WO2023151186A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023151186A1
WO2023151186A1 PCT/CN2022/088114 CN2022088114W WO2023151186A1 WO 2023151186 A1 WO2023151186 A1 WO 2023151186A1 CN 2022088114 W CN2022088114 W CN 2022088114W WO 2023151186 A1 WO2023151186 A1 WO 2023151186A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
insulating
sub
display panel
insulating layer
Prior art date
Application number
PCT/CN2022/088114
Other languages
English (en)
French (fr)
Inventor
王磊
代好
王美红
马扬昭
Original Assignee
武汉天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉天马微电子有限公司 filed Critical 武汉天马微电子有限公司
Publication of WO2023151186A1 publication Critical patent/WO2023151186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the embodiments of the present application relate to the field of display technologies, for example, to a display panel and a display device.
  • the front camera can be set under the screen.
  • the front camera set under the screen.
  • an embodiment of the present application provides a display panel, including an optical component area
  • the optics region includes a substrate, an insulating layer, and a first electrode
  • the insulating layer includes a first insulating layer and a second insulating layer, the second insulating layer is located on a side of the first insulating layer away from the substrate, the first insulating layer includes a the first sub-insulation layer of the layer contact;
  • the first electrode is located on a side of the second insulating layer away from the substrate, and at least one first insulating opening is disposed in the first sub-insulating layer; in the thickness direction of the display panel, the The second insulating layer covers the first insulating opening, and the first electrode at least partially overlaps the first insulating opening.
  • an embodiment of the present application further provides a display device, including the display panel described in the first aspect.
  • FIG. 1 is a schematic structural diagram of a display panel in the related art
  • Fig. 2 is the schematic diagram of the enlarged structure of Fig. 1 at place A;
  • Fig. 3 is the schematic cross-sectional structure diagram of Fig. 2 along B-B ' direction;
  • FIG. 4 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an enlarged structure at C in Fig. 4;
  • Fig. 6 is a kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 7 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 8 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 9 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 10 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 11 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 12 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 13 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 14 is a kind of sectional structure schematic diagram along E-E ' direction in Fig. 5;
  • Fig. 15 is another kind of sectional structure schematic diagram along E-E ' direction in Fig. 5;
  • Fig. 16 is a kind of sectional structure schematic diagram along F-F ' direction in Fig. 5;
  • Fig. 17 is another kind of sectional structure schematic diagram along F-F ' direction in Fig. 5;
  • Fig. 18 is another kind of sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 19 is another kind of cross-sectional structure schematic diagram along D-D ' direction in Fig. 5;
  • Fig. 20 is another schematic diagram of an enlarged structure at C in Fig. 4;
  • Fig. 21 is a schematic diagram of a cross-sectional structure along the G-G' direction in Fig. 20;
  • Fig. 22 is another kind of sectional structure schematic diagram along E-E ' direction in Fig. 5;
  • FIG. 23 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • FIG. 24 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a display panel in the related art
  • Fig. 2 is a schematic diagram of an enlarged structure at A in Fig. 1
  • Fig. 3 is a schematic cross-sectional structural schematic diagram of Fig. 2 along the BB' direction, as shown in Fig. 1-3, related
  • the display panel in the technology includes an optical component area 11 ′ and a normal display area 12 ′, wherein the optical component area 11 ′ can be multiplexed as a sensor reserved area, such as a camera reserved area. Therefore, in addition to having a normal display function, the optical component area 11' must have a good light transmission effect to ensure that external light can enter the camera through the optical component area 11'.
  • the area ratio of the pixel circuit 13' in the optical component area 11' can be smaller than that of the normal display
  • the area ratio of the pixel circuit 13' in the area 12' for example, the pixel circuit is arranged in the optical component area, but the density of the pixel circuit is lower than that of the normal display area (and/or the density is the same, but the single pixel circuit in the optical component area
  • the area is smaller than the normal display area), that is, the built-in type of pixel circuit in the optical component area (not shown in the figure).
  • the pixel circuit 13' is not provided in the optical component area 11', that is, the pixel circuit 13' is externally installed in the optical component area 11', as shown in Figs. 2 and 3 .
  • the pixel circuit 13' is used to drive the light emitting element 14' to emit light.
  • the display panel displays normally.
  • the display panel is set to include an optical component area; the optical component area includes a substrate, an insulating layer, and a first electrode; the insulating layer includes a first insulating layer and a second insulating layer, and the second insulating layer is located away from the first insulating layer.
  • the first insulating layer On one side of the substrate, the first insulating layer includes a first sub-insulating layer in contact with the second insulating layer; the first electrode is located on the side of the second insulating layer away from the substrate, and at least one first insulating layer is provided in the first sub-insulating layer An insulating opening; in the thickness direction of the display panel, the second insulating layer covers the first insulating opening, and the first electrode at least partially overlaps the first insulating opening.
  • the interface thermal resistance between the film layers in the optical component area is reduced by setting the first insulating opening, and the heat dissipation capability of the optical component area is improved; and in the thickness direction of the display panel, the first electrode and the first insulating opening are at least Partially overlapping, that is, the first electrode covers at least part of the first insulating opening, so that the heat generated during the operation of the first electrode can be dissipated in time, preventing the aging of the display device in the display panel, and at the same time improving the display reliability of the optical component area; At the same time, since the first electrode covers at least part of the first insulating opening, there will be no obvious difference in light transmission in different regions of the optical component area due to the arrangement of the first insulating opening, ensuring a well-balanced light transmission effect in the optical component area.
  • FIG. 4 is a schematic structural diagram of a display panel provided by an embodiment of the present application
  • Fig. 5 is a schematic diagram of an enlarged structure at point C in Fig. 4
  • Fig. 6 is a schematic cross-sectional structural diagram along the DD' direction in Fig. 5
  • FIG. 7 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • FIG. 4 is a schematic structural diagram of a display panel provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an enlarged structure at point C in Fig. 4
  • Fig. 6 is a schematic cross-sectional structural diagram along the DD' direction in Fig. 5
  • FIG. 7 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • Optical component area 11 comprises substrate 100, insulating layer 200 and first electrode 310;
  • the first insulating layer 210 includes a first sub-insulating layer 211 in contact with the second insulating layer 220; the first electrode 310 is located on the side of the second insulating layer 220 away from the substrate 100, and the first sub-insulating layer 211 At least one first insulating opening 230 is provided; in the thickness direction of the display panel 10 , the second insulating layer 220 covers the first insulating opening 230 , and the first electrode 310 at least partially overlaps the first insulating opening 230 .
  • the display panel provided by the embodiment of the present application can be applied to a display device in which a sensor is arranged under the screen.
  • the display panel 10 includes an optical component area 11, which can be used as an optical component installation area.
  • the optical component may be a device such as a camera, an infrared sensor, etc., which is not limited in this embodiment of the present application.
  • the display panel 10 provided in the embodiment of the present application may further include a normal display area 12, and the normal display area 12 may be used as a normal display area in the display panel 10, that is, it may not have a large light transmittance.
  • the display panel 10 may include a light emitting element to ensure the display effect of the display panel 10, wherein the light emitting element may be an organic light emitting element (OLED, Organic Light-Emitting Diode).
  • the light emitting element may include a first light emitting element 300 located on the optical component area 11 , the first light emitting element 300 includes a first electrode 310 , and the first electrode 310 generates heat when the first light emitting element 300 works normally.
  • the first electrode 310 may be a first anode, or other pixel electrodes, such as a cathode, which is not limited in this embodiment of the present application. As shown in FIG.
  • the distribution density of the first light emitting elements 300 in the optical component area 11 may be smaller than the distribution density of the light emitting elements in the normal display area 12 . It should be noted that, in other exemplary embodiments, the distribution density of the first light-emitting elements in the optical component area 11 may also be equal to the distribution density of the light-emitting elements in the normal display area 12 , which is not limited in the present application.
  • an insulating layer 200 and a substrate 100 are also included in the optical component area 11.
  • the insulating layer 200 is located above the substrate 100, and the first electrode 310 is located on the side of the insulating layer 200 away from the substrate 100.
  • the insulating layer 200 includes a first insulating layer 210 and a second insulating layer 220 , the first insulating layer 210 is close to the substrate 100 , and the second insulating layer 220 is far away from the substrate 100 .
  • the first insulating layer 210 includes a first sub-insulating layer 211, wherein a part of the first sub-insulating layer 211 can be removed in the first sub-insulating layer 211 to prepare at least one first insulating opening 230, as shown in FIGS. 6 and 7 Taking two first insulating openings 230 as an example, the embodiment of the present application does not limit the number of first insulating openings 230 .
  • the first insulating layer 210 may only include the first sub-insulating layer 211; as shown in FIG.
  • the first insulating layer 210 may include other sub-insulating layers except the first sub-insulating layer 211 21x, the first sub-insulation layer 211 is closer to the second insulation layer 220 than other sub-insulation layers.
  • the first electrode 310 and the first insulating opening 230 at least partially overlap, that is, the first electrode 310 covers at least part of the first insulating opening 230, so that the heat generated by the first electrode 310 during operation can be timely Dissipate, prevent the aging of the display device in the display panel, and at the same time improve the display reliability of the optical component area.
  • the second insulating layer 220 is arranged in contact with the first sub-insulating layer 211 (adhesively arranged), and the second insulating layer 220 fills the first insulating opening 230, which can prevent the film layer above the first insulating opening 230 from being uneven and affecting the display panel. Overall uniformity of 10.
  • the second insulating layer 220 is filled in the first insulating opening 230 instead of leaving air, so that the interface thermal resistance between the insulating layer and the air can be eliminated, and the heat dissipation capability at the position of the first insulating opening 230 can be enhanced. The heat dissipation capability of the optical component area 11 as a whole is ensured.
  • the first electrode 310 at least partially overlaps the first insulating opening 230, that is, the first electrode 310 covers at least part of the first insulating opening 230, so that the first insulating opening 230 is not completely exposed.
  • the arrangement of the first insulating opening 230 will not cause obvious differences in light transmission in different areas of the optical component area 11 , ensuring that the light transmission effect of the optical component area 11 is well balanced.
  • At least one first insulating opening is provided in the first insulating layer, and the second insulating layer is used to fill and cover the first insulating opening, so that different films in the area where the first insulating opening is located can be eliminated.
  • the isolation interface between the layers reduces the interface thermal resistance of heat conduction between the first sub-insulation layer and the second insulation layer, and improves the thermal conductivity of the area where the first insulation opening is located; and the first electrode and the first insulation opening at least partially overlap In this way, the heat generated during the working process of the first electrode can be dissipated in time, preventing the aging of the display device in the display panel, and at the same time improving the display reliability of the optical component area; at the same time, the first electrode covers at least part of the first insulating opening, so that the first The insulating opening will not be completely exposed in the light transmission area, and the setting of the first insulating opening will not cause obvious differences in light transmission in different areas of the optical component area, ensuring a well-balanced light transmission effect in the optical component area.
  • FIG. 8 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • the second sub-insulation layer 212 at least one second insulation opening 240 is arranged in a second sub-insulation layer 212 contacting the first sub-insulation layer 211; in the thickness direction of the display panel 10, the second insulation opening 240 is connected to the first
  • the insulating openings 230 overlap at least partially; the second insulating layer 220 fills the first insulating opening 230 and the second insulating opening 240 .
