WO2023149521A1 - 樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置 - Google Patents

樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置 Download PDF

Info

Publication number
WO2023149521A1
WO2023149521A1 PCT/JP2023/003461 JP2023003461W WO2023149521A1 WO 2023149521 A1 WO2023149521 A1 WO 2023149521A1 JP 2023003461 W JP2023003461 W JP 2023003461W WO 2023149521 A1 WO2023149521 A1 WO 2023149521A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
resin
compound
less
Prior art date
Application number
PCT/JP2023/003461
Other languages
English (en)
French (fr)
Inventor
賢司 川合
崇史 岸田
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2023578625A priority Critical patent/JPWO2023149521A1/ja
Priority to CN202380019913.5A priority patent/CN118647671A/zh
Priority to KR1020247025995A priority patent/KR20240137596A/ko
Publication of WO2023149521A1 publication Critical patent/WO2023149521A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to a resin composition containing an epoxy resin. Furthermore, it relates to a cured product, a sheet-like laminated material, a resin sheet, a printed wiring board, and a semiconductor device obtained using the resin composition.
  • the insulating layer is generally formed by curing a resin composition.
  • further improvements in dielectric properties such as dielectric loss tangent of insulating layers have been demanded.
  • Patent Document 1 the dielectric loss tangent of the insulating layer has been lowered by using an epoxy resin composition containing an active ester compound instead of a general phenol-based curing agent as the resin composition for forming the insulating layer. It is known that it can be suppressed (Patent Document 1).
  • the resulting cured product tends to have a high melt viscosity.
  • An object of the present invention is to provide a resin composition capable of suppressing dielectric loss tangent and obtaining a cured product capable of suppressing an increase in melt viscosity.
  • the present inventors have made intensive studies. Surprisingly, the inventors have found that it is possible to obtain a cured product capable of suppressing a dielectric loss tangent and an increase in melt viscosity, thereby completing the present invention.
  • a resin composition comprising (A) a silane compound represented by the following formula (A-1), (B) an epoxy resin, and (C) an active ester compound. (RO)nSiAr4 -n ( A-1) (Wherein, R represents an alkyl group, Ar represents an aryl group, and n represents 1 or 2.) [2] The resin composition according to [1] above, wherein the content of component (A) is 0.05% by mass or more and 1% by mass or less when the resin component in the resin composition is 100% by mass. [3] The resin composition according to the above [1] or [2], further comprising (D) an inorganic filler.
  • the maleimide compound is selected from the group consisting of (E1-1a) a maleimide compound containing a trimethylindane skeleton, and (E1-2) a maleimide resin containing an aromatic ring skeleton directly bonded to the nitrogen atom of the maleimide group.
  • a resin sheet comprising a support and a resin composition layer formed from the resin composition according to any one of [1] to [9] provided on the support.
  • a printed wiring board comprising an insulating layer comprising a cured product of the resin composition according to any one of [1] to [9] above.
  • a semiconductor device comprising the printed wiring board according to [13] above.
  • a resin composition capable of obtaining a cured product capable of suppressing a dielectric loss tangent and an increase in melt viscosity; a cured product of the resin composition; a sheet containing the resin composition A laminated material and a resin sheet; and a printed wiring board and a semiconductor device containing a cured product of the resin composition can be provided.
  • the amount of each component is the amount of non-volatile components unless otherwise specified.
  • the term “non-volatile component in the resin composition” may include (D) an inorganic filler, unless otherwise specified.
  • the term “resin component” refers to a non-volatile component contained in the resin composition excluding (D) the inorganic filler, where (D) The inorganic filler may be a surface-treated inorganic filler described later.
  • the resin composition of the present invention contains (A) a silane compound represented by formula (A-1), (B) an epoxy resin, and (C) an active ester compound.
  • A a silane compound represented by formula (A-1)
  • B an epoxy resin
  • C an active ester compound
  • the resin composition of the present invention may further contain optional components in addition to (A) a silane compound represented by formula (A-1), (B) an epoxy resin, and (C) an active ester compound. good.
  • Optional components include, for example, (D) an inorganic filler, (E) a radically polymerizable compound, (F) other curing agents, (G) curing accelerators, (H) other additives, and (K) An organic solvent is mentioned.
  • each of the components (A) to (K) may also be referred to as "(A) component", "(B) component", and the like.
  • Each component contained in the resin composition will be described in detail below.
