WO2023155548A1 - 一种聚合物电解质及其制备方法和应用 - Google Patents

一种聚合物电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2023155548A1
WO2023155548A1 PCT/CN2022/136881 CN2022136881W WO2023155548A1 WO 2023155548 A1 WO2023155548 A1 WO 2023155548A1 CN 2022136881 W CN2022136881 W CN 2022136881W WO 2023155548 A1 WO2023155548 A1 WO 2023155548A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
zinc
polymer
preparation
electrolyte
Prior art date
Application number
PCT/CN2022/136881
Other languages
English (en)
French (fr)
Inventor
王飞
裘科
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2023155548A1 publication Critical patent/WO2023155548A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of electrochemistry, in particular to a polymer electrolyte and its preparation method and application.
  • zinc-air secondary batteries Due to the inherent limitations of aqueous electrolytes, zinc-air secondary batteries generally use high-concentration alkaline electrolytes to suppress the side reaction of hydrogen evolution. However, as a semi-open system, carbon dioxide in the air can easily enter the battery system and react with the electrolyte to form carbonate, resulting in attenuation of battery life. Therefore, zinc-air batteries are usually designed to be mechanically replaceable, that is, after the battery is discharged, the "charging" effect of the battery is achieved by replacing the zinc electrodes therein.
  • the zinc/air battery pack comprises N-node sequentially stacked planar single cells, and the single cells include a single cell casing, an air cathode, a zinc anode, and an electrolyte chamber between the air cathode and the zinc anode, N is an integer ⁇ 2, and the electrolyte chambers between N cells are connected in series through a liquid injection connector, and each connector branch channel is provided with a connector flow that communicates with the electrolyte chamber of a single cell
  • the mouth, the flow mouth of the connector protrudes into the electrolyte chamber from the bottom of the electrolyte chamber; the zinc anode is covered with a diaphragm bag or a diaphragm layer is provided on the side of the electrolyte chamber of the zinc anode.
  • the zinc/air battery pack provided by the technical solution is convenient for the secondary replacement of the battery anode; the flow channel of the connector between the single batteries is not easy to be blocked
  • polymer electrolytes are often used instead of liquid electrolytes in the prior art.
  • the polymer electrolyte swells the electrolyte in the structural skeleton of the polymer, so that it not only has the high ionic conductivity and low interface impedance of the liquid electrolyte system at room temperature, but also has the advantage of alleviating the volatilization of the electrolyte. Therefore, the use of polymer electrolytes to prepare zinc-air batteries has become a research hotspot.
  • CN110098448A discloses a high-performance composite zinc-air secondary battery.
  • the high-performance composite zinc-air secondary battery includes a sandwich structure composed of a negative electrode, a diaphragm material soaked in an electrolyte, and a positive electrode, and the sandwich structure is placed in a battery case, and the mass percentage of the electrolyte solution in the diaphragm material is immersion electrolysis. 40-80% of the total mass of the diaphragm material of the liquid; the contact surface of the battery case and the positive electrode is evenly distributed with vent holes, which are used for the absorption and release of oxygen in the running section of the zinc-air battery; the sum of the area of the vent holes accounts for 50-90%.
  • the high-valence oxide or hydroxide will undergo a reduction reaction, making the battery output a voltage higher than 1.6V, showing the discharge characteristics of a secondary zinc battery; after the reaction, the active material returns to its original state and continues As a catalyst for the oxygen reduction reaction, the battery outputs a voltage of about 1.0V.
  • CN109921154A discloses a flexible zinc-air battery based on a polymer electrolyte.
  • the polymer electrolyte is a porous nano-silica composite polymer electrolyte prepared by immersing the polymer system in an aqueous solution of potassium hydroxide; the polymer system uses polyvinyl alcohol or polyacrylic acid as the polymer skeleton of the semi-solid electrolyte , Polyethylene glycol is used as a pore-forming agent to make the polymer matrix present a porous structure, and nano-silica is used as a cross-linking agent, water-retaining agent and plasticizer to introduce into the system.
  • the object of the present invention is to provide a polymer electrolyte with good electrical properties, avoiding carbon dioxide damage to the cathode, improving battery life, and its preparation method and application in order to overcome the above-mentioned defects in the prior art.
  • a neutral polymer electrolyte is further prepared by zinc salt, which avoids carbonation of the electrolyte due to the reaction of carbon dioxide in the air with the alkaline polymer electrolyte, which affects the The service life of battery;
  • the polymer electrolyte prepared in the present invention has higher water retention and high ion conductivity, is suitable for preparing zinc-air battery, and concrete scheme is as follows:
  • this polymer electrolyte comprises zinc salt and solvent, also comprises the preparation raw material of polymer or polymer;
  • the raw materials for the preparation of the polymer include monomers and crosslinking agents.
  • the polymer electrolyte is usually prepared by immersing the polymer system in lye to obtain an alkaline polymer electrolyte, but the alkaline polymer electrolyte will react with carbon dioxide in the air during use, and the electrolyte Carbonation will occur, forming alkali metal carbonates or bicarbonites.
  • the carbonate crystallizes in the cathode, the cathode is damaged and can block the passage of air, affecting the battery's lifespan and ability to deliver electricity.
  • the prepared polymer electrolyte is neutral, which avoids the occurrence of carbonation damage to the cathode due to the occurrence of electrolyte and carbon dioxide in the air, thereby improving the service life of the battery; at the same time,
  • the polymer electrolyte prepared by the invention has high water retention, high ion conductivity and good flexibility, and can be used for the preparation of flexible wearable batteries.
  • the zinc salt is zinc salt of fluorine-containing hydrocarbon derivatives
  • the polymer electrolyte prepared by selecting fluorine-containing hydrocarbon derivative zinc salt is neutral, which can avoid the influence of carbon dioxide in the air on the polymer electrolyte, and the prepared polymer electrolyte has high water retention and Electrical properties; at the same time, in the present invention, a water-deficient-zinc-rich inner Helmholtz layer (IHL) is constructed at the positive electrode by a zinc salt with a strong hydrophobic group (trifluoromethanesulfonate group), which realizes fast kinetics
  • the oxygen reduction process (ORR) of the electrons ensures the reversibility of the zinc-air battery, and the polymer electrolyte thus prepared has better electrical properties.
