WO2023151192A1 - 一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮 - Google Patents

一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮 Download PDF

Info

Publication number
WO2023151192A1
WO2023151192A1 PCT/CN2022/090287 CN2022090287W WO2023151192A1 WO 2023151192 A1 WO2023151192 A1 WO 2023151192A1 CN 2022090287 W CN2022090287 W CN 2022090287W WO 2023151192 A1 WO2023151192 A1 WO 2023151192A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution polymerization
aliphatic polyketone
solvent
catalyst
particle size
Prior art date
Application number
PCT/CN2022/090287
Other languages
English (en)
French (fr)
Inventor
裴立军
任照玉
刘英贤
王朋朋
曹丽艳
张朋朋
王瑞静
Original Assignee
黄河三角洲京博化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄河三角洲京博化工研究院有限公司 filed Critical 黄河三角洲京博化工研究院有限公司
Priority to EP22902467.4A priority Critical patent/EP4253447A1/en
Priority to JP2023536145A priority patent/JP2024509025A/ja
Publication of WO2023151192A1 publication Critical patent/WO2023151192A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of chemical industry, and more specifically relates to a method for preparing aliphatic polyketone by continuous solution polymerization and the aliphatic polyketone.
  • Carbon monoxide is a major by-product of many petroleum, coal and other energy and petrochemical industries. Converting carbon monoxide into high value-added products is an important link in the chemical industry. Today, when oil resources are decreasing and resource crises are becoming more and more serious, In the era of "carbon neutrality", the development of one-carbon chemical industry has very important practical significance and broad development prospects.
  • Polyketone (POK) is a new type of green polymer material obtained by the copolymerization of carbon monoxide and olefins. Carbon monoxide accounts for about 50% of the total mass of polyketone. It has excellent environmental friendliness in terms of raw material composition and energy consumption. Excellent impact strength, chemical resistance, abrasion resistance, gas barrier and flame retardancy, can replace PA, PBT, POM, EVOH and other materials in automotive, electronics and packaging applications, making it have a wide range of application prospects.
  • the purpose of the present invention is to provide a new method for preparing aliphatic polyketones by continuous solution polymerization and the prepared aliphatic polyketones.
  • the new method provided by the present invention can solve the problem of polymer particle morphology in the slurry process Problems such as difficulty in regulation, easy wall hanging of materials, low output of a single kettle, poor product repeatability, poor mass transfer, and poor heat transfer ensure the smoothness of the polyketone production process and greatly improve product quality, production capacity, and equipment investment.
  • the invention provides an aliphatic polyketone prepared by a continuous solution polymerization method, wherein the aliphatic polyketone is obtained by continuous solution polymerization of carbon monoxide and an olefin compound in a solvent system containing a catalyst; the aliphatic polyketone
  • the particle size is 10 ⁇ m-50 ⁇ m, the particle size distribution width Span is 0.5-0.9, and the bulk density is >0.35g/ml.
  • the weight average molecular weight of the aliphatic polyketone is >200,000, and the molecular weight distribution is ⁇ 2.0.
  • the catalyst-containing solvent system is a mixed solvent containing a catalyst, a co-catalyst and a co-solvent.
  • the catalyst is an organometallic complex of a divalent palladium salt and a bidentate phosphine ligand;
  • the divalent palladium salt is one or more of palladium nitrate, palladium sulfate, palladium sulfonate and palladium acetate;
  • the bidentate phosphine ligand has a structure shown in formula (I):
  • R 1 , R 2 , R 3 and R 4 are independently selected from phenyl or substituted phenyl, and R 5 is an alkylene group containing at least 3 carbon atoms.
  • the cocatalyst is selected from one or more of sulfuric acid, benzenesulfonic acid, perchloric acid, trichloroacetic acid and trifluoroacetic acid.
  • the co-solvent is a carboxylic acid functionalized imidazolium salt, which has a structure shown in formula (II):
  • -NM 3 is an imidazole substituent
  • X is trifluoroacetate, trifluorosulfonate or hexafluorophosphate.
  • the mixed solvent is a mixed solvent of o-chlorophenol and methanol, a mixed solvent of m-cresol and methanol, a mixed solvent of hexafluoroisopropanol and methanol, or a mixed solvent of DMF and methanol.
  • the present invention also provides a method for preparing the aliphatic polyketone described in the above technical scheme by continuous solution polymerization, comprising the following steps:
  • the temperature of the solution polymerization reaction in step a) is 100°C-110°C, and the pressure is 6.5MPa-7MPa;
  • the residence time of described solution polymerization is controlled by controlling monomer and solvent feed rate
  • the solution polymerization reaction adopts a microchannel reactor, monomers are continuously fed, unreacted monomers are separated and reused, and products are continuously discharged.
  • said step a) also includes:
  • the reaction liquid obtained by the polymerization reaction is subjected to gas-liquid separation, the gas is reused, and the solvent is removed from the liquid to obtain polyketone powder;
  • the solvent removal method is flash evaporation; the recovered solvent can be recycled as a mixed solvent.
  • the invention provides a method for preparing aliphatic polyketone by continuous solution polymerization and aliphatic polyketone; the method comprises the following steps: a) continuously feeding carbon monoxide, olefin compound and a solvent system containing a catalyst to a continuous flow reactor solution polymerization in a medium to obtain aliphatic polyketone; the particle size of the aliphatic polyketone is 10 ⁇ m to 50 ⁇ m, the particle size distribution width Span is 0.5 to 0.9, and the bulk density is >0.35 g/ml.
  • the method provided by the invention selects carboxylic acid functionalized imidazolium salt as a cosolvent, mixed solvents such as o-chlorophenol and methanol, m-cresol and methanol, hexafluoroisopropanol and methanol, DMF and methanol as continuous , Solution polymerization reaction solvent, the reaction adopts continuous flow reactor for continuous feeding and continuous discharging, which effectively solves the difficulty in controlling the shape of polymer particles in the traditional batch and slurry processes, the material is easy to hang on the wall, the output of a single tank is low, and the product is repeated.
  • mixed solvents such as o-chlorophenol and methanol, m-cresol and methanol, hexafluoroisopropanol and methanol, DMF and methanol
  • Fig. 1 is the scanning electron micrograph of the polyketone powder prepared by the embodiment of the present invention 1;
  • Fig. 2 is the scanning electron micrograph of the polyketone powder prepared by comparative example 1;
  • Table 1 is the particle size distribution data of the polyketone powder prepared in Example 1 of the present invention.
  • Table 2 is the particle size distribution data of the polyketone powder prepared by Comparative Example 1;
  • Table 3 is the particle size distribution data of the polyketone powder prepared in Comparative Example 2;
  • Table 4 is the particle size distribution data of the polyketone powder prepared by Example 2 of the present invention.
  • Table 5 shows the particle size distribution data of the polyketone powder prepared in Example 3 of the present invention.
