物半导体)传感器。
S105,根据荧光信号得到被测集成电路在工作状态下的磁场信息。
具体地,被测集成电路表面磁场强度低于基准磁场的部分,可使得微波共振频率发生偏移,体现为荧光信号强度的增加,当被测集成电路表面最大磁场元件或区域磁场异常过大时,荧光信号强度的增加会比较明显,由此便可以得到集成电路在工作状态下表面任意位置的磁场情况,且检测精度高。
由此,便可通过对金刚石NV色心探头施加微波信号和激光信号,且固定微波信号的频率为预先设置的微波共振频率,进而获取到金刚石NV色心探头相应产生的荧光信号,再对获取到的荧光信号进行分析便可得到被测集成电路在工作状态下的磁场信息。
在本公开的另一些实施例中,基准磁场还可包含外加磁场。可选地,外加磁场的强度可大于20Gs,且小于被测集成电路的抗磁干扰上限值。
需要说明的是,本公开实施例中的外加磁场所提供的磁场强度相较于相关技术中动辄需要设置几百G以上外加磁场的常规NV色心磁测量方案而言,能够在相对较低的磁场强度下对被测集成电路进行磁场检测,可在一定程度上保护被测集成电路。
在本实施例中,当基准磁场包括外加磁场时,在上述对于集成电路的磁场检测方法步骤S104之前,即在获取金刚石NV色心探头产生的荧光信号之前还可向金刚石NV色心探头施加该外加磁场,然后再根据金刚石NV色心探头产生的荧光信号得到在基准磁场包括外加磁场的情况下,被测集成电路在工作状态下的磁场信息。
在本公开的一些实施例中,集成电路的磁场检测方法还可包括:通过金刚石NV色心探头对被测集成电路表面进行扫面。
在本实施例中,被测集成电路可设置在可移动样品台上。具体地,通过金刚石NV色心探头对被测集成电路表面进行扫面,可包括:
S1,固定样品台的第一轴向位置,采用步进方式控制样品台沿样品台的第二轴向带动被测集成电路从一侧边缘移动至另一侧边,其中,步进长度为预设长度。
作为一种可行的实施方式,预设长度可为上述激光信号中包含的激光光斑的内接正方形的边长。
S2,控制样品台沿第一轴向步进预设长度,之后采用步进方式控制样品台沿所述第二轴向从被测 集成电路的另一侧边缘移动至一侧边缘,以此类推,直至被测集成电路表面全部被金刚石NV色心探头测量。
其中,样品台每移动一个预设长度,金刚石NV色心探头便可在对应位置产生相应荧光信号,由此便可获取到被测集成电路全部表面的金刚石NV色心探头产生的荧光信号。
示例性地,样品台移动被测集成电路以使被测集成电路表面全部被金刚石NV色心探头测量可包括:样品台移动时可先固定一个轴向(例如x轴)的位置,沿另一轴向(例如y轴)从被测集成电路的一侧边缘移动至另一侧边缘,然后x轴步进一个单位(该单位可为上述激光光斑的内接正方形的边长),再沿y轴从被测集成电路的另一侧边缘移动至一侧边缘,以此类推,直至被测集成电路在x轴向的长度全部被测量,y轴移动时也以步进式,步进单位也可为上述激光光斑的内接正方形的边长,执行过程与对x轴测量的方法一致,不再赘述。
在本实施例中,基于上述对被测集成电路的扫面,上述集成电路磁场检测过程中的步骤S105,即根据荧光信号得到被测集成电路在工作状态下的磁场信息可包括:
S1051,将荧光信号按位置拼接形成扫面图。
具体地,通过金刚石NV色心探头对被测集成电路表面进行扫面,使得被测集成电路表面全部被金刚石NV色心探头测量。在本实施例中,样品台每移动一个预设长度,金刚石NV色心探头在该位置产生相应荧光信号,将所有位置的荧光信号按照其对应的位置进行拼接从而形成被测集成电路全部表面的扫面图。
S1052,根据扫面图得到被测集成电路在工作状态下的磁场分布信息。
具体地,扫面图得到所述被测集成电路在工作状态下的磁场分布信息可包括:对扫面图进行反相处理;根据反相处理后的扫面图得到被测集成电路在工作状态下的磁场分布信息。
其中,反相处理可包括:使荧光信号强的位置显示暗色,荧光信号弱的位置显示亮色。反相处理后的扫面图对比度更高,可以更加清楚地反映出被测集成电路在工作状态下的磁场分布信息。也就是说,对拼接形成的被测集成电路全部表面的扫面图进行反相处理,再结合其对应的位置信息分析,可得到被测集成电路在工作状态下的磁场分布信息。
综上,本公开实施例的集成电路的磁场检测方法,在对集成电路进行磁场检测的过程中,通过设置微波共振频率进行检测,可以提高检测效率的同时,且检测结果可直观地反映磁场强度的细微变化,提高了检测精度。同时,若施加外加磁场进行检测,外加磁场的强度较低,能够在相对较低的磁场强度下对被测集成电路进行磁场分布信息检测,可在一定程度上保护被测集成电路。
另外,本公开还提出一种集成电路的磁场检测方法。
图4是本公开另一个实施例的集成电路的磁场检测方法的流程图。
如图4所示,集成电路的磁场检测方法还可包括:
S11,为被测集成电路施加电压,以使被测集成电路处于工作状态,其中,被测集成电路的一侧设置有金刚石NV色心探头。
其中,金刚石NV色心探头中的NV色心可包括四个轴向。
S12,通过金刚石NV色心探头对被测集成电路执行多个周期的检测,以得到多个磁信号图,其中,每个检测周期向金刚石NV色心探头施加不同微波共振频率的微波信号。
具体地,金刚石NV色心探头对被测集成电路执行多个周期的检测,每执行一个周期的磁场检测,可得到一个相对应的磁场信号图。
S13,根据多个磁信号图,得到被测集成电路表面的磁场分布情况。
该检测方法,基于NV色心进行的磁场检测,具有较高的分辨率;通过设置微波共振频率进行检测,可以提高检测效率,且将获取的磁信号图进行逐级叠加处理,可以更直观地观察出磁场强度的细微变化,提高了检测精度。
图5是本公开一个实施例的步骤S12获取磁信号图的方法的流程图。