  • the zinc salts of fluorine-containing hydrocarbon derivatives include zinc trifluoromethanesulfonate, bis(trifluoromethylsulfonyl imide) zinc, tris(trifluoromethylsulfonylmethyl)zinc or bis(fluorosulfonyl ) one or more of zinc imides;
  • the mass molar concentration of the zinc salt in the zinc salt and solvent mixture is 0.1-10mol/kg, preferably 0.3-5mol/kg; for example, it can be 0.1mol/kg, 0.2mol/kg, 0.5mol/kg, 1mol/kg kg, 2mol/kg, 3mol/kg, 4mol/kg, 5mol/kg, 6mol/kg, 7mol/kg, 8mol/kg, 9mol/kg or 10mol/kg, etc.
  • the prepared polymer electrolyte by controlling the mass molar concentration of the zinc salt within a specific range, not only has higher ion conductivity, but also enables the zinc salt to have better solubility in the polymer electrolyte. If the molar concentration of the zinc salt is too small, the ionic conductivity of the prepared polymer electrolyte is low; if the molar concentration of the zinc salt is too large, the solubility of the zinc salt in the polymer electrolyte is poor, and it is easy to separate out. The electrical performance of the prepared polymer electrolyte is poor.
  • Described solvent is selected from deionized water and/or organic solvent
  • Described organic solvent is selected from ethanol, Virahol, ethylene glycol, glycerol, acetonitrile, N,N-dimethylacetamide, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, carbonic acid One or more of diethyl ester, ethyl acetate or dimethyl sulfoxide.
  • the polymer includes one or more of polyvinyl alcohol, polyacrylic acid, sodium polyacrylate, polyacrylamide, xanthan gum or gelatin;
  • the mass percentage of the polymer is 5-90% of the polymer electrolyte. For example, it may be 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.
  • the monomer includes any one or more of acrylic acid, acrylamide, sodium acrylate, acrylonitrile, vinyl acetate or sodium carboxymethylcellulose;
  • the crosslinking agent includes any one or more of N,N'-methylenebisacrylamide, polyethylene glycol diacrylate, boric acid, silicon dioxide or aluminum oxide;
  • the mass ratio of the crosslinking agent to the monomer is (0.0001-0.01):1.
  • it can be 0.0001:1, 0.0001:1, 0.0002:1, 0.0005:1, 0.0008:1, 0.001:1, 0.002:1, 0.005:1, 0.007:1 or 0.01:1, etc.
  • raw materials for the preparation of the polymer also include an initiator
  • the initiator includes one or more of ammonium persulfate, potassium persulfate or sodium persulfate;
  • the mass ratio of the initiator to the monomer is (0.001-0.025):1.
  • it can be 0.001:1, 0.002:1, 0.005:1, 0.008:1, 0.01:1, 0.03:1, 0.05:1, 0.07:1, 0.02:1 or 0.025:1, etc.
  • the polymer electrolyte also includes additives;
  • the additives include one or more of thiosulfate, iodide or phenolic quinone compounds;
  • the mass percent content of the additive is 0.1-10% of the polymer electrolyte.
  • it may be 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%.
  • step (2) pour the mixed liquid A obtained in step (1) into a mold and freeze to obtain the polymer electrolyte;
  • Or described polymer electrolyte comprises the preparation raw material of polymer, and the preparation method of described polymer electrolyte comprises the steps:
  • step (B) After reacting the mixed solution B obtained in step (A), pour it into a mold and cool it to obtain the polymer electrolyte.
  • the mixing temperature in step (1) is 80-95°C, such as 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C , 90°C, 91°C, 92°C, 93°C, 94°C or 95°C, etc.
  • the time is 30-90min, such as 30min, 35min, 40min, 45min, 50min, 55min, 60min, 65min, 70min, 75min, 80min , 85min or 90min, etc.
  • the mixing method is stirring;
  • the freezing temperature in step (2) is -20 to -5°C, for example, -20°C, -18°C, -16°C, -14°C, -12°C, -10°C, -8°C, -6°C °C or -5 °C, etc.
  • the time is 24-168h, for example, it can be 24h, 48h, 72h, 96h, 120h, 144h or 168h, etc.
  • reaction temperature in step (B) is 40-95°C, for example, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, 80°C, 85°C , 90°C or 95°C, etc.
  • the time is 0.5-4h, for example, it can be 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h or 4h, etc.
  • the positive electrode material of the zinc-air battery includes carbon materials
  • the carbon material includes one or more of conductive carbon black, activated carbon, graphene, graphite, carbon nanotube or mesoporous carbon.
  • the carbon material is more preferably a combination of conductive carbon black or conductive carbon black and other carbon materials, such as conductive carbon black, a combination of conductive carbon black and activated carbon, conductive carbon black and graphite
  • conductive carbon black a combination of conductive carbon black and activated carbon
  • conductive carbon black and graphite The combination of ene, the combination of conductive carbon black and graphite, the combination of conductive carbon black and carbon nanotubes or the combination of conductive carbon black and mesoporous carbon, etc.
  • no special limitation is made on the preparation method of the positive pole piece, and the methods commonly used in the art are all applicable.
  • can be: combine other carbon materials except conductive carbon black with conductive carbon black, mass 100%
  • the polytetrafluoroethylene dispersion (solvent is water) with a content of 20% is uniformly mixed at a mass ratio of 8:1:1 to form a film, which is pressed on carbon paper.
  • the negative electrode material of the zinc-air battery is selected from zinc element, zinc alloy or composite material;
  • the zinc alloy is selected from zinc-aluminum alloy or zinc-copper alloy
  • the mass percentage of zinc in the zinc alloy is 10-90%, such as 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%.
  • the composite material includes a metal zinc layer and a conductive base material that are attached together.
  • a neutral polymer electrolyte can be prepared by selecting zinc salt, which avoids the occurrence of carbonation damage to the cathode due to the occurrence of electrolyte and carbon dioxide in the air, thereby improving the service life of the battery
  • the content of zinc salt in the polymer electrolyte is controlled within a specific range, and the prepared polymer electrolyte has good electrical properties, its service life is 127-305h, and the water retention is 59-79% , the ion conductivity is 0.2-16.7mS cm -1 .
  • This embodiment provides a polymer electrolyte and a preparation method thereof, the polymer electrolyte includes the following components:
  • the mass molar concentration of the zinc trifluoromethanesulfonate in the mixture of zinc trifluoromethanesulfonate and deionized water is 0.3mol/kg;
  • the mass percentage of the polyvinyl alcohol is 25%, and the rest is deionized water.
  • step (2) Pour the mixed solution A obtained in step (1) into a mold, and freeze at -10° C. for 72 hours to obtain the polymer electrolyte.
