WO2023152831A1 - 銅合金粉末 - Google Patents
銅合金粉末 Download PDFInfo
- Publication number
- WO2023152831A1 WO2023152831A1 PCT/JP2022/005129 JP2022005129W WO2023152831A1 WO 2023152831 A1 WO2023152831 A1 WO 2023152831A1 JP 2022005129 W JP2022005129 W JP 2022005129W WO 2023152831 A1 WO2023152831 A1 WO 2023152831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper alloy
- alloy powder
- mass
- powder
- less
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 163
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 131
- 239000010949 copper Substances 0.000 claims abstract description 102
- 229910052802 copper Inorganic materials 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 230000000844 anti-bacterial effect Effects 0.000 claims description 28
- 238000010301 surface-oxidation reaction Methods 0.000 claims description 23
- 238000004458 analytical method Methods 0.000 claims description 22
- 239000000654 additive Substances 0.000 claims description 21
- 230000000996 additive effect Effects 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 abstract description 5
- 229910052725 zinc Inorganic materials 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 description 27
- 230000003647 oxidation Effects 0.000 description 23
- 239000011701 zinc Substances 0.000 description 17
- 230000008018 melting Effects 0.000 description 16
- 238000002844 melting Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 238000002845 discoloration Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- YVHUUEPYEDOELM-UHFFFAOYSA-N 2-ethylpropanedioic acid;piperidin-1-id-2-ylmethylazanide;platinum(2+) Chemical compound [Pt+2].[NH-]CC1CCCC[N-]1.CCC(C(O)=O)C(O)=O YVHUUEPYEDOELM-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to copper alloy powder.
- metal AM additive Manufacturing
- SLM selective laser melting
- Patent Document 2 For example, using a copper alloy powder containing either chromium or silicon as disclosed in Patent Document 1 below, or a copper alloy powder containing Cr and Zr as disclosed in Patent Document 2, A technique for producing a laminate-molded article by metal AM is known.
- the laminate-molded articles according to the techniques described in Patent Document 1 and Patent Document 2 do not contain an element capable of preventing oxidation of copper. For this reason, when used as a doorknob that requires an antibacterial action, for example, there is a problem that the doorknob is easily discolored due to the oxidation reaction during lamination molding, the reaction with the atmosphere, and the contact with the user's sebum and moisture. ing. Furthermore, if the powder is easily oxidized, there is a concern that the powder itself will be discolored (formation of an oxide film) due to reaction with the atmosphere or the like.
- the present invention was invented in view of the above problems, and one of its purposes is to provide a copper alloy powder with excellent oxidation resistance. Another object of the present invention is to provide a copper alloy powder which is excellent in oxidation resistance and capable of producing a laminate-molded article suitable for metal AM.
- a copper alloy powder according to an aspect of the present invention is characterized by being made of a copper alloy containing 5% by mass or more and 50% by mass or less of Ni.
- a copper alloy powder having excellent oxidation resistance can be provided. Since it is not easily oxidized, it does not cause fluctuations in laser absorption due to oxidation reaction during laser irradiation when forming a laminate-molded article. Therefore, it is possible to generate heat in a stable state along with the laser irradiation, and to manufacture a laminate-molded article in a state in which the melting behavior is stable.
- a copper alloy powder containing Ni in an amount within the above-described range has a small rate of change in laser absorptance, and is desirable for applications such as additive manufacturing.
- the layered product is an object that is touched by the user's hand or is visible to the user, the presence of a discoloration phase generated due to the oxidation reaction of Cu on the surface significantly reduces the designability. It is desirable to contain Ni in an amount within the above-mentioned range, since the touchability also deteriorates depending on the degree of oxidation.
- the copper alloy powder according to one aspect of the present invention preferably contains 45% by mass or more and 95% by mass or less of Cu.
- the copper alloy powder according to one aspect of the present invention may contain Zn in an amount of 1% by mass or more and 42% by mass or less.
- Zn has a wide solid solubility range in Cu, and even if a relatively large amount of Zn is contained as a substitute for Cu, it is easy to obtain a copper alloy powder that can achieve the object of the present embodiment. Further, even if Zn is added in the above range to a copper alloy containing Ni in the above range, there is no significant adverse effect on the oxidation resistance. In addition, by including Zn in an amount within the above-mentioned range together with Ni, the laser absorptivity is also improved, and there is no problem of significant adverse effects.
- the copper alloy powder according to one aspect of the present invention may contain 7% by mass or less of Mn.
- Mn like Ni, is an element that forms a solid solution with Cu over a wide range, and there is no problem in adding it in the amount within the above range.
- Mn is added without impairing the antibacterial properties that Cu originally has and without impairing the oxidation resistance obtained by containing Ni in an amount within the above range, it can be added in an amount within the above range.
- the abundance ratio Cu/O of each element obtained from the peaks of Cu and O in XPS analysis of the powder surface is preferably 0.10 or more. If the element abundance ratio Cu/O obtained from the peaks of Cu and O by XPS analysis is 0.10 or more, it is possible to provide a copper alloy powder with a low degree of surface oxidation, and when it is used for additive manufacturing, oxidation does not occur. A low degree of additive manufacturing can be provided.
- the ratio of the sum of Cu and Cu 2 O (Cu + Cu 2 O) and CuO (Cu + Cu 2 O)/CuO is preferably 1 or more.
- the peaks of Cu by XPS analysis if (Cu + Cu 2 O) / CuO is 1 or more, it is possible to provide a copper alloy powder with a low degree of surface oxidation, and when used for lamination manufacturing, a lamination with a low degree of oxidation can be obtained. We can provide moldings.
- the ratio of CuO in the Cu peak in the XPS analysis of the powder surface is 40% or less. If the ratio of CuO among the Cu peaks by XPS analysis is 40% or less, it is possible to provide a copper alloy powder with a low surface oxidation rate, and when it is used for lamination manufacturing, a laminate product with a low oxidation rate can be obtained. can provide.
- the thickness of the surface oxidation product film formed on the surface is preferably 3 ⁇ m or less. If the thickness of the surface oxidation product film is 3 ⁇ m or less, the thickness of the surface oxidation product film is small, so that a layered product with a small proportion of oxide can be provided when used for layered manufacturing.