在本公开实施例中,执行上述集成电路的磁场检测方法中的步骤S12时,金刚石NV色心探头对被测集成电路每执行一次检测,便可获得该周期相应的磁信号图,具体地,参见图5,针对第i个检测周期,获取磁信号图可执行以下操作:
S21,确定第i个微波共振频率。
其中,i为大于等于1的正整数。
具体地,每个检测周期向金刚石NV色心探头可施加不同微波共振频率的微波信号,即一个检测周期对应一个微波共振频率,且不同的检测周期对应的微波共振频率不同。针对不同的检测周期,确定微波共振频率的方法也不同,可包括:
图6是本公开一个具体实施例的步骤S21的流程图。
在本公开的一些实施例中,i=1,即针对第1个检测周期,此时确定第i个微波共振频率可包括:
S31,获取基准磁场。
具体地,作为一个示例,基准磁场可为被测集成电路在工作状态下的表面最大磁场,或者,被测集成电路在工作状态下的表面最小磁场。
其中,表面最大磁场和表面最小磁场可由测量精度在mG水平的磁场仪,分辨率为1mm以内的即可,对工作状态的集成电路表面进行测量,找出磁场最大的区域并测出其磁场强度,找出磁场最小的区域并测出其磁场强度。
作为另一个示例,基准磁场可包括外加磁场,此时基准磁场可为被测集成电路在工作状态下的表面最大磁场与外加磁场之和,或者,被测集成电路在工作状态下的表面最小磁场与外加磁场之和。
S32,在基准磁场下,检测得到金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数。
具体地,作为一个示例,基准磁场为被测集成电路在工作状态下的表面最大磁场,或者,被测集成电路在工作状态下的表面最小磁场时,通过检测得到被测集成电路在工作状态下,表面任意区域磁场对应的能级劈裂的荧光谷值,荧光谷值有两个,这两个荧光谷值所对应的微波频率为共振频率。
作为另一个示例,基准磁场为被测集成电路在工作状态下的表面最大磁场(或表面最小磁场)与外加磁场之和,外加磁场的方向最多可包括四个,分别对应金刚石NV色心的四个轴向,这四个方向上可分别对应两个不同的荧光谷值,且不同方向的荧光谷值可不同,由此,最多便可得到8个不同的荧光谷值,从而可对应8个不同的微波频率。即,最多可获取到8个共振频率。
能看出,无论是否设置外加磁场,获取的共振频率均是成对出现的,且每一对共振频率包括的两个共振频率可不同,两共振频率为一大一小。也就是说,N个共振频率可由M对共振频率组成,即,N=2*M。
S33,将N个共振频率中的一者作为第i个微波共振频率。
由此,便可确定当i=1时的微波共振频率。
在本公开的另外一些实施例中,i>1,此时确定第i个微波共振频率可包括:根据第i-1个微波共振频率得到第i个微波共振频率。
图7是本公开另一个具体实施例的步骤S21的流程图。
作为一种可行的实施方式,当上述确定第1个微波共振频率取获取到的M对共振频率中任一对中的较大值时,上述i>1时确定第i个微波共振频率,即根据第i-1个微波共振频率得到第i个微波共振频率,可包括:
S41,对第i-1个微波共振频率对应的微波频率与荧光强度的关系曲线进行一阶微分。
其中,进行一阶微分是为了获取第i-1个微波共振频率对应的微波频率与荧光强度的关系曲线的曲线斜率,根据斜率的大小便可判断出荧光强度随微波频率的变化响应幅度的大小。
S42,获取一阶微分结果中靠近第i-1个微波共振频率的波谷对应的微波频率,记为微波参考频率。
S43,将微波参考频率作为第i个微波共振频率,或者,将在微波参考频率远离第i-1个微波共振频率的一侧,且距离微波参考频率3/4*特定间距的微波频率作为第i个微波共振频率,其中,特定间距为微波参考频率与第i-1个微波共振频率的间距。
图8是本公开一个具体实施例的微波频率与荧光强度关系图。
图9是本公开一个具体实施例微波频率与荧光强度关系的一阶微分结果图。
示例性地,参考图8和图9,假设i=2,需要根据第1个微波共振频率确定第2个微波共振频率,可包括:
预设根据上述i=1时的获取微波共振频率的方法已经获取到相应的两个共振频率,参考图8中的a和a’,在本示例中选择其中较大值,即a作为第1个微波共振频率。
对图8中的曲线进行一阶微分得到图9,观察图9可得出,靠近第1个微波共振频率a的波谷对应 的微波频率为b,则将b记为微波参考频率,即b可作为第2个微波共振频率。对应图9观察图8也可看出,b到a之间的荧光强度随微波频率的变化相应幅度较大,实际应用中,对于检测被测集成电路的磁场分布信息来说,可以更直观地反映磁场强度的变化。
可选地,第2个微波共振频率还可选择由b往左偏移p的位置所对应的微波频率,参考图9中的c。其中,p可为ab间距的3/4。
由此,便可根据第1个微波共振频率得到第2个微波共振频率,获取接下来第3个、第4个直至第n个微波共振频率的方法均可参考上述获取第2个微波共振频率的方法,不再赘述。
在一些实施例中,基准磁场包含集成电路在工作状态下的表面最大磁场,针对第i个检测周期获取磁信号图时,还需判断获取的第i个微波共振频率对应的磁场强度是否小于在工作状态下的表面最小磁场,如果是则结束检测,如果否则继续执行当前周期的检测。实际应用中,同样可由测量精度在mG水平的磁场仪对获取到的第i个微波共振频率对应的磁场强度进行测量。由此,可准确得到集成电路在工作状态下的表面所有位置的磁场情况。
需要说明的是,第i个检测周期对应的微波共振频率可通过步骤S31-S33预先得到,进而在对与被测集成电路其他同型号的芯片进行磁场检测时可直接使用预先得到的微波共振频率,从而可提高检测效率。
S22,向金刚石NV色心探头施加微波信号和激光信号,其中,微波信号的频率为第i个微波共振频率。
作为一种可行的实施方式,激光信号可由激光发生器施加。例如,该激光发生器发出的激光信号的功率可为100~150mW,波长为532nm,发出的激光光斑大小可为0.35~0.75mm2