  • This embodiment provides a polymer electrolyte and a preparation method thereof, the polymer electrolyte includes the following components:
  • the mass molar concentration of described two (trifluoromethylsulfonimide) zinc in two (trifluoromethylsulfonimide) zinc and ethanol mixture is 2mol/kg;
  • the mass percentage of the polyacrylic acid is 90%
  • the mass percentage of potassium thiosulfate is 0.1%
  • the rest is ethanol.
  • step (2) Pour the mixed liquid A obtained in step (1) into a mold, and freeze at -20° C. for 24 hours to obtain the polymer electrolyte.
  • This embodiment provides a polymer electrolyte and a preparation method thereof, the polymer electrolyte includes the following components:
  • the molar concentration of the three (trifluoromethylsulfonylmethyl) zinc in the mixture of three (trifluoromethylsulfonylmethyl) zinc and isopropanol is 5mol/kg;
  • the mass percentage of the polyacrylamide is 5%
  • the mass percentage of zinc iodide is 10%
  • the rest is isopropanol.
  • step (2) pour the mixed liquid A obtained in step (1) into a mold, and freeze at -5°C for 168 hours to obtain the polymer electrolyte.
  • This embodiment provides a polymer electrolyte and a preparation method thereof.
  • the raw materials for the preparation of the polymer electrolyte include the following components:
  • the mass molar concentration of the zinc trifluoromethanesulfonate in the mixture of zinc trifluoromethanesulfonate and deionized water is 0.3mol/kg;
  • the mass percentage of the acrylamide is 7%
  • step (B) React the mixed solution B obtained in step (A) for 1 hour at 80° C., and then pour it into a mold to cool to obtain the polymer electrolyte.
  • This embodiment provides a polymer electrolyte and a preparation method thereof, the polymer electrolyte includes the following components:
  • Zinc bis(fluorosulfonyl)imide acrylic acid, polyethylene glycol diacrylate, potassium persulfate, sodium thiosulfate, and ethanol;
  • the mass molar concentration of the bis(fluorosulfonyl)imide zinc in the mixture of bis(fluorosulfonyl)imide zinc and ethanol is 1mol/kg;
  • the mass percentage of the acrylic acid is 7%
  • the mass percentage of sodium thiosulfate is 2%
  • the mass ratio of polyethylene glycol diacrylate to acrylic acid is 0.0001:1, the mass ratio of potassium persulfate to acrylic acid is 0.001:1; the rest is ethanol.
  • step (B) React the mixed solution B obtained in step (A) for 4 hours at 40° C., and pour it into a mold to cool to obtain the polymer electrolyte.
  • This embodiment provides a polymer electrolyte and a preparation method thereof, the polymer electrolyte includes the following components:
  • the mass molar concentration of the bis(trifluoromethylsulfonimide) zinc in the mixture of bis(trifluoromethylsulfonimide) zinc and N,N-dimethylacetamide is 5mol/kg;
  • the mass percentage of the acrylonitrile is 7%
  • the mass percentage of 2,5-di-tert-butyl-1,4-benzoquinone is 5%
  • the mass ratio of boric acid to acrylonitrile is 0.01:1, the mass ratio of sodium persulfate to acrylonitrile is 0.025:1; the rest is N,N-dimethylacetamide.
  • step (B) React the mixed solution B obtained in the step (A) for 0.5 h at 80° C., and then pour it into a mold to cool to obtain the polymer electrolyte.
  • This example provides a polymer electrolyte and a preparation method thereof.
  • the difference from Example 1 is that the molar concentration of the zinc salt is 0.1 mol/kg, and other conditions are the same as Example 1.
  • This example provides a polymer electrolyte and a preparation method thereof.
  • the difference from Example 1 is that the molar concentration of the zinc salt is 10 mol/kg, and other conditions are the same as Example 1.
  • This embodiment provides a polymer electrolyte and a preparation method thereof.
  • the difference from Embodiment 1 is that the molar concentration of the zinc salt is 0.05 mol/kg, and other conditions are the same as in Embodiment 1.
  • Example 2 provides a polymer electrolyte and a preparation method thereof.
  • the difference from Example 1 is that the molar concentration of the zinc salt is 14 mol/kg, and other conditions are the same as Example 1.
  • This embodiment provides a polymer electrolyte and a preparation method thereof.
  • the difference from Embodiment 1 is that zinc trifluoromethanesulfonate is replaced by zinc methanesulfonate, and other conditions are the same as in Embodiment 1.
  • This embodiment provides a polymer electrolyte and a preparation method thereof.
  • the difference from Embodiment 1 is that zinc trifluoromethanesulfonate is replaced by zinc sulfate, and other conditions are the same as in Embodiment 1.
  • This comparative example provides a polymer electrolyte and a preparation method thereof.
  • the difference from Example 1 is that zinc trifluoromethanesulfonate is replaced by potassium hydroxide, and other conditions are the same as in Example 1.
  • Service life Assemble the prepared polymer electrolyte with the positive and negative electrodes into a battery (the positive electrode is conductive carbon black, the negative electrode is zinc sheet), and the cycle life test is carried out on the blue battery test system CT3002AU.
  • the test program is capacity cut-off Constant current charge and discharge cycle (current density is 0.5mA/cm 2 , the cut-off capacity of each cycle is 1.0mAh/cm 2 , the end condition of the cycle is discharge voltage ⁇ 0.6V), and the obtained cycle time is the service life.
  • Ionic conductivity The prepared polymer electrolyte was sandwiched between two identical stainless steel sheets to assemble a symmetrical battery, and tested on an AUTOLAB PGSTAT 302N electrochemical workstation with a test frequency from 100kHz to 10Hz. The intercept of the Nyquist curve fitted with the obtained data and the real axis was used to obtain the resistance R of the polymer electrolyte; the thickness d of the polymer electrolyte was measured by the vernier caliper; the cross-sectional area S of the GPE was calculated from the diameter of the GPE measured by the vernier caliper. Substituting the above data into the calculation formula of ionic conductivity
  • the ionic conductivity ⁇ of the synthesized GPE was obtained.
  • Example 1 141 63 0.7 Example 2 265 79 8.1 Example 3 240 70 12.3 Example 4 297 72 1.9 Example 5 305 78 9.6 Example 6 280 73 16.7 Example 7 127 60 0.2 Example 8 130 59 18.9 Example 9 39 55 0.1 Example 10 76 54 20.1 Example 11 49 63 0.6 Example 12 twenty one 62 0.6 Comparative example 1 8 61 0.5
  • a neutral polymer electrolyte can be prepared by selecting zinc salt, which avoids the occurrence of carbonation damage to the cathode due to the occurrence of electrolyte and carbon dioxide in the air, thereby improving the service life of the battery
  • the content of zinc salt in the polymer electrolyte is controlled within a specific range, and the prepared polymer electrolyte has good electrical properties, its service life is 127-305h, and the water retention rate is 59-79% , the ion conductivity is 0.2-16.7mS cm -1 .