  • the invention provides an aliphatic polyketone prepared by a continuous solution polymerization method, wherein the aliphatic polyketone is obtained by continuous solution polymerization of carbon monoxide and an olefin compound in a solvent system containing a catalyst; the aliphatic polyketone
  • the particle size is 10 ⁇ m-50 ⁇ m, the particle size distribution width Span is 0.5-0.9, and the bulk density is >0.35g/ml.
  • the weight average molecular weight of the aliphatic polyketone is preferably >200,000, and the molecular weight distribution is preferably ⁇ 2.0.
  • the catalyst-containing solvent system is preferably a mixed solvent containing a catalyst, a co-catalyst and a co-solvent.
  • the catalyst is preferably an organometallic complex of divalent palladium salt and bidentate phosphine ligand; wherein, the divalent palladium salt is preferably palladium nitrate, palladium sulfate, palladium sulfonate and palladium acetate
  • the present invention has no special restrictions on the source of the divalent palladium salt, and adopts those skilled in the art Well-known commercially available products will suffice.
  • the bidentate phosphine ligand preferably has the structure shown in formula (I):
  • R 1 , R 2 , R 3 and R 4 are independently selected from phenyl or substituted phenyl, and R 5 is an alkylene group containing at least 3 carbon atoms; preferably specifically: 1,3- Bis[bis(2-methoxyphenyl)phosphino]propane.
  • the content of the catalyst in the mixed solvent is preferably 0.01-0.05mmol/L, specifically 0.01mmol/L, 0.02mmol/L, 0.03mmol/L, 0.04mmol/L, 0.05mmol /L.
  • the cocatalyst is preferably selected from one or more of sulfuric acid, benzenesulfonic acid, perchloric acid, trichloroacetic acid and trifluoroacetic acid, more preferably sulfuric acid, benzenesulfonic acid, perchloric acid, Trichloroacetic acid or trifluoroacetic acid, more preferably trifluoroacetic acid.
  • the source of the co-catalyst is not particularly limited, and commercially available products of the above-mentioned organic and inorganic strong acids well known to those skilled in the art can be used.
  • the molar ratio of the co-catalyst to the catalyst is preferably (10-2):1, specifically 10:1, 9:1, 8:1, 7:1, 6:1, 5:1 , 4:1, 3:1, 2:1.
  • the co-solvent is preferably a carboxylic acid functionalized imidazolium salt, which has a structure shown in formula (II):
  • -NM 3 is an imidazole substituent
  • X is trifluoroacetate, trifluorosulfonate or hexafluorophosphate.
  • the co-solvent can improve the solubility of monomers and products in the solvent, and enhance the mass transfer effect.
  • the molar ratio of the co-solvent to the catalyst is preferably (5-15):1, more preferably 10:1.
  • the content of the co-solvent in the mixed solvent is preferably 0.1-0.5 mmol/L.
  • the mixed solvent is preferably a mixed solvent of o-chlorophenol and methanol, a mixed solvent of m-cresol and methanol, a mixed solvent of hexafluoroisopropanol and methanol, or a mixed solvent of DMF and methanol, more preferably hexafluoroisopropanol and methanol.
  • the mixed solvent is a mixed solvent of hexafluoroisopropanol and methanol; wherein, the volume ratio of the methanol to hexafluoroisopropanol is preferably 1: (3-6), specifically, 1:3, 1:4, 1:5, 1:6.
  • the present invention also provides a method for preparing the aliphatic polyketone described in the above technical scheme by continuous solution polymerization, comprising the following steps:
  • the catalyst-containing solvent system is preferably a mixed solvent containing a catalyst, a co-catalyst and a co-solvent.
  • the catalyst, the cocatalyst and the cosolvent are dissolved in the mixed solvent to obtain the solvent system containing the catalyst.
  • the catalyst is preferably an organometallic complex of divalent palladium salt and bidentate phosphine ligand; wherein, the divalent palladium salt is preferably palladium nitrate, palladium sulfate, palladium sulfonate and palladium acetate One or more of, more preferably palladium nitrate, palladium sulfate, palladium sulfonate or palladium acetate, more preferably palladium acetate; the present invention has no special restrictions on the source of the divalent palladium salt, and adopts those skilled in the art Well-known commercially available products will suffice.
  • the bidentate phosphine ligand preferably has the structure shown in formula (I):
  • R 1 , R 2 , R 3 and R 4 are independently selected from phenyl or substituted phenyl, and R 5 is an alkylene group containing at least 3 carbon atoms; preferably specifically: 1,3- Bis[bis(2-methoxyphenyl)phosphino]propane.
  • the content of the catalyst in the mixed solvent is preferably 0.01-0.05mmol/L, specifically 0.01mmol/L, 0.02mmol/L, 0.03mmol/L, 0.04mmol/L, 0.05mmol /L.
  • the cocatalyst is preferably selected from one or more of sulfuric acid, benzenesulfonic acid, perchloric acid, trichloroacetic acid and trifluoroacetic acid, more preferably sulfuric acid, benzenesulfonic acid, perchloric acid, Trichloroacetic acid or trifluoroacetic acid, more preferably trifluoroacetic acid.
  • the source of the co-catalyst is not particularly limited, and commercially available products of the above-mentioned organic and inorganic strong acids well known to those skilled in the art can be used.
  • the molar ratio of the co-catalyst to the catalyst is preferably (10-2):1, specifically 10:1, 9:1, 8:1, 7:1, 6:1, 5:1 , 4:1, 3:1, 2:1.
  • the co-solvent is preferably a carboxylic acid functionalized imidazolium salt, which has a structure shown in formula (II):
  • -NM 3 is an imidazole substituent
  • X is trifluoroacetate, trifluorosulfonate or hexafluorophosphate.
  • the co-solvent can improve the solubility of monomers and products in the solvent, and enhance the mass transfer effect.
  • the molar ratio of the co-solvent to the catalyst is preferably (5-15):1, more preferably 10:1.
  • the content of the co-solvent in the mixed solvent is preferably 0.1-0.5 mmol/L.
  • the mixed solvent is preferably a mixed solvent of o-chlorophenol and methanol, a mixed solvent of m-cresol and methanol, a mixed solvent of hexafluoroisopropanol and methanol, or a mixed solvent of DMF and methanol, more preferably hexafluoroisopropanol and methanol.
  • the mixed solvent is a mixed solvent of hexafluoroisopropanol and methanol; wherein, the volume ratio of the methanol to hexafluoroisopropanol is preferably 1: (3-6), specifically, 1:3, 1:4, 1:5, 1:6.
  • the present invention continuously feeds the mixed solvent of carbon monoxide, olefin compound and the above-mentioned catalyst, cocatalyst and cosolvent into the continuous flow reactor, and controls the reaction temperature, reaction pressure and residence time to carry out the solution polymerization reaction.
  • the temperature of the solution polymerization reaction is preferably 100° C. to 110° C.
  • the pressure is preferably 6.5 MPa to 7 MPa.
  • the residence time of the solution polymerization reaction is preferably controlled by controlling the feed rate of the monomer and the solvent;
  • the monomer described here is a mixture of carbon monoxide and one or more olefinic unsaturated compounds, the mixture of olefin and carbon monoxide
  • the molar ratio is preferably (0.5-5):1;
  • the solvent is the mixed solvent described in the above technical solution, and in the present invention, the solvent can be recycled.
  • the solution polymerization reaction preferably adopts a microchannel reactor, and the microchannel reactor is a continuous plug-flow reactor capable of realizing high-efficiency heat exchange and high-efficiency mass transfer. It can be completed quickly with higher temperature, higher concentration and faster mixing in time and space, so as to achieve the comprehensive effect of improving conversion rate, improving safety and improving efficiency.