  • silane compound used in the present invention is not particularly limited as long as it is a compound represented by formula (A-1) below.
  • the component (A) may be simply referred to as "specific silane compound”.
  • (RO)nSiAr4 -n ( A-1) (Wherein, R represents an alkyl group, Ar represents an aryl group, and n represents 1 or 2.)
  • the alkyl group for R is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably an alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, propyl.
  • One or more selected from groups, isopropyl groups and cyclopropyl groups are even more preferred.
  • the aryl group as Ar is preferably an aryl group having 6 to 10 carbon atoms, and may be an aryl group having a substituent.
  • substituent include an alkyl group having 1 to 10 carbon atoms. , preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, still more preferably an alkyl group having 1 to 4 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group and cyclopropyl
  • One or more selected from groups are even more preferred, and a methyl group is particularly preferred.
  • the aryl group as Ar is preferably at least one selected from the group consisting of a phenyl group, a tolyl group, a xylyl group, and a naphthyl group, and at least one selected from the group consisting of a phenyl group, a tolyl group, and a xylyl group. is more preferred, and a phenyl group is even more preferred.
  • Specific silane compounds include, for example, diphenyldialkoxysilanes such as diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenylmethoxyethoxysilane, diphenylmethoxypropoxysilane, and diphenylethoxypropoxysilane; triphenylmethoxysilane; , triphenylethoxysilane, triphenylpropoxysilane; and the like; diphenyldialkoxysilane is preferred, and diphenyldimethoxysilane is more preferred.
  • diphenyldialkoxysilane such as diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenylmethoxyethoxysilane, diphenylmethoxypropoxysilane, and diphenylethoxypropoxysilane
  • the particles and components contained in the resin composition have good dispersibility, and the increase in melt viscosity of the cured product obtained from the resin composition can be suppressed.
  • the resin composition contains (D) an inorganic filler, the melt viscosity of the cured product obtained from the resin composition tends to increase.
  • the dispersibility of the material (particles) is improved, and an increase in the melt viscosity of the cured product obtained from the resin composition can be effectively suppressed.
  • the specific silane compound may be used singly or in combination of two or more at any ratio.
  • the content of component (A) is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and, for example, 1% by mass or less with respect to 100% by mass of nonvolatile components in the resin composition. It is preferably 0.8% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.3% by mass or less, and even more preferably 0.2% by mass or less.
  • the content of component (A) is, for example, 0.05% by mass or more, 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.2% by mass or more, with respect to 100% by mass of the resin component in the resin composition.
  • the resin composition of the present invention contains (B) an epoxy resin.
  • Epoxy resin means a curable resin having an epoxy group.
  • Epoxy resins include, for example, bixylenol type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AF type epoxy resins, dicyclopentadiene type epoxy resins, and trisphenol type epoxy resins.
  • the resin composition preferably contains an epoxy resin having two or more epoxy groups in one molecule as (B) the epoxy resin.
  • the ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile components of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably is 70% by mass or more.
  • Epoxy resins include liquid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “liquid epoxy resins”) and solid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “solid epoxy resins”). ).
  • the resin composition of the present invention may contain only a liquid epoxy resin, may contain only a solid epoxy resin, or may contain a combination of a liquid epoxy resin and a solid epoxy resin. You can stay.
  • the epoxy resin in the resin composition of the present invention is preferably a solid epoxy resin or a combination of a liquid epoxy resin and a solid epoxy resin, more preferably a solid epoxy resin.
  • a liquid epoxy resin having two or more epoxy groups in one molecule is preferable as the liquid epoxy resin.
  • liquid epoxy resins examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolac type epoxy resin, and an ester skeleton.
  • An alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferred.
  • liquid epoxy resins include “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resins) manufactured by DIC; “828US”, “828EL”, “jER828EL”, and “825" manufactured by Mitsubishi Chemical Corporation; “, “Epikote 828EL” (bisphenol A type epoxy resin); “jER807” and “1750” (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “jER152” (phenol novolac type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “630", “630LSD”, “604" (glycidylamine type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “ED-523T” (glycirrol type epoxy resin) manufactured by ADEKA; “EP-3950L” manufactured by ADEKA; “EP-3980S” (glycidylamine type epoxy resin); “EP-4088S” (dicyclopentadiene type epoxy resin) manufactured by ADEKA; “ZX1059” manufactured by Nippon Steel & Sumikin
  • JP-100 epoxy resin having a butadiene structure
  • JP-200 epoxy resin having a butadiene structure
  • glycidylcyclohexane type epoxy resin epoxy resin having a butadiene structure
  • glycidylcyclohexane type epoxy resin epoxy resin having a butadiene structure
  • the solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups per molecule, more preferably an aromatic solid epoxy resin having 3 or more epoxy groups per molecule.
  • Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, naphthol novolak type epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, phenol aralkyl type epoxy resin, tetraphenylethane type epoxy resin, phenol phthalate A mijin-type epoxy resin and a phenolphthalein-type epoxy resin are preferred.
  • solid epoxy resins include “HP4032H” (naphthalene-type epoxy resin) manufactured by DIC; “HP-4700” and “HP-4710” (naphthalene-type tetrafunctional epoxy resin) manufactured by DIC; “N-690” (cresol novolac type epoxy resin) manufactured by DIC Corporation; “N-695" (cresol novolak type epoxy resin) manufactured by DIC Corporation; "HP-7200”, “HP-7200HH”, “HP -7200H”, “HP-7200L” (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", “EXA-7311-G3", “EXA-7311-G4", “EXA-7311-G4S” ", "HP6000” (naphthylene ether type epoxy resin); Nippon Kayaku "EPPN-502H” (trisphenol type epoxy resin); Nippon Kayaku “NC7000L” (naphthol novolac type epoxy resin); "NC3
  • the mass ratio of the liquid epoxy resin to the solid epoxy resin is not particularly limited. However, it is preferably 10 or less, more preferably 5 or less, and still more preferably 1 or less.
  • the epoxy equivalent of the epoxy resin is preferably 50 g/eq. ⁇ 5,000 g/eq. , more preferably 60 g/eq. ⁇ 2,000 g/eq. , more preferably 70 g/eq. ⁇ 1,000 g/eq. , even more preferably 80 g/eq. ⁇ 500 g/eq. is.
  • Epoxy equivalent weight is the mass of resin per equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, still more preferably 400 to 1,500.
  • the weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the content of component (B) is, for example, 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 7% by mass with respect to 100% by mass of non-volatile components in the resin composition. Above, still more preferably 7.5% by mass or more, and for example 30% by mass or less, preferably 20% by mass or less, more preferably 18% by mass or less, still more preferably 15% by mass or less, still more It is preferably 12 to 12.0% by mass or less.
  • the content of component (B) is, for example, 10% by mass or more, preferably 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass with respect to 100% by mass of the resin component in the resin composition. above, still more preferably 30% by mass or more, particularly preferably 32 to 32.0% by mass or more, and for example, 60% by mass or less, preferably 55% by mass or less, more preferably 50% by mass or less, More preferably 45% by mass or less, still more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the resin composition of the present invention contains (C) an active ester compound.
  • the active ester compound may be used singly or in combination of two or more at any ratio.
  • the active ester compound may have the function of reacting with (B) the epoxy resin to crosslink the (B) epoxy resin.
  • the active ester compound may have a carbon-carbon unsaturated bond.
  • the active ester compound generally contains two or more highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. is preferably used.
  • the active ester compound is preferably obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound is more preferred.
  • carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol no
  • the (C) active ester compound includes a dicyclopentadiene-type active ester compound, a naphthalene-type active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of phenol novolak, and a benzoylated product of phenol novolak.
  • Active ester compounds are preferred, among which at least one selected from dicyclopentadiene-type active ester compounds and naphthalene-type active ester compounds is more preferred, and dicyclopentadiene-type active ester compounds are even more preferred.
  • dicyclopentadiene-type active ester compound an active ester compound containing a dicyclopentadiene-type diphenol structure is preferable.
  • Dicyclopentadiene-type diphenol structure represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • active ester compounds include "EXB9451”, “EXB9460”, “EXB9460S”, “EXB-8000L”, and “EXB-8000L-65M” as active ester compounds containing a dicyclopentadiene type diphenol structure.
  • the active ester group equivalent of the active ester compound is preferably 50 g/eq. ⁇ 500 g/eq. , more preferably 50 g/eq. ⁇ 400 g/eq. , more preferably 100 g/eq. ⁇ 300 g/eq. is.
  • the active ester group equivalent is the mass of active ester compound per equivalent of active ester group.