  • Example 1 Compared with Example 1, if the content of zinc salt in the polymer electrolyte is too little (embodiment 9) or the content of zinc salt in the polymer electrolyte is too much (embodiment 10), then the service life of the prepared polymer electrolyte Shorter, lower water retention.
  • Example 11 Compared with Example 1, if the organozinc salt (Example 11) or inorganic salt (Example 12) is adopted, the service life of the battery prepared is shorter; if potassium hydroxide is used to replace trifluoro Zinc methanesulfonate (Comparative Example 1), the prepared polymer electrolyte is alkaline, and the service life of the battery thus prepared is also relatively short.
  • a neutral polymer electrolyte can be prepared by selecting zinc salt, which avoids the occurrence of carbonation damage to the cathode due to the occurrence of electrolyte and carbon dioxide in the air, thereby improving the service life of the battery; , in the present invention, the content of zinc salt in the polymer electrolyte is controlled within a specific range, and the prepared polymer electrolyte has better electrical properties,
  • the present invention illustrates the detailed process flow of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned detailed process flow, that is, it does not mean that the present invention must rely on the above-mentioned detailed process flow to be implemented.
  • Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

一种聚合物电解质及其制备方法和应用,聚合物电解质包括锌盐和溶剂;聚合物电解质中还包括聚合物或者制备聚合物的原料;制备聚合物的原料包括单体和交联剂。聚合物电解质为中性电解质,避免了在碱性电解质条件下由于电解质与空气中的二氧化碳反应而碳酸化,从而损伤阴极的问题发生,进而提高了电池的使用寿命;同时,制备得到的聚合物电解质具有较好的电学性能。

Description

一种聚合物电解质及其制备方法和应用 技术领域
本发明涉及电化学技术领域,具体涉及一种聚合物电解质及其制备方法和应用。
背景技术
近年来,随着新型化学电源的研究不断发展,各种电化学储能技术不断涌现。其中,锌-空气电池由于其高能量密度和功率密度、高安全性、低成本、低污染等优点,成为了最具有前景的电池体系之一,因此锌-空气电池受到了人们的广泛关注,越来越多的方法也被应用于制备锌-空气电池。
受到水系电解液的固有限制,锌-空气二次电池一般都采用高浓度的碱性电解液来抑制析氢副反应。然而,作为半开放体系,空气中的二氧化碳很容易进入电池体系,并与电解液反应生成碳酸根,导致电池寿命的衰减。因此,锌空气动力电池通常被设计成机械更换式,即电池放电结束后,通过更换其中的锌电极以达到电池的“充电”效果。
CN106887648A公开了一种锌/空气电池组。所述锌/空气电池组,包括N节依次层状堆叠的平板状单体电池,单体电池包括单体电池壳体、空气阴极、锌阳极以及空气阴极和锌阳极之间的电解液腔,N为≥2的整数,N节单体电池间的电解液腔通过一注液连通器串联连通,每个连通器分流道上均设有与一个单体电池的电解液腔相连通的连通器流道口,连通器流道口从电解液腔的下方伸入到电解液腔内;锌阳极外包覆有隔膜袋或于锌阳极的电解液腔一侧设有隔膜层。该技术方案提供的锌/空气电池组方便电池阳极的二次更换;单电池间的连通器流道不易堵塞,但是易发生电池漏液问题的发生。
为了避免电池漏液问题的发生,现有技术中常使用聚合物电解质代替液态电解质。聚合物电解质是将电解液溶胀在聚合物的结构骨架中,使其既拥有在常温下液态电解液体系的高离子电导率和低界面阻抗,又具有能缓解电解液的挥发的优点。因此,使用聚合物电解质制备锌-空气电池成为人们的研究热点。
CN110098448A公开了一种高性能复合锌空气二次电池。所述高性能复合锌空气二次电池包括由负极、浸润电解液的隔膜材料、正极构成的三明治结构,且三明 治结构置于电池壳体中,隔膜材料中电解液所占的质量百分比为浸润电解液的隔膜材料总质量的40-80%;电池壳体与正极的接触面上均布设有透气孔,用于锌空气电池运行段氧气的吸收和释放;透气孔面积之和占正极接触面的50-90%。在放电过程中,高价态的氧化物或者氢氧化物将发生还原反应,使得电池输出高于1.6V的电压,表现为二次锌电池的放电特性;在反应结束后活性物质恢复原始状态,继续作为氧还原反应的催化剂,电池输出1.0V左右的电压。
CN109921154A公开了一种基于聚合物电解质的柔性锌空气电池。所述聚合物电解质是将聚合物体系浸入氢氧化钾水溶液中制备而得的多孔纳米二氧化硅复合聚合物电解质;所述聚合物体系以聚乙烯醇或聚丙烯酸作为半固态电解质的聚合物骨架,以聚乙二醇作为造孔剂使聚合物基体呈现孔状结构,以纳米二氧化硅作为交联剂、保水剂和增塑剂引入体系。
由上述内容可知,无论是使用聚合物电解质还是普通的电解液,其均为碱性,但是在锌-空气电池工作中,空气中的氧气参与电化学反应中产生电能。问题在于,空气中不仅仅有电池反应需要的氧气,也含有对电池反应不利的二氧化碳。尤其是碱性工作环境中,二氧化碳进人电池,使碱性电解质碳酸化,形成碱金属的碳酸盐或亚碳酸盐。当碳酸盐在阴极中结晶时,阴极会受到损坏,并会堵塞空气的通路,从而影响到电池的使用寿命和供电能力。