  • the present invention can realize continuous feeding of monomers, separation and recycling of unreacted monomers, and continuous discharge of products.
  • the microchannel reactor is filled with nitrogen for replacement before the reaction starts, and after the replacement, the heating module of the reactor is heated up to the reaction temperature, and then continuously feeds into the reactor.
  • the present invention also includes:
  • the reaction liquid obtained by the polymerization reaction is subjected to gas-liquid separation, the gas is reused, and the solvent is removed from the liquid to obtain polyketone powder;
  • the solvent removal method is flash evaporation; the recovered solvent can be recycled as a mixed solvent.
  • the reaction liquid when the system pressure is higher than the reaction pressure, the reaction liquid starts to be continuously and stably extracted into the gas-liquid separation equipment for gas-liquid separation; the separated gas is reused, and the liquid is desolventized to obtain polyketone powder.
  • the solvent removal method is preferably flash evaporation, and a flash tank well-known to those skilled in the art can be used; the recovered solvent can be recycled as a mixed solvent.
  • the solvent is removed by means of flash evaporation to obtain dense and uniform polyketone powder, and the solvent is recovered and reused.
  • the present invention develops a continuous, solution polymerization process, preferably using a microchannel reactor, which continuously feeds and discharges materials under the premise of ensuring the normal progress of the reaction, and solves the problem of wall hanging and mass transfer caused by product aggregation in the traditional intermittent process ,
  • the problem of poor heat transfer after the reaction is completed, the reaction liquid is separated and recovered after the unreacted monomer is recovered, and the solvent is preferably removed by flash evaporation to obtain a product with uniform and stable particle shape.
  • the present invention uses the organometallic complex of divalent palladium salt and bidentate phosphine ligand as main catalyst, strong acid as cocatalyst, carboxylic acid functionalized imidazolium salt as cosolvent, selects o-chlorophenol and methanol, m-cresol and methanol , Hexafluoroisopropanol and a group of mixed solvents such as methanol, DMF and methanol as a reaction reagent, the reactants are carbon monoxide, ethylene and propylene gas, the monomer is continuously fed, the reaction temperature, pressure and residence time are controlled, and the reaction solution is continuously collected.
  • the unreacted monomer can be recycled and reused, and the solvent can be removed and reused by flash evaporation to obtain a weight-average molecular weight of >200,000, a molecular weight distribution of ⁇ 2.0, a powder particle size of 10 ⁇ m to 50 ⁇ m, and a particle size distribution width of Span of 0.5 ⁇ 0.9, polyketone powder with bulk density >0.35g/ml.
  • the mass transfer and heat transfer effects of the slurry polymerization process mentioned in the present invention are poor, and the obtained polyketone product particles are relatively large, fluffy, and have serious wall hanging.
  • the invention provides a method for preparing aliphatic polyketone by continuous solution polymerization and aliphatic polyketone; the method comprises the following steps: a) continuously feeding carbon monoxide, olefin compound and a solvent system containing a catalyst to a continuous flow reactor solution polymerization in a medium to obtain aliphatic polyketone; the particle size of the aliphatic polyketone is 10 ⁇ m to 50 ⁇ m, the particle size distribution width Span is 0.5 to 0.9, and the bulk density is >0.35 g/ml.
  • the method provided by the invention selects carboxylic acid functionalized imidazolium salt as a cosolvent, mixed solvents such as o-chlorophenol and methanol, m-cresol and methanol, hexafluoroisopropanol and methanol, DMF and methanol as continuous , Solution polymerization reaction solvent, the reaction adopts continuous flow reactor for continuous feeding and continuous discharging, which effectively solves the difficulty in controlling the shape of polymer particles in the traditional batch and slurry processes, the material is easy to hang on the wall, the output of a single tank is low, and the product is repeated.
  • mixed solvents such as o-chlorophenol and methanol, m-cresol and methanol, hexafluoroisopropanol and methanol, DMF and methanol
  • reaction liquid When the system pressure is higher than the reaction pressure, the reaction liquid starts to be extracted into the gas-liquid separation equipment, the gas is reused, the liquid enters the flash tank, and the solvent is removed by flash evaporation to obtain dense and uniform polyketone powder, and the solvent is recovered and reused;
  • a polyketone powder with a weight average molecular weight of 220,000, a molecular weight distribution of 1.8, a bulk density of 0.37 g/ml, a particle size of 10 ⁇ m to 50 ⁇ m, and a particle size distribution span of 0.507 was obtained.
  • the particle size of the powder is shown in Table 1; the scanning electron microscope image of the powder is shown in Figure 1.
  • polyketone powder product was filtered, washed with methanol, and then dried in vacuum at 80° C. for 3 hours to obtain polyketone powder; the weight average molecular weight was 190,000, the molecular weight distribution was 2.2, and the bulk density was 0.18 g/ml.
  • Polyketone powder with a particle size of 20 ⁇ m to 480 ⁇ m and a particle size distribution span of 3.954.
  • the particle size of the powder is shown in Table 2; the scanning electron microscope image of the powder is shown in Figure 2.
  • polyketone powder product was filtered, washed with methanol, and then dried in vacuum at 80° C. for 3 hours to obtain polyketone powder; the weight average molecular weight was 179,000, the molecular weight distribution was 2.25, and the bulk density was 0.16 g/ml.
  • Polyketone powder with a particle size of 20 ⁇ m to 480 ⁇ m and a particle size distribution span of 3.371.
  • the particle size of the powder is shown in Table 3.
  • reaction liquid When the system pressure is higher than the reaction pressure, the reaction liquid starts to be extracted into the gas-liquid separation equipment, the gas is reused, the liquid enters the flash tank, and the solvent is removed by flash evaporation to obtain dense and uniform polyketone powder, and the solvent is recovered and reused;
  • a polyketone powder with a weight average molecular weight of 205,000, a molecular weight distribution of 1.75, a bulk density of 0.38 g/ml, a particle size of 10 ⁇ m to 50 ⁇ m, and a particle size distribution span of about 0.776 was obtained.
  • the particle size of the powder is shown in Table 4.
  • reaction liquid When the system pressure is higher than the reaction pressure, the reaction liquid starts to be extracted into the gas-liquid separation equipment, the gas is reused, the liquid enters the flash tank, and the solvent is removed by flash evaporation to obtain dense and uniform polyketone powder, and the solvent is recovered and reused;
  • a polyketone powder with a weight average molecular weight of 201,000, a molecular weight distribution of 1.95, a bulk density of 0.35 g/ml, a particle size of 10 ⁇ m to 50 ⁇ m, and a particle size distribution span of about 0.826 was obtained.
  • the particle size of the powder is shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