  • the ratio of the components (B) and (C) is determined by dividing the mass of the non-volatile components of the component (B) by the epoxy equivalent, with a being the sum of all the values, and the mass of the non-volatile components of the component (C) being
  • b is the sum of all the values divided by the active ester group equivalent
  • b/a is preferably 1.0 or more, more preferably 1.01 or more, further preferably 1.05 or more, and 1 1 to 1.10 or more is even more preferable, 1.11 or more is particularly preferable, and 2.0 or less is preferable, 1.5 or less is more preferable, and 1.4 or less is even more preferable. 3 or less is even more preferred.
  • the content of component (C) is, for example, 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, and still more preferably 10% by mass, relative to 100% by mass of non-volatile components in the resin composition. Above, still more preferably 13% by mass or more, and for example 40% by mass or less, preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably It is 21% by mass or less.
  • the content of component (C) is, for example, 30% by mass or more, preferably 40% by mass or more, more preferably 45% by mass or more, and still more preferably 50% by mass, relative to 100% by mass of the resin component in the resin composition. More preferably 55% by mass or more, particularly preferably 57% by mass or more, and for example 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, still more preferably 65% by mass % by mass or less, and more preferably 60% by mass or less.
  • the resin composition of the present invention may contain (D) an inorganic filler as an optional component.
  • the inorganic filler is contained in the resin composition in the form of particles.
  • the inorganic filler may be used singly or in any combination of two or more.
  • An inorganic compound is used as the material for the inorganic filler.
  • inorganic filler materials include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, and water.
  • silica is particularly suitable.
  • examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. As silica, spherical silica is preferable.
  • the inorganic filler may be used singly or in combination of two or more at any ratio.
  • inorganic fillers include, for example, "SP60-05” and “SP507-05” manufactured by Nippon Steel Chemical &Materials; “SC2500SQ”, “SO-C4" and “ SO-C2", “SO-C1", “YC100C”, “YA050C”, “YA050C-MJE", “YA010C”, “180nmSX-C1”; Denka's “UFP-30”, “DAW-03” , "FB-105FD”; Tokuyama "Sylfil NSS-3N", “Silfil NSS-4N", “Silfil NSS-5N”; Taiheiyo Cement Co., Ltd. "Selfears", “MGH-005"; “Sferique”, “BA-1”, “BA-S” manufactured by Kasei Co., Ltd., and the like.
  • the average particle size of the inorganic filler (D) is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, even more preferably 2 ⁇ m or less, even more preferably 1 ⁇ m or less, and particularly preferably 0.001 ⁇ m or less. 7 ⁇ m or less.
  • the lower limit of the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.07 ⁇ m or more, and particularly preferably 0 .1 ⁇ m or more.
  • the average particle size of the inorganic filler can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is prepared on a volume basis using a laser diffraction/scattering type particle size distribution measuring device, and the median diameter can be used as the average particle size for measurement.
  • a measurement sample can be obtained by weighing 100 mg of an inorganic filler and 10 g of methyl ethyl ketone in a vial and dispersing them with ultrasonic waves for 10 minutes.
  • a measurement sample is measured using a laser diffraction particle size distribution measuring device, the wavelengths of the light source used are blue and red, the volume-based particle size distribution of the inorganic filler is measured by the flow cell method, and from the obtained particle size distribution The average particle diameter was calculated as the median diameter.
  • the laser diffraction particle size distribution analyzer include "LA-960" manufactured by Horiba, Ltd., and the like.
  • the specific surface area of the inorganic filler is not particularly limited, but is preferably 0.1 m 2 /g or more, more preferably 0.5 m 2 /g or more, still more preferably 1 m 2 /g or more, Particularly preferably, it is 3 m 2 /g or more.
  • the upper limit of the specific surface area of the inorganic filler (D) is not particularly limited, it is preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, even more preferably 50 m 2 /g or less, and particularly preferably is 40 m 2 /g or less.
  • the specific surface area of the inorganic filler is determined by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method, and calculating the specific surface area using the BET multipoint method. obtained by
  • the inorganic filler is preferably surface-treated with an appropriate surface treatment agent.
  • the surface treatment can enhance the moisture resistance and dispersibility of (D) the inorganic filler.