因此,如何提供一种中性聚合物电解质,延长锌-空气电池的使用寿命,已成为目前亟待解决的技术问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种避免二氧化碳损伤阴极、提高电池使用寿命、具有较好电学性能的聚合物电解质及其制备方法和应用。
本发明的目的可以通过以下技术方案来实现:
本发明中通过对聚合物电解质的组分的设计,进一步通过锌盐制备得到了中性的聚合物电解质,避免了由于空气中的二氧化碳与碱性聚合物电解质发生反应,使电解质碳酸化,影响电池的使用寿命;同时,本发明中制备得到的聚合物电解质具有较高的保水性和高离子电导率,适用于制备锌-空气电池,具体方案如下:
一种聚合物电解质,该聚合物电解质包括锌盐和溶剂,还包括聚合物或者聚合 物的制备原料;
所述聚合物的制备原料包括单体和交联剂。
现有技术中,制备聚合物电解质时通常是将聚合物体系浸入碱液中,得到呈现碱性的聚合物电解质,但是该碱性聚合物电解质在使用过程中会和空气中的二氧化碳反应,电解质将发生碳酸化,形成碱金属的碳酸盐或亚碳酸盐。当碳酸盐在阴极中结晶时,阴极会受到损坏,并会堵塞空气的通路,从而影响到电池的使用寿命和供电能力。
本发明中,通过锌盐代替碱液,制备得到的聚合物电解质呈中性,避免了由于电解质与空气中的二氧化碳发生而碳酸化损伤阴极问题的发生,进而提高了电池的使用寿命;同时,本发明制备得到的聚合物电解质具有较高的保水性和高离子电导率以及较好的柔韧性,可用于柔性可穿戴电池的制备。
进一步地,所述的锌盐为含氟烃类衍生物锌盐;
本发明中,通过选用含氟烃类衍生物锌盐制备得到的聚合物电解质呈中性,可避免空气中二氧化碳对聚合物电解质的影响,且制备得到的聚合物电解质具有较高的保水性和电学性能;同时,本发明中通过带有强疏水基团(三氟甲磺酸根)的锌盐在正极构建缺水-富锌的内亥姆霍兹层(IHL),实现了具有快速动力学的电子的氧还原过程(ORR),保证了锌-空气电池的可逆性,由此制备得到的聚合物电解质具有较好的电学性能。
所述的含氟烃类衍生物锌盐包括三氟甲烷磺酸锌、双(三氟甲基磺酰亚胺)锌、三(三氟甲基磺酰甲基)锌或双(氟磺酰)亚胺锌中的一种或多种;
所述的锌盐在锌盐和溶剂混合物中的质量摩尔浓度为0.1-10mol/kg,优选0.3-5mol/kg;例如可以是0.1mol/kg、0.2mol/kg、0.5mol/kg、1mol/kg、2mol/kg、3mol/kg、4mol/kg、5mol/kg、6mol/kg、7mol/kg、8mol/kg、9mol/kg或10mol/kg等。
本发明中,通过控制锌盐的质量摩尔浓度在特定的范围内,制备得到的聚合物电解质既具有较高的离子电导率,又可以使锌盐在聚合物电解质中有较好的溶解性。若锌盐的质量摩尔浓度过小,则制备得到的聚合物电解质的离子电导率较低,若锌盐的质量摩尔浓度过大,则锌盐在聚合物电解质中的溶解度较差,易析出,制备得到的聚合物电解质的电学性能较差。
所述的溶剂选自去离子水和/或有机溶剂;
所述的有机溶剂选自乙醇、异丙醇、乙二醇、甘油、乙腈、N,N-二甲基乙酰胺、 碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯或二甲亚砜中的一种或多种。
进一步地,所述的聚合物包括聚乙烯醇、聚丙烯酸、聚丙烯酸钠、聚丙烯酰胺、黄原胶或明胶中的一种或多种;
所述聚合物的质量百分含量为聚合物电解质的5-90%。例如可以是5%、10%、20%、30%、40%、50%、60%、70%、80%或90%等。
所述的单体包括丙烯酸、丙烯酰胺、丙烯酸钠、丙烯腈、乙酸乙烯酯或羧甲基纤维素钠中的任意一种或多种;
所述的交联剂包括N,N’-亚甲基双丙烯酰胺、聚乙二醇二丙烯酸酯、硼酸、二氧化硅或氧化铝中的任意一种或多种;
所述的交联剂和单体的质量比为(0.0001-0.01):1。例如可以是0.0001:1、0.0001:1、0.0002:1、0.0005:1、0.0008:1、0.001:1、0.002:1、0.005:1、0.007:1或0.01:1等。
进一步地,所述聚合物的制备原料还包括引发剂;
所述的引发剂包括过硫酸铵、过硫酸钾或过硫酸钠中的一种或多种;
所述的引发剂和单体的质量比为(0.001-0.025):1。例如可以是0.001:1、0.002:1、0.005:1、0.008:1、0.01:1、0.03:1、0.05:1、0.07:1、0.02:1或0.025:1等。
进一步地,所述聚合物电解质中还包括添加剂;
所述的添加剂包括硫代硫酸盐、碘化物或酚醌类化合物中的一种或多种;
所述添加剂的质量百分含量为聚合物电解质的0.1-10%。例如可以是0.1%、0.2%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%等。
一种如上所述的聚合物电解质的制备方法,所述聚合物电解质包括聚合物,所述聚合物电解质的制备方法包括如下步骤:
(1)将锌盐、聚合物、溶剂以及任选的添加剂混合均匀,得到混合液A;
(2)将步骤(1)得到的混合液A倒入模具中冷冻,得到所述聚合物电解质;
或者所述聚合物电解质包括聚合物的制备原料,所述聚合物电解质的制备方法包括如下步骤:
(A)将锌盐、单体、交联剂、溶剂以及任选的添加剂混合均匀,得到混合液B;
(B)将步骤(A)得到的混合液B反应后,倒入模具中冷却,得到所述聚合 物电解质。
进一步地,步骤(1)所述混合的温度为80-95℃,例如可以是80℃、81℃、82℃、83℃、84℃、85℃、86℃、87℃、88℃、89℃、90℃、91℃、92℃、93℃、94℃或95℃等,时间为30-90min,例如可以是30min、35min、40min、45min、50min、55min、60min、65min、70min、75min、80min、85min或90min等,混合的方法为搅拌;
步骤(2)所述冷冻的温度为-20~-5℃,例如可以是-20℃、-18℃、-16℃、-14℃、-12℃、-10℃、-8℃、-6℃或-5℃等,时间为24-168h,例如可以是24h、48h、72h、96h、120h、144h或168h等。
进一步地,步骤(B)所述反应的温度为40-95℃,例如可以是40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃或95℃等,时间为0.5-4h,例如可以是0.5h、1h、1.5h、2h、2.5h、3h、3.5h或4h等。
一种如上所述的聚合物电解质的应用,该聚合物电解质应用在锌-空气电池中;
所述的锌-空气电池的正极材料包括碳材料;
所述的碳材料包括导电炭黑、活性炭、石墨烯、石墨、碳纳米管或介孔碳中的一种或多种。
需要说明的是,本发明中,所述碳材料更优选为导电炭黑或者导电炭黑与其他碳材料的组合,例如可以是导电炭黑、导电炭黑与活性炭的组合、导电炭黑与石墨烯的组合、导电炭黑与石墨的组合、导电炭黑与碳纳米管的组合或者导电炭黑与介孔碳的组合等。本发明中,对于正极极片的制备方法不做任何特殊的限定,本领域常用的方法均适用,示例型地可以是:将除去导电炭黑之外的其他碳材料与导电炭黑、质量百分含量为20%的聚四氟乙烯分散液(溶剂为水)以8:1:1的质量比混合均匀后,形成膜状物,压在碳纸上制得。
进一步地,所述的锌-空气电池的负极材料选自锌单质、锌合金或复合材料;
所述的锌合金选自锌铝合金或锌铜合金;