本发明提供了一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮;该方法包括以下步骤:a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。与现有技术相比,本发明提供的方法采用含有催化剂的溶剂体系,反应采用连续溶液聚合实现连续进料、连续出料,从而有效解决了传统间歇、淤浆工艺中聚合物颗粒形态调控难、物料易挂壁、单釜产量低、产品重复性差等难题,可聚合得到重均分子量>20万、分子量分布<2.0、堆积密度>0.35g/ml,粒径10μm~50μm,粒径分布宽度Span为0.5~0.9的脂肪族聚酮。

Description

一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮
本申请要求于2022年2月11日提交中国专利局、申请号为202210128845.3、发明名称为“一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化工技术领域,更具体地说,是涉及一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮。
背景技术
一氧化碳是很多石油、燃煤及其它能源和石油化工工业的主要副产品,将一氧化碳转化为高附加值的产品是化学工业中的重要环节,在石油资源日益减少,资源危机越来越严重的今天,在“碳中和”的时代背景下,一碳化工的开发,具有十分重要的现实意义和广阔的发展前景。聚酮(POK)是由一氧化碳、烯烃共聚得到的一种新型的绿色高分子材料,其中一氧化碳占聚酮总质量的50%左右,从原料构成、能源消耗方面具有优良的环境友好性,加之其优异的冲击强度、抗化学性、耐磨性、气体阻隔性和阻燃性,在汽车、电子和包装等应用领域可替代PA、PBT、POM、EVOH等材料,使其具有广泛的应用前景。
聚酮的研发始于上世纪40年代,目前全球仅有韩国晓星集团实现了产业化,其生产工艺为淤浆聚合工艺,国内外院校对聚酮的研究也仅限于现有淤浆聚合工艺,聚酮溶液聚合工艺未见文献报道。传统的间歇、淤浆聚合工艺存在聚合物颗粒形态调控难、物料易挂壁、单釜产量低、产品重复性差等问题。此外釜式淤浆聚合过程中由于不溶性产物的增加会导致反应过程传质、传热困难,也给聚酮工业化生产带来了技术难题和安全风险。
发明内容
有鉴于此,本发明的目的在于提供一种利用连续溶液聚合法制备脂肪族聚酮的新方法及制备得到的脂肪族聚酮,本发明提供的新方法能够解决淤浆工艺中聚合物颗粒形态调控难、物料易挂壁、单釜产量低、产品重复性差及传质、 传热差等问题,保证聚酮生产工艺流畅性,在产品品质、产能及设备投资上均有很大的改善。
本发明提供了一种连续溶液聚合法制备得到的脂肪族聚酮,所述脂肪族聚酮为一氧化碳和烯烃化合物在含有催化剂的溶剂体系下通过连续溶液聚合反应得到;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。
优选的,所述脂肪族聚酮的重均分子量>20万,分子量分布<2.0。
优选的,所述含有催化剂的溶剂体系为含有催化剂、助催化剂、助溶剂的混合溶剂。
优选的,所述催化剂为二价钯盐与双齿膦配体的有机金属络合物;
所述二价钯盐为硝酸钯、硫酸钯、磺酸钯和醋酸钯中的一种或多种;
所述双齿膦配体具有式(I)所示结构:
Figure PCTCN2022090287-appb-000001
式(I)中,R 1、R 2、R 3和R 4独立地选自苯基或取代苯基,R 5为至少含有3个碳原子的亚烷基。
优选的,所述助催化剂选自硫酸、苯磺酸、高氯酸、三氯乙酸和三氟乙酸中的一种或多种。
优选的,所述助溶剂为羧酸功能化咪唑盐,具有式(II)所示结构:
Figure PCTCN2022090287-appb-000002
式(II)中,-NM 3为咪唑类取代基,X为三氟乙酸根、三氟磺酸根或六氟磷酸根。
优选的,所述混合溶剂为邻氯苯酚和甲醇的混合溶剂、间甲酚和甲醇的混合溶剂、六氟异丙醇和甲醇的混合溶剂或DMF和甲醇的混合溶剂。
本发明还提供了一种连续溶液聚合法制备上述技术方案所述脂肪族聚酮的方法,包括以下步骤:
a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮。
优选的,步骤a)中所述溶液聚合反应的温度为100℃~110℃,压力为6.5MPa~7MPa;
所述溶液聚合反应的停留时间通过控制单体及溶剂进料速率进行控制;
所述溶液聚合反应采用微通道反应器,单体连续进料、未反应完单体分离回用,产品连续出料。
优选的,所述步骤a)还包括:
将聚合反应得到的反应液经气液分离,气体回用,液体脱除溶剂后,得到聚酮粉料;
所述脱除溶剂的方式为闪蒸;回收的溶剂可作为混合溶剂循环使用。
本发明提供了一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮;该方法包括以下步骤:a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。与现有技术相比,本发明提供的方法选取羧酸功能化咪唑盐作为助溶剂,邻氯苯酚和甲醇、间甲酚和甲醇、六氟异丙醇和甲醇、DMF和甲醇等混合溶剂作为连续、溶液聚合反应溶剂,反应采用连续流反应器连续进料、连续出料,从而有效解决了传统间歇、淤浆工艺中聚合物颗粒形态调控难、物料易挂壁、单釜产量低、产品重复性差等难题,可聚合得到重均分子量>20万、分子量分布<2.0、堆积密度>0.35g/ml,粒径10μm~50μm,粒径分布宽度Span为0.5~0.9的脂肪族聚酮。
附图表说明
图1为本发明实施例1制备的聚酮粉料的扫描电镜图;
图2为对比例1制备的聚酮粉料的扫描电镜图;
表1为本发明实施例1制备的聚酮粉料的粒径分布数据;
表2为对比例1制备的聚酮粉料的粒径分布数据;
表3为对比例2制备的聚酮粉料的粒径分布数据;
表4为本发明实施例2制备的聚酮粉料的粒径分布数据;
表5为本发明实施例3制备的聚酮粉料的粒径分布数据。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种连续溶液聚合法制备得到的脂肪族聚酮,所述脂肪族聚酮为一氧化碳和烯烃化合物在含有催化剂的溶剂体系下通过连续溶液聚合反应得到;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。