- the FIB (Focused Ion Beam) method was used to process a cross section of the powder for observation, and then the cross section was observed with an SEM to confirm the thickness of the oxidation product film.
- the copper alloy powder according to one aspect of the present invention preferably has a volume average particle size of 10 ⁇ m or more and 150 ⁇ m or less. If the volume average particle diameter is within the above range, powder aggregation is less likely to occur and flowability is less likely to decrease when used for layered manufacturing. In addition, since the particle size of the powder is appropriate, it is possible to form a uniform layer of the powder, which does not cause molding defects.
- the ratio Da/Dt between the powder loose bulk density Da and the powder true density Dt is preferably 0.4 or more.
- the copper alloy powder according to one aspect of the present invention is preferably for additive manufacturing. (12) The copper alloy powder according to one aspect of the present invention preferably has antibacterial properties.
- Cu alloy powder excellent in oxidation resistance can be provided by containing Ni of a suitable quantity. Since it is not easily oxidized, it does not cause fluctuations in laser absorption due to oxidation during laser irradiation for forming a laminate-molded article.
- the copper alloy powder containing Ni in the amount within the above range has a small rate of change in laser absorptivity after a heat resistance test, and is desirable for applications such as additive manufacturing. For this reason, it is possible to provide a copper alloy powder that can generate heat in a stable state with laser irradiation and can produce a laminate-molded article in a state of stable melting behavior.
- FIG. 1 is a partial cross-sectional view showing an example of the copper alloy powder for additive manufacturing according to the first embodiment.
- FIG. 1 is a partially cutaway side view of copper alloy powder (particles) for additive manufacturing according to a first embodiment of the present invention.
- the copper alloy powder 1 of this embodiment has a surface oxidation product film 3 formed on the outer peripheral surface of a powder body 2 made of a copper alloy.
- the copper alloy powder 1 of the present embodiment has, for example, a spherical powder body 2 or a similar shape, and a surface oxidation product film 3 thinly covering the entire outer peripheral surface of the powder body 2 . It should be noted that although it is preferable that the surface oxidation product film 3 is not provided, even if it is formed, it is preferable that it is as thin as possible. desirable.
- the composition of the copper alloy forming the powder body 2 is, for example, a copper alloy containing Ni in an amount of 5% by mass or more and 50% by mass or less.
- it may be a copper alloy containing 5% by mass or more and 50% by mass or less of Ni, with the balance being Cu and unavoidable impurities.
- the remainder other than Ni, Zn, Mn, Fe, Al, Si, Sn, and P, which will be described later, is Cu and unavoidable impurities. The reason for limitation of each component will be explained below.
- Ni 5% by mass or more and 50% by mass or less
- a copper alloy powder can be provided by containing an appropriate amount of Ni within the range described above. Since it does not oxidize easily, it does not cause a change in laser absorption due to oxidation during laser irradiation for forming a laminate-molded article. Therefore, it is possible to generate heat in a stable state along with the laser irradiation, and to manufacture a laminate-molded article in a state in which the melting behavior is stable.
- the copper alloy powder containing Ni in the amount within the above range is desirable for applications such as additive manufacturing, since the rate of change in laser absorptance after the heat resistance test is small.
- the laminate-molded product is an object that is touched by the user's hand or is visible to the user, the presence of a product phase resulting from the oxidation reaction of Cu on the surface significantly deteriorates the design and the touch. Therefore, it is desirable to contain Ni in an amount within the above range.
- Ni is an expensive element among the elements to be contained in the copper alloy powder 1, and it is desirable that the Ni content is low in order to reduce the cost of the powder.
- the copper alloy powder 1 can contain a relatively large amount of Zn, which will be described below.
- the Ni content is preferably in the range of 5% by mass or more and 45% by mass or less, more preferably in the range of 7% by mass or more and 40% by mass or less.
- the copper alloy constituting the powder body 2 can contain 45% by mass or more of Cu. Note that the upper limit of the Cu content is 95% by mass. Moreover, as a composition of the copper alloy constituting the powder body 2, in addition to the Ni and Cu, Zn can be contained in an amount of 1% by mass or more and 42% by mass or less. In addition to Ni and Cu, or in addition to Ni, Cu, and Zn, the composition of the copper alloy forming the powder body 2 may contain 7% by mass or less of Mn.
- Cu: 45% by mass or more is the main component, and in order to ensure the antibacterial properties of the copper alloy powder 1, it is desirable to contain 45% by mass or more. It is desirable to contain not more than mass %. By containing 45% by mass or more of Cu, it is possible to expose a sufficient amount of a phase containing Cu on the surface of the laminate-molded product when it is produced as a laminate-molded product, and the antibacterial effect inherent in Cu makes it possible to achieve excellent antibacterial properties. It is possible to provide a laminate-molded product.
- Zn: 1% by mass or more and 42% by mass or less Zn has a wide solid solubility range in Cu, and even if a relatively large amount of Zn is contained as a substitute for Cu, it is easy to obtain a copper alloy powder that can achieve the object of the present embodiment. Further, even if Zn is added in the above range to a copper alloy containing Ni in the above range, there is no significant adverse effect on the oxidation resistance. In addition, by including Zn in an amount within the above-mentioned range together with Ni, the laser absorptivity is also improved, and there is no problem of significant adverse effects.
- the content of Ni in order to reduce the cost of the copper alloy powder 1 as much as possible, it is desirable to reduce the content of Ni and add an appropriate amount of Zn.
- the Zn content a range of 5% by mass or more and 40% by mass or less is more preferable.
- Mn: 7% by mass or less Mn, together with Ni, is an element that forms a solid solution with Cu over a wide range, and there is no problem in adding the amount within the above range.
- Mn is added without impairing the antibacterial properties that Cu originally has and without impairing the oxidation resistance obtained by containing Ni in an amount within the above range, it can be added in an amount within the above range.
- the Mn content can be selected in the range of 0.5% by mass or more and 7% by mass or less. Regarding the Mn content, a range of 0.7% by mass or more and 5.5% by mass or less is more preferable.
- the copper alloy powder 1 of the present embodiment contains one or more selected from Fe, Al, Si, Sn, and P as other elements in an amount of about 0.1% by mass or more and 10% by mass or less. It's okay to be there. Other impurity elements may be contained as impurities in an amount of about 0.1% by mass or less.