S23,获取金刚石NV色心探头在被测集成电路的一侧不同位置产生的荧光信号,并根据荧光信号得到第i个磁信号图。
具体地,获取荧光信号可包括:通过金刚石NV色心探头对被测集成电路表面进行扫面,得到金刚石NV色心探头在被测集成电路的一侧不同位置产生的荧光信号。
作为一种可行的实施方式,根据荧光信号得到第i个磁信号图可包括:对获取到的荧光信号相应的荧光图像进行反相处理,得到对应的磁信号图。其中,反相处理可包括:荧光信号强的部分显示暗色,荧光信号弱的部分显示亮色。反相处理后的荧光图像对比度更高,可以更加清楚的观察被测集成电路不同位置的磁场情况。
也就是说,首先需要确定每个检测周期的微波共振频率,确定之后可向金刚石NV色心探头施加激光信号和相应检测周期微波共振频率的微波信号,用以激励金刚石NV色心探头以使金刚石NV色心探头在被测集成电路一侧的不同位置分别产生相应的荧光信号,然后对荧光信号对应的荧光图像进行反相处理后便可获得相应检测周期的磁信号图。
在本公开的一些实施例中,基准磁场包括外加磁场,此时在针对第i个检测周期获取磁信号图时,执行步骤S23之前,即在获取金刚石产生的荧光信号之前,还可向金刚石NV色心探头施加该外加磁场;之后执行S23便可获取到基准磁场包括外加磁场时对应的每个检测周期的磁信号图。
需要说明的是,该外加磁场强度可大于20Gs,且小于被测样品的抗磁干扰上限值。该外加磁场所提供的磁场强度相较于相关技术中动辄需要设置几百G以上外加磁场的常规NV色心磁测量方案而言,能够在相对较低的磁场强度下对被测集成电路进行磁场检测,可在一定程度上保护被测集成电路。
图10是本公开一个实施例的步骤S13的流程图。
由于每一个检测周期都可获取相应的磁信号图,为了更直观地观察出磁场强度的细微变化,可对获取的多个磁信号图进行逐级叠加处理。即在执行上述集成电路的磁场检测方法时,根据多个磁信号图,得到被测集成电路表面的磁场分布情况可具体包括:
S71,获取第i个磁信号图中的最大亮度L和最大亮度对应的位置K。
S72,将位置K对应到第j个磁信号参考图中,得到第j个磁信号参考图中对应位置K处的亮度L’,其中,第1个磁信号参考图为第1个磁信号图。
S73,对第j个磁信号参考图中亮度大于L’的位置K’进行亮度提升,且提升幅度为L-L’。
S74,将亮度提升后的位置K’对应覆盖到第i个磁信号图中,得到第i个磁信号图对应的磁场分布图,并作为第j+1个磁信号参考图。
S75,令i加1,并重复执行上述步骤,直至得到最后一个磁信号图对应的磁场分布图。
S76,根据最后一个磁信号图对应的磁场分布图,得到被测集成电路表面的磁场分布情况。
示例性地,当i=2,j=1时,获取到多个磁信号图中第2个检测周期相应的磁信号图二,且可将第1个检测周期相应的磁信号图一作为第一个磁信号参考图。
首先将磁信号图二中亮度最大的位置K找出,将这一亮度记为L,并将位置K对应到第一个磁信号参考图中,即磁信号图一中,确定位置K在磁信号图一中的亮度,将这一亮度记为L’,将磁信号图一中亮度大于L’的部分K’进行亮度提升,且提升幅度为L-L’,将亮度提升后的部分K’按位置对应覆盖到磁信号图二中,得到磁信号图三,将图三作为第二个磁信号图对应的磁场分布图,并且作为第二个磁信号参考图,执行同样的步骤即可获取下一个磁场分布图,直至获取到最后一个磁信号图对应的磁场分布图,由此便可得到被测集成电路表面的磁场分布情况。
本公开实施例提出的集成电路的磁场检测方法,对于外加磁场的强度要求较低,可在一定程度上保护被测集成电路;且基于NV色心展开检测,同时在其中设置如0.35-0.75mm2的激光光斑对金刚石NV色心探头进行照射,使得该检测方法在进行检测的过程中具有较高分辨率的同时具有较大的检测视场;另外,本公开通过设置微波共振频率进行检测,可以提高检测效率,对获取的磁信号图进行逐级叠加处理,提高图像对比度,相较于现有技术中直接测量非共振频率下的荧光强度随磁场变化的方案,磁场变化差异的区分度更大,提高了磁场检测精度。
进一步地,本公开提出一种集成电路的磁场检测装置。
图11是本公开实施例的集成电路的磁场检测装置的结构框图。
如图11所示,集成电路的磁场检测装置100可包括:金刚石NV色心探头110、控制组件120。
其中,金刚石NV色心探头110可设置在被测集成电路一侧,方便对被测集成电路表面进行扫面。
控制组件120,用于执行上述实施例中提出的集成电路的磁场检测方法。
需要说明的是,本公开实施例的集成电路的磁场检测装置100的其他具体实施方式可参见本公开上述实施例的集成电路的磁场检测方法的具体实施方式。
进一步地,本公开提出一种集成电路的缺陷检测方法。
图12是本公开实施例集成电路的缺陷检测方法的流程图。
在本公开实施例中,集成电路的缺陷检测方法可包括:
S401,利用上述的集成电路的磁场检测方法,得到被测集成电路在工作状态下的磁场信息。
S402,将得到的磁场信息与预设基准信息进行比较,并根据比较结果得到被测集成电路的缺陷信息。
其中,预设基准信息可为预设合格集成电路的磁场信息,且可在对预设缺陷集成电路进行缺陷检测之前进行获取,可作为集成电路的缺陷检测过程中的比对标准信息,便于分析该缺陷集成电路的缺陷情况。
在本实施例中,在执行集成电路的磁场检测方法时,微波共振频率可在基准磁场下检测得到。其中,基准磁场可为预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和。
在本实施例的一些实施方式中,上述的缺陷检测方法还可包括:
确定外加磁场的目标磁场方向,其中,目标磁场方向可为NV色心的四个轴向中的M个,M为大于等于1小于等于4的整数;在每次执行如上述的集成电路的磁场检测方法时,施加相应目标磁场方向的外加磁场,且微波共振频率可为轴向与目标磁场方向一致的NV色心的两个共振频率之一。