所述的锌合金中锌的质量百分含量为10~90%,例如可以是10%、20%、30%、40%、50%、60%、70%、80%或90%等。
所述的复合材料包括相贴合的金属锌层和导电基材。
与现有技术相比,本发明中,通过选用锌盐可制备得到中性聚合物电解质,避免了由于电解质与空气中的二氧化碳发生而碳酸化损伤阴极问题的发生,进而提高 了电池的使用寿命;同时,本发明中控制锌盐在聚合物电解质中的含量在特定的范围内,制备得到的聚合物电解质具有较好的电学性能,其使用寿命为127-305h,保水性为59-79%,离子电导率为0.2-16.7mS cm -1
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例和对比例中部分组分来源如下:
聚乙烯醇:麦克林,P816864,CAS号为9002-89-5;
聚丙烯酸:麦克林,P815683,CAS号为9003-01-4;
聚丙烯酰胺:麦克林,P821239,CAS号为9003-05-8。
实施例1
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质包括如下组分:
三氟甲烷磺酸锌、聚乙烯醇和去离子水;
所述三氟甲烷磺酸锌在三氟甲烷磺酸锌和去离子水混合物中的质量摩尔浓度为0.3mol/kg;
以所述聚合物电解质的质量为100%计,所述聚乙烯醇的质量百分含量为25%,剩余为去离子水。
上述聚合物电解质的制备方法如下:
(1)在90℃下,将三氟甲烷磺酸锌、聚乙烯醇和去离子水搅拌混合60min,得到混合液A;
(2)将步骤(1)得到的混合液A倒入模具中,在-10℃下冷冻72h,得到所述聚合物电解质。
实施例2
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质包括如下组分:
双(三氟甲基磺酰亚胺)锌、聚丙烯酸、硫代硫酸钾和乙醇;
所述双(三氟甲基磺酰亚胺)锌在双(三氟甲基磺酰亚胺)锌和乙醇混合物中的质 量摩尔浓度为2mol/kg;
以所述聚合物电解质的质量为100%计,所述聚丙烯酸的质量百分含量为90%,硫代硫酸钾的质量百分含量为0.1%,剩余为乙醇。
上述聚合物电解质的制备方法如下:
(1)在80℃下,将聚合物电解质的各组分搅拌混合90min,得到混合液A;
(2)将步骤(1)得到的混合液A倒入模具中,在-20℃下冷冻24h,得到所述聚合物电解质。
实施例3
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质包括如下组分:
三(三氟甲基磺酰甲基)锌、聚丙烯酰胺、碘化锌和异丙醇;
所述三(三氟甲基磺酰甲基)锌在三(三氟甲基磺酰甲基)锌和异丙醇混合物中的质量摩尔浓度为5mol/kg;
以所述聚合物电解质的质量为100%计,所述聚丙烯酰胺的质量百分含量为5%,碘化锌的质量百分含量为10%,剩余为异丙醇。
上述聚合物电解质的制备方法如下:
(1)在95℃下,将聚合物电解质的各组分搅拌混合30min,得到混合液A;
(2)将步骤(1)得到的混合液A倒入模具中,在-5℃下冷冻168h,得到所述聚合物电解质。
实施例4
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质的制备原料包括如下组分:
三氟甲烷磺酸锌、丙烯酰胺、N,N′-亚甲基双丙烯酰胺、过硫酸铵和去离子水;
所述三氟甲烷磺酸锌在三氟甲烷磺酸锌和去离子水混合物中的质量摩尔浓度为0.3mol/kg;
以所述聚合物电解质的质量为100%计,所述丙烯酰胺的质量百分含量为7%;
所述N,N′-亚甲基双丙烯酰胺和丙烯酰胺的质量比为0.0003:1,所述过硫酸铵和丙烯酰胺的质量比为0.0125:1;其余为去离子水。
上述聚合物电解质的制备方法如下:
(A)将三氟甲烷磺酸锌、丙烯酰胺、N,N′-亚甲基双丙烯酰胺、过硫酸铵和去 离子水混合均匀,得到混合液B;
(B)在80℃下,将步骤(A)得到的混合液B反应1h后,倒入模具中冷却,得到所述聚合物电解质。
实施例5
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质包括如下组分:
双(氟磺酰)亚胺锌、丙烯酸、聚乙二醇二丙烯酸酯、过硫酸钾、硫代硫酸钠和乙醇;
所述双(氟磺酰)亚胺锌在双(氟磺酰)亚胺锌和乙醇混合物中的质量摩尔浓度为1mol/kg;
以所述聚合物电解质的质量为100%计,所述丙烯酸的质量百分含量为7%,硫代硫酸钠的质量百分含量为2%,
所述聚乙二醇二丙烯酸酯和丙烯酸的质量比为0.0001:1,所述过硫酸钾和丙烯酸的质量比为0.001:1;其余为乙醇。
上述聚合物电解质的制备方法如下:
(A)将聚合物电解质制备原料的各组分混合均匀,得到混合液B;
(B)在40℃下,将步骤(A)得到的混合液B反应4h后,倒入模具中冷却,得到所述聚合物电解质。
实施例6
本实施例提供一种聚合物电解质及其制备方法,所述聚合物电解质包括如下组分:
双(三氟甲基磺酰亚胺)锌、丙烯腈、硼酸、过硫酸钠、2,5-二叔丁基-1,4-苯醌和N,N-二甲基乙酰胺;
所述双(三氟甲基磺酰亚胺)锌在双(三氟甲基磺酰亚胺)锌和N,N-二甲基乙酰胺混合物中的质量摩尔浓度为5mol/kg;
以所述聚合物电解质的质量为100%计,所述丙烯腈的质量百分含量为7%,2,5-二叔丁基-1,4-苯醌的质量百分含量为5%,
所述硼酸和丙烯腈的质量比为0.01:1,所述过硫酸钠和丙烯腈的质量比为0.025:1;其余为N,N-二甲基乙酰胺。
上述聚合物电解质的制备方法如下:
(A)将聚合物电解质制备原料的各组分混合均匀,得到混合液B;
(B)在80℃下,将步骤(A)得到的混合液B反应0.5h后,倒入模具中冷却,得到所述聚合物电解质。
实施例7
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,所述锌盐的质量摩尔浓度为0.1mol/kg,其他条件与实施例1相同。
实施例8
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,所述锌盐的质量摩尔浓度为10mol/kg,其他条件与实施例1相同。
实施例9
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,所述锌盐的质量摩尔浓度为0.05mol/kg,其他条件与实施例1相同。
实施例10
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,所述锌盐的质量摩尔浓度为14mol/kg,其他条件与实施例1相同。
实施例11
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,将三氟甲烷磺酸锌替换为甲烷磺酸锌,其他条件与实施例1相同。
实施例12
本实施例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,将三氟甲烷磺酸锌替换为硫酸锌,其他条件与实施例1相同。
对比例1
本对比例提供一种聚合物电解质及其制备方法,与实施例1的区别在于,将三氟甲烷磺酸锌替换为氢氧化钾,其他条件与实施例1相同。