  • the first insulating layer 210 is located in the optical component area 11 and is also located in the normal display area. Based on the requirements for preparing metal film layers in the normal display area, the first insulating layer 210 as a barrier material also needs to ensure that the metal layers on the multiple film layers are separated. are insulated from each other, so the first insulating layer 210 may include multiple film layers. As shown in FIG. 8 , the first insulating layer 210 may further include at least one second sub-insulating layer 212 , and the second sub-insulating layer 212 is closer to the substrate 100 than the first sub-insulating layer 211 . Exemplarily, at least one second sub-insulation layer 212 can be used to isolate the metal film layer (not shown in FIG. 8 ) from the substrate 100, and the first sub-insulation layer 211 can be used to isolate different metal film layers.
  • At least one second insulating opening 240 is provided in the second sub-insulating layer 212 contacting the first sub-insulating layer 211, that is, by providing insulating openings in both the first sub-insulating layer 211 and the second sub-insulating layer 212, it is possible to eliminate The interface between the first sub-insulation layer 211 and the second sub-insulation layer 212 is isolated, eliminating the interface thermal resistance between the first sub-insulation layer 211 and the second sub-insulation layer 212, better reducing the interface thermal resistance in the optical component region 11, and improving The heat dissipation effect of the optical component area 11. Exemplarily, as shown in FIG.
  • the first insulating layer 210 includes two layers of second sub-insulating layers 212, and two second insulating openings 240 are provided in the second sub-insulating layer 212 close to the first sub-insulating layer 211.
  • the embodiment of the application does not specifically limit the number of the second sub-insulation layers 212 and the number of the second insulation openings 240 .
  • first insulating opening 230 and the second insulating opening 240 there is an overlapping portion between the first insulating opening 230 and the second insulating opening 240. As shown in FIG. 8, the first insulating opening 230 and the second insulating opening 240 are completely overlapped. The opening 240 may also only partially overlap (not shown in FIG. 8 ).
  • the second insulating layer 220 covers and fills the first insulating opening 230 and the second insulating opening 240 through the existing overlapping portion. The heat dissipation capability in the optical component area 11 is ensured, and at the same time, the smoothness of the film layer of the display panel 10 above the first insulating opening 230 can be better ensured.
  • FIG. 9 is a schematic diagram of another cross-sectional structure along the D-D' direction in FIG.
  • At least one second insulating opening 240 is provided in all the second insulating sub-layers 212, and the second insulating layer 220 fills the first insulating opening 230 and the second insulating opening 240, that is, the second insulating layer 220 can pass through the first The insulating opening 230 and the second insulating opening 240 extend to the surface of the substrate 100 .
  • the interface thermal resistance of any insulating layer at the position of the insulating opening can be eliminated, the interface thermal resistance in the optical component area 11 can be reduced more effectively, and the heat dissipation effect of the optical component area 11 can be enhanced.
  • the first electrode 310 covers the first insulating opening 230 .
  • the first electrode 310 covers the first insulating opening 230, and the first insulating opening 230 can dissipate the heat generated by the first electrode 310 more effectively, so as to avoid excessive heat in the optical component area 11. High, affecting the lifetime of devices in the display panel 10.
  • the first electrode 310 covers the first insulating opening 230, light will not be transmitted to the optical sensor (not shown in the figure) under the substrate 100 through the first insulating opening 230, and will not be transmitted due to the setting of the first insulating opening 230
  • the light transmission difference in different regions of the optical component area 11 is caused to fully ensure that the light transmission effect of the optical component area 11 is well balanced.
  • FIG. 10 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG.
  • the coverage area of 310 is S2, where 0 ⁇ (S2-S1)/S1 ⁇ 10%.
  • first insulating opening 230 may be provided in the first insulating layer 210, and the opening area of the provided first insulating opening 230 is relatively large, such as the coverage area of the first electrode 310.
  • the area of the isolation interface between different insulating layers can be reduced to the greatest extent, the interface thermal resistance in the optical component area 11 can be better reduced, and the heat dissipation efficiency of the optical component area 11 can be improved;
  • the manufacturing process of the insulating opening is simpler.
  • the opening area of the first insulating opening 230 is equivalent to the covering area of the first electrode 310, it can be understood that the opening area S1 of the first insulating opening 230 and the covering area S2 of the first electrode 310 satisfy 0 ⁇ (S2-S1)/ S1 ⁇ 10%, thus ensuring that the opening area of the first insulating opening 230 in the optical component region 11 is the same or similar to the opening area of the first electrode 310, ensuring that the first insulating opening 230 effectively dissipates the heat generated by the first electrode 310. Heat dissipation, while ensuring a simple preparation process for the insulating opening.
  • FIG. 11 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • a first pixel opening 410 is disposed in the defining layer 400 , and the first pixel opening 410 exposes the first electrode 310 ; in the thickness direction of the display panel 10 , the first pixel opening 410 does not overlap with the first insulating opening 230 .
  • the display panel 10 may further include a pixel definition layer 400, the pixel definition layer 400 includes a first pixel opening 410, the first pixel opening 410 exposes the first electrode 310, and at the same time, the luminescent material in the luminescent element may be correspondingly arranged in the first pixel Inside the opening 410 , a light emitting area is defined by the first pixel opening 410 .
  • the first insulating layer 210 includes at least one first insulating opening 230, and the first insulating openings 230 are arranged under the first electrode 310, for the first electrode 310, the setting of the first insulating opening 230 will inevitably cause There are different degrees of unevenness in the area where the first insulating opening 230 is placed and the area where the first insulating opening 230 is not placed. For the area corresponding to the first pixel opening 410 , if the first electrode 310 is not flat, the light-emitting optical path of the disabled area will be different, which will affect the display effect.
  • the first pixel opening 410 and the first insulating opening 230 are not overlapped, that is, the first pixel opening 410 is not located at the position where the first insulating opening 230 is arranged. area, as shown in Figure 11. In this way, the consistency and flatness of the film layer under the first pixel opening 410 are guaranteed to be good, the optical path of the display light is consistent, and the display effect is good.
  • FIG. 12 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • a second pixel opening 420 is disposed in the defining layer 400 , and the second pixel opening 420 exposes the first electrode 310 ; in the thickness direction of the display panel 10 , the first insulating opening 230 covers the second pixel opening 420 .
  • the first insulating opening 230 can cover the second pixel opening 420, that is, the second pixel opening 420 is completely disposed in the area of the first insulating opening 230, as shown in FIG. 12 shown. In this way, the consistency and flatness of the film layer under the second pixel opening 420 are guaranteed to be good, the optical path of the display light is consistent, and the display effect is good. For example, no pixel circuit electrically connected to the first electrode 310 is provided in the optical component region 11 .
  • FIG. 13 is a schematic diagram of another cross-sectional structure along the DD' direction in FIG. 5.
  • a third pixel opening 430 is disposed in the defining layer 400 , and the third pixel opening 430 exposes the first electrode 310 ; in the thickness direction of the display panel 10 , the third pixel opening 430 partially overlaps the first insulating opening 230 .
  • the third pixel opening 430 partially overlaps the first insulating opening 230 , while the third pixel opening 430 overlaps a part of the first insulating layer 210 where the first insulating opening 230 is not provided, as shown in FIG. 13 .
  • the positional relationship between the third pixel opening 430 and the first insulating opening 230 is simple and flexible.
  • the setting method of the third pixel opening 430 is flexible and simple.
  • FIG. 14 is a schematic diagram of a cross-sectional structure along the EE' direction in FIG. 5.
  • the first pixel circuit 510 includes a thin film transistor, and the thin film transistor includes an active layer 511, a source and drain 512, and an interlayer insulating layer 513 between the active layer 511 and the source and drain 512, and the interlayer insulating layer 513 is set Active source drain via hole 516, the source drain 512 is electrically connected to the active layer 511 through the source drain via hole 516;
  • the first insulating layer 210 includes an interlayer insulating layer 513, and the first insulating opening 230 includes the same Process-prepared vias.
  • the display panel 10 further includes a first pixel circuit 510 electrically connected to the first electrode 310 for driving the first light emitting element 300 in the display panel 10 to emit light.
  • the first pixel circuit 510 may be located outside the optical component area 11. Exemplarily, as shown in FIG.
  • the connection structure 515 realizes electrical connection, and then drives the first light emitting element 300 to emit light.
  • the pixel circuit 510 may include a thin film transistor (for example, the display panel is selected as a liquid crystal display panel or electronic paper), and may also include a plurality of thin film transistors and at least one storage capacitor (for example, the display panel is selected as an OLED display panel or a Micro-LED display panel). panel), such as seven thin film transistors and one storage capacitor (7T1C), the embodiment of the present application does not limit the specific structure of the pixel circuit. As shown in FIG.
  • the thin film transistor may include an active layer 511, a source and drain 512, a gate 514, and an interlayer insulating layer 513 between the active layer 511 and the source and drain 512, and the source and drain via holes 516 penetrate
  • the source and drain electrodes 512 are electrically connected to the active layer 511 through the interlayer insulating layer 513 .
  • the first insulating layer 210 includes an interlayer insulating layer 513. Vias are prepared in the interlayer insulating layer 513 to realize the electrical connection between the source and drain electrodes 512 and the active layer 511.
  • the first insulating layer under the optical component region 11 The first insulating opening 230 is prepared in the layer 210 to improve the heat dissipation performance.
  • the first insulating opening 230 and the source-drain via hole 516 can be completed in the same via hole preparation process without adding a separate mask process, which saves cost and improves the convenience of manufacturing the display panel 10 .
  • FIG. 15 is a schematic diagram of another cross-sectional structure along the EE' direction in FIG. 5.
  • the optical component area 11 may further include a compensation structure 600, and the compensation structure 600 includes at least one compensation film layer 610; In the thickness direction of the display panel 10 , the first electrode 310 at least partially overlaps with the compensation structure 600 .
  • the optical component region 11 may further include a compensation structure 600, the compensation structure 600 includes at least one compensation film layer 610, the compensation structure 600 compensates the heat dissipation capability of the optical component region 11, and the first insulating opening 230 is provided in the optical component region 11 at the same time And the compensation structure 600 can more effectively ensure that the heat dissipation effect of the optical component area 11 is good.
  • FIG. 15 only illustrates that the compensation structure 600 includes one compensation film layer 610 as an example. It can be understood that the compensation structure 600 may also include two compensation film layers (not shown in FIG. 15 ). The embodiment of the application does not limit the specific number of compensation film layers 610 .
  • the compensation structure 600 is located on the side of the first electrode 310 close to the substrate 100.
  • the first electrode 310 and the compensation structure 600 at least partially overlap to ensure that the compensation structure
  • the 600 can dissipate the heat generated during the working process of the first electrode 310 in time, so as to improve the heat dissipation effect of the optical component area 11 .
  • the compensation structure 600 may not be connected with circuit elements, that is, the potential is suspended, and no voltage signal is applied to the compensation structure 600 without considering signal interference.
  • the heat dissipation capability of the optical component area 11 is improved by setting the potential suspension compensation structure 600 .
  • the setting method of the compensation structure 600 is simple; and because the potential of the compensation structure 600 is floating, the setting of the compensation structure 600 will not interfere with the normal light-emitting display of the first light-emitting element 300, ensuring The display effect of the first light-emitting element 300 in the optical component area 11 is good.
  • the first electrode 310 covers the compensation structure 600 .
  • the compensation structure 600 is provided in the optical component area 11 for dissipating heat generated in the optical component area 11 .
  • the first electrode 310 covers the compensation structure 600 to ensure that the arrangement of the compensation structure 600 will not affect the light transmission effect of the optical component area 11 and ensure that the light transmission effect of the optical component area 11 is good.