  • an alkoxysilane compound different from the component (A) is preferable, and examples thereof include vinyl-based silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2-(3,4-epoxycyclohexyl)ethyl epoxy-based silane cups such as trimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; Ringing agent; styryl-based silane coupling agent such as p-styryltrimethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-meth
  • Examples of commercially available surface treatment agents include “KBM-1003” and “KBE-1003” (vinyl silane coupling agents) manufactured by Shin-Etsu Chemical Co., Ltd.; “KBM-303", “KBM-402”, “ KBM-403”, “KBE-402”, “KBE-403” (epoxy silane coupling agent); “KBM-1403” (styryl silane coupling agent); “KBM-502”, “KBM-503” , “KBE-502", “KBE-503” (methacrylic silane coupling agent); “KBM-5103” (acrylic silane coupling agent); “KBM-602", “KBM-603", “KBM- 903", “KBE-903", “KBE-9103P", "KBM-573", "KBM-575" (amino-based silane coupling agent); “KBM-9659” (isocyanurate-based silane coupling agent); “KBE-585" (ureido-based silane coupling agent); "K
  • the degree of surface treatment with the surface treatment agent is preferably within a predetermined range. Specifically, 100% by mass of the inorganic filler is preferably surface-treated with a surface treatment agent of 0.2% to 5% by mass, and is surface-treated with 0.2% to 3% by mass. more preferably 0.3 mass % to 2 mass % of the surface treatment.
  • the degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • the amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and more preferably 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable.
  • it is preferably 1.0 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and 0.5 mg/m 2 or less . More preferred are:
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (eg, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent, and ultrasonic cleaning is performed at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, a carbon analyzer can be used to measure the amount of carbon per unit surface area of the inorganic filler. As a carbon analyzer, "EMIA-320V" manufactured by Horiba Ltd. can be used.
  • EMIA-320V manufactured by Horiba Ltd.
  • the content of the (D) inorganic filler in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 90% by mass or less, more preferably It may be 85% by mass or less, more preferably 80% by mass or less, and even more preferably 76% by mass or less.
  • the lower limit of the content of the inorganic filler (D) in the resin composition is not particularly limited. % or more, 10 mass % or more, 20 mass % or more, 30 mass % or more, etc., preferably 40 mass % or more, more preferably 50 mass % or more, even more preferably 55 mass % or more, still more preferably 60 mass % or more. It can be at least 61% by mass, particularly preferably at least 61% by mass.
  • the resin composition of the present invention may contain (E) a radically polymerizable compound as an optional component.
  • (E) Radically polymerizable compounds may be used singly or in combination of two or more.
  • the type of the radically polymerizable compound is not particularly limited as long as it has one or more (preferably two or more) radically polymerizable unsaturated groups in one molecule.
  • the radically polymerizable compound for example, one selected from maleimide group, vinyl group, allyl group, styryl group, vinylphenyl group, acryloyl group, methacryloyl group, fumaroyl group, and maleoyl group as the radically polymerizable unsaturated group. compounds having the above. Among them, (E1) a maleimide compound and/or (E2) other radically polymerizable compounds are preferably contained from the viewpoint that a cured product having excellent dielectric properties can be easily obtained.
  • the other radically polymerizable compound is a compound that does not have a maleimide group but has a radically polymerizable unsaturated group other than the maleimide group, and among them, one or more selected from (meth)acrylic resins and styryl resins is preferably included.
  • Maleimide compounds as long as they have one or more (preferably two or more) maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl groups) in one molecule. , the type of which is not particularly limited.
  • Maleimide compounds include, for example, "BMI-3000J", “BMI-5000”, “BMI-1400”, “BMI-1500”, “BMI-1700”, and “BMI-689” (all are Digiigner Molecules (E1 -1) A maleimide resin containing an indane skeleton, described in the Japan Institute of Invention and Innovation Public Technical Report No.
  • (E1-2) Maleimides containing an aromatic ring skeleton directly bonded to the nitrogen atom of the maleimide group Resins are preferred, and the latter (E1-2) maleimide resin is an aromatic compound directly bonded to the nitrogen atom of the (E1-2a) maleimide group, such as "MIR-5000-60T” (manufactured by Nippon Kayaku Co., Ltd.).
  • a bismaleimide resin containing a ring skeleton and containing three or more aromatic rings in the molecule is more preferred.
  • (E1) maleimide compound preferably includes a maleimide compound containing an indane skeleton (also referred to herein as “(E1-1) specific maleimide compound”), and (E1-1a) trimethylindane It is more preferred to include a maleimide compound containing a skeleton.