- the alloy of this embodiment is produced by melting, Ag, S, and the like may be mixed into the raw material as unavoidable impurities.
- Elements such as Ag and S may be contained as impurities within the above range.
- other impurity elements may be contained in amounts within the above ranges.
- the median diameter of copper alloy powder 1 is preferably 10 ⁇ m or more and 150 ⁇ m or less when used for additive manufacturing. If the median diameter of the copper alloy powder 1 is less than 10 ⁇ m, the flowability is lowered due to aggregation of the powder, which may make the powder unsuitable as a raw material powder for additive manufacturing. When the median diameter of the copper alloy powder 1 exceeds 150 ⁇ m, the particle size of the copper alloy powder 1 is too large, and uniform powder stacking and feeding cannot be performed, which may cause molding defects.
- the median diameter of the more preferable copper alloy powder varies depending on the method and device configuration of the additive manufacturing, it is 10 ⁇ m or more and 60 ⁇ m or less in the PBF method (Powder Bed Fusion), and 50 ⁇ m or more and 150 ⁇ m or less in the DED method (Directed Energy Deposition). degree.
- the ratio Da/Dt between the powder loose bulk density Da and the powder true density Dt is preferably 0.4 or more. If the Da/Dt of the copper alloy powder 1 is less than 0.4, the number of voids increases during powder lamination, and the density of the laminate-molded article after laser melting may decrease. Further, by setting Da/Dt to 0.4 or more, it is possible to reduce voids during powder lamination, and to prevent a reduction in the density of the laminate-molded product after melting with a laser. More preferably, the Da/Dt of the copper alloy powder 1 is 0.5 or more.
- the surface oxidation product film 3 is not formed on the surface of the copper alloy powder 1 of the present embodiment, a thin surface oxidation product film 3 having a thickness of 3 ⁇ m or less may be formed. Moreover, it is desirable that the surface oxidation product film 3 is in the following state.
- the abundance ratio Cu/O of each element obtained from the peaks of Cu and O is preferably 0.10 or more.
- the element abundance ratio Cu/O obtained from the peaks of Cu and O by XPS analysis is 0.10 or more, it is possible to provide a copper alloy powder with a low surface oxidation rate, and when it is used for additive manufacturing, oxidation does not occur.
- a laminate-molded article with a small proportion can be provided.
- the total of Cu and Cu 2 O (Cu + Cu 2 O) and the ratio of CuO (Cu + Cu 2 O) / CuO is preferably 1 or more. If the ratio (Cu + Cu 2 O) / CuO among the Cu peaks by XPS analysis is 1 or more, a copper alloy powder with a low surface oxidation rate can be provided, and the oxidation rate is low when used for additive manufacturing. A laminate-molded article can be provided.
- the ratio of CuO in the Cu peak is preferably 40% or less.
- the ratio of CuO among the Cu peaks by XPS analysis is 40% or less, it is possible to provide a copper alloy powder with a low surface oxidation rate, and when it is used for lamination manufacturing, a laminate product with a low oxidation rate can be obtained. can provide.
- Method for producing copper alloy powder As an example of the method for producing the copper alloy powder 1 of the present embodiment, a gas atomization method can be adopted.
- the gas atomization method is known as a method of obtaining spherical or spherical-like powder by spraying high-pressure gas onto molten copper alloy obtained by melting a copper alloy base material.
- the copper alloy base material used here the copper alloy base material having the above-described composition can be used, or a plurality of base materials can be used so that the above-described component elements have the above-described composition ratio, and a molten alloy can be obtained.
- the alloy base material may contain inevitable impurities within the aforementioned range.
- high-purity copper having a purity of 99.99% by mass or more and less than 99.9999% by mass is used as the base material of the copper alloy base material, and a required amount of a single metal or alloy is added to this high-purity copper. It is also possible to obtain a molten copper alloy having the composition ratio described above by melting with The content of these trace elements in the copper alloy powder 1 can be measured by high frequency induction plasma emission spectrometry or the like.
- an example using a gas atomization method has been described as a method for producing the copper alloy powder 1, but other methods for producing the powder include a water atomization method, a centrifugal force atomization method, an inductively coupled plasma method, and a plasma method.
- a copper alloy powder may be produced by an atomizing method or the like. Alternatively, other generally known methods for producing powder for additive manufacturing may be applied.
- the copper alloy powder 1 obtained as described above may be appropriately heat-treated to stabilize the structure.
- the median diameter of the copper alloy powder 1 is 10 ⁇ m or more and 150 ⁇ m or less.
- a sieving method, gravity classification, centrifugal classification, or the like can be used in the classification process.
- EOS M280 trade name of Electro-Optical Systems (EOS), Germany. If the copper alloy powder 1 having an appropriate particle size and bulk density is used in this laminate-molded article, it is possible to provide a dense laminate-molded article with excellent forming accuracy.
- the copper alloy powder 1 described above contains a predetermined amount of Ni and has excellent oxidation resistance, so even if it is stored in a hot and humid environment, it does not easily oxidize or discolor. Also, after heating to a high temperature such as 200° C., the change in laser absorptance is small. Therefore, stable heat generation can be obtained from the copper alloy powder 1 when laser irradiation is performed to form a laminate-molded article. Therefore, a stable heat generation and melting state can be obtained when manufacturing a laminate-molded article, and a laminate-molded article can be produced with a desired shape and formation accuracy.
- the copper alloy powder 1 described above contains 45% by mass or more of Cu, it has excellent antibacterial properties based on the inherent antibacterial properties of Cu. Therefore, even when the laminate-molded article is a doorknob or other molded article that touches the user, it is possible to provide a doorknob or other molded article having excellent antibacterial properties. Moreover, since it is excellent in discoloration resistance as a laminate-molded article, even if the laminate-molded article is a laminate-molded article such as a doorknob that is visually observed by a user, it is possible to provide a laminate-molded article whose surface is less likely to be discolored.
- Table 1 shows the average particle size and loose bulk density of the copper alloy powder with each composition ratio. The average particle size and loose bulk density of each copper alloy powder were measured by the methods described below.