  • the compensation film layer 610 includes a metal compensation film layer.
  • the compensation film layer 610 may be a metal compensation film layer, and the metal film layer has a better heat dissipation effect, which improves the heat dissipation capability of the compensation structure 600 and improves the heat dissipation effect of the optical component area 11 .
  • the display panel 10 also includes a first pixel circuit 510, the first pixel circuit 510 is electrically connected to the first electrode 310; the first pixel circuit 510 includes a thin film transistor, and the thin film transistor includes a gate 514 and a source and drain 512 , the metal compensation film layer is set on the same layer as the gate 514 and/or the source and drain 512 .
  • the first pixel circuit 510 is electrically connected to the first electrode 310 for driving the first light emitting element 300 in the display panel 10 to emit light.
  • the first pixel circuit 510 includes a thin film transistor.
  • the thin film transistor includes a source and drain 512 and a gate 514 , and the source and drain 512 and the gate 514 are arranged in different film layers.
  • the compensation structure 600 can be one layer, and the compensation structure 600 can also be a multi-layer film layer disposed on different film layers.
  • the compensation film layer 610 includes a metal compensation film layer, and the metal compensation film layer may be disposed on the same layer as the source and drain electrodes 512 and/or the gate electrode 514 in the thin film transistor.
  • the metal compensation film layer can be set on the same layer as the gate 514, as shown in FIG. 15; the metal compensation film layer can also be set on the same layer as the source and drain electrodes 512 (not shown); It can be arranged on the same layer as the gate 514 and the source and drain 512 at the same time (not shown in the figure).
  • the metal compensation film layer made of metal and the source and drain electrodes 512 and/or the gate electrode 512 on the same layer, the heat dissipation effect of the optical component area 11 can be improved, and the film layer structure of the display panel can be guaranteed to be simple, and the preparation process of the metal compensation film layer is simple. .
  • FIG. 16 is a schematic cross-sectional structure diagram along the FF' direction in FIG. 5.
  • FIG. 300 includes a first red light emitting element 300A, a first green light emitting element 300B and a first blue light emitting element 300C;
  • the first red light emitting element 300A includes a first red electrode 311, and the first green light emitting element 300B includes a first green electrode 312,
  • the first blue light-emitting element 300C includes a first blue electrode 313;
  • the first insulating opening 230 includes a first sub-insulating opening 230A, a second sub-insulating opening 230B, and a third sub-insulating opening 230C; in the thickness direction of the display panel 10 , the first red electrode 311 at least partially overlaps the first sub-insulation opening 230A, the first green electrode 312 at least partially overlaps the second sub-insulation opening 230B, and the first blue electrode 313 at least partially overlaps the third sub-insulation opening 230C overlap; the sum of the opening areas
  • the first red electrode 311 at least partially overlaps the first sub-insulation opening 230A
  • the first green electrode 312 at least partially overlaps the second sub-insulation opening 230B
  • the first blue electrode 313 at least partially overlaps with the third sub-insulation opening 230C
  • the vertical projection of the first red electrode 311 on the plane of the substrate 100 covers at least part of the first sub-insulation opening 230A
  • the first green electrode 312 on the plane of the substrate 100 covers at least part of the third sub-insulation opening 230C.
  • the first sub-insulation opening 230A dissipates the heat generated by the first red electrode 311
  • the second sub-insulation opening 230B dissipates the heat generated by the first green electrode 312
  • the third sub-insulation opening 230C dissipates the heat generated by the first blue electrode 311.
  • the heat generated by the electrode 313 is dissipated to ensure that the heat generated by the first red light-emitting element 300A, the first green light-emitting element 300B and the first blue light-emitting element 300C can be well dissipated, ensuring that the optical component area 11 has a good heat dissipation effect.
  • the blue light-emitting element produces the most heat
  • the red light-emitting element takes the second place
  • the green light-emitting element produces the least heat, so all the first blue light-emitting elements 300C corresponding to one first blue light-emitting element 300C can be set.
  • the sum of the opening areas of the three sub-insulation openings 230C is the largest, that is, the reduced interfacial thermal resistance in the third sub-insulation opening 230C is the largest, ensuring the best heat dissipation effect of the third sub-insulation opening 230C;
  • the sum of the opening areas of all the first sub-insulation openings 230A corresponding to 300A is next, and the sum of the opening areas of the second sub-insulation openings 230B corresponding to one first green light-emitting element 300B is set to be the smallest, that is, according to the first insulation opening 230
  • the heat production of the light-emitting elements is set differently for the sum of the opening areas of the first insulating openings 230, so as to ensure that different first light-emitting elements 300 correspond to the matching first insulating openings 230, and ensure that the heat dissipation effect of the optical component area 11 is balanced.
  • the light emitting effect of the first light emitting element 300 in the optical component area 11
  • FIG. 17 is a schematic diagram of another cross-sectional structure along the FF' direction in FIG. 5.
  • the element 300 includes a first red light emitting element 300A, a first green light emitting element 300B and a first blue light emitting element 300C;
  • the first red light emitting element 300A includes a first red electrode 311, and the first green light emitting element 300B includes a first green electrode 312 ,
  • the first blue light-emitting element 300C includes a first blue electrode 313;
  • the first insulating opening 230 includes a first sub-insulating opening 230A, a second sub-insulating opening 230B, and a third sub-insulating opening 230C; in the thickness direction of the display panel 10
  • the first red electrode 311 at least partially overlaps the first sub-insulation opening 230A
  • the first green electrode 312 at least partially overlaps the second sub-insulation opening 230B
  • the first blue electrode 313 at least partially overlaps the third sub-insulation opening 230C.
  • Partial overlap the sum of the opening areas of all the first sub-insulation openings 230C, the sum of the opening areas of all the second sub-insulation openings 230B, and the sum of the opening areas of all the third sub-insulation openings 230C are the same.
  • the first red electrode 311 at least partially overlaps the first sub-insulation opening 230A
  • the first green electrode 312 at least partially overlaps the second sub-insulation opening 230B
  • the first blue electrode 313 at least partially overlaps with the third sub-insulation opening 230C
  • the vertical projection of the first red electrode 311 on the plane of the substrate 100 covers at least part of the first sub-insulation opening 230A
  • the first green electrode 312 on the plane of the substrate 100 covers at least part of the third sub-insulation opening 230C.
  • the first sub-insulation opening 230A dissipates the heat generated by the first red electrode 311
  • the second sub-insulation opening 230B dissipates the heat generated by the first green electrode 312
  • the third sub-insulation opening 230C dissipates the heat generated by the first blue electrode 311.
  • the heat generated by the electrode 313 is dissipated to ensure that the heat generated by the first red light-emitting element 300A, the first green light-emitting element 300B and the first blue light-emitting element 300C can be well dissipated, ensuring that the optical component area 11 has a good heat dissipation effect.
  • the sum of the opening areas of all the third sub-insulation openings 230C corresponding to a blue light-emitting element 300C is the same, so the first sub-insulation opening 230A, the second sub-insulation opening 230B and the third sub-insulation opening 230C can be prepared together in the same preparation method , that is, the preparation method of the first insulating opening 230 is simple, and the heat dissipation effects of different regions of the optical component region 11 are balanced.
  • Figure 18 is a schematic diagram of another cross-sectional structure along the direction DD' in Figure 5
  • Figure 19 is a schematic diagram of another cross-sectional structure along the direction DD' in Figure 5, referring to Figures 18 and 19, the first An insulating layer 210 also includes a third sub-insulating layer 213 and a fourth sub-insulating layer 214, the compactness of the third sub-insulating layer 213 is greater than that of the fourth sub-insulating layer 214; the third sub-insulating layer 213 and the third sub-insulating layer An insulating opening is disposed in the first insulating layer 210 between the insulating layer 213 and the second insulating layer 220 .
  • the first insulating layer 210 further includes a third sub-insulating layer 213 and a fourth sub-insulating layer 214 with different densities, for example, the densification of the third sub-insulating layer 213 is greater than that of the fourth sub-insulating layer 214 .
  • the densification of the third sub-insulating layer 213 is greater than that of the fourth sub-insulating layer 214 .
  • the impact of the denser insulation layer on heat dissipation is reduced, the interface thermal resistance of the optical component area 11 is reduced, and the heat dissipation of the optical component area 11 is improved. Effect.
  • the third sub-insulation layer 213 is close to the second insulation layer 220, where the third sub-insulation layer 213 can be the first sub-insulation layer 211, and the first insulation layer 213 is set in the third sub-insulation layer 213.
  • Opening 230, the second insulating layer 220 fills the first insulating opening 230, which can reduce the thermal resistance of heat conduction between film layers, improve the heat dissipation capacity of the area, realize the improvement of heat dissipation capacity in the optical component area 11, and avoid device aging due to heat.
  • the fourth sub-insulation layer 214 is close to the second insulation layer 220, where the third sub-insulation layer 213 may be the first sub-insulation layer 211, and the third sub-insulation layer 213 is provided with An insulating opening 230, and an insulating opening corresponding to the position in the third sub-insulating layer 213 is provided in the fourth sub-insulating layer 214 to ensure that the second insulating layer 230 can be filled to the first insulating opening 230, thereby reducing heat conduction between film layers
  • the thermal resistance improves the heat conduction capacity of the region, realizes the improvement of the heat dissipation capacity in the optical component area 11, and avoids the thermal aging of the device.
  • the second insulating layer 220 is in contact with the first electrode 310 .
  • the second insulating layer 220 covers the first insulating opening 230 , the contact interface between the second insulating layer 220 and the first sub-insulating layer 211 can be reduced, reducing the interface thermal resistance during heat transmission.
  • the second insulating layer 220 is in contact with the first electrode 310, and the heat generated during the working process of the first electrode 310 can be directly conducted away through the second insulating layer 220, so that the first electrode 310 can be dissipated more effectively and the optical components can be improved. Zone 11 cooling effect.
  • the second insulating layer 220 is a planarization layer.
  • the second insulating layer 220 is a planarization layer, which can better provide a planarization film structure for the first electrode 310, and ensure that the first electrode 310 is flat, thus ensuring that the light-emitting optical path of the first light-emitting element 300 in different regions is the same Or similar, to ensure the display effect of the display panel.
  • the planarization layer is generally an organic film layer
  • setting the second insulating layer 220 as the planarization layer can also ensure that the second insulating layer 220 has a relatively large thickness and ensure that the second insulating layer 220 can fill the first insulating opening. 230, so that the interface thermal resistance between the insulating layer and the air will not be formed due to partially filling the first insulating opening 230, so as to ensure a good heat dissipation effect in the optical component area.
  • FIG. 20 is a schematic diagram of another enlarged structure at C in FIG. 4
  • FIG. 21 is a schematic diagram of a cross-sectional structure along the G-G' direction in FIG. 20
  • the display panel 10 also includes a pixel circuit.
  • the pixel circuit includes a second pixel circuit 520 located in the optical component area 11, the second pixel circuit 520 is electrically connected to the first electrode 310; in the thickness direction of the display panel 10, the second pixel circuit 520 is at least partially connected to the first insulating opening 230 overlap.
  • the second pixel circuit 520 is located in the optical component area 11 , and the second pixel circuit 520 is electrically connected to the first electrode 310 for driving the first light emitting element 300 in the display panel 10 to emit light.