为了适用于各种不同结构的集成电路检测以及各种不同缺陷的检测,即为了保证该集成电路缺陷检测方法的适用性,在不同的实施例中,M的取值可根据需求进行选择。
图13为本公开实施例的确定外加磁场的目标磁场方向的流程图。
作为一种可行的实施方式,上述确定外加磁场的目标磁场方向,可包括:
S501,对预设缺陷集成电路进行四次缺陷检测,得到四个磁场信息,其中,每次缺陷检测施加的外加磁场的磁场方向不同,且均与NV色心的轴向相同。
S502,根据四个磁场信息对预设缺陷集成电路中缺陷反映的显著性情况,筛选出目标磁场信息。
具体地,在得到了预设缺陷集成电路的四个方向的磁场信息后,可与上述的预设基准信息进行对比,通过筛选得出缺陷反映情况显著性高的磁场信息作为目标磁场信息。
S503,将目标磁场信息对应的磁场方向作为目标磁场方向。
作为示例,选择轴向与目标磁场方向一致的NV色心的两个共振频率之一作为微波共振频率,例如图3中a与a’其中之一,上述确定外加磁场的目标磁场方向,可包括:
A,设置外加磁场的方向,使之与金刚石NV色心一轴向(X)的方向相同,为预设缺陷集成电路施加电压,以使预设缺陷集成电路处于工作状态,向金刚石NV色心探头施加微波信号和激光信号,并通过样品台移动被测集成电路以使被测集成电路表面全部被检测到,将获取的荧光信号按位置拼接形成扫面图,对拼接获得的扫面图进行反相处理,荧光强的显示暗色,荧光弱的显示亮色,得到磁场分布信息图一。其中,所施加微波信号的频率为X轴向对应的两共振频率中的一者,且该共振频率为在预设缺陷集成电路的表面最大磁场和X轴向外加磁场之和下测得。
B,设置外加磁场的方向,使之与金刚石NV色心另一轴向(Y)的方向相同,重复上述步骤A中获取磁场分布信息的流程,得磁场分布信息图二。其中,该步骤所施加微波信号的频率为Y轴向对应的两共振频率中的一者,且该共振频率为在预设缺陷集成电路的表面最大磁场和Y轴向外加磁场之和下测得。
C,设置外加磁场的方向,使之与金刚石NV色心另一轴向(Z)的方向相同,重复上述步骤A中获取磁场分布信息的流程,得磁场分布信息图三。其中,该步骤所施加微波信号的频率为Z轴向对应的两共振频率中的一者,且该共振频率为在预设缺陷集成电路的表面最大磁场和Z轴向外加磁场之和下测得。
D,设置外加磁场的方向,使之与金刚石NV色心另一轴向(W)的方向相同,重复上述步骤A中获取磁场分布信息的流程,得磁场分布信息图四。其中,该步骤所施加微波信号的频率为W轴向对应的两共振频率中的一者,且该共振频率为在预设缺陷集成电路的表面最大磁场和W轴向外加磁场之和下测得。
在本示例中,实际检测过程中可以提前对预设合格集成电路进行检测,得到比对标准信息,然后对各类预设缺陷集成电路进行测量,对获取得到的图一至图四进行筛选。以图一为例,可比较各类预设缺陷集成电路获得的图一与预设合格集成电路获得的图一,是否有明显差异,且差异是否能够反映出缺陷的位置或者性质,若是则将图一筛选出。
具体地,筛选的结果可包括以下情况:
(1)图一至图四对于缺陷反映的显著性差不多,那么在以后的检测作业中,可以直接任选图一至图四中一个图进行检测,关于其它图的步骤可以省略;
(2)图一至图四中有一个或几个图对于缺陷反映的显著性较好,那么在以后的检测作业中,可以直接选显著性最好的图进行检测,关于其它图的步骤可以省略;
(3)图一至图四中:对于有的缺陷,图一反映的显著性较好;对于有的缺陷,图二反映的显著性较好;对于其它缺陷,图三反映的显著性较好;那么在以后的检测作业中,可以对图一至图三进行检测,关于图四的步骤可以省略。
另外,对于本实施例来说,由于提前设定选择轴向与目标磁场方向一致的NV色心的两个共振频率之一作为微波共振频率,同样地,在另外一个之前未被选择的共振频率作为微波共振频率时,也应执行上述确定外加磁场的目标磁场方向的步骤,也将得到四张磁场分布信息图,可得到图五-图八,筛选方式同上。
筛选结束后,筛选出的目标磁场信息中的每一张磁场分布信息图均对应一个磁场方向,便可将该对应的磁场方向作为目标磁场方向。由此,完成对外加磁场的目标磁场方向的确定。
需要说明的是,在执行上述提出的集成电路的缺陷检测时,可以在缺陷检测开始之前预先确定被测集成电路在工作状态下的表面最大磁场(为了获得对应的两个共振频率),以及预先进行上述图一至图八的筛选,进而用于集成电路的缺陷检测过程中可直接根据微波共振频率和筛选后的图,对被测集成电路展开相应的缺陷检测。
本公开实施例的集成电路的缺陷检测方法,可准确快速检测出集成电路存在的缺陷,且适用性强。
进一步地,本公开提出一种集成电路的缺陷检测装置。
图14是本公开实施例的集成电路的缺陷检测装置的结构图。
如图14所示,集成电路的缺陷检测装置600包括:金刚石NV色心探头601、激励组件602、荧 光采集器603、主控单元604。其中,金刚石NV色心探头601设置在被测集成电路1一侧,且该NV色心存在四个不同的轴向。
作为一种可行的实施方式,被测集成电路1可放置在可移动样品台2上,金刚石NV色心探头601设置于可移动样品台2上方。
激励组件602,用于向金刚石NV色心探头601提供微波信号和激光信号,以使金刚石NV色心探头601产生荧光信号,其中,微波信号的频率为微波共振频率。
荧光采集器603,用于采集荧光信号。
主控单元604,用于为被测集成电路1施加电压,以使被测集成电路1处于工作状态,并根据荧光信号得到被测集成电路1在工作状态下的磁场信息,以及将磁场信息与预设基准信息进行比较,并根据比较结果得到被测集成电路1的缺陷信息。
作为一种可行的实施方式,主控单元可通过控制接通供电回路3向被测集成电路1施加电压使其处于工作状态。