- Average particle size measurement of copper alloy powder The average particle size of the copper alloy powder was measured as follows. The particle size distribution (particle size distribution) was measured by a wet method using a laser diffraction/scattering particle size distribution analyzer (MT3300EXII manufactured by Microtrack). From the obtained results, the volume-based 50% cumulative particle size was obtained, and the obtained value was taken as the average particle size. "Ratio between loose bulk density and true density of copper alloy powder" The loose bulk density of the copper alloy powder was measured as follows.
- the powder is allowed to fall naturally through a 50-mesh sieve and filled into a container
- Loose bulk density was measured.
- a simple average value of the results of three measurements was obtained, and the obtained value was taken as the loose bulk density of the powder.
- the true density of the copper alloy powder was measured as follows.
- the true density was measured by the gas replacement method using an Ultra Pycnometer Model 1000 manufactured by QURNTACHROME INSTRUMENTS.
- the ratio of the powder loose bulk density to the powder true density was calculated from the obtained powder loose bulk density (Da) and powder true density (Dt) values.
- the Cu2p3/2 peak was first separated into two peaks of 933.7 eV derived from CuO and 932.5 to 932.7 eV derived from Cu or Cu 2 O.
- the ratio of the integrated intensity values of each peak was defined as the abundance ratio. Note that Cu and Cu 2 O each have a peak in the energy band of 932.5 to 932.7 eV, and it is difficult in principle to separate the peaks. did.
- the ratio of CuO in the Cu peak was taken as the value of CuO/(Cu+Cu 2 O+CuO).
- Antibacterial evaluation method The antibacterial properties were evaluated by the following simple antibacterial test method. Following JIS Z 2801, a test was conducted by inoculating bacteria on a sample (laminated product) by a film method. A laminate-molded article was produced as follows. Using a copper alloy powder sample, an EOS M280 (3D printer) was used to produce a layered product of 50 ⁇ 50 mm and a thickness of 1 mm. The test time was 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 minutes, and after a certain period of time, the bacteria were collected and the viable count was measured. Escherichia coli (ATCC8739 strain) designated by JIS was used as the bacterial strain.
- T 1/10 the time (T 1/10 ) at which the number of viable bacteria became 1/10 was measured.
- the number of viable bacteria was measured at each of the five measurement points, and the average value was calculated to obtain T 1/10 .
- T 1/10 10 minutes or less
- the antibacterial properties were evaluated as being excellent, and were marked with " ⁇ " (excellent) in the table.
- T 1/10 was more than 10 minutes and 20 minutes or less
- the antibacterial properties were evaluated as good, and indicated as "Good” in the table.
- T 1/10 was more than 20 minutes and 100 minutes or less, the antibacterial properties were evaluated as acceptable, and indicated as " ⁇ " (fair) in the table.
- the discoloration resistance of the copper alloy powder was evaluated by the following discoloration resistance test.
- an EOS M280 (3D printer) was used to produce a 10 mm square (10 mm on a side) cube-shaped layered product.
- the surface of the layered product was polished with #1000 emery paper.
- the laminate-molded article was placed in a constant temperature and humidity bath so that the polished surface faced upward, and each sample (laminate-molded article) was exposed to an atmosphere at a temperature of 60° C. and a relative humidity of 95%.
- the test time was 24 hours, and after the test, the sample was taken out and the change in appearance of the upper surface, which was the polished surface, was confirmed.
- the discoloration resistance was evaluated as follows. When no change in appearance was observed over the entire surface, the color fastness was evaluated as being excellent, and was described as "excellent” in Table 1. When discoloration occurred only on half or less of the entire surface, the discoloration resistance was evaluated as good, and is indicated as "good” in Table 1. When discoloration was observed over half or more of the entire surface, it was evaluated as having poor discoloration resistance, and was described as "x" (poor) in Table 1. The discoloration of appearance referred to here was judged as follows.
- the color difference (color difference before and after the test) indicated by the color difference ⁇ E was measured according to JIS 8781-4 by the SCI (specular reflection included) method.
- the color difference before and after the test was 5 or more, it was determined that the appearance was discolored.
- the color difference represents the change in color before and after the test, and when the color difference is 5 or more, it can be visually confirmed that the color has sufficiently changed.
- the endurance test is a test in which the sample is heated to 200° C. in an air atmosphere and held for 60 minutes.
- the rate of change in laser absorptance before and after the durability test is preferably ⁇ 50% or less (-50% to 50%), more preferably ⁇ 20% or less (-20% to 20%).
- Table 1 The above measurement results are summarized in Table 1 below.
- Examples 1 to 25 of the present invention are excellent in discoloration resistance in a constant temperature and humidity chamber, and have a small rate of change in laser absorptance. Of course, Examples 1 to 25 of the present invention are also excellent in antibacterial properties. In Examples 1 to 25 of the present invention, the ratio Da/Dt between the powder loose bulk density Da and the powder true density Dt was 0.4 or more. From these results, it is clear that the copper alloy powder according to the present embodiment is excellent in discoloration resistance and antibacterial properties, and has little change in laser absorptance after heating at a high temperature of 200°C.
- the pure copper powder of Comparative Example 1 has excellent antibacterial properties, but has a problem of discoloration resistance in a constant temperature and humidity bath, and a large rate of change in laser absorptance.
- the amount of Ni was 70% by mass and the amount of Cu was 30% by mass, and the ratio of Ni was high, so the color resistance was excellent, and the rate of change in laser absorptance was also excellent.
- the antibacterial property is slightly inferior and the Ni content is as high as 70% by mass, resulting in a high cost and not suitable for mass production.
- the Ni content was 3% by mass and the Cu content was 97% by mass, and the ratio of Ni was small.
- the abundance ratio Cu/O of each element obtained from the peaks of Cu and O in XPS analysis is 0.10 or more, specifically 0.14 to was 0.37.
- the total of Cu and Cu 2 O (Cu + Cu 2 O) and the ratio of CuO (Cu + Cu 2 O) / CuO is 1 or more, Specifically, it was 1.50 to 8.25.
- the ratio of CuO in the Cu peak in the XPS analysis was 40% or less, specifically 11 to 40%.