  • the specific maleimide compound can be produced, for example, by the method described in JIII Technical Publication No. 2020-500211. According to the production method described in Kokai Technical Report No. 2020-500211 of the Institute of Invention and Innovation, it is possible to obtain a maleimide compound having a distribution in the number of repeating units of the trimethylindane skeleton.
  • the maleimide compound obtained by this method contains a structure represented by the following formula (M1). Therefore, (E1) the maleimide compound may include a maleimide compound having a structure represented by formula (M1).
  • each R 1 is independently an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an -10 aryl group, aryloxy group with 6 to 10 carbon atoms, arylthio group with 6 to 10 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, halogen atom, nitro group, hydroxyl group, or mercapto group each R 2 is independently an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms group, an aryloxy group having 6 to 10 carbon atoms, an arylthio group having 6 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a halogen atom, a
  • a hydrogen atom of an alkyl group, an alkyloxy group , an alkylthio group, an aryl group, an aryloxy group, an arylthio group, and a cycloalkyl group may be substituted with a halogen atom.
  • hydrogen atoms of groups, aryl groups, aryloxy groups, arylthio groups and cycloalkyl groups may be substituted with halogen atoms
  • n1 represents the average number of repeating units and ranges from 0.95 to 10.0.
  • a group of maleimide compounds containing a structure represented by formula (M1) can be obtained according to the production method described in Technical Report No. 2020-500211 of the Institute of Invention and Innovation. As can be seen from the fact that the average repeating unit number n 1 in formula (M1) can be less than 1.00, the maleimide compound containing the structure represented by formula (M1) obtained in this way includes repeating trimethylindane skeletons. Maleimide compounds with 0 units may be included.
  • the specific maleimide compound (E1-1) is obtained by purifying the maleimide compound containing the structure represented by the formula (M1) by removing the maleimide compound having a repeating unit of 0 in the trimethylindane skeleton.
  • the resin composition may contain only the specific maleimide compound. However, even when the resin composition contains a maleimide compound having a trimethylindane skeleton with 0 repeating units, the effect of the present invention can be obtained. Also, if the purification is omitted, it is possible to reduce the cost. Therefore, the resin composition preferably contains a maleimide compound having a structure represented by formula (M1) without excluding a maleimide compound having a trimethylindane skeleton with 0 repeating units.
  • the average repeating unit number n 1 is preferably 0.95 or more, more preferably 0.98 or more, still more preferably 1.0 or more, particularly preferably 1.1 or more, and preferably 10 0.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and particularly preferably 6.0 or less.
  • the average repeating unit number n1 is within the above range, the effects of the present invention can be obtained remarkably. In particular, the glass transition temperature of the resin composition can be effectively increased.
  • Examples of the structure represented by formula (M1) include the following.
  • the maleimide compound containing the structure represented by formula (M1) may further contain the structure represented by the following formula (M2).
  • a maleimide compound having a structure represented by formula (M1) has n2 of 3 or less in formula (M1), and the benzene ring to which the maleimide group is bonded is at the ortho- and para-positions to the maleimide group.
  • two or more of them may include the structure represented by formula (M2) in combination with the structure represented by formula (M1) when R 1 is not bonded.
  • each R c1 is independently an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an -10 aryl group, aryloxy group with 6 to 10 carbon atoms, arylthio group with 6 to 10 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, halogen atom, nitro group, hydroxyl group, or mercapto group each R c2 is independently an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms group, an aryloxy group having 6 to 10 carbon atoms, an arylthio group having 6 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a halogen
  • R c1 is , which may be the same or different within the same ring.
  • R c2 may be the same or different within the same ring.
  • the maleimide compound containing the structure represented by formula (M1) preferably has a molecular weight distribution Mw/Mn calculated from gel permeation chromatography (GPC) measurement within a specific range.
  • the molecular weight distribution is a value obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn, and is represented by "Mw/Mn".
  • the molecular weight distribution Mw/Mn of the maleimide compound containing the structure represented by formula (M1) is preferably 1.0 to 4.0, more preferably 1.1 to 3.8, and still more preferably 1.2 to 3.6, particularly preferably 1.3 to 3.4.
  • the amount of the maleimide compound having an average repeating unit number n1 of 0 is preferably within a specific range.
  • the amount of the maleimide compound having an average number of repeating units n1 of 0 is expressed in area % based on the results of the GPC measurement. can be done.