在本发明中,所述脂肪族聚酮的重均分子量优选>20万,分子量分布优选<2.0。
在本发明中,所述含有催化剂的溶剂体系优选为含有催化剂、助催化剂、助溶剂的混合溶剂。在本发明中,所述催化剂优选为二价钯盐与双齿膦配体的有机金属络合物;其中,所述二价钯盐优选为硝酸钯、硫酸钯、磺酸钯和醋酸钯中的一种或多种,更优选为硝酸钯、硫酸钯、磺酸钯或醋酸钯,更更优选为醋酸钯;本发明对所述二价钯盐的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。
在本发明中,所述双齿膦配体优选具有式(I)所示结构:
Figure PCTCN2022090287-appb-000003
式(I)中,R 1、R 2、R 3和R 4独立地选自苯基或取代苯基,R 5为至少含有3个碳原子的亚烷基;优选具体为:1,3-双[双(2-甲氧基苯基)膦基]丙烷。
在本发明中,所述催化剂在所述混合溶剂中的含量优选为0.01~0.05mmol/L,具体可为0.01mmol/L、0.02mmol/L、0.03mmol/L、0.04mmol/L、0.05mmol/L。
在本发明中,所述助催化剂优选选自硫酸、苯磺酸、高氯酸、三氯乙酸和三氟乙酸中的一种或多种,更优选为硫酸、苯磺酸、高氯酸、三氯乙酸或三氟 乙酸,更更优选为三氟乙酸。本发明对所述助催化剂的来源没有特殊限制,采用本领域技术人员熟知的上述有机及无机强酸的市售商品均可。在本发明中,所述助催化剂与催化剂的摩尔比优选为(10~2):1,具体可为10:1,9:1,8:1,7:1,6:1,5:1,4:1,3:1,2:1。
在本发明中,所述助溶剂优选为羧酸功能化咪唑盐,具有式(II)所示结构:
Figure PCTCN2022090287-appb-000004
式(II)中,-NM 3为咪唑类取代基,X为三氟乙酸根、三氟磺酸根或六氟磷酸根。在本发明中,所述助溶剂可提高单体、产品在溶剂中得溶解度,增强传质效果。在本发明中,所述助溶剂与催化剂的摩尔比优选为(5~15):1,更优选为10:1。
在本发明中,所述助溶剂在混合溶剂中的含量优选为0.1~0.5mmol/L。
在本发明中,所述混合溶剂优选为邻氯苯酚和甲醇的混合溶剂、间甲酚和甲醇的混合溶剂、六氟异丙醇和甲醇的混合溶剂或DMF和甲醇的混合溶剂,更优选为六氟异丙醇和甲醇的混合溶剂。在本发明优选的实施例中,所述混合溶剂为六氟异丙醇和甲醇的混合溶剂;其中,所述甲醇与六氟异丙醇的体积比例优选为1:(3-6),具体可为1:3、1:4、1:5、1:6。
本发明还提供了一种连续溶液聚合法制备上述技术方案所述脂肪族聚酮的方法,包括以下步骤:
a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮。
在本发明中,所述含有催化剂的溶剂体系优选为含有催化剂、助催化剂、助溶剂的混合溶剂。本发明首先将催化剂、助催化剂以及助溶剂溶于混合溶剂中,得到含有催化剂的溶剂体系。
在本发明中,所述催化剂优选为二价钯盐与双齿膦配体的有机金属络合物;其中,所述二价钯盐优选为硝酸钯、硫酸钯、磺酸钯和醋酸钯中的一种或多种,更优选为硝酸钯、硫酸钯、磺酸钯或醋酸钯,更更优选为醋酸钯;本发明对所述二价钯盐的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。
在本发明中,所述双齿膦配体优选具有式(I)所示结构:
Figure PCTCN2022090287-appb-000005
式(I)中,R 1、R 2、R 3和R 4独立地选自苯基或取代苯基,R 5为至少含有3个碳原子的亚烷基;优选具体为:1,3-双[双(2-甲氧基苯基)膦基]丙烷。
在本发明中,所述催化剂在所述混合溶剂中的含量优选为0.01~0.05mmol/L,具体可为0.01mmol/L、0.02mmol/L、0.03mmol/L、0.04mmol/L、0.05mmol/L。
在本发明中,所述助催化剂优选选自硫酸、苯磺酸、高氯酸、三氯乙酸和三氟乙酸中的一种或多种,更优选为硫酸、苯磺酸、高氯酸、三氯乙酸或三氟乙酸,更更优选为三氟乙酸。本发明对所述助催化剂的来源没有特殊限制,采用本领域技术人员熟知的上述有机及无机强酸的市售商品均可。在本发明中,所述助催化剂与催化剂的摩尔比优选为(10~2):1,具体可为10:1,9:1,8:1,7:1,6:1,5:1,4:1,3:1,2:1。
在本发明中,所述助溶剂优选为羧酸功能化咪唑盐,具有式(II)所示结构:
Figure PCTCN2022090287-appb-000006
式(II)中,-NM 3为咪唑类取代基,X为三氟乙酸根、三氟磺酸根或六氟磷酸根。在本发明中,所述助溶剂可提高单体、产品在溶剂中得溶解度,增强传质效果。在本发明中,所述助溶剂与催化剂的摩尔比优选为(5~15):1,更优选为10:1。
在本发明中,所述助溶剂在混合溶剂中的含量优选为0.1~0.5mmol/L。
在本发明中,所述混合溶剂优选为邻氯苯酚和甲醇的混合溶剂、间甲酚和甲醇的混合溶剂、六氟异丙醇和甲醇的混合溶剂或DMF和甲醇的混合溶剂,更优选为六氟异丙醇和甲醇的混合溶剂。在本发明优选的实施例中,所述混合溶剂为六氟异丙醇和甲醇的混合溶剂;其中,所述甲醇与六氟异丙醇的体积比例优选为1:(3-6),具体可为1:3、1:4、1:5、1:6。
之后,本发明将一氧化碳、烯烃化合物及上述含有催化剂、助催化剂及助 溶剂的混合溶剂连续进料至连续流反应器中,控制反应温度、反应压力及停留时间进行溶液聚合反应。在本发明中,所述溶液聚合反应的温度优选为100℃~110℃,压力优选为6.5MPa~7MPa。
在本发明中,所述溶液聚合反应的停留时间优选通过控制单体及溶剂进料速率进行控制;这里所述的单体为一氧化碳与一个或多个烯烃不饱和化合物的混合物,烯烃和一氧化碳的摩尔比优选为(0.5~5):1;溶剂即上述技术方案所述的混合溶剂,在本发明中,所述溶剂可循环利用。
在本发明中,所述溶液聚合反应优选采用微通道反应器,微通道反应器是一种能够实现高效换热、高效传质的连续式平推流反应器,它可以让反应在受控的时间和空间内以更高的温度、更高的浓度和更快的混合来快速完成,从而达到提高转化率、提升安全性、提高何处效率的综合效果。在此基础上,本发明能够实现单体连续进料、未反应完单体分离回用,产品连续出料。
在本发明中,所述微通道反应器反应开始前,先充入氮气置换,置换完毕后反应器加热模块升温至反应温度,然后向反应器内连续进料。
本发明还包括:
将聚合反应得到的反应液经气液分离,气体回用,液体脱除溶剂后,得到聚酮粉料;
所述脱除溶剂的方式为闪蒸;回收的溶剂可作为混合溶剂循环使用。
在本发明中,当系统压力高于反应压力时,反应液开始持续稳定采出进入气液分离设备进行气液分离;分离得到的气体回用,液体脱除溶剂后,得到聚酮粉料。
在本发明中,所述脱除溶剂的方式优选为闪蒸,采用本领域技术人员熟知的闪蒸罐即可;回收的溶剂可作为混合溶剂循环使用。
本发明通过闪蒸方式除去溶剂,得到颗粒致密、均匀的聚酮粉料,溶剂回收重复利用。
本发明开发了一种连续、溶液聚合工艺,优选采用微通道反应器,在保证反应正常进行的前提下连续进料、连续出料,解决了传统间歇工艺由于产品聚集造成的挂壁、传质、传热差的问题,反应结束后反应液分离回收未反应完单体后,优选采用闪蒸方式去除溶剂,得到颗粒形态均一、稳定的产品。
本发明以二价钯盐和双齿膦配体的有机金属络合物作为主催化剂,强酸为助催化剂,羧酸功能化咪唑盐为助溶剂,选取邻氯苯酚和甲醇、间甲酚和甲醇、六氟异丙醇和甲醇、DMF和甲醇等的一组混合溶剂作为反应试剂,反应物为一氧化碳、乙烯以及丙烯气体,单体连续进料,控制反应温度、压力及停留时间,反应液连续采出,未反应单体可回收重新利用,溶剂可通过闪蒸脱除回用,得到重均分子量>20万、分子量分布<2.0、粉料粒径为10μm~50μm、粒径分布宽度Span为0.5~0.9、堆积密度>0.35g/ml的聚酮粉料。本发明中所提及淤浆聚合工艺传质、传热效果差,得到的聚酮产品颗粒较大,蓬松,且挂壁严重,粉料堆密度在0.1~0.2g/mL,粉料粒径为20~480μm,粒径分布宽度Span3.3~4.0;而采用溶液聚合工艺得到的聚酮产品颗粒较细,致密,堆积密度>0.35g/ml,粉料粒径10μm~50μm粒径分布宽度Span为0.5~0.9。
本发明提供了一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮;该方法包括以下步骤:a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。与现有技术相比,本发明提供的方法选取羧酸功能化咪唑盐作为助溶剂,邻氯苯酚和甲醇、间甲酚和甲醇、六氟异丙醇和甲醇、DMF和甲醇等混合溶剂作为连续、溶液聚合反应溶剂,反应采用连续流反应器连续进料、连续出料,从而有效解决了传统间歇、淤浆工艺中聚合物颗粒形态调控难、物料易挂壁、单釜产量低、产品重复性差等难题,可聚合得到重均分子量>20万、分子量分布<2.0、堆积密度>0.35g/ml,粒径10μm~50μm,粒径分布宽度Span为0.5~0.9的脂肪族聚酮。
为了进一步说明本发明,下面通过以下实施例进行详细说明。本发明以下实施例中所用的原料均为市售商品;按下述方法制备CO、乙烯、丙烯的三元聚合物。
实施例1
向定量的甲醇和六氟异丙醇混合液(V甲醇:V六氟异丙醇=1:4)中加入主催化剂1,3-双[双(2-甲氧基苯基)膦基]丙烷与乙酸钯的有机金属络合物、助催化剂三氟乙酸及助溶剂羧酸功能化咪唑盐,其中主催化剂浓度为0.02mmol/L, 助催化剂浓度为0.08mmol/L,助溶剂浓度为0.2mmol/L;反应开始前,微通道反应器充入氮气置换,置换完毕后反应器加热模块升温至100℃,然后向反应器内(反应器通量为50ml)连续通入混合液流速为5ml/min、丙烯流速为0.6g/min、CO和乙烯质量比为1:1.1的混合气进料速率为30g/min,系统备压至反应压力6.5MPa~7.0MPa,控制停留时间为10min,当系统压力高于反应压力时,反应液开始采出进入气液分离设备,气体回用,液体进入闪蒸罐,闪蒸除去溶剂,得到颗粒致密、均匀的聚酮粉料,溶剂回收重复利用;得到重均分子量为22万、分子量分布为1.8、堆积密度为0.37g/ml,粒径10μm~50μm,粒径分布宽度Span为0.507的聚酮粉料。
粉料粒径见表1;粉料扫描电镜图参见图1所示。
表1本发明实施例1制备的聚酮粉料的粒径分布数据
样品名称 颗粒折射率 D 10 D 50 D 90
聚酮粉料 1.5 23.2 28.0 37.4
对比例1
向10L高压釜加入3.5L甲醇溶剂,主催化剂(1,3-双[双(2-甲氧基苯基)膦基]丙烷与乙酸钯的有机金属络合物)48.58mg,助催化剂三氟乙酸3.4mg;加入上述物质后,高压釜内充入氮气保压、置换,然后充入丙烯400g,充入CO和C 2H 4质量比为1:1.1的混合气350g,开始升温,设定温度95℃,温度恒定后持续充入CO:C 2H 4=1:1.1的混合气,并维持反应压力为3.5MPa~4.0MPa,搅拌速度400r/min,反应时间2h。
反应结束后将所得聚酮粉体产品过滤,用甲醇洗涤,然后真空80℃干燥3h,得到聚酮粉料;得到重均分子量为19万、分子量分布为2.2、堆积密度为0.18g/ml,粒径20μm~480μm,粒径分布宽度Span为3.954的聚酮粉料。
粉料粒径见表2;粉料扫描电镜图参见图2所示。
表2对比例1制备的聚酮粉料的粒径分布数据
样品名称 颗粒折射率 D 10 D 50 D 90
聚酮粉料 1.5 35.1 111 474
对比例2
向10L高压釜加入3.5L甲醇溶剂,主催化剂(1,3-双[双(2-甲氧基苯基)膦基] 丙烷与乙酸钯的有机金属络合物)48.58mg,助催化剂三氟乙酸3.4mg;加入上述物质后,高压釜内充入氮气保压、置换,然后充入丙烯400g,充入CO和C 2H 4质量比为1:1.1的混合气350g,开始升温,设定温度100℃,温度恒定后持续充入CO:C 2H 4=1:1.05的混合气,并维持反应压力为3.5MPa~4.0MPa,搅拌速度400r/min,反应时间2.5h。
反应结束后将所得聚酮粉体产品过滤,用甲醇洗涤,然后真空80℃干燥3h,得到聚酮粉料;得到重均分子量为17.9万、分子量分布为2.25、堆积密度为0.16g/ml,粒径20μm~480μm,粒径分布宽度Span为3.371的聚酮粉料。
粉料粒径见表3。
表3对比例2制备的聚酮粉料的粒径分布数据
样品名称 颗粒折射率 D 10 D 50 D 90
聚酮粉料 1.5 25.8 103 373
实施例2