- the copper alloy powder of the present embodiment is suitably applied as a raw material powder for producing a laminate-molded article using metal AM.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
更に、酸化しやすい場合は大気との反応等により粉末自体の変色(酸化皮膜形成)が起きてしまうことが懸念される。その際、レーザー溶融式の積層造形を行う場合に、酸化被膜の有無や酸化被膜の形態、厚さによりレーザーの吸収性が粉末間で変動してしまい、溶融挙動が安定せず、安定した品質の造形物を得られないという問題点があった。また、粉末床溶融結合方式(PBF)においては、銅粉末の耐酸化性が低い場合、未溶融の銅粉末も溶融部からの伝熱によって大気と反応して酸化してしまうという問題があり、未溶融粉末のリサイクル性を低下させる一因となっている。
そのため、耐酸化性に優れていること、つまり、表面酸化生成物皮膜の状態が安定していることが、レーザー溶融式の積層造形を行う際のレーザーによる溶融挙動を安定化できるという観点、および、粉末のリサイクル性を向上させるという観点で求められている。
また、積層造形物が使用者の手に触れる物、使用者の目視可能な物である場合、表面にCuの酸化反応に起因して生成される変色相が存在すると意匠性が著しく低下し、酸化の程度によっては手触り性も低下するので、Niを上述の範囲の量で含有することが望ましい。
また、NiとともにZnを上述の範囲の量で含むことでレーザー吸収性についても良好となり、大きな悪影響となる問題はない。
XPS分析によるCuとOのピークから求めた元素の存在比率Cu/Oが0.10以上であるならば、表面酸化の程度の低い銅合金粉末を提供でき、積層造形用途とした場合に酸化の程度の低い積層造形物を提供できる。
XPS分析によるCuのピークのうち、(Cu+Cu2O)/CuOが1以上であるならば、表面酸化の程度の低い銅合金粉末を提供でき、積層造形用途とした場合に酸化の程度の低い積層造形物を提供できる。
XPS分析によるCuのピークのうち、CuOの比率が40%以下であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
表面酸化生成物皮膜の厚みが3μm以下であるならば、表面酸化生成物皮膜の厚みが少ないので、積層造形用途とした場合に酸化物の割合の少ない積層造形物を提供できる。
表面酸化生成物皮膜は、FIB(Focused Ion Beam)法を用いて粉末の断面を観察用に加工し、その後、断面をSEMにて観察し、酸化生成物の皮膜の厚みを確認した。
体積平均粒径が上述の範囲であれば、積層造形用途とした場合に粉末凝集が生じ難く、流動性の低下を生じ難い。また、粉末粒径が適切な大きさであるため、均一な粉末積層が可能となり、造形不良を生じない。
Da/Dtを0.4以上にすることにより、粉末積層時の空隙を小さくすることができ、レーザーによる溶融後において積層造形物の密度低下を防止できる。
(12)本発明の一態様に係る銅合金粉末において、抗菌性を有することが好ましい。
このため、レーザーの照射に伴い、安定した状態で発熱を得ることができ、溶融挙動の安定した状態で積層造形物を製造可能な銅合金粉末を提供できる。
図1は本発明に係る第1実施形態の積層造形用銅合金粉末(粒子)の一部を破断して示した側面図である。
本実施形態の銅合金粉末1は、銅合金からなる粉末本体2の外周面に表面酸化生成物皮膜3が形成されてなる。本実施形態の銅合金粉末1は、一例として球形状あるいはそれに類似する形状の粉末本体2と、その外周面全体を薄く覆っている表面酸化生成物皮膜3を有する。なお、表面酸化生成物皮膜3については備えてない構造が望ましいが、形成されていたとして、できる限り薄いことが望ましく、表面酸化生成物皮膜3の膜厚は、後述する範囲程度とすることが望ましい。
以下に各成分の限定理由について説明する。
「Ni:5質量%以上50質量%以下」
NiをCuに含有させて銅合金とした場合、Niは銅合金粉末1の耐酸化性の向上に寄与する元素である。上述の範囲の適切な量のNiを含有することで銅合金粉末を提供できる。容易に酸化しないことにより、積層造形物を形成する場合のレーザーの照射時に、酸化に起因するレーザー吸収性の変化を引き起こさない。このため、レーザーの照射に伴い、安定した状態で発熱を得ることができ、溶融挙動の安定した状態で積層造形物を製造可能とする。
また、Niを上述の範囲の量で含む銅合金粉末は、耐熱試験後のレーザー吸収率の変化率が少ないことからも、積層造形などの用途に望ましいことが分かる。
積層造形物が使用者の手に触れる物、使用者の目視可能な物である場合、表面にCuの酸化反応に起因する生成物相が存在すると、意匠性が著しく低下し、手触り性も低下するので、Niを上述の範囲の量で含有することが望ましい。なお、Niは銅合金粉末1に含有させる元素の中では高価な元素であり、粉末の低コスト化のためにNi含有量は低い方が望ましい。Niの含有量を低く抑える場合、以下に説明するZnを銅合金粉末1に比較的多く含有させることができる。Ni含有量は、5質量%以上45質量%以下の範囲が好ましく、7質量%以上40質量%以下の範囲がより好ましい。
なお、Cuの含有量の上限は95質量%である。また、粉末本体2を構成する銅合金の組成として、前記NiとCuに加え、Znを1質量%以上42質量%以下含有することができる。また、粉末本体2を構成する銅合金の組成として、前記NiとCuに加え、あるいは、前記NiとCuとZnに加え、Mnを7質量%以下含有することができる。
Cuは主成分であり、銅合金粉末1の抗菌性を確保するためには45質量%以上含有することが望ましく、耐酸化性を発現するために必要なNi含有量の下限を考慮し、95質量%以下含有することが望ましい。Cuを45質量%以上含有することで積層造形物とした場合に積層造形物の表面に充分な量のCuを含む相を露出する事が可能となり、Cuが本来有する抗菌作用により抗菌性に優れた積層造形物を提供できる。
Znは、Cuに対し固溶範囲が広く、Cuの置き換えとして比較的多くのZnを含有させたとしても、本形態の目的を達成できる銅合金粉末を得やすい。また、Niを上述の範囲の量で含んでいる銅合金に対し上述の範囲のZnを添加しても、耐酸化性に対し大きな悪影響はない。また、NiとともにZnを上述の範囲の量で含むことで、レーザー吸収性についても良好となり、大きな悪影響となる問題はない。このため、銅合金粉末1をできるだけ低コスト化するためにも、Niの含有量を少なくしてZnを適量含有させることが望ましい。Zn含有量に関し、5質量%以上40質量%以下の範囲がより好ましい。
MnはNiとともにCuに対し広い範囲で固溶する元素であり、上述の範囲の量で添加することに問題はない。Cuが本来有する抗菌性を損なわず、Niを上述の範囲の量で含有することにより得られる耐酸化性を損なうことなくMnを添加する場合、上述の範囲の量で添加することができる。Mn含有量として、0.5質量%以上7質量%以下の範囲を選択することができる。Mn含有量に関し、0.7質量%以上5.5質量%以下の範囲がより好ましい。