  • the second pixel circuit 520 at least partially overlaps the first insulating opening 230 , that is, the second pixel circuit 520 covers part of the first insulating opening 230 , as shown in FIG. 21 . While dissipating the heat generated by the first electrode 310 , the first insulating opening 230 can also dissipate the heat generated by the second pixel circuit 520 to improve the stability of the second pixel circuit 520 .
  • FIG. 22 is another schematic cross-sectional structural diagram along the E-E' direction in FIG. 5 . Referring to FIG.
  • the display panel 10 further includes at least one thermal conduction bridge 800, the thermal conduction bridge 800 is connected to the second insulating layer 220 through the first insulating opening 230, and can form the optical component area 11
  • the heat is transferred laterally, for example, it can be transferred to the area outside the optical component area 11, or it can be used to balance the heat generated in the optical component area 11 to ensure the uniformity of heat inside the optical component area 11.
  • the display panel 10 also includes a first display area 21 and a second display area 22, the first display area 21 surrounds at least part of the optical component area 11, and the second display area 22 surrounds at least part of the first display area 22.
  • Display area 21 in the thickness direction of the display panel 10 , the thermal conduction bridge 800 overlaps with the first display area 21 and/or the second display area 22 .
  • the display panel 10 includes an optical component area 11 , a first display area 21 and a second display area 22 .
  • the first display area 21 surrounds at least part of the optical component area 11, and the second display area 22 surrounds at least part of the first display area 21.
  • the first display area 21 can be understood as a transitional display area
  • the second display area 22 can be understood as a normal display area.
  • the optical component area 11 can be used as a high-transmittance display area
  • the transitional display area can be used to arrange pixel circuits electrically connected to the light-emitting elements in the optical component area and/or to realize the transition between the normal display area and the optical component area. Gradient density of light-emitting elements.
  • the thermal conduction bridge 800 overlaps the first display area 21 and the second display area 22 at the same time.
  • the thermal conduction bridge 800 may only overlap with the first display area 21 .
  • the first sub-insulation layer 211 is provided with a plurality of first insulating openings 230; in different unit areas, the maximum sum of the opening areas of the first insulating openings 230 is S3, and the first insulating opening 230 The minimum sum of the opening areas is S4, where (S3-S4)/S3 ⁇ 20%.
  • a plurality of first insulating openings 230 may be disposed in the first sub-insulating layer 211 to improve the heat dissipation capability of the optical component region 11 more efficiently.
  • the maximum sum of the opening areas of the first insulating openings 230 is S3
  • the minimum sum of the opening areas of the first insulating openings 230 is S4, wherein (S3-S4)/S3 ⁇ 20%, This ensures that the sum of the opening areas of the first insulating openings 230 in the unit area of different first sub-insulating layers 211 is the same or similar, and ensures that the heat dissipation effects of different regions of the optical component area 11 are the same or similar, and ensures that the optical component area 11 as a whole The cooling effect is balanced.
  • dopant particles 700 are embedded in the substrate 100 , and the thermal conductivity of the dopant particles 700 is greater than that of the material of the substrate 100 .
  • the thermal conductivity of the doped particles 700 is greater than that of the material of the substrate 100 itself, such as graphite particles, which improves the thermal conductivity of the substrate 100 and facilitates the improvement.
  • the insulating opening in the first insulating layer 210 exposes the substrate 100
  • the second insulating layer 220 covers the insulating opening and is in contact with the substrate 100 .
  • the heat dissipation effect of the optical component area 11 is improved by adding insulating openings in the first insulating layer 210 .
  • the insulation opening is the first insulation opening 230; as shown in FIG. 9, there is a second sub-insulation layer 212, and the insulation opening is the first insulation opening.
  • the opening 230 and the second insulating opening 240 .
  • an insulating opening provided in the first insulating layer 210 directly contacts the substrate 100 .
  • the heat dissipation effect of the optical component region 11 is further improved.
  • the display panel 10 also includes a first display area 21 and a second display area 22; the first display area 21 surrounds at least part of the optical component area 11, and the second display area 22 surrounds at least part of the first display area Region 21 ; the display panel 10 further includes a pixel circuit, the pixel circuit includes a first pixel circuit 510 , the first pixel circuit 510 is located in the first display region 21 , and the first pixel circuit 510 is connected to the first electrode 310 .
  • the first pixel circuit 510 is electrically connected to the first electrode 310 for driving the first light emitting element 300 in the display panel 10 to emit light.
  • the first pixel circuit 510 may be located in the first display area 12, and the first electrode 310 located in the optical component area 11 is electrically connected to the first pixel circuit 510 in the first display area 12 through a connection structure 515. connection, so as to realize the light emission of the first light emitting element 300 .
  • disposing the pixel circuits in the first display area 21 can also ensure that the optical component area 11 has more light-transmitting areas, and ensure that the optical component area 11 has a good light-transmitting effect.