本公开实施例的集成电路的缺陷检测装置600,可获取到被测集成电路1的全部表面的磁场信息,便于全面分析被测集成电路1的缺陷情况;另外,基于金刚石NV色心探头601的检测使得该装置的检测结果具有较高的分辨率,可以更直观的反映磁场强度的细微变化,保证缺陷检测精度。
图15是本公开另一个实施例的集成电路的缺陷检测装置的结构图。
在本公开的另外一些实施例中,集成电路的缺陷检测装置600还可包括:
磁场发生器705,主要用于施加外加磁场,外加磁场的方向可与金刚石NV色心探头601的轴向方向一致,磁场发生器的数量可与上述目标磁场方向的个数一致,即可为NV色心的四个轴向中的M个,M为大于等于1小于等于4的整数。
在本公开的一些实施例中,根据实际需求可对磁场发生器的数量和磁场发生器的位置进行选择,在确定了M的取值和M个磁场发生器的设置位置之后,当磁场发生器的数量M的取值大于1时,主控单元604还可用于:对被测集成电路进行M次缺陷检测,每次缺陷检测时控制一个磁场发生器工作,得到M个磁信号图;根据M个磁信号图得到被测集成电路的缺陷情况。
偏移机构706,偏移机构706可转动地设置,磁场发生器705可设置于偏移机构706上。其中,偏移机构706可用于固定磁场发生器705,以及根据检测需求调节外加磁场的方向。可选地,偏移机构706的转动可由主控单元604控制。
图16是本公开又一个实施例的激励组件的结构图。
作为一种可行的实施方式,集成电路的缺陷检测装置600中的激励组件602可包括:辐射部件801、微波单元802、激光发生器803、二相色镜804。
其中,激光发生器803可用于向金刚石NV色心探头601提供激光信号,该激光信号的功率可为100~150mW,波长为532nm,发出的激光光斑大小可为0.35~0.75mm2
在本实施例中,由于激光发生器803发出的激光光斑的大小可为0.35~0.75mm2之间,可使得该装置具有较高分辨率的同时具有较大的检测视场。
参见图16,辐射部件801设置在金刚石NV色心探头601上方,并设有中心孔805,且该中心孔805的大小可与上述激光光斑的大小一致。另外,微波单元802与辐射部件801连接,且微波单元802可通过辐射部件801向金刚石提供微波信号的激励。
参见图16,二相色镜804设置在辐射部件801的中心孔805上方,并与中心孔805的延长线呈第一预设角度如45°,用于将激光信号通过中心孔805反射至金刚石NV色心探头601,并将通过中心孔805出射的荧光信号传输至荧光采集器603。
在本实施例中,上述主控单元604用于在对被测集成电路进行缺陷检测时,可通过控制该激励组件602中的微波单元802以将微波信号的频率调制为预设微波共振频率,并控制激光发生器803产生激光信号。
图17是本公开一个具体实施例的集成电路的缺陷检测装置的结构图。
在本公开的另外一些实施例中,集成电路的缺陷检测装置600还可包括:
平移机构907,具体地,可移动样品台2可设置于平移机构907上,以便于调整被测集成电路1与金刚石NV色心探头601的相对位置,使得金刚石NV色心探头601可对被测集成电路1进行全幅 扫描。
需要说明的是,本公开实施例的集成电路的缺陷检测装置600的其他具体实施方式可参见本公开上述实施例的集成电路的缺陷检测方法的具体实施方式。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种集成电路的磁场检测方法,其特征在于,所述磁场检测方法包括:
    为被测集成电路施加电压,以使所述被测集成电路处于工作状态,其中,所述被测集成电路的一侧设置有金刚石NV色心探头;
    确定所述被测集成电路的微波共振频率,向所述金刚石NV色心探头施加微波信号和激光信号,获取所述金刚石NV色心探头产生的荧光信号,并根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,其中,所述微波信号的频率为所述微波共振频率;
    或者,
    通过所述金刚石NV色心探头对所述被测集成电路执行多个周期的检测,以得到多个磁信号图,根据所述多个磁信号图,得到所述被测集成电路表面的磁场分布情况,其中,每个检测周期向所述金刚石NV色心探头施加不同微波共振频率的微波信号。
  2. 根据权利要求1所述的集成电路的磁场检测方法,其特征在于,所述确定被测集成电路的微波共振频率,包括:
    获取基准磁场;
    在所述基准磁场下,检测得到所述金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数;
    将所述N个共振频率中的一者作为所述微波共振频率。
  3. 根据权利要求2所述的集成电路的磁场检测方法,其特征在于,所述基准磁场为预设合格集成电路在工作状态下的表面最大磁场,或者,所述预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和;
    其中,所述基准磁场包含所述外加磁场时,在所述获取所述金刚石NV色心探头产生的荧光信号之前,还向所述金刚石NV色心探头施加所述外加磁场。
  4. 根据权利要求1所述的集成电路的磁场检测方法,其特征在于,所述磁场检测方法还包括:
    通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面;
    其中,所述根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,包括:
    将所述荧光信号按位置拼接形成扫面图;
    根据所述扫面图得到所述被测集成电路在工作状态下的磁场分布信息。