本形態の銅合金粉末1には、その他の元素としてFe、Al、Si、Sn、Pから選択される1種または2種以上を0.1質量%以上10質量%以下程度の量で含有していても良い。
また、その他の不純物元素は、0.1質量%以下程度の量で、不純物として含有していても良い。本形態の合金を溶製から製造する場合、Ag、Sなどは原料に不可避不純物として混入することがある。Ag、Sなどの元素を上述の範囲の量の不純物として含有していても差し支えない。勿論、その他の不純物元素を上述の範囲の量で含有していても差し支えない。
銅合金粉末1のメディアン径(体積基準の50%平均粒子径、体積平均粒径)は積層造形用途とした場合、10μm以上、150μm以下であることが好ましい。銅合金粉末1のメディアン径が10μm未満では、粉末の凝集により流動性が低下し、積層造形用原料粉末として不適になる可能性がある。銅合金粉末1のメディアン径が150μmを超える範囲では、銅合金粉末1の粒径が大き過ぎるため、均一な粉末積層や供給が出来なくなり、造形不良等の原因となる恐れがある。より好ましい銅合金粉末のメディアン径は、積層造形の手法や装置構成によって異なるが、PBF方式(Powder Bed Fusion)においては10μm以上、60μm以下、DED方式(Directed Energy Deposition)においては50μm以上、150μm以下程度である。
銅合金粉末1は積層造形用途とした場合、粉末ゆるみかさ密度Daと粉末真密度Dtの比Da/Dtが0.4以上であることが好ましい。
銅合金粉末1のDa/Dtが0.4未満では、粉末積層時の空隙が多くなり、レーザー溶融後の積層造形物において造形物の密度が低下するおそれがある。また、Da/Dtを0.4以上にすることにより、粉末積層時の空隙を小さくすることができ、レーザーによる溶融後において積層造形物の密度低下を防止できる。
さらに好ましくは、銅合金粉末1のDa/Dtが0.5以上である。
本形態の銅合金粉末1の表面には表面酸化生成物皮膜3が形成されていないことが望ましいが、膜厚3μm以下の薄い表面酸化生成物皮膜3であれば形成されていても良い。また、この表面酸化生成物皮膜3について以下の状態であることが望ましい。
銅合金粉末1の表面のXPS分析(表面酸化生成物皮膜3のXPS分析)において、CuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上であることが好ましい。
XPS分析によるCuとOのピークから求めた元素の存在比率Cu/Oが0.10以上であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
XPS分析によるCuのピークのうち、比率(Cu+Cu2O)/CuOが1以上であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
銅合金粉末1の表面のXPS分析(表面酸化生成物皮膜3のXPS分析)において、CuのピークのうちCuOの比率が40%以下であることが好ましい。
XPS分析によるCuのピークのうち、CuOの比率が40%以下であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
本実施形態の銅合金粉末1の製造方法としては、一例として、ガスアトマイズ法を採用できる。ガスアトマイズ法は、銅合金母材を溶解して得た銅合金溶湯を用い、高圧ガス噴霧により球状または球状に類似する形状の粉末を得る手法として知られている。
ここで用いる銅合金母材として、前述の組成の銅合金母材を用いるか、前述の成分元素が前述の組成比となるように複数の母材を用いて合金溶湯とすることができる。また、合金母材には不可避不純物が前述の範囲含まれていても良い。
また、銅合金母材の基となる高純度銅として、純度99.99質量%以上99.9999質量%未満の高純度銅を用い、この高純度銅に必要量の単体金属あるいは合金を添加して溶解することにより上述の組成比の銅合金溶湯を得ることもできる。
銅合金粉末1におけるこれら微量元素の含有量の測定は、高周波誘導プラズマ発光分析法などにより実施することができる。
この積層造形物において、適切な粒径とかさ密度の銅合金粉末1を用いるならば、形成精度に優れ、緻密な積層造形物を提供できる。
表1に本発明例1~25の銅合金粉末と比較例1~3の銅合金粉末の組成を示す。
銅合金粉末の平均粒径は、以下のように測定した。レーザ回折・散乱式粒子径分布測定装置(マイクロトラック社製 MT3300EXII)を用い、湿式により粒子径分布(粒度分布)を測定した。得られた結果より体積基準の50%累積粒径を求め、その値を平均粒径とした。
「銅合金粉末のゆるみかさ密度と真密度の比」
銅合金粉末のゆるみかさ密度は、以下のように測定した。日本粉体工業技術協会規格 SAP05-98:2013に準じて、ホソカワミクロン社製パウダテスターPT-Xを用い、粉体を、50メッシュのふるいを通して自然落下させて容器に充填させたときのゆるみかさ密度を測定した。3回の測定の結果の単純平均値を求め、その値を粉末ゆるみかさ密度とした。
銅合金粉末の真密度は、以下のように測定した。QURNTACHROME INSTRUMENTS社製 ウルトラピクノメータ1000型を用い、気体置換法によって真密度を測定した。
得られた粉末ゆるみかさ密度(Da)と粉末真密度(Dt)の値から粉末ゆるみかさ密度と粉末真密度の比を算出した。
次に、銅合金粉末試料(本発明例1~25と比較例1~3)を用い、EOS社のM280(3Dプリンタ)を用いて、50×50mm、厚み1mmの積層造形物、及び10mm角(一辺が10mm)のキューブ状の積層造形物を作製した。
得られた積層造形物について、抗菌作用(抗菌性)、耐変色性を以下に説明する方法で評価した。
対象の試料のうち本発明例1と本発明例4に対し、XPS(X線光電分光法)にて表面φ200μmの領域に対して分析を行った。XPSの測定結果を表2に示す。
なお、XPSの測定結果は、同一組成の試料について、複数回測定した時の最小値と最大値を記載した。
表面のCuおよびOのピークについてそれぞれ積分強度値を取得し、相対感度係数法による濃度換算を実施し、CuとOの存在比率を求めて、Cu/Oの比率を算出した。
表面のCu、Cu2O、CuOの比率については、Cuのピークを用い、化学状態分離をして求めた。具体的には、まずCu2p3/2ピークについて、CuO由来の933.7eV、およびCuまたはCu2O由来の932.5~932.7eVの二つのピークに分離した。そして各ピークの積分強度値の比をそれぞれの存在量比とした。なお、CuとCu2Oは932.5~932.7eVのエネルギー帯にそれぞれにピークを持ち、原理的にピーク分離が難しいため、CuとCu2Oを合わせた存在量(合計量)として算出した。
また、CuのピークのうちCuOの比率は、CuO/(Cu+Cu2O+CuO)の値とした。
抗菌性は、以下の簡易抗菌性試験法により評価した。JIS Z 2801に倣い、フィルム法にて試料(積層造形物)上に菌を播種して試験を行った。積層造形物は、以下のように作製した。銅合金粉末試料を用い、EOS社のM280(3Dプリンタ)を用いて、50×50mm、厚み1mmの積層造形物を作製した。試験時間は10、20、30、40、50、60、70、80、90、100minの条件で試験を行い、それぞれ一定時間経過後、菌を回収し、生菌数を測定した。菌種としてはJIS指定の大腸菌(ATCC8739株)を用いた。