向定量的甲醇和六氟异丙醇混合液(V甲醇:V六氟异丙醇=1:4)中加入主催化剂1,3-双[双(2-甲氧基苯基)膦基]丙烷与乙酸钯的有机金属络合物、助催化剂三氟乙酸及助溶剂羧酸功能化咪唑盐,其中主催化剂浓度为0.02mmol/L,助催化剂浓度为0.08mmol/L,助溶剂浓度为0.2mmol/L;反应开始前,微通道反应器充入氮气置换,置换完毕后反应器加热模块升温至110℃,然后向反应器内(反应器通量为50ml)连续通入混合液流速为5ml/min、丙烯流速为0.6g/min、CO和乙烯质量比为1:1.1的混合气进料速率为30g/min,系统备压至反应压力6.5MPa~7.0MPa,控制停留时间为10min,当系统压力高于反应压力时,反应液开始采出进入气液分离设备,气体回用,液体进入闪蒸罐,闪蒸除去溶剂,得到颗粒致密、均匀的聚酮粉料,溶剂回收重复利用;得到重均分子量为20.5万、分子量分布为1.75、堆积密度为0.38g/ml,粒径10μm~50μm,粒径分布宽度Span约为0.776的聚酮粉料。
粉料粒径见表4。
表4本发明实施例2制备的聚酮粉料的粒径分布数据
样品名称 颗粒折射率 D 10 D 50 D 90
聚酮粉料 1.5 20.5 28.6 42.7
实施例3
向定量的甲醇和六氟异丙醇混合液(V甲醇:V六氟异丙醇=1:4)中加入主催化剂1,3-双[双(2-甲氧基苯基)膦基]丙烷与乙酸钯的有机金属络合物、助催化剂三氟乙酸及助溶剂羧酸功能化咪唑盐,其中主催化剂浓度为0.02mmol/L,助催化剂浓度为0.08mmol/L,助溶剂浓度为0.2mmol/L;反应开始前,微通道反应器充入氮气置换,置换完毕后反应器加热模块升温至100℃,然后向反应器内(反应器通量为50ml)连续通入混合液流速为10ml/min、丙烯流速为1.2g/min、CO和乙烯质量比为1:1.1的混合气进料速率为60g/min,系统备压至反应压力6.5MPa~7.0MPa,控制停留时间为5min,当系统压力高于反应压力时,反应液开始采出进入气液分离设备,气体回用,液体进入闪蒸罐,闪蒸除去溶剂,得到颗粒致密、均匀的聚酮粉料,溶剂回收重复利用;得到重均分子量为20.1万、分子量分布为1.95、堆积密度为0.35g/ml,粒径10μm~50μm,粒径分布宽度Span约为0.826的聚酮粉料。
粉料粒径见表5。
表5本发明实施例3制备的聚酮粉料的粒径分布数据
样品名称 颗粒折射率 D 10 D 50 D 90
聚酮粉料 1.5 18.1 30.5 43.3
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种连续溶液聚合法制备得到的脂肪族聚酮,所述脂肪族聚酮为一氧化碳和烯烃化合物在含有催化剂的溶剂体系下通过连续溶液聚合反应得到;所述脂肪族聚酮的粒径为10μm~50μm,粒径分布宽度Span为0.5~0.9,堆积密度>0.35g/ml。
  2. 根据权利要求1所述的连续溶液聚合法制备得到的脂肪族聚酮,其特征在于,所述脂肪族聚酮的重均分子量>20万,分子量分布<2.0。
  3. 根据权利要求1所述的连续溶液聚合法制备得到的脂肪族聚酮,其特征在于,所述含有催化剂的溶剂体系为含有催化剂、助催化剂、助溶剂的混合溶剂。
  4. 根据权利要求1所述的连续溶液聚合法制备得到的脂肪族聚酮,其特征在于,所述催化剂为二价钯盐与双齿膦配体的有机金属络合物;
    所述二价钯盐为硝酸钯、硫酸钯、磺酸钯和醋酸钯中的一种或多种;
    所述双齿膦配体具有式(I)所示结构:
    Figure PCTCN2022090287-appb-100001
    式(I)中,R 1、R 2、R 3和R 4独立地选自苯基或取代苯基,R 5为至少含有3个碳原子的亚烷基。
  5. 根据权利要求3所述的连续溶液聚合法制备得到的脂肪族聚酮,其特征在于,所述助催化剂选自硫酸、苯磺酸、高氯酸、三氯乙酸和三氟乙酸中的一种或多种。
  6. 根据权利要求3所述的连续溶液聚合法制备得到的脂肪族聚酮,其特征在于,所述助溶剂为羧酸功能化咪唑盐,具有式(II)所示结构:
    Figure PCTCN2022090287-appb-100002
    式(II)中,-NM 3为咪唑类取代基,X为三氟乙酸根、三氟磺酸根或六氟磷酸根。
  7. 根据权利要求3所述的连续溶液聚合法制备得到的脂肪族聚酮,其特 征在于,所述混合溶剂为邻氯苯酚和甲醇的混合溶剂、间甲酚和甲醇的混合溶剂、六氟异丙醇和甲醇的混合溶剂或DMF和甲醇的混合溶剂。
  8. 一种连续溶液聚合法制备权利要求1~7任一项所述脂肪族聚酮的方法,包括以下步骤:
    a)将一氧化碳、烯烃化合物和含有催化剂的溶剂体系连续进料至连续流反应器中进行溶液聚合反应,得到脂肪族聚酮。
  9. 根据权利要求8所述的方法,其特征在于,步骤a)中所述溶液聚合反应的温度为100℃~110℃,压力为6.5MPa~7MPa;
    所述溶液聚合反应的停留时间通过控制单体及溶剂进料速率进行控制;
    所述溶液聚合反应采用微通道反应器,单体连续进料、未反应完单体分离回用,产品连续出料。
  10. 根据权利要求8~9任一项所述的方法,其特征在于,所述步骤a)还包括:
    将聚合反应得到的反应液经气液分离,气体回用,液体脱除溶剂后,得到聚酮粉料;
    所述脱除溶剂的方式为闪蒸;回收的溶剂可作为混合溶剂循环使用。
PCT/CN2022/090287 2022-02-11 2022-04-29 一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮 WO2023151192A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22902467.4A EP4253447A1 (en) 2022-02-11 2022-04-29 Method for preparing aliphatic polyketone by means of continuous solution polymerization method, and aliphatic polyketone
JP2023536145A JP2024509025A (ja) 2022-02-11 2022-04-29 連続的な溶液重合法による脂肪族ポリケトンの製造方法及び脂肪族ポリケトン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210128845.3 2022-02-11
CN202210128845.3A CN116622062A (zh) 2022-02-11 2022-02-11 一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮

Publications (1)

Publication Number Publication Date
WO2023151192A1 true WO2023151192A1 (zh) 2023-08-17

Family

ID=87563513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090287 WO2023151192A1 (zh) 2022-02-11 2022-04-29 一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮

Country Status (4)

Country Link
EP (1) EP4253447A1 (zh)
JP (1) JP2024509025A (zh)
CN (1) CN116622062A (zh)
WO (1) WO2023151192A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788405A1 (en) * 1994-07-12 1997-08-13 The Dow Chemical Company Catalyst for the preparation of linear carbon monoxide/alpha-olefin copolymers
JP2001098066A (ja) * 1999-09-29 2001-04-10 Asahi Kasei Corp 高分子量ポリマー
CN101137695A (zh) * 2005-03-08 2008-03-05 旭化成化学株式会社 脂肪族酮类聚合物
KR101145176B1 (ko) * 2011-06-16 2012-05-14 아주대학교산학협력단 일산화탄소/올레핀 공중합 촉매 및 이를 이용한 현탁 중합
CN111607077A (zh) * 2020-06-24 2020-09-01 黄河三角洲京博化工研究院有限公司 一种聚酮的制备方法
CN112011048A (zh) * 2020-08-26 2020-12-01 链行走新材料科技(广州)有限公司 一种窄分布芳香族聚酮及其制备方法
CN112839980A (zh) * 2018-10-10 2021-05-25 科德宝两合公司 聚酮化合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788405A1 (en) * 1994-07-12 1997-08-13 The Dow Chemical Company Catalyst for the preparation of linear carbon monoxide/alpha-olefin copolymers
JP2001098066A (ja) * 1999-09-29 2001-04-10 Asahi Kasei Corp 高分子量ポリマー
CN101137695A (zh) * 2005-03-08 2008-03-05 旭化成化学株式会社 脂肪族酮类聚合物
KR101145176B1 (ko) * 2011-06-16 2012-05-14 아주대학교산학협력단 일산화탄소/올레핀 공중합 촉매 및 이를 이용한 현탁 중합
CN112839980A (zh) * 2018-10-10 2021-05-25 科德宝两合公司 聚酮化合物
CN111607077A (zh) * 2020-06-24 2020-09-01 黄河三角洲京博化工研究院有限公司 一种聚酮的制备方法
CN112011048A (zh) * 2020-08-26 2020-12-01 链行走新材料科技(广州)有限公司 一种窄分布芳香族聚酮及其制备方法

Also Published As

Publication number Publication date
JP2024509025A (ja) 2024-02-29
CN116622062A (zh) 2023-08-22
EP4253447A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
CN102174132B (zh) 宽分子量聚乙烯的生产方法
CN105199031B (zh) 一种烯烃聚合方法及装置
CN102482372A (zh) 聚合反应系统
CN100488994C (zh) 高全同聚丁烯-1的本体沉淀合成方法
WO2023151192A1 (zh) 一种连续溶液聚合法制备脂肪族聚酮的方法及脂肪族聚酮
CN102186575B (zh) 循环流化床反应器
CN1594302A (zh) 一种逐级催化氧化连续生产偏苯三酸酐的方法
CN1919880A (zh) 脱气方法
CN216764762U (zh) 基于脱氢仓-脱丙烯塔的抗冲聚丙烯的生产装置
US20240376263A1 (en) Method for preparing aliphatic polyketone by continuous solution polymerization process and aliphatic polyketone
CN109467625B (zh) 苯胺肟类催化剂及其制备方法
CN111607077A (zh) 一种聚酮的制备方法
CN107641078A (zh) 一种2‑甲基‑6‑丙酰基萘氧化制备2,6‑萘二甲酸的方法
CN101538350A (zh) 氢化碳五/碳九石油树脂的工业制造工艺及设备
US7652109B2 (en) Use of an additivie for improving the flowability of fines and their reintroduction into a continuous gas-phase (co-) polymerisation of olefins reactor
CN101080271B (zh) 可用于生产聚烯烃催化剂的可溶性镁络合物和由此生产的催化剂
CN112300312B (zh) 一种聚乙烯的合成方法
CN110885441B (zh) 一种负载型催化剂及其在制备遥爪型低分子量聚苯醚中的应用
CN103974982A (zh) 用于催化剂输送的方法和系统
CN108484806B (zh) 制备双峰聚乙烯的方法
CN102408504A (zh) 钒系催化剂作用下的乙烯均聚方法及乙烯与丁烯-1共聚方法
CN110804174B (zh) 一种负载型催化剂及其在制备低分子量双端羟基聚苯醚中的应用
CN101307141B (zh) 一氧化碳与苯乙烯共聚合成聚酮的Pd/C催化剂
CN1589286A (zh) 聚合控制方法
CN106459282A (zh) 对乙烯‑丁烯共聚物的短链支化控制

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536145

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18265977

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022902467

Country of ref document: EP

Effective date: 20230614

NENP Non-entry into the national phase

Ref country code: DE