  5. 根据权利要求4所述的集成电路的磁场检测方法,其特征在于,所述被测集成电路设置在可移动样品台上,所述通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面,包括:
    固定所述样品台的第一轴向位置,采用步进方式控制所述样品台沿所述样品台的第二轴向带动所述被测集成电路从一侧边缘移动至另一侧边,其中,步进长度为预设长度;
    控制所述样品台沿所述第一轴向步进所述预设长度,之后采用步进方式控制所述样品台沿所述第二轴向从所述被测集成电路的所述另一侧边缘移动至所述一侧边缘,以此类推,直至所述被测集成电路表面全部被所述金刚石NV色心探头测量。
  6. 根据权利要求4所述的集成电路的磁场检测方法,其特征在于,所述根据所述扫面图得到所述被测集成电路在工作状态下的磁场分布信息,包括:
    对所述扫面图进行反相处理;
    根据反相处理后的扫面图得到所述被测集成电路在工作状态下的磁场分布信息。
  7. 根据权利要求1所述的集成电路的磁场检测方法,其特征在于,针对第i个检测周期,执行如下操作:
    确定第i个微波共振频率;
    向所述金刚石NV色心探头施加微波信号和激光信号,其中,所述微波信号的频率为所述第i个微波共振频率;
    获取所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号,并根据所述荧光信号得到第i个磁信号图。
  8. 根据权利要求7所述的集成电路的磁场检测方法,其特征在于,i=1时,所述确定第i个微波共 振频率,包括:
    获取基准磁场;
    在所述基准磁场下,检测得到所述金刚石NV色心探头中NV色心与微波的N个共振频率,其中,N为大于等于2小于等于8的整数;
    将所述N个共振频率中的一者作为所述第i个微波共振频率。
  9. 根据权利要求8所述的集成电路的磁场检测方法,其特征在于,所述基准磁场为所述被测集成电路在工作状态下的表面最大磁场,或者,所述被测集成电路在工作状态下的表面最大磁场与外加磁场之和,或者,所述被测集成电路在工作状态下的表面最小磁场,或者,所述被测集成电路在工作状态下的表面最小磁场与外加磁场之和;
    其中,所述基准磁场包含所述外加磁场时,在获取荧光信号之前,还向所述金刚石NV色心探头施加所述外加磁场。
  10. 根据权利要求8所述的集成电路的磁场检测方法,其特征在于,i>1时,所述确定第i个微波共振频率,包括:
    根据第i-1个微波共振频率得到所述第i个微波共振频率。
  11. 根据权利要求10所述的集成电路的磁场检测方法,其特征在于,所述N个共振频率由M对共振频率组成,N=2*M,当第1个微波共振频率取所述M对共振频率中任一对中的较大值时,所述根据第i-1个微波共振频率得到所述第i个微波共振频率,包括:
    对所述第i-1个微波共振频率对应的微波频率与荧光强度的关系曲线进行一阶微分;
    获取一阶微分结果中靠近所述第i-1个微波共振频率的波谷对应的微波频率,记为微波参考频率;
    将所述微波参考频率作为所述第i个微波共振频率,或者,将在所述微波参考频率远离所述第i-1个微波共振频率的一侧,且距离所述微波参考频率3/4*特定间距的微波频率作为所述第i个微波共振频率,其中,所述特定间距为所述微波参考频率与所述第i-1个微波共振频率的间距。
  12. 根据权利要求9所述的集成电路的磁场检测方法,其特征在于,所述基准磁场包含所述表面最大磁场时,针对第i个检测周期,还执行如下操作:
    判断所述第i个微波共振频率对应的磁场强度是否小于所述表面最小磁场;
    如果是则结束检测,如果否则继续执行当前周期的检测。
  13. 根据权利要求7所述的集成电路的磁场检测方法,其特征在于,所述获取所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号,包括:
    通过所述金刚石NV色心探头对所述被测集成电路表面进行扫面,得到所述金刚石NV色心探头在所述被测集成电路的一侧不同位置产生的荧光信号。
  14. 根据权利要求12所述的集成电路的磁场检测方法,其特征在于,所述磁信号图为相应荧光信号对应的荧光图像经反相处理后的图,所述根据所述多个磁信号图,得到所述被测集成电路表面的磁场分布情况,包括:
    获取第i个磁信号图中的最大亮度L和所述最大亮度对应的位置K;
    将所述位置K对应到第j个磁信号参考图中,得到所述第j个磁信号参考图中对应所述位置K处的亮度L’,其中,第1个磁信号参考图为第1个磁信号图;
    对所述第j个磁信号参考图中亮度大于L’的位置K’进行亮度提升,且提升幅度为L-L’;
    将亮度提升后的位置K’对应覆盖到所述第i个磁信号图中,得到所述第i个磁信号图对应的磁场分布图,并作为第j+1个磁信号参考图;
    令i加1,并重复执行上述步骤,直至得到最后一个磁信号图对应的磁场分布图;
    根据所述最后一个磁信号图对应的磁场分布图,得到所述被测集成电路表面的磁场分布情况。
  15. 一种集成电路的磁场检测装置,其特征在于,所述磁场检测装置包括:
    金刚石NV色心探头,所述金刚石NV色心探头设置在被测集成电路一侧;
    控制组件,用于执行如权利要求1-14中任一项所述的集成电路的磁场检测方法。
  16. 一种集成电路的缺陷检测方法,其特征在于,所述缺陷检测方法包括:
    利用如权利要求1-15中任一项所述的集成电路的磁场检测方法,得到所述被测集成电路在工作状态下的磁场信息;
    将所述磁场信息与预设基准信息进行比较,并根据比较结果得到所述被测集成电路的缺陷信息。