  • Figure 23 is a schematic structural diagram of a display device provided in the embodiment of the present application.
  • the display device 1 includes any implementation of the present application.
  • the display panel 10 described in the example, therefore, the display device 1 provided by the embodiment of the present application has the technical effect of the technical solution in any of the above-mentioned embodiments, and the same or corresponding structures and terminology explanations of the above-mentioned embodiments are here No longer.
  • the display device 1 provided in the embodiment of the present application can be a mobile phone as shown in FIG. Digital cameras, smart bracelets, smart glasses, vehicle displays, medical equipment, industrial control equipment, touch interaction terminals, etc., are not specifically limited in this embodiment of the present application.
  • Fig. 24 is a schematic cross-sectional structure diagram of a display device provided by the embodiment of the present application, as shown in Fig. 23 and Fig. 24, for example, the display device provided by the embodiment of the present application further includes a sensor 20, and the sensor 20 is set corresponding to the optical component area 11 .
  • the senor 20 may include any photosensitive element such as a camera, an infrared sensor, etc. By setting the sensor 20 corresponding to the optical component area 11, the sensor 20 can receive light and work normally while having a display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例公开了一种显示面板和显示装置,显示面板包括光学部件区;光学部件区包括衬底、绝缘层和第一电极;绝缘层包括第一绝缘层和第二绝缘层,第二绝缘层位于第一绝缘层远离衬底的一侧,第一绝缘层包括与第二绝缘层接触的第一子绝缘层;第一电极位于第二绝缘层远离衬底的一侧,第一子绝缘层中设有至少一个第一绝缘开口;在显示面板的厚度方向上,第二绝缘层覆盖第一绝缘开口,第一电极与第一绝缘开口至少部分交叠。

Description

显示面板和显示装置
本申请要求在2022年2月9日提交中国专利局、申请号为202210121502.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如涉及一种显示面板和显示装置。
背景技术
随着手机等包括显示面板和摄像头的电子产品的发展,人们对这些产品的要求已经不仅局限于基础通讯功能,同时也更转向于设计性、艺术性以及具有良好的视觉体验方面,比如具有高屏占比的电子产品越来越受欢迎。其中,全面屏成为电子产品的一个重要发展方向。听筒、环境光传感器、接近光传感器等都已成功隐藏到屏幕下面,唯有前置摄像头难以隐藏。
为了实现真正全面屏,可以将前置摄像头设置在屏幕下。但是,将前置摄像头设置在屏幕下的全面屏存在很多问题亟待解决。
发明内容
第一方面,本申请实施例提供了一种显示面板,包括光学部件区;
所述光学部件区包括衬底、绝缘层和第一电极;
所述绝缘层包括第一绝缘层和第二绝缘层,所述第二绝缘层位于所述第一绝缘层远离所述衬底的一侧,所述第一绝缘层包括与所述第二绝缘层接触的第一子绝缘层;
所述第一电极位于所述第二绝缘层远离所述衬底的一侧,所述第一子绝缘层中设置有至少一个第一绝缘开口;在所述显示面板的厚度方向上,所述第二绝缘层覆盖所述第一绝缘开口,所述第一电极与所述第一绝缘开口至少部分交叠。
第二方面,基于同一申请构思,本申请实施例还提供了一种显示装置,包括第一方面所述的显示面板。
附图说明
图1为相关技术中显示面板的结构示意图;
图2为图1在A处的放大结构示意图;
图3为图2沿B-B’方向的截面结构示意图;
图4为本申请实施例提供的一种显示面板的结构示意图;
图5为图4中C处的一种放大结构示意图;
图6为图5中沿D-D’方向的一种截面结构示意图;
图7为图5中沿D-D’方向的另一种截面结构示意图;
图8为图5中沿D-D’方向的另一种截面结构示意图;
图9为图5中沿D-D’方向的另一种截面结构示意图;
图10为图5中沿D-D’方向的另一种截面结构示意图;
图11为图5中沿D-D’方向的另一种截面结构示意图;
图12为图5中沿D-D’方向的另一种截面结构示意图;
图13为图5中沿D-D’方向的另一种截面结构示意图;
图14为图5中沿E-E’方向的一种截面结构示意图;
图15为图5中沿E-E’方向的另一种截面结构示意图;
图16为图5中沿F-F’方向的一种截面结构示意图;
图17为图5中沿F-F’方向的另一种截面结构示意图;
图18为图5中沿D-D’方向的另一种截面结构示意图;
图19为图5中沿D-D’方向的另一种截面结构示意图;
图20为图4中C处的另一种放大结构示意图;
图21为图20中沿G-G’方向的一种截面结构示意图;
图22为图5中沿E-E’方向的另一种截面结构示意图;
图23为本申请实施例提供的一种显示装置的结构示意图;
图24为本申请实施例提供的一种显示装置的截面结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在不脱离本申请的精神或范围的情况下,在本申请中能进行多种修改和变化,这对于本领域技术人员来说是显而易见的。因而,本申请意在覆盖落入所对应权利要求(要求保护的技术方案)及其等同物范围内的本申请的修改和变化。需要说明的是,本申请实施例所提供的实施方式,在不矛盾的情况下可以相互组合。
图1为相关技术中显示面板的结构示意图,图2为图1在A处的放大结构示意图,图3为图2沿B-B’方向的截面结构示意图,如图1-3所示,相关技术中的显示面板包括光学部件区11’和正常显示区12’,其中光学部件区11’可以复用为传感器预留区,例如摄像头预留区。因此光学部件区11’除了具备正常显示功能之前,还要具备良好的透光效果,保证外界光线可以透过光学部件区11’进入摄像头。由于显示面板中的显示区中,像素电路13’为主要遮光元件,因此为了保证光学部件区11’良好的透光效果,光学部件区11’中像素电路13’的面积占比可以小于正常显示区12’中像素电路13’的面积占比,例如在光学部件区设置像素电路,但像素电路的设置密度小于正常显示区设置密度(和/或设置密度相同,但是光学部件区内单个像素电路的面积小于正常显示区),即为光学部件区像素电路内置式(图中未示出)。或者在光学部件区11’不设置像素电路13’,即为光学部件区11’像素电路13’外置式,如图2和3所示。在显示面板中,像素电路13’用于驱动发光元件14’发光。
但是申请人研究发现,当光学部件区11’的像素电路13’面积占比小于正常显示区12’的像素电路13’面积占比,或者不设置像素电路13’时,光学部件区11’内的散热膜层会减少,进而影响光学部件区11’的散热,即在光学部件区11’存在散热能力差的情况,由于散热能力差可能影响光学部件区11’中发光元件的发光效果,影响显示面板正常显示。
本申请实施例中设置显示面板包括光学部件区;光学部件区包括衬底、绝缘层和第一电极;绝缘层包括第一绝缘层和第二绝缘层,第二绝缘层位于第一绝缘层远离衬底的一侧,第一绝缘层包括与第二绝缘层接触的第一子绝缘层;第一电极位于第二绝缘层远离衬底的一侧,第一子绝缘层中设置有至少一个第一绝缘开口;在显示面板的厚度方向上,第二绝缘层覆盖第一绝缘开口,第一电极与第一绝缘开口至少部分交叠。采用上述技术方案,通过设置第一绝缘开口减少光学部件区中膜层间的界面热阻,提升光学部件区的散热能力;并且在显示面板的厚度方向上,第一电极与第一绝缘开口至少部分交叠,即第一电极覆盖至少部分第一绝缘开口,如此可以将第一电极工作过程中产生的热量及时散发,防止显示面板中显示器件的老化,同时提升光学部件区的显示信赖性;同时,由于第一电极覆盖至少部分第一绝缘开口,不会因为第一绝缘开口的设置造成光学部件区不同区域的明显透光差异,保证光学部件区的 透光效果均衡良好。
以上是本申请的核心思想,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图4为本申请实施例提供的一种显示面板的结构示意图,图5为图4中C处的一种放大结构示意图,图6为图5中沿D-D’方向的一种截面结构示意图,图7为图5中沿D-D’方向的另一种截面结构示意图,结合图4、图5、图6和图7所示,本申请实施例提供的显示面板10包括光学部件区11;光学部件区11包括衬底100、绝缘层200和第一电极310;绝缘层200包括第一绝缘层210和第二绝缘层220,第二绝缘层220位于第一绝缘层210远离衬底100的一侧,第一绝缘层210包括与第二绝缘层220接触的第一子绝缘层211;第一电极310位于第二绝缘层220远离衬底100的一侧,第一子绝缘层211中设置有至少一个第一绝缘开口230;在显示面板10的厚度方向上,第二绝缘层220覆盖第一绝缘开口230,第一电极310与第一绝缘开口230至少部分交叠。
例如,如图4所示,本申请实施例提供的显示面板可以适用于在屏下设置传感器的显示装置,该显示面板10包括光学部件区11,光学部件区11可作为光学部件的设置区域,其中,光学部件可以为摄像头、红外传感器等器件,本申请实施例对此不作限定。例如,本申请实施例提供的显示面板10中还可以包括正常显示区12,正常显示区12可以作为显示面板10中的正常显示区,即可以不用具备较大的光线透过率。
例如,如图5至图7所示,显示面板10可以包括发光元件,保证显示面板10的显示效果,其中,发光元件可以为有机发光元件(OLED,Organic Light-Emitting Diode)。发光元件可以包括位于光学部件区11上的第一发光元件300,第一发光元件300包括第一电极310,在第一发光元件300正常工作时,第一电极310产生热量。示例性的,第一电极310可以是第一阳极,也可以是其他像素电极,例如阴极,本申请实施例对此不作限定。如图5所示,在光学部件区11中第一发光元件300的分布密度可以小于正常显示区12中发光元件的分布密度。需要说明的是,在其他示例实施方式中,光学部件区11中第一发光元件的分布密度也可以等于正常显示区12中发光元件的分布密度,本申请对此不做限制。
例如,在光学部件区11中还包括绝缘层200和衬底100,在显示面板10的厚度方向上,绝缘层200位于衬底100上方,第一电极310位于绝缘层200远离衬底100一侧。其中,绝缘层200包括第一绝缘层210和第二绝缘层220,第一绝缘层210靠近衬底100,第二绝缘层220远离衬底100。其中,第一绝缘层210包括第一子绝缘层211,其中,可以在第一子绝缘层211中去除部分第一子绝缘层211制备成至少一个第一绝缘开口230,图6和图7中以设置两个第一绝缘开口230为例,本申请实施例对第一绝缘开口230的数量不进行限定。例如,如图6所示,第一绝缘层210可以仅包括第一子绝缘层211;如图7所示,第一绝缘层210可以包括除第一子绝缘层211之外的其他子绝缘层21x,第一子绝缘层211相比其他子绝缘层更靠近第二绝缘层220。通过在第一子绝缘层211中设置至少一个第一绝缘开口230,同时设置第二绝缘层220覆盖第一绝缘开口230,如此可以消除第一绝缘开口230所在区域不同膜层之间的隔离界面,减少其他膜层(位于第一子绝缘层靠近衬底一侧的膜层)和第二绝缘层220之间热传导的界面热阻,提高第一绝缘开口230所在区域的导热能力;并且在显示面板的厚度方向上,第一电极310与第一绝缘开口230至少部分交叠,即第一电极310覆盖第一绝缘开口230至少部分区域,如此可以将第一电极310工作过程中产生的热量及时散发,防止显示面板中显示器件的老化,同时提升光学部件区的显示信赖性。
例如,第二绝缘层220与第一子绝缘层211接触设置(贴合设置),第二绝缘层220填充第一绝缘开口230,可以避免第一绝缘开口230上方膜层不平坦,影响显示面板10的整体均一性。同时,在第一绝缘开口230中填充第二绝缘层220,而非预留空气的形式,如此可以消除绝缘层与空气之间的界面热阻,增强第一绝缘开口230位置处的散热能力,保证光学部件 区11整体的散热能力。
例如,在显示面板10的厚度方向上,第一电极310与第一绝缘开口230至少部分交叠,即第一电极310覆盖至少部分第一绝缘开口230,如此第一绝缘开口230不会完全暴露在透光区,不会因为第一绝缘开口230的设置造成光学部件区11不同区域的明显透光差异,保证光学部件区11的透光效果均衡良好。