  • the area of the peak of the maleimide compound having an average repeating unit number n1 of 0 with respect to the total area of the peak of the maleimide compound containing the structure represented by formula (M1) The amount of the maleimide compound having an average repeating unit number n1 of 0 can be expressed by the ratio (area %) of .
  • the amount of the maleimide compound having an average number of repeating units n 1 of 0 is preferably 32 area% or less, more It is preferably 30 area % or less, more preferably 28 area % or less.
  • the maleimide group equivalent of the maleimide compound containing the structure represented by formula (M1) is preferably 50 g/eq. above, more preferably 100 g/eq. above, particularly preferably 200 g/eq. or more, preferably 2000 g/eq. Below, more preferably 1000 g/eq. Below, particularly preferably 800 g/eq. It is below.
  • the maleimide group equivalent represents the mass of the maleimide compound per equivalent of maleimide group. When the maleimide group equivalent of the maleimide compound containing the structure represented by formula (M1) is within the above range, the effects of the present invention can be significantly obtained.
  • the (meth)acrylic resin is not particularly limited in type as long as it has one or more (preferably two or more) (meth)acryloyl groups in one molecule. , a monomer, or an oligomer.
  • the term "(meth)acryloyl group” is a generic term for acryloyl group and methacryloyl group.
  • methacrylic resins in addition to (meth)acrylate monomers, for example, “A-DOG” (manufactured by Shin-Nakamura Chemical Co., Ltd.), “DCP-A” (manufactured by Kyoeisha Chemical Co., Ltd.), “NPDGA”, “FM-400”. , “R-687”, “THE-330”, “PET-30”, and “DPHA” (all manufactured by Nippon Kayaku Co., Ltd.).
  • styryl resin is not particularly limited as long as it has one or more (preferably two or more) styryl groups or vinylphenyl groups in one molecule, and it may be a monomer or an oligomer.
  • styryl resins include styryl resins such as "OPE-2St”, “OPE-2St 1200", and “OPE-2St 2200” (all manufactured by Mitsubishi Gas Chemical Company).
  • styryl resins in addition to styrene monomers, for example, divinylbenzene, 2,4-divinyltoluene, 2,6-divinylnaphthalene, 1,4-divinylnaphthalene, 4,4'-divinylbiphenyl, 1,2-bis Homopolymers of aromatic divinyl compounds such as (4-vinylphenyl)ethane, 2,2-bis(4-vinylphenyl)propane, and bis(4-vinylphenyl)ether, or these aromatic divinyl compounds, styrene, Examples thereof include copolymers with aromatic monovinyl compounds such as vinyltoluene, ethylstyrene and vinylnaphthalene.
  • styrene monomers for example, divinylbenzene, 2,4-divinyltoluene, 2,6-divinylnaphthalene, 1,4-divinylna
  • the content of (E) the radically polymerizable compound in the resin composition may be 0% by mass or greater than 0% by mass when the non-volatile component in the resin composition is 100% by mass.
  • the content of (E) the radically polymerizable compound in the resin composition may be 0% by mass or greater than 0% by mass when the resin component in the resin composition is 100% by mass. preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 1.5% by mass or more, even more preferably 2% by mass or more, particularly preferably 2.5% by mass or more, and For example, it is 20% by mass or less, preferably 10% by mass or less, more preferably 7% by mass or less, even more preferably 5% by mass or less, and particularly preferably 3.5% by mass or less.
  • the resin composition of the present invention may contain (F) other curing agents as optional components.
  • This (F) other curing agent does not include those corresponding to the above-described components (A) to (C) and (E).
  • the (F) other curing agent can function as an epoxy resin curing agent that reacts with the (B) epoxy resin to cure the resin composition, like the (C) active ester compound described above.
  • (F) Other curing agents may be used singly or in combination of two or more.
  • curing agents include, for example, phenol-based curing agents, carbodiimide-based curing agents, acid anhydride-based curing agents, amine-based curing agents, benzoxazine-based curing agents, cyanate ester-based curing agents, and thiol-based curing agents. agents. Among them, it is preferable to use one or more curing agents selected from the group consisting of phenolic curing agents and carbodiimide curing agents.
  • a curing agent having one or more, preferably two or more hydroxyl groups bonded to an aromatic ring such as a benzene ring or a naphthalene ring per molecule can be used.
  • a phenol-based curing agent having a novolac structure is preferred.
  • a nitrogen-containing phenolic curing agent is preferable, and a triazine skeleton-containing phenolic curing agent is more preferable.