  17. 根据权利要求16所述的集成电路的缺陷检测方法,其特征在于,所述微波共振频率在基准磁场下检测得到,所述基准磁场为预设合格集成电路在工作状态下的表面最大磁场与外加磁场之和,所述缺陷检测方法还包括:
    确定所述外加磁场的目标磁场方向,其中,所述目标磁场方向为所述NV色心的四个轴向中的M个,M为大于等于1小于等于4的整数;
    在每次执行如权利要求1-14中任一项所述的集成电路的磁场检测方法时,施加相应目标磁场方向的外加磁场,且所述微波共振频率为轴向与所述目标磁场方向一致的NV色心的两个共振频率之一。
  18. 根据权利要求17所述的集成电路的缺陷检测方法,其特征在于,所述确定所述外加磁场的目标磁场方向,包括:
    对预设缺陷集成电路进行四次缺陷检测,得到四个磁场信息,其中,每次缺陷检测施加的外加磁场的磁场方向不同,且均与所述NV色心的轴向相同;
    根据所述四个磁场信息对所述预设缺陷集成电路中缺陷反映的显著性情况,筛选出目标磁场信息;
    将所述目标磁场信息对应的磁场方向作为所述目标磁场方向。
  19. 一种集成电路的缺陷检测装置,其特征在于,所述缺陷检测装置包括:
    金刚石NV色心探头,所述金刚石NV色心探头设置在被测集成电路一侧;
    激励组件,用于向所述金刚石NV色心探头提供微波信号和激光信号,以使所述金刚石NV色心探头产生荧光信号,其中,所述微波信号的频率为微波共振频率;
    荧光采集器,用于采集所述荧光信号;
    主控单元,用于为所述被测集成电路施加电压,以使所述被测集成电路处于工作状态,并根据所述荧光信号得到所述被测集成电路在工作状态下的磁场信息,以及将所述磁场信息与预设基准信息进行比较,并根据比较结果得到所述被测集成电路的缺陷信息。
PCT/CN2023/076215 2022-02-16 2023-02-15 集成电路的磁场检测方法、装置及缺陷检测方法、装置 WO2023155805A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210141249.9 2022-02-16
CN202210141249.9A CN114200362B (zh) 2022-02-16 2022-02-16 基于nv色心的芯片磁场检测方法及装置
CN202210141423.XA CN114200363B (zh) 2022-02-16 2022-02-16 集成电路的磁场检测方法及缺陷检测方法、装置
CN202210141423.X 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023155805A1 true WO2023155805A1 (zh) 2023-08-24

Family

ID=87577572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076215 WO2023155805A1 (zh) 2022-02-16 2023-02-15 集成电路的磁场检测方法、装置及缺陷检测方法、装置

Country Status (1)

Country Link
WO (1) WO2023155805A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137793A1 (en) * 2012-06-14 2015-05-21 The Trustees Of Columbia University In The City Of New York Systems and methods for precision optical imaging of electrical currents and temperature in integrated circuits
CN107356820A (zh) * 2017-06-07 2017-11-17 南京邮电大学 一种基于脉冲光探测磁共振的电磁场近场成像系统及方法
CN109143121A (zh) * 2018-08-13 2019-01-04 南京邮电大学 一种基于脉冲调制的微波场定量测试系统及方法
CN109238505A (zh) * 2018-10-09 2019-01-18 南京邮电大学 一种高灵敏度高分辨接触式三维温度场成像系统及方法
US20190146045A1 (en) * 2017-11-10 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for measuring magnetic field strength
WO2020080362A1 (ja) * 2018-10-16 2020-04-23 国立大学法人東京工業大学 磁気計測装置
CN112083364A (zh) * 2020-07-29 2020-12-15 奥为电子科技(南京)有限公司 一种微波场和温度场阵列式定量测试系统及方法
US20210239779A1 (en) * 2020-01-30 2021-08-05 President And Fellows Of Harvard College High-resolution magnetic field fingerprinting of integrated circuit activity with a quantum diamond microscope
CN113834801A (zh) * 2021-09-09 2021-12-24 国仪量子(合肥)技术有限公司 金属无损探伤设备、方法及存储介质