その結果から生菌数が1/10になる時間(T1/10)の測定を行った。なお、5箇所のそれぞれの測定点で生菌数を測定し、その平均値を算出してT1/10を求めた。
T1/10が10分以下の場合に抗菌性が優れていると評価し、表中に「◎」(excellent)と記載した。T1/10が10分超え20分以下の場合に抗菌性が良好であると評価し、表中に「○」(good)と記載した。T1/10が20分超え100分以下の場合に抗菌性が可であると評価し、表中に「△」(fair)と記載した。100分超えても生菌数が1/10にならなかった場合に抗菌性が悪いと評価し、表中に「×」(poor)と記載した。なお、積層造形物と同じ組成である粒子にも同等の抗菌性があると考えられる。
銅合金粉末の耐変色性は、以下の耐変色性試験により評価した。銅合金粉末試料を用い、EOS社のM280(3Dプリンタ)を用いて10mm角(一辺が10mm)のキューブ状の積層造形物を作製した。積層造形物の表面をエメリー紙#1000にて研磨を行った。次いで、研磨面が上部となる様に積層造形物を恒温恒湿槽内に配置し、温度60℃、相対湿度95%の雰囲気中に各サンプル(積層造形物)を暴露した。
試験時間は24時間とし、試験後に試料を取り出し、研磨面である上部の面の外観の変化を確認した。
耐変色性を以下のように評価した。外観上の変化が全面にわたって確認されなかった場合を耐変色性が優れていると評価し、表1中に「◎」(excellent)と記載した。外観の変色が全面の半分以下にのみ発生した場合を耐変色性が良好であると評価し、表1中に「○」(good)と記載した。全面の半分以上にわたって外観の変色が見られた場合を耐変色性が悪いと評価し、表1中に「×」(poor)と記載した。
ここでいう外観の変色は、以下のように判定した。コニカミノルタ製の分光測色計「CM-700d」を使用し、SCI(正反射光込み)方式でJIS 8781-4に従い色差ΔEで示される色差(試験前後での色差)を測定した。試験前後での色差が5以上の場合を外観が変色したと判定した。色差は試験前後での色の変化を表し、色差が5以上では目視で十分に変色していることを確認できる。
各試料について、耐久試験前後の波長1064nmのレーザーに対する耐久試験前後のレーザー吸収率の変化率について求めた。耐久試験とは、大気雰囲気中において200℃に加熱し、60分間保持する試験を行うことである。
耐久試験前後のレーザー吸収率の変化率が±50%以下(-50%~50%)のものが好ましく、±20%以下(-20%~20%)のものがより好ましい。
以上の測定結果をまとめて以下の表1に記載する。
本発明例1~25は、粉末ゆるみかさ密度Daと粉末真密度Dtの比Da/Dtが0.4以上であった。
これらの結果から、本実施形態に係る銅合金粉末であれば、耐変色性と抗菌性に優れ、200℃高温加熱後のレーザー吸収率の変化も少ないことが明らかである。
比較例2では、Ni量が70質量%でCu量が30質量%であり、Niの割合が多いため、耐変色性には優れ、レーザー吸収率の変化率にも優れていた。しかし、やや抗菌性に劣ると共にNiの含有量が70質量%と多いため高コストとなり、量産には適さない。
比較例3では、Ni量が3質量%でCu量が97質量%であり、Niの割合が小さいため、耐変色性に劣り、レーザー吸収率の変化率にも劣った。
また、表2に示すように本発明例1、4では、XPS分析におけるCuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上、具体的には0.14~0.37であった。
表2に示すように本発明例1、4では、XPS分析におけるCuのピークのうち、CuとCu2Oの合計(Cu+Cu2O)とCuOの比率(Cu+Cu2O)/CuOが1以上、具体的には、1.50~8.25であった。
表2に示すように本発明例1、4では、XPS分析におけるCuのピークのうちCuOの比率が40%以下、具体的には、11~40%であった。
Claims (12)
- Niを5質量%以上50質量%以下含有する銅合金からなることを特徴とする銅合金粉末。
- 前記銅合金粉末におけるCuの含有量が45質量%以上95質量%以下であることを特徴とする請求項1に記載の銅合金粉末。
- Znを1質量%以上42質量%以下含有することを特徴とする請求項1または請求項2に記載の銅合金粉末。
- Mnを7質量%以下含有することを特徴とする請求項1から請求項3のいずれか一項に記載の銅合金粉末。
- 粉末表面のXPS分析におけるCuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上であることを特徴とする請求項1から請求項4のいずれか一項に記載の銅合金粉末。
- 粉末表面のXPS分析におけるCuのピークのうち、CuとCu2Oの合計(Cu+Cu2O)とCuOの比率(Cu+Cu2O)/CuOが1以上であることを特徴とする請求項1から請求項5のいずれか一項に記載の銅合金粉末。
- 粉末表面のXPS分析におけるCuのピークのうちCuOの比率が40%以下であることを特徴とする請求項1から請求項6のいずれか一項に記載の銅合金粉末。
- 表面に形成された表面酸化生成物皮膜の厚みが3μm以下であることを特徴とする請求項1から請求項7のいずれか一項に記載の銅合金粉末。
- 体積平均粒径が10μm以上150μm以下であることを特徴とする請求項1から請求項8のいずれか一項に記載の銅合金粉末。
- 粉末ゆるみかさ密度Daと粉末真密度Dtの比Da/Dtが0.4以上であることを特徴とする請求項1から請求項9のいずれか一項に記載の銅合金粉末。
- 積層造形用であることを特徴とする請求項1から請求項10のいずれか一項に記載の銅合金粉末。
- 抗菌性を有することを特徴とする請求項1から請求項11のいずれか一項に記載の銅合金粉末。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280077121.9A CN118317845A (zh) | 2022-02-09 | 2022-02-09 | 铜合金粉末 |
PCT/JP2022/005129 WO2023152831A1 (ja) | 2022-02-09 | 2022-02-09 | 銅合金粉末 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/005129 WO2023152831A1 (ja) | 2022-02-09 | 2022-02-09 | 銅合金粉末 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023152831A1 true WO2023152831A1 (ja) | 2023-08-17 |
Family
ID=87563826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005129 WO2023152831A1 (ja) | 2022-02-09 | 2022-02-09 | 銅合金粉末 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118317845A (ja) |