对上述实施例和对比例提供的聚合物电解质的性能进行测试,测试方法如下:
使用寿命:将制得的聚合物电解质与正、负极共同组装成电池(正极为导电炭黑,负极为锌片),在蓝电电池测试系统CT3002AU上进行循环寿命测试,测试程序为容量截止的恒流充放电循环(电流密度为0.5mA/cm 2,每次循环截止容量为1.0mAh/cm 2,循环结束条件为放电电压<0.6V),所得循环时间即为使用寿命。
保水率:将制得的聚合物电解质放置于温度为25℃,相对湿度50%的恒温恒 湿箱内,测量初始质量(m 0)和放置7天后的剩余质量(m 1),则保水率=m 0÷m 1×100%。
离子电导率:将制得的聚合物电解质夹在两片相同的不锈钢片之间装配成对称电池,在AUTOLAB PGSTAT 302N电化学工作站上进行测试,测试频率从100kHz到10Hz。将所得数据拟合的Nyquist曲线与实轴的截距得到聚合物电解质的电阻R;由游标卡尺测得聚合物电解质的厚度d;由游标卡尺测得的GPE直径计算得到GPE的横截面积S。将上述数据代入离子电导率的计算公式
Figure PCTCN2022136881-appb-000001
得到所合成的GPE的离子电导率σ。
上述实施例和对比例提供的聚合物电解质的性能测试结果如下表1所示:
表1
  使用寿命/h 保水率/% 离子电导率/(mS cm -1)
实施例1 141 63 0.7
实施例2 265 79 8.1
实施例3 240 70 12.3
实施例4 297 72 1.9
实施例5 305 78 9.6
实施例6 280 73 16.7
实施例7 127 60 0.2
实施例8 130 59 18.9
实施例9 39 55 0.1
实施例10 76 54 20.1
实施例11 49 63 0.6
实施例12 21 62 0.6
对比例1 8 61 0.5
由表1的内容可知,本发明中,通过选用锌盐可制备得到中性聚合物电解质, 避免了由于电解质与空气中的二氧化碳发生而碳酸化损伤阴极问题的发生,进而提高了电池的使用寿命;同时,本发明中控制锌盐在聚合物电解质中的含量在特定的范围内,制备得到的聚合物电解质具有较好的电学性能,其使用寿命为127-305h,保水率为59-79%,离子电导率为0.2-16.7mS cm -1
与实施例1相比,若聚合物电解质中锌盐的含量过少(实施例9)或聚合物电解质中锌盐的含量过多(实施例10),则制备得到的聚合物电解质的使用寿命较短,保水率较低。
与实施例1相比,若采用不含氟原子的有机锌盐(实施例11)或采用无机盐(实施例12),制备得到的电池的使用寿命较短;若采用氢氧化钾代替三氟甲烷磺酸锌(对比例1),则制备得到的聚合物电解质显碱性,由此制备得到的电池的使用寿命也较短。
综上所述,本发明中,通过选用锌盐可制备得到中性聚合物电解质,避免了由于电解质与空气中的二氧化碳发生而碳酸化损伤阴极问题的发生,进而提高了电池的使用寿命;同时,本发明中控制锌盐在聚合物电解质中的含量在特定的范围内,制备得到的聚合物电解质具有较好的电学性能,
申请人声明,本发明通过上述实施例来说明本发明的详细工艺流程,但本发明并不局限于上述详细工艺流程,即不意味着本发明必须依赖上述详细工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种聚合物电解质,其特征在于,该聚合物电解质包括锌盐和溶剂,还包括聚合物或者聚合物的制备原料;
    所述聚合物的制备原料包括单体和交联剂。
  2. 根据权利要求1所述的一种聚合物电解质,其特征在于,所述的锌盐为含氟烃类衍生物锌盐;
    所述的含氟烃类衍生物锌盐包括三氟甲烷磺酸锌、双(三氟甲基磺酰亚胺)锌、三(三氟甲基磺酰甲基)锌或双(氟磺酰)亚胺锌中的一种或多种;
    所述的锌盐在锌盐和溶剂混合物中的质量摩尔浓度为0.1-10mol/kg;
    所述的溶剂选自去离子水和/或有机溶剂;
    所述的有机溶剂选自乙醇、异丙醇、乙二醇、甘油、乙腈、N,N-二甲基乙酰胺、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯或二甲亚砜中的一种或多种。
  3. 根据权利要求1所述的一种聚合物电解质,其特征在于,所述的聚合物包括聚乙烯醇、聚丙烯酸、聚丙烯酸钠、聚丙烯酰胺、黄原胶或明胶中的一种或多种;
    所述聚合物的质量百分含量为聚合物电解质的5~90%。
    所述的单体包括丙烯酸、丙烯酰胺、丙烯酸钠、丙烯腈、乙酸乙烯酯或羧甲基纤维素钠中的任意一种或多种;
    所述的交联剂包括N,N’-亚甲基双丙烯酰胺、聚乙二醇二丙烯酸酯、硼酸、二氧化硅或氧化铝中的任意一种或多种;
    所述的交联剂和单体的质量比为(0.0001-0.01):1。
  4. 根据权利要求1所述的一种聚合物电解质,其特征在于,所述聚合物的制备原料还包括引发剂;
    所述的引发剂包括过硫酸铵、过硫酸钾或过硫酸钠中的一种或多种;
    所述的引发剂和单体的质量比为(0.001-0.025):1。
  5. 根据权利要求1所述的一种聚合物电解质,其特征在于,所述聚合物电解质中还包括添加剂;
    所述的添加剂包括硫代硫酸盐、碘化物或酚醌类化合物中的一种或多种;
    所述添加剂的质量百分含量为聚合物电解质的0.1-10%。
  6. 一种如权利要求1-5任一项所述的聚合物电解质的制备方法,其特征在于,所述聚合物电解质包括聚合物,所述聚合物电解质的制备方法包括如下步骤:
    (1)将锌盐、聚合物、溶剂以及任选的添加剂混合均匀,得到混合液A;
    (2)将步骤(1)得到的混合液A倒入模具中冷冻,得到所述聚合物电解质;
    或者所述聚合物电解质包括聚合物的制备原料,所述聚合物电解质的制备方法包括如下步骤:
    (A)将锌盐、单体、交联剂、溶剂以及任选的添加剂混合均匀,得到混合液B;
    (B)将步骤(A)得到的混合液B反应后,倒入模具中冷却,得到所述聚合物电解质。
  7. 根据权利要求6所述的一种聚合物电解质的制备方法,其特征在于,步骤(1)所述混合的温度为80-95℃,时间为30-90min,混合的方法为搅拌;
    步骤(2)所述冷冻的温度为-20~-5℃,时间为24-168h。
  8. 根据权利要求6所述的一种聚合物电解质的制备方法,其特征在于,步骤(B)所述反应的温度为40-95℃,时间为0.5-4h。
  9. 一种如权利要求1-5任一项所述的聚合物电解质的应用,其特征在于,该聚合物电解质应用在锌-空气电池中;
    所述的锌-空气电池的正极材料包括碳材料;
    所述的碳材料包括导电炭黑、活性炭、石墨烯、石墨、碳纳米管或介孔碳中的一种或多种。
  10. 根据权利要求9所述的一种聚合物电解质的应用,其特征在于,所述的锌-空气电池的负极材料选自锌单质、锌合金或复合材料;
    所述的锌合金选自锌铝合金或锌铜合金;
    所述的锌合金中锌的质量百分含量为10-90%;
    所述的复合材料包括相贴合的金属锌层和导电基材。
PCT/CN2022/136881 2022-02-18 2022-12-06 一种聚合物电解质及其制备方法和应用 WO2023155548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210152450.7 2022-02-18