综上,本申请实施例提供的显示面板,通过在第一绝缘层中设置至少一个第一绝缘开口,利用第二绝缘层填充覆盖第一绝缘开口,如此可以消除第一绝缘开口所在区域不同膜层之间的隔离界面,减少第一子绝缘层和第二绝缘层之间热传导的界面热阻,提高第一绝缘开口所在区域的导热能力;并且第一电极与第一绝缘开口至少部分交叠,如此可以将第一电极工作过程中产生的热量及时散发,防止显示面板中显示器件的老化,同时提升光学部件区的显示信赖性;同时第一电极覆盖至少部分第一绝缘开口,如此第一绝缘开口不会完全暴露在透光区,不会因为第一绝缘开口的设置造成光学部件区不同区域的明显透光差异,保证光学部件区的透光效果均衡良好。
图8为图5中沿D-D’方向的另一种截面结构示意图,参考图8所示,第一绝缘层210还包括位于第一子绝缘层211靠近衬底100一侧的至少一层第二子绝缘层212;接触第一子绝缘层211的一个第二子绝缘层212中设置有至少一个第二绝缘开口240;在显示面板10的厚度方向上,第二绝缘开口240与第一绝缘开口230至少部分交叠;第二绝缘层220填充所述第一绝缘开口230和第二绝缘开口240。
例如,第一绝缘层210位于光学部件区11,同时也位于正常显示区,基于正常显示区制备金属膜层的需求,第一绝缘层210作为阻绝材料还需要保证多个膜层上金属之间相互绝缘,因此第一绝缘层210可以包括多个膜层。如图8所示,第一绝缘层210还可以包括至少一层第二子绝缘层212,第二子绝缘层212相比于第一子绝缘层211更靠近衬底100。示例性的,至少一层的第二子绝缘层212可以用于隔绝金属膜层(图8中未示出)和衬底100,第一子绝缘层211可以用于隔绝不同的金属膜层。
例如,接触第一子绝缘层211的第二子绝缘层212中设置至少一个第二绝缘开口240,即通过在第一子绝缘层211和第二子绝缘层212中均设置绝缘开口,可以消除第一子绝缘层211与第二子绝缘层212的界面隔离,消除第一子绝缘层211和第二子绝缘层212的界面热阻,更好的减少光学部件区11中界面热阻,提升光学部件区11的散热效果。示例性的,如图8所示,第一绝缘层210包括两层第二子绝缘层212,靠近第一子绝缘层211的第二子绝缘层212中设置两个第二绝缘开口240,本申请实施例对第二子绝缘层212的数量及第二绝缘开口240的数量不进行具体的限定。
例如,第一绝缘开口230和第二绝缘开口240存在交叠部分,如图8所示,第一绝缘开口230和第二绝缘开口240完全的交叠起来,第一绝缘开口230和第二绝缘开口240也可以只存在部分交叠部分(图8中未示出)。第二绝缘层220通过存在的交叠部分实现对第一绝缘开口230和第二绝缘开口240的覆盖和填充。保证光学部件区11中散热能力,同时还可以更好的保证显示面板10在第一绝缘开口230上方膜层的平整。
图9为图5中沿D-D’方向的另一种截面结构示意图,参考图9所示,任一第二子绝缘层212中设置有至少一个第二绝缘开口240。
例如,在所有的第二子绝缘层212中均设置至少一个第二绝缘开口240,第二绝缘层220填充第一绝缘开口230和第二绝缘开口240,即第二绝缘层220可以通过第一绝缘开口230和第二绝缘开口240延伸至衬底100的表面。如此可以消除绝缘开口位置处任意绝缘层的界面热阻,更有效的减少光学部件区11中的界面热阻,增强光学部件区11的散热效果。
继续参考图6和图7所示,在显示面板10的厚度方向上,第一电极310覆盖第一绝缘开口230。
本申请实施例提供的技术方案,第一电极310覆盖在第一绝缘开口230上方,第一绝缘开口230可以更加有效的将第一电极310产生的热量进行散热,避免光学部件区11中热量过高,影响显示面板10中器件的寿命。同时,第一电极310覆盖住第一绝缘开口230,光线不会通过第一绝缘开口230传输至衬底100下方的光学传感器(图中未示出),不会因为第一绝缘开口230的设置造成光学部件区11不同区域的透光差异,充分保证光学部件区11的透光效果均衡良好。
图10为图5中沿D-D’方向的另一种截面结构示意图,第一绝缘层210中设置有一个第一绝缘开口230,且第一绝缘开口230的开口面积为S1,第一电极310的覆盖面积为S2,其中,0≤(S2-S1)/S1≤10%。
例如,对应一个第一电极310,在第一绝缘层210中可以只设置一个第一绝缘开口230,设置的一个第一绝缘开口230的开口面积相对较大,例如与第一电极310的覆盖面积相当,如此可以最大程度上减少不同绝缘层之间的隔离界面的面积,更好的减少光学部件区11中的界面热阻,提升光学部件区11的散热效率;并且设置一个开口面积较大的第一绝缘开口230,由于仅需要制备的一个绝缘开口,绝缘开口的制备工艺更加简便。
例如,第一绝缘开口230的开口面积与第一电极310的覆盖面积相当,可以理解为第一绝缘开口230的开口面积S1与第一电极310的覆盖面积S2满足0≤(S2-S1)/S1≤10%,如此保证光学部件区11中第一绝缘开口230的开口面积和第一电极310的开口面积相同或者相近,保证第一绝缘开口230有效地对第一电极310产生的热量进行充分散热,同时保证绝缘开口制备工艺简单。
图11为图5中沿D-D’方向的另一种截面结构示意图,参考图11所示,显示面板10还包括位于第二绝缘层220远离衬底100一侧的像素限定层400,像素限定层400中设置有第一像素开口410,第一像素开口410暴露第一电极310;在显示面板10的厚度方向上,第一像素开口410与第一绝缘开口230不交叠。
例如,显示面板10还可以包括像素限定层400,像素限定层400包括第一像素开口410,第一像素开口410暴露出第一电极310,同时发光元件中的发光材料可以对应设置在第一像素开口410内,通过第一像素开口410限定发光区域。
例如,因为第一绝缘层210中包括至少一个第一绝缘开口230,第一绝缘开口230排列设置于第一电极310下方,对于第一电极310来说,第一绝缘开口230的设置难免会造成第一绝缘开口230的设置区域与第一绝缘开口230的非设置区域存在不同程度的不平坦。对于第一像素开口410对应的区域来说,第一电极310如果不平坦会造成不能区域的出光光程不同,影响显示效果。因此本申请实施例中,在显示面板10的厚度方向上,设置第一像素开口410与第一绝缘开口230之间不交叠设置,即第一像素开口410不位于设置第一绝缘开口230的区域,如图11所示。如此保证第一像素开口410下方膜层一致性良好,平坦性良好,保证显示光线光程一致,显示效果良好。
图12为图5中沿D-D’方向的另一种截面结构示意图,参考图12所示,显示面板10还包括位于第二绝缘层220远离衬底100一侧的像素限定层400,像素限定层400中设置有第二像素开口420,第二像素开口420暴露第一电极310;在显示面板10的厚度方向上,第一绝缘开口230覆盖第二像素开口420。
如上所述,对于第一像素开口410对应的区域来说,第一电极310如果不平坦会造成不能区域的出光光程不同,影响显示效果。因此本申请实施例中,在显示面板10的厚度方向上,第一绝缘开口230可以覆盖第二像素开口420,即第二像素开口420完全设置于第一绝缘开口230的区域内,如图12所示。如此保证第二像素开口420下方膜层一致性良好,平坦性良好,保证显示光线光程一致,显示效果良好。例如,光学部件区11内不设置与第一电极310电连接的像素电路。
图13为图5中沿D-D’方向的另一种截面结构示意图,参考图13所示,显示面板10还包括位于第二绝缘层220远离衬底100一侧的像素限定层400,像素限定层400中设置有第三像素开口430,第三像素开口430暴露第一电极310;在显示面板10的厚度方向上,第三像素开口430与第一绝缘开口230部分交叠。
例如,第三像素开口430与第一绝缘开口230部分交叠,同时第三像素开口430与第一绝缘层210中未设置第一绝缘开口230的部分区域交叠,如图13所示。如此第三像素开口430和第一绝缘开口230的位置关系简单灵活,在设置第三像素开口430时,不需要额外的考虑设置位置,第三像素开口430的设置方式灵活并且简单。
图14为图5中沿E-E’方向的一种截面结构示意图,参考图5和图14所示,显示面板10还包括第一像素电路510,第一像素电路510与第一电极310电连接;第一像素电路510包括薄膜晶体管,薄膜晶体管包括有源层511、源漏极512以及位于有源层511与源漏极512之间的层间绝缘层513,层间绝缘层513中设置有源漏过孔516,源漏极512通过源漏过孔516与有源层511电连接;第一绝缘层210包括层间绝缘层513,第一绝缘开口230包括与源漏过孔516同一工艺制备的过孔。
例如,显示面板10还包括第一像素电路510,第一像素电路510与第一电极310电连接,用于驱动显示面板10中第一发光元件300发光。例如,第一像素电路510可以位于光学部件区11之外,示例性的,如图14所示,第一像素电路510可以选择位于正常显示区12,第一电极310和第一像素电路510通过连接结构515实现电连接,进而驱动第一发光元件300发光。
例如,像素电路510可以包括一个薄膜晶体管(例如显示面板选择为液晶显示面板或者电子纸),也可以包括多个薄膜晶体管和至少一个存储电容(例如显示面板选择为OLED显示面板或者Micro-LED显示面板),例如七个薄膜晶体管和1个存储电容(7T1C),本申请实施例对像素电路的具体结构不进行限定。如图14所示,薄膜晶体管可以包括有源层511、源漏极512、栅极514以及位于有源层511与源漏极512之间的层间绝缘层513,源漏极过孔516穿过层间绝缘层513实现源漏极512与有源层511电连接。如图14所示,第一绝缘层210包括层间绝缘层513,在层间绝缘层513制备过孔实现源漏极512和有源层511电连接,在光学部件区11下的第一绝缘层210中制备第一绝缘开口230实现散热性能的提升。例如,第一绝缘开口230和源漏过孔516可以在同一过孔制备工艺中完成,不用单独增加mask工艺,节约成本并提升显示面板10制备的便捷性。
图15为图5中沿E-E’方向的另一种截面结构示意图,参考图15所示,光学部件区11还可以包括补偿结构600,补偿结构600包括至少一层补偿膜层610;在显示面板10的厚度方向上,第一电极310与补偿结构600至少部分交叠。
例如,光学部件区11还可以包括补偿结构600,补偿结构600包括至少一层补偿膜层610,补偿结构600补偿光学部件区11的散热能力,通过在光学部件区11同时设置第一绝缘开口230和补偿结构600,可以更有效的保证光学部件区11的散热效果良好。需要说明的是,图15仅以补偿结构600包括一层补偿膜层610为例进行说明,可以理解的是,补偿结构600还可以包括两层补偿膜层(图15中未示出),本申请实施例对具体补偿膜层610的数量不进行限定。
例如,继续参考图15所示,补偿结构600位于第一电极310靠近衬底100的一侧,沿显示面板10的厚度方向上,第一电极310与补偿结构600至少部分交叠,保证补偿结构600可以对第一电极310工作过程中产生的热量及时散发,提升光学部件区11的散热效果。
示例性的,补偿结构600可以未连接电路元件,即电位悬浮,在不考虑信号干扰的情况下,补偿结构600中未施加任何电压信号。通过设置电位悬浮的补偿结构600提升光学部件区11的散热能力。例如,由于补偿结构600电位悬浮,未连接电路元件,因此补偿结构600 的设置方式简单;并且由于补偿结构600电位悬浮,补偿结构600的设置不会干扰第一发光元件300的正常发光显示,保证光学部件区11内的第一发光元件300显示效果良好。
继续参考图15所示,第一电极310覆盖补偿结构600。
例如,在光学部件区11中设置补偿结构600用于对光学部件区11内产生的热量进行散热。第一电极310覆盖补偿结构600,保证补偿结构600的设置不会影响光学部件区11的透光效果,保证光学部件区11的透光效果良好。
例如,继续参考图15所示,补偿膜层610包括金属补偿膜层。
例如,补偿膜层610可以是金属补偿膜层,金属材质的膜层散热效果更好,提升补偿结构600的散热能力,提升光学部件区11的散热效果。
继续参考图15所示,显示面板10还包括第一像素电路510,第一像素电路510与第一电极310电连接;第一像素电路510包括薄膜晶体管,薄膜晶体管包括栅极514和源漏极512,金属补偿膜层与栅极514和/或源漏极512同层设置。
例如,第一像素电路510与第一电极310电连接,用于驱动显示面板10中第一发光元件300发光。第一像素电路510包括薄膜晶体管,如图15所示,薄膜晶体管包括源漏极512和栅极514,源漏极512和栅极514设置在不同膜层。补偿结构600可以是一层,补偿结构600也可以是设置在不同膜层的多层膜层。
例如,补偿膜层610包括金属补偿膜层,金属补偿膜层可以和薄膜晶体管中的源漏极512和/或者栅极514同层设置。示例性的,金属补偿膜层可以与栅极514同层设置,如图15所示;金属补偿膜层还可以与源漏极512同层设置(图中未示出);金属补偿膜层还可以同时与栅极514和源漏极512同层设置(图中未示出)。通过设置金属材质的金属补偿膜层与源漏极512和/或栅极512同层设置,提升光学部件区11散热效果的同时可以保证显示面板膜层结构简单,金属补偿膜层的制备工艺简单。
图16为图5中沿F-F’方向的一种截面结构示意图,参考图16所示,显示面板10包括第一发光元件300,第一发光元件300包括第一电极310;第一发光元件300包括第一红色发光元件300A、第一绿色发光元件300B和第一蓝色发光元件300C;第一红色发光元件300A包括第一红色电极311,第一绿色发光元件300B包括第一绿色电极312,第一蓝色发光元件300C包括第一蓝色电极313;第一绝缘开口230包括第一子绝缘开口230A、第二子绝缘开口230B和第三子绝缘开口230C;在显示面板10的厚度方向上,第一红色电极311与第一子绝缘开口230A至少部分交叠,第一绿色电极312与第二子绝缘开口230B至少部分交叠,第一蓝色电极313与第三子绝缘开口230C至少部分交叠;所有第三子绝缘开口230C的开口面积之和大于所有第一子绝缘开口230A的开口面积之和,所有第一子绝缘开口230A的开口面积之和大于所有第二子绝缘开口230B的开口面积之和。