  • a triazine skeleton-containing phenol novolak resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • phenol-based curing agent examples include, for example, Meiwa Chemical Co., Ltd. "MEH-7700”, “MEH-7810", “MEH-7851”, Nippon Kayaku Co., Ltd. "NHN”, “CBN”, “ GPH”, Nippon Steel Chemical & Material Co., Ltd. "SN-170”, “SN-180”, “SN-190”, “SN-475”, “SN-485”, “SN-495”, “SN- 375", “SN-395”, DIC's "LA-7052", “LA-7054”, “LA-3018”, “LA-3018-50P", “LA-1356”, “TD2090”, “ TD-2090-60M” and the like.
  • carbodiimide-based curing agent a curing agent having one or more, preferably two or more carbodiimide structures in one molecule can be used.
  • carbodiimide-based curing agents include aliphatic biscarbodiimides such as tetramethylene-bis(t-butylcarbodiimide) and cyclohexanebis(methylene-t-butylcarbodiimide); biscarbodiimides such as biscarbodiimide; aliphatic polycarbodiimides such as polyhexamethylenecarbodiimide, polytrimethylhexamethylenecarbodiimide, polycyclohexylenecarbodiimide, poly(methylenebiscyclohexylenecarbodiimide), and poly(isophoronecarbodiimide); poly(phenylenecarbodiimide), Poly(naphthylenecarbodiimide), Poly(tolylenecarbodiimide), Poly(methyldiisopropylpheny
  • carbodiimide curing agents examples include “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07” and “Carbodilite V-09” manufactured by Nisshinbo Chemical Co., Ltd. "Stabaxol P”, “Stabaxol P400”, and “Hykasil 510” manufactured by Rhein Chemie.
  • acid anhydride-based curing agent a curing agent having one or more acid anhydride groups in one molecule can be used, and a curing agent having two or more acid anhydride groups in one molecule is used.
  • acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and hydrogenated methylnadic acid.
  • Examples of commercially available acid anhydride curing agents include “HNA-100”, “MH-700”, “MTA-15”, “DDSA” and “OSA” manufactured by Shin Nippon Rika; “YH-306”, “YH-307” of Hitachi Chemical Co., Ltd. "HN-2200”, “HN-5500”; Clay Valley Co., Ltd. "EF-30”, “EF-40” “EF-60”, “EF-80” and the like.
  • amine-based curing agent a curing agent having one or more, preferably two or more amino groups in one molecule can be used.
  • amine-based curing agents include aliphatic amines, polyetheramines, alicyclic amines, aromatic amines, etc. Among them, aromatic amines are preferred.
  • Amine-based curing agents are preferably primary amines or secondary amines, more preferably primary amines.
  • Specific examples of amine curing agents include 4,4'-methylenebis(2,6-dimethylaniline), 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 3,3'-diaminodiphenylsulfone.
  • amine-based curing agents examples include “SEIKACURE-S” manufactured by Seika; AB", “Kayahard AS”; “Epicure W” manufactured by Mitsubishi Chemical; “DTDA” manufactured by Sumitomo Seika.
  • benzoxazine-based curing agents include “JBZ-OP100D” and “ODA-BOZ” manufactured by JFE Chemical Co., Ltd.; “HFB2006M” manufactured by Showa Polymer Co., Ltd.; Examples include “Fa”.
  • cyanate ester curing agents include bisphenol A dicyanate, polyphenolcyanate (oligo(3-methylene-1,5-phenylenecyanate)), 4,4'-methylenebis(2,6-dimethylphenylcyanate), 4, 4′-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate)phenylpropane, 1,1-bis(4-cyanatophenylmethane), bis(4-cyanate-3,5- Difunctional cyanate resins such as dimethylphenyl)methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene))benzene, bis(4-cyanatophenyl)thioether, and bis(4-cyanatophenyl)ether, Polyfunctional cyanate resins derived from phenol novolak, cresol novolak, etc., and prepolymers obtained by partially triazine-forming these cyan
  • cyanate ester curing agents include “PT30” and “PT60” (both phenol novolac type polyfunctional cyanate ester resins), “BA230” and “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan Co., Ltd. or a prepolymer that is entirely triazined to form a trimer), and the like.
  • thiol-based curing agents examples include trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), tris (3-mercaptopropyl) isocyanurate, and the like.
  • the active group equivalent of other curing agents is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100 