CN114200363A (zh) * 2022-02-16 2022-03-18 国仪量子(合肥)技术有限公司 集成电路的磁场检测方法及缺陷检测方法、装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137793A1 (en) * 2012-06-14 2015-05-21 The Trustees Of Columbia University In The City Of New York Systems and methods for precision optical imaging of electrical currents and temperature in integrated circuits
CN107356820A (zh) * 2017-06-07 2017-11-17 南京邮电大学 一种基于脉冲光探测磁共振的电磁场近场成像系统及方法
US20190146045A1 (en) * 2017-11-10 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for measuring magnetic field strength
CN109143121A (zh) * 2018-08-13 2019-01-04 南京邮电大学 一种基于脉冲调制的微波场定量测试系统及方法
CN109238505A (zh) * 2018-10-09 2019-01-18 南京邮电大学 一种高灵敏度高分辨接触式三维温度场成像系统及方法
WO2020080362A1 (ja) * 2018-10-16 2020-04-23 国立大学法人東京工業大学 磁気計測装置
US20210239779A1 (en) * 2020-01-30 2021-08-05 President And Fellows Of Harvard College High-resolution magnetic field fingerprinting of integrated circuit activity with a quantum diamond microscope
CN112083364A (zh) * 2020-07-29 2020-12-15 奥为电子科技(南京)有限公司 一种微波场和温度场阵列式定量测试系统及方法
CN113834801A (zh) * 2021-09-09 2021-12-24 国仪量子(合肥)技术有限公司 金属无损探伤设备、方法及存储介质
CN114200363A (zh) * 2022-02-16 2022-03-18 国仪量子(合肥)技术有限公司 集成电路的磁场检测方法及缺陷检测方法、装置

Similar Documents

Publication Publication Date Title
CN114200363B (zh) 集成电路的磁场检测方法及缺陷检测方法、装置
WO2023035435A1 (zh) 金属无损探伤设备、方法及存储介质
CN101576565B (zh) 集成电路缺陷定位测试系统
JP2005164593A (ja) パルス渦電流センサプローブ及び検査方法
CN114200362B (zh) 基于nv色心的芯片磁场检测方法及装置
JP4062527B2 (ja) Tftアレイ検査装置
CN109541032A (zh) 一种片式元器件检测方法及系统
JP2008175638A (ja) 構造材の欠陥検出装置及び方法
WO2023155805A1 (zh) 集成电路的磁场检测方法、装置及缺陷检测方法、装置
JP4856698B2 (ja) 導体路構造体の検査方法
CN201242582Y (zh) 一种集成电路缺陷定位测试系统
JP2008270632A (ja) 検査装置および検査方法
JP2005188933A (ja) Tftアレイ検査装置
JP2011069623A (ja) 渦電流探傷方法
US20060049830A1 (en) Magnetic sensor for detecting location of short circuit between lead wires of high-density micro-patterns
RU2171469C1 (ru) Способ неразрушающего контроля качества объекта и устройство для его осуществления
Kondej et al. The amplitude-frequency measurement in non-destructive testing using the eddy current method
JPH102883A (ja) 渦電流探傷装置
JP5296751B2 (ja) 試料検査装置及び吸収電流像の作成方法
JPS614147A (ja) 測定点の電圧の検出および画像化方法および装置
JP2007163263A (ja) 渦電流探傷センサ
KR101028508B1 (ko) Tft 어레이 검사 장치
JPH1038984A (ja) 故障部位検出方法および装置
JP4640163B2 (ja) Tftアレイ検査装置
CN114076748B (zh) Odmr谱仪氮-空位色心识别方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755807

Country of ref document: EP

Kind code of ref document: A1