例如,在显示面板10的厚度方向上,第一红色电极311与第一子绝缘开口230A至少部分交叠,第一绿色电极312与第二子绝缘开口230B至少部分交叠,第一蓝色电极313与第三子绝缘开口230C至少部分交叠,即第一红色电极311在衬底100所在平面上的垂直投影覆盖至少部分第一子绝缘开口230A,第一绿色电极312在衬底100所在平面上的垂直投影覆盖至少部分第二子绝缘开口230B,第一蓝色电极313在衬底100所在平面上的垂直投影覆盖至少部分第三子绝缘开口230C。如此通过保证第一子绝缘开口230A对第一红色电极311产生的热量进行发散,第二子绝缘开口230B对第一绿色电极312产生的热量进行发散,第三子绝缘开口230C对第一蓝色电极313产生的热量进行发散,保证第一红色发光元件300A、第一绿色发光元件300B以及第一蓝色发光元件300C产生的热量均能得到良好的散热,保证光学部件区11散热效果良好。
例如,由于显示面板10显示过程中,蓝光发光元件的产热最多,红光发光元件次之,绿光发光元件的产热最少,因此可以设置与一个第一蓝色发光元件300C对应的所有第三子绝 缘开口230C的开口面积之和最大,即第三子绝缘开口230C中减少的界面热阻最大,保证第三子绝缘开口230C的散热效果最好;例如,设置与一个第一红色发光元件300A对应的所有第一子绝缘开口230A的开口面积之和次之,设置与一个第一绿色发光元件300B对应的第二子绝缘开口230B的开口面积之和最小,即根据第一绝缘开口230对应的发光元件的产热对第一绝缘开口230的开口面积之和进行差异化设置,保证不同第一发光元件300对应与之匹配的第一绝缘开口230,保证光学部件区11散热效果均衡,保证光学部件区11中第一发光元件300的发光效果良好。
图17为图5中沿F-F’方向的另一种截面结构示意图,参考图17所示,显示面板10包括第一发光元件300,第一发光元件300包括第一电极310;第一发光元件300包括第一红色发光元件300A、第一绿色发光元件300B和第一蓝色发光元件300C;第一红色发光元件300A包括第一红色电极311,第一绿色发光元件300B包括第一绿色电极312,第一蓝色发光元件300C包括第一蓝色电极313;第一绝缘开口230包括第一子绝缘开口230A、第二子绝缘开口230B和第三子绝缘开口230C;在显示面板10的厚度方向上,第一红色电极311与第一子绝缘开口230A至少部分交叠,第一绿色电极312与第二子绝缘开口230B至少部分交叠,第一蓝色电极313与第三子绝缘开口230C至少部分交叠;所有第一子绝缘开口230C的开口面积之和、所有第二子绝缘开口230B的开口面积之和以及所有第三子绝缘开口230C的开口面积之和均相同。
例如,在显示面板10的厚度方向上,第一红色电极311与第一子绝缘开口230A至少部分交叠,第一绿色电极312与第二子绝缘开口230B至少部分交叠,第一蓝色电极313与第三子绝缘开口230C至少部分交叠,即第一红色电极311在衬底100所在平面上的垂直投影覆盖至少部分第一子绝缘开口230A,第一绿色电极312在衬底100所在平面上的垂直投影覆盖至少部分第二子绝缘开口230B,第一蓝色电极313在衬底100所在平面上的垂直投影覆盖至少部分第三子绝缘开口230C。如此通过保证第一子绝缘开口230A对第一红色电极311产生的热量进行发散,第二子绝缘开口230B对第一绿色电极312产生的热量进行发散,第三子绝缘开口230C对第一蓝色电极313产生的热量进行发散,保证第一红色发光元件300A、第一绿色发光元件300B以及第一蓝色发光元件300C产生的热量均能得到良好的散热,保证光学部件区11散热效果良好。
例如,与一个第一红色发光元件300A对应的所有第一子绝缘开口230A开口面积之和、与一个第一绿色发光元件300B对应的所有第二子绝缘开口230B的开口面积之和以及与一个第一蓝色发光元件300C对应的所有第三子绝缘开口230C的开口面积之和相同,如此第一子绝缘开口230A、第二子绝缘开口230B和第三子绝缘开口230C可以一同制备,制备方式相同,即第一绝缘开口230的制备方式简单,光学部件区11不同区域散热效果均衡。
图18为图5中沿D-D’方向的另一种截面结构示意图,图19为图5中沿D-D’方向的另一种截面结构示意图,参考图18和图19所示,第一绝缘层210还包括第三子绝缘层213和第四子绝缘层214,第三子绝缘层213的致密性大于第四子绝缘层214的致密性;第三子绝缘层213以及第三子绝缘层213与第二绝缘层220之间的第一绝缘层210中设置有绝缘开口。
其中,第一绝缘层210还包括致密性不同的第三子绝缘层213和第四子绝缘层214,例如,第三子绝缘层213的致密性大于第四子绝缘层214的致密性。例如,通过对致密性较大的第三子绝缘层213设置绝缘开口,降低较大致密性绝缘层对散热造成的影响,保证减少光学部件区11的界面热阻,提升光学部件区11的散热效果。
例如,如图18所示,第三子绝缘层213靠近第二绝缘层220,这里的第三子绝缘层213可以是第一子绝缘层211,在第三子绝缘层213中设置第一绝缘开口230,第二绝缘层220填充第一绝缘开口230,可以实现减少膜层间热传导的热阻,提高所在区域的散热能力,实现提升光学部件区11中散热能力,避免器件受热老化。
示例性的,如图19所示,第四子绝缘层214靠近第二绝缘层220,这里的第三子绝缘层213可以是第一子绝缘层211,在第三子绝缘层213中设置第一绝缘开口230,同时在第四子绝缘层214中设置与第三子绝缘层213中位置对应的绝缘开口,保证第二绝缘层230可以填充至第一绝缘开口230,实现减少膜层间热传导的热阻,提高所在区域的导热能力,实现提升光学部件区11中散热能力,避免器件受热老化。
参考图6至图19所示,第二绝缘层220与第一电极310接触。
例如,由于第二绝缘层220覆盖第一绝缘开口230,如此可以减少第二绝缘层220与第一子绝缘层211之间的接触界面,降低热量在传输过程中的界面热阻。同时第二绝缘层220与第一电极310接触,第一电极310工作过程中产生的热量可以直接经第二绝缘层220导走,如此可以更有效的对第一电极310进行散热,提升光学部件区11的散热效果。
例如,第二绝缘层220为平坦化层。
例如,第二绝缘层220为平坦化层,可以更好地为第一电极310提供平坦化膜层结构,保证第一电极310平坦,如此保证第一发光元件300在不同区域的出光光程相同或者相近,保证显示面板的显示效果。例如,由于平坦化层一般为有机膜层,因此设置第二绝缘层220为平坦化层,还可以保证第二绝缘层220具备较大的厚度,保证第二绝缘层220可以填充第一绝缘开口230,如此不会因为部分填充第一绝缘开口230形成绝缘层与空气的界面热阻,保证光学部件区的散热效果良好。
图20为图4中C处的另一种放大结构示意图,图21为图20中沿G-G’方向的一种截面结构示意图,图20和图21所示,显示面板10还包括像素电路,像素电路包括位于光学部件区11的第二像素电路520,第二像素电路520与第一电极310电连接;在显示面板10的厚度方向,第二像素电路520与第一绝缘开口230至少部分交叠。
例如,第二像素电路520位于光学部件区11,第二像素电路520与第一电极310电连接,用于驱动显示面板10中第一发光元件300发光。,
例如,在显示面板10的厚度方向,第二像素电路520与第一绝缘开口230至少部分交叠,即第二像素电路520覆盖部分第一绝缘开口230,如图21所示。第一绝缘开口230在对第一电极310产生的热量进行发散,的同时,还可以对第二像素电路520产生的热量进行散热,提升第二像素电路520的稳定性。
图22为图5中沿E-E’方向的另一种截面结构示意图,参考图22所示,显示面板10还包括至少一个热导桥800,热导桥800与第二绝缘层220接触。
例如,本申请实施例所提供的技术方案中,显示面板10还包括至少一个热导桥800,热导桥800经由第一绝缘开口230与第二绝缘层220连接,可以将光学部件区11产生的热量横向的进行传递,例如,可以传递至光学部件区11以外的区域,或者可以用来平衡光学部件区11内产生的热量,保证光学部件区11内部热量均匀化。
继续参考图5和图22所示,显示面板10还包括第一显示区21和第二显示区22,第一显示区21围绕至少部分光学部件区11,第二显示区22围绕至少部分第一显示区21;在显示面板10的厚度方向上,热导桥800与第一显示区21和/或第二显示区22交叠。
示例性的,如图5所示,显示面板10包括光学部件区11、第一显示区21和第二显示区22。第一显示区21围绕至少部分光学部件区11,第二显示区22围绕至少部分第一显示区21,这里的第一显示区21可以理解为过渡显示区,第二显示区22可以理解为正常显示区12。一般来说,光学部件区11可以作为高透光显示区,过渡显示区可以用来设置与光学部件区中发光元件电连接的像素电路和/或用来实现正常显示区与光学部件区之间发光元件密度的渐变。
例如,如图22所示,在显示面板10的厚度方向上,热导桥800同时与第一显示区21和第二显示区22交叠。例如,热导桥800也可以只与第一显示区21交叠。通过设置热导桥800,可以将产生热量较高的光学部件区11产生的热量横向的进行传递,可以传递至第一显示区 21和第二显示区22,平衡显示面板10内部的热量。
继续参考图6所示,第一子绝缘层211中设置有多个第一绝缘开口230;不同的单位面积内,第一绝缘开口230的开口面积之和最大值为S3,第一绝缘开口230的开口面积之和最小值为S4,其中,(S3-S4)/S3≤20%。
其中,第一子绝缘层211中可以设置多个第一绝缘开口230,更高效的提升光学部件区11散热能力。例如,在单位面积内,第一绝缘开口230的开口面积之和最大值为S3,第一绝缘开口230的开口面积之和最小值为S4,其中,(S3-S4)/S3≤20%,如此保证在不同的第一子绝缘层211的单位面积内第一绝缘开口230的开口面积之和相同或者相近,并保证光学部件区11不同区域的散热效果相同或者相近,保证光学部件区11整体散热效果均衡。
继续参考图6所示,衬底100中嵌有掺杂粒子700,掺杂粒子700的导热系数大于衬底100材料的导热系数。本申请实施例所提供的技术方案,通过在衬底100中嵌入掺杂粒子700,掺杂粒子700的导热系数大于衬底100本身材质,例如石墨粒子,提升衬底100的导热性,便于提升光学部件区11的散热效果。
继续参考图6和图9所示,第一绝缘层210中的绝缘开口暴露衬底100,第二绝缘层220覆盖绝缘开口并与衬底100接触。本申请实施例所提供的技术方案,通过在第一绝缘层210中增加绝缘开口,提升光学部件区11的散热效果。示例性的,如图6所示,如果仅有第一子绝缘层211,绝缘开口为第一绝缘开口230;如图9所示,还有第二子绝缘层212,绝缘开口为第一绝缘开口230和第二绝缘开口240。
例如,在第一绝缘层210中设置的绝缘开口直接与衬底100接触。通过在衬底100中嵌入导热系数较高的掺杂粒子700,进一步提升光学部件区11的散热效果。
参考图5和图14所示,显示面板10还包括第一显示区21和第二显示区22;第一显示区21围绕至少部分光学部件区11,第二显示区22围绕至少部分第一显示区21;显示面板10还包括像素电路,像素电路包括第一像素电路510,第一像素电路510位于第一显示区21,第一像素电路510与第一电极电310连接。
其中,第一像素电路510与第一电极310电连接,用于驱动显示面板10中第一发光元件300发光。例如,如图14所示,第一像素电路510可以位于第一显示区12,位于光学部件区11的第一电极310通过连接结构515实现与第一显示区12中的第一像素电路510电连接,进而实现第一发光元件300的发光。同时将像素电路设置在第一显示区21,还可以保证光学部件区11具备更多的透光区域,保证光学部件区11的透光效果良好。
基于同样的申请构思,本申请实施例还提供了一种显示装置,图23为本申请实施例提供的一种显示装置的结构示意图,如图23所示,该显示装置1包括本申请任意实施例所述的显示面板10,因此,本申请实施例提供的显示装置1具有上述任一实施例中的技术方案所具有的技术效果,与上述实施例相同或相应的结构以及术语的解释在此不再赘述。本申请实施例提供的显示装置1可以为图24所示的手机,也可以为任何具有显示功能的电子产品,包括但不限于以下类别:电视机、笔记本电脑、桌上型显示器、平板电脑、数码相机、智能手环、智能眼镜、车载显示器、医疗设备、工控设备、触摸交互终端等,本申请实施例对此不作特殊限定。
图24为本申请实施例提供的一种显示装置的截面结构示意图,如图23和图24所示,例如,本申请实施例提供的显示装置还包括传感器20,传感器20对应光学部件区11设置。
其中,传感器20可包括摄像头、红外传感器等任意感光元件,通过将传感器20与光学部件区11对应设置,在具有显示功能的同时,保证传感器20可以正常接收光线,正常工作。

Claims (27)

  1. 一种显示面板,包括光学部件区;
    所述光学部件区包括衬底、绝缘层和第一电极;
    所述绝缘层包括第一绝缘层和第二绝缘层,所述第二绝缘层位于所述第一绝缘层远离所述衬底的一侧,所述第一绝缘层包括与所述第二绝缘层接触的第一子绝缘层;
    所述第一电极位于所述第二绝缘层远离所述衬底的一侧,所述第一子绝缘层中设置有至少一个第一绝缘开口;在所述显示面板的厚度方向上,所述第二绝缘层覆盖所述第一绝缘开口,所述第一电极与所述第一绝缘开口至少部分交叠。
  2. 根据权利要求1所述的显示面板,其中,所述第一绝缘层还包括位于所述第一子绝缘层靠近所述衬底一侧的至少一层第二子绝缘层;
    至少接触所述第一子绝缘层的一个所述第二子绝缘层中设置有至少一个第二绝缘开口;在所述显示面板的厚度方向上,所述第二绝缘开口与所述第一绝缘开口至少部分交叠;
    所述第二绝缘层填充所述第一绝缘开口和所述第二绝缘开口。
  3. 根据权利要求2所述的显示面板,其中,任一所述第二子绝缘层中设置有至少一个第二绝缘开口。
  4. 根据权利要求1所述的显示面板,其中,在所述显示面板的厚度方向上,所述第一电极覆盖所述第一绝缘开口。
  5. 根据权利要求4所述的显示面板,其中,所述第一绝缘层中设置有一个第一绝缘开口,且所述第一绝缘开口的开口面积为S1,所述第一电极的覆盖面积为S2,其中,0≤(S2-S1)/S1≤10%。