WO (1) | WO2023152831A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016211062A (ja) | 2015-05-13 | 2016-12-15 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
WO2018062527A1 (ja) * | 2016-09-29 | 2018-04-05 | Jx金属株式会社 | レーザー焼結用表面処理金属粉 |
WO2018199110A1 (ja) * | 2017-04-28 | 2018-11-01 | 古河電気工業株式会社 | 銅合金粒子、表面被覆銅系粒子および混合粒子 |
JP2019070169A (ja) | 2017-09-04 | 2019-05-09 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
JP2019522730A (ja) * | 2016-05-13 | 2019-08-15 | ナノコア テクノロジーズ | 添加剤製造に使用するための焼結可能な金属ペースト |
-
2022
- 2022-02-09 WO PCT/JP2022/005129 patent/WO2023152831A1/ja active Application Filing
- 2022-02-09 CN CN202280077121.9A patent/CN118317845A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016211062A (ja) | 2015-05-13 | 2016-12-15 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
JP2019522730A (ja) * | 2016-05-13 | 2019-08-15 | ナノコア テクノロジーズ | 添加剤製造に使用するための焼結可能な金属ペースト |
WO2018062527A1 (ja) * | 2016-09-29 | 2018-04-05 | Jx金属株式会社 | レーザー焼結用表面処理金属粉 |
WO2018199110A1 (ja) * | 2017-04-28 | 2018-11-01 | 古河電気工業株式会社 | 銅合金粒子、表面被覆銅系粒子および混合粒子 |
JP2019070169A (ja) | 2017-09-04 | 2019-05-09 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
Also Published As
Publication number | Publication date |
---|---|
CN118317845A (zh) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI445827B (zh) | A powder containing sintered elements containing Cu, In, Ga and Se, a sintered body and a sputtering target, and a method for producing the powder | |
KR102640080B1 (ko) | 고내식-고광택 알루미늄계 스퍼터링 타겟 합금 조성, 미세구조 및 그 제조 방법 | |
CA3057056C (en) | Copper alloy powder for lamination shaping, lamination shaped product production method, and lamination shaped product | |
WO2019230018A1 (ja) | Cu基合金粉末 | |
JPWO2019017467A1 (ja) | 銅粉、それを用いた光造形物の製造方法、および銅による光造形物 | |
JP2018199862A (ja) | 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法 | |
JP7119266B2 (ja) | 銅合金粉末 | |
JP7425634B2 (ja) | Cu基合金粉末 | |
WO2021015119A1 (ja) | Cu基合金粉末 | |
TWI765758B (zh) | 具有Si被膜之銅合金粉及其製造方法 | |
WO2023152831A1 (ja) | 銅合金粉末 | |
JP2022188809A (ja) | 銅合金粉末、および、積層造形物 | |
TWI515316B (zh) | FePt sputtering target and its manufacturing method | |
JP7419290B2 (ja) | 導電性に優れた積層造形用の銅合金粉末 | |
JP6377230B1 (ja) | Mn−W−Cu−O系スパッタリングターゲット及びその製造方法 | |
EP3760342B1 (en) | Copper alloy powder having excellent laser absorptivity | |
JP7394241B2 (ja) | 積層造形用銅合金粉末とその評価方法、銅合金積層造形体の製造方法および銅合金積層造形体 | |
JP2017025349A (ja) | Te−Ge系スパッタリングターゲット、及び、Te−Ge系スパッタリングターゲットの製造方法 | |
JP2023012810A (ja) | 銅基粉、その製造方法、および銅基粉を用いた光造形物の製造方法 | |
CN104718308B (zh) | Cu‑Ga二元系溅射靶及其制造方法 | |
JP2020094278A (ja) | 絶縁被膜軟磁性合金粉末 | |
JP6028714B2 (ja) | Cu−Ga合金スパッタリングターゲットの製造方法 | |
JP7424108B2 (ja) | 熱処理済未燒結積層造形用銅合金粉末及びその製造方法 | |
WO2023181329A1 (ja) | 積層造形用銅合金粉末とその製造方法および評価方法、銅合金積層造形体の製造方法および銅合金積層造形体 | |
JP7288341B2 (ja) | 軟磁性粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22925852 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280077121.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022925852 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022925852 Country of ref document: EP Effective date: 20240909 |