CN202210152450.7A CN116666843A (zh) 2022-02-18 2022-02-18 一种聚合物电解质及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023155548A1 true WO2023155548A1 (zh) 2023-08-24

Family

ID=87577471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136881 WO2023155548A1 (zh) 2022-02-18 2022-12-06 一种聚合物电解质及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN116666843A (zh)
WO (1) WO2023155548A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289452A (zh) * 2019-07-25 2019-09-27 安徽大学 柔性锌离子微型电池及其制备方法
US20200365880A1 (en) * 2019-05-13 2020-11-19 Nanotek Instruments, Inc. Particulates of polymer electrolyte-protected anode active material particles for lithium-ion batteries
CN113851739A (zh) * 2021-10-25 2021-12-28 长春工业大学 一种抗冻锌基电池用凝胶电解质的制备及应用
CN113851761A (zh) * 2021-09-01 2021-12-28 中国科学院青岛生物能源与过程研究所 一种高可逆锌-空气电池
CN113937304A (zh) * 2021-09-30 2022-01-14 华中科技大学 一种柔性中性锌空气电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200365880A1 (en) * 2019-05-13 2020-11-19 Nanotek Instruments, Inc. Particulates of polymer electrolyte-protected anode active material particles for lithium-ion batteries
CN110289452A (zh) * 2019-07-25 2019-09-27 安徽大学 柔性锌离子微型电池及其制备方法
CN113851761A (zh) * 2021-09-01 2021-12-28 中国科学院青岛生物能源与过程研究所 一种高可逆锌-空气电池
CN113937304A (zh) * 2021-09-30 2022-01-14 华中科技大学 一种柔性中性锌空气电池及其制备方法
CN113851739A (zh) * 2021-10-25 2021-12-28 长春工业大学 一种抗冻锌基电池用凝胶电解质的制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG YONGYIN, LEI HANG, WANG SONGJIE, WANG ZILONG, MAI WENJIE: "Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries", SCIENCE CHINA MATERIALS, vol. 64, no. 8, 1 August 2021 (2021-08-01), pages 1868 - 1875, XP093085220, ISSN: 2095-8226, DOI: 10.1007/s40843-020-1596-6 *

Also Published As

Publication number Publication date
CN116666843A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN109346767A (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
WO2018103129A1 (zh) 一种石墨烯基钠离子电池
Yang et al. Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries
CN106784789B (zh) 一种富锂锰基材料锂离子电池正极及包含该正极的锂离子电池
WO2014206352A1 (zh) 电解液及电池
CN109802181A (zh) 一种用于锂电池的宽温度窗口双主盐电解液
CN110767470B (zh) 一种基于抗冻水凝胶电解质的超级电容器及其制备方法
CN112713293A (zh) 一种应用于铝空电池的高电导率凝胶聚合物电解质及其制备方法和应用
CN112599892A (zh) 一种锌-空气电池用高稳定性凝胶电解质及其制备方法
CN114853942B (zh) 用于锌锰电池的水凝胶电解质及其制备方法、锌锰电池及其制备方法
Yang et al. Three-electrode flexible zinc-nickel battery with black phosphorus modified polymer electrolyte
CN107331830A (zh) 一种锂硫电池的复合正极及其制备方法
CN109713360A (zh) 储能锂离子电池及其电解液和化成-老化方法
CN113036156B (zh) 一种凝胶电解质及锌溴或锌碘单液流电池
CN108598483A (zh) 防过充的金属离子电池及其制备方法
CN108054376A (zh) 硒基复合材料用作正极活性材料在钡离子电池中的应用、钡离子电池及其制备方法
WO2023155548A1 (zh) 一种聚合物电解质及其制备方法和应用
CN111446509A (zh) 用于二次锌离子电池的电解液和凝胶电解质及其制备方法
CN115010941B (zh) 一种离子型共价有机框架纳米片保护层电沉积制备方法和应用
WO2022233342A1 (zh) 水系电解液和电池
WO2016202276A1 (zh) 正极材料及电池
CN112768756B (zh) 固态电解质材料以及利用该材料制得的复合固态电解质和全固态电池
CN113471526B (zh) 一种多层结构复合电解质、固态锂电池
CN113140721A (zh) 一种自支撑铝离子电池正极材料及其制备方法、铝空气电池
CN109671978B (zh) 一种耐高电压的固态聚合物电解质、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926852

Country of ref document: EP

Kind code of ref document: A1