  6. 根据权利要求1所述的显示面板,还包括位于所述第二绝缘层远离所述衬底一侧的像素限定层,所述像素限定层中设置有第一像素开口,所述第一像素开口暴露所述第一电极;
    在所述显示面板的厚度方向上,所述第一像素开口与所述第一绝缘开口不交叠。
  7. 根据权利要求1所述的显示面板,还包括位于所述第二绝缘层远离所述衬底一侧的像素限定层,所述像素限定层中设置有第二像素开口,所述第二像素开口暴露所述第一电极;
    在所述显示面板的厚度方向上,所述第一绝缘开口覆盖所述第二像素开口。
  8. 根据权利要求1所述的显示面板,还包括位于所述第二绝缘层远离所述衬底一侧的像素限定层,所述像素限定层中设置有第三像素开口,所述第三像素开口暴露所述第一电极;
    在所述显示面板的厚度方向上,所述第三像素开口与所述第一绝缘开口部分交叠。
  9. 根据权利要求1所述的显示面板,还包括第一像素电路,所述第一像素电路与所述第一电极电连接;
    所述第一像素电路包括薄膜晶体管,所述薄膜晶体管包括有源层、源漏极以及位于所述有源层与所述源漏极之间的层间绝缘层,所述层间绝缘层中设置有源漏过孔,所述源漏极通过所述源漏过孔与所述有源层电连接;
    所述第一绝缘层包括所述层间绝缘层,所述第一绝缘开口包括与所述源漏过孔同一工艺制备的过孔。
  10. 根据权利要求1所述的显示面板,其中,所述光学部件区还包括补偿结构,所述补偿结构包括至少一层补偿膜层;
    在所述显示面板的厚度方向上,所述第一电极与所述补偿结构至少部分交叠。
  11. 根据权利要求10所述的显示面板,其中,所述第一电极覆盖所述补偿结构。
  12. 根据权利要求10所述的显示面板,其中,所述补偿膜层包括金属补偿膜层。
  13. 根据权利要求12所述的显示面板,还包括第一像素电路,所述第一像素电路与所述第一电极电连接;
    所述第一像素电路包括薄膜晶体管,所述薄膜晶体管包括栅极和源漏极,所述金属补偿 膜层与以下至少之一同层设置:所述栅极,所述源漏极。
  14. 根据权利要求1所述的显示面板,其中,所述显示面板包括第一发光元件,所述第一发光元件包括所述第一电极;
    所述第一发光元件包括第一红色发光元件、第一绿色发光元件和第一蓝色发光元件;
    所述第一红色发光元件包括第一红色电极,所述第一绿色发光元件包括第一绿色电极,所述第一蓝色发光元件包括第一蓝色电极;
    所述第一绝缘开口包括至少一个第一子绝缘开口、至少一个第二子绝缘开口和至少一个第三子绝缘开口;
    在所述显示面板的厚度方向上,所述第一红色电极与所述第一子绝缘开口至少部分交叠,所述第一绿色电极与所述第二子绝缘开口至少部分交叠,所述第一蓝色电极与所述第三子绝缘开口至少部分交叠;
    所述至少一个第三子绝缘开口的开口面积之和大于所述至少一个第一子绝缘开口的开口面积之和,所述至少一个第一子绝缘开口的开口面积之和大于所述至少一个第二子绝缘开口的开口面积之和。
  15. 根据权利要求1所述的显示面板,其中,所述显示面板包括第一发光元件,所述第一发光元件包括所述第一电极;
    所述第一发光元件包括第一红色发光元件、第一绿色发光元件和第一蓝色发光元件;
    所述第一红色发光元件包括第一红色电极,所述第一绿色发光元件包括第一绿色电极,所述第一蓝色发光元件包括第一蓝色电极;
    所述第一绝缘开口包括至少一个第一子绝缘开口、至少一个第二子绝缘开口和至少一个第三子绝缘开口;
    在所述显示面板的厚度方向上,所述第一红色电极与所述第一子绝缘开口至少部分交叠,所述第一绿色电极与所述第二子绝缘开口至少部分交叠,所述第一蓝色电极与所述第三子绝缘开口至少部分交叠;
    所述至少一个第一子绝缘开口的开口面积之和、所述至少一个第二子绝缘开口的开口面积之和以及所述至少一个第三子绝缘开口的开口面积之和分别相同。
  16. 根据权利要求1所述的显示面板,其中,所述第一绝缘层还包括第三子绝缘层和第四子绝缘层,所述第三子绝缘层的致密性大于所述第四子绝缘层的致密性;
    至少所述第三子绝缘层,以及所述第三子绝缘层与所述第二绝缘层之间的所述第一绝缘层中设置有绝缘开口。
  17. 根据权利要求1所述的显示面板,其中,所述第二绝缘层与所述第一电极接触。
  18. 根据权利要求1所述的显示面板,其中,所述第二绝缘层为平坦化层。
  19. 根据权利要求1所述的显示面板,还包括像素电路,所述像素电路包括位于所述光学部件区的第二像素电路,所述第二像素电路与所述第一电极电连接;
    在所述显示面板的厚度方向,所述第二像素电路与所述第一绝缘开口至少部分交叠。
  20. 根据权利要求1所述的显示面板,还包括至少一个热导桥,所述热导桥与所述第二绝缘层接触。
  21. 根据权利要求20所述的显示面板,还包括第一显示区和第二显示区;
    所述第一显示区围绕至少部分所述光学部件区,所述第二显示区围绕至少部分所述第一显示区;
    在所述显示面板的厚度方向上,所述热导桥与以下至少之一交叠:所述第一显示区,所述第二显示区。
  22. 根据权利要求1所述的显示面板,其中,所述第一子绝缘层中设置有多个第一绝缘开口;
    不同的单位面积内,所述第一绝缘开口的开口面积之和最大值为S3,所述第一绝缘开口的开口面积之和最小值为S4,其中,(S3-S4)/S3≤20%。
  23. 根据权利要求1所述的显示面板,其中,所述衬底中嵌有掺杂粒子,所述掺杂粒子的导热系数大于衬底材料的导热系数。
  24. 根据权利要求23所述的显示面板,其中,所述第一绝缘层中的绝缘开口暴露所述衬底,所述第二绝缘层覆盖所述第一绝缘层中的绝缘开口并与所述衬底接触。
  25. 根据权利要求1所述的显示面板,还包括第一显示区和第二显示区;
    所述第一显示区围绕至少部分所述光学部件区,所述第二显示区围绕至少部分所述第一显示区;
    所述显示面板还包括像素电路,所述像素电路包括第一像素电路,所述第一像素电路位于所述第一显示区,所述第一像素电路与所述第一电极电连接。
  26. 一种显示装置,包括权利要求1-25任一项所述的显示面板。
  27. 根据权利要求26所述的显示装置,还包括:传感器;
    所述传感器对应所述光学部件区设置。
PCT/CN2022/088114 2022-02-09 2022-04-21 显示面板和显示装置 WO2023151186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210121502.4 2022-02-09
CN202210121502.4A CN114464757B (zh) 2022-02-09 2022-02-09 一种显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023151186A1 true WO2023151186A1 (zh) 2023-08-17

Family

ID=81414165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088114 WO2023151186A1 (zh) 2022-02-09 2022-04-21 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN114464757B (zh)
WO (1) WO2023151186A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065590A (zh) * 2018-08-09 2018-12-21 京东方科技集团股份有限公司 有机发光显示基板及其制作方法、有机发光显示装置
CN109273498A (zh) * 2018-09-25 2019-01-25 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置
WO2020143024A1 (zh) * 2019-01-11 2020-07-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板
CN113809112A (zh) * 2021-08-06 2021-12-17 武汉天马微电子有限公司 一种显示面板及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714539B1 (ko) * 2010-08-24 2017-03-23 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6318665B2 (ja) * 2014-02-10 2018-05-09 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、電子機器
KR102422035B1 (ko) * 2015-12-01 2022-07-19 엘지디스플레이 주식회사 표시장치
KR102662057B1 (ko) * 2016-10-07 2024-05-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
KR20200087371A (ko) * 2019-01-10 2020-07-21 삼성디스플레이 주식회사 표시 장치
CN109859647B (zh) * 2019-03-29 2022-04-08 上海天马微电子有限公司 一种显示面板及显示装置
KR20200121953A (ko) * 2019-04-16 2020-10-27 삼성디스플레이 주식회사 표시 장치
CN110265470B (zh) * 2019-07-01 2022-01-14 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN113439338A (zh) * 2020-01-23 2021-09-24 京东方科技集团股份有限公司 显示基板及其制备方法
CN113745273A (zh) * 2020-05-29 2021-12-03 京东方科技集团股份有限公司 显示基板和显示装置
CN113838888A (zh) * 2020-06-23 2021-12-24 京东方科技集团股份有限公司 显示基板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065590A (zh) * 2018-08-09 2018-12-21 京东方科技集团股份有限公司 有机发光显示基板及其制作方法、有机发光显示装置
CN109273498A (zh) * 2018-09-25 2019-01-25 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板、显示装置
WO2020143024A1 (zh) * 2019-01-11 2020-07-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板
CN113809112A (zh) * 2021-08-06 2021-12-17 武汉天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN114464757B (zh) 2024-03-26
CN114464757A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110416435B (zh) 有机发光显示面板和显示装置
US20200387254A1 (en) Display device having shaped sealing member
EP3316308B1 (en) Flat panel display connecting front side to rear side of substrate using through hole
US7985968B2 (en) Display device
US9082733B2 (en) Display unit and electronic apparatus
CN110739338B (zh) 一种显示基板及其制备方法、显示面板
WO2023010696A1 (zh) 一种显示面板及显示装置
US11417713B2 (en) Substrate and manufacturing method therefor, and electronic apparatus
WO2021147081A1 (zh) 显示基板及其制备方法
WO2021213049A1 (zh) 一种显示基板和显示装置
TW202045992A (zh) 顯示裝置
US20220005791A1 (en) Display panel, preparation method thereof and display device
KR102203766B1 (ko) 플렉서블 표시장치 및 그 제조방법
WO2023151186A1 (zh) 显示面板和显示装置
CN112909053A (zh) 显示装置、显示面板及其制造方法
US11950450B2 (en) Display substrate and method of manufacturing the same and electronic device
TWI297210B (en) System for displaying images including electroluminescent device and method for fabricating the same
CN216145619U (zh) 显示面板、显示模组及电子设备
WO2021227064A1 (zh) 像素驱动电路、显示面板和电子装置
CN111653598A (zh) 显示基板及其制造方法、显示装置和拼接屏
WO2022047664A1 (zh) 显示基板及其制作方法、显示装置
TWI824609B (zh) 透明顯示裝置
CN220422360U (zh) 一种显示面板及电子设备
WO2021227063A1 (zh) 显示面板和电子装置
WO2023011275A1 (zh) 显示面板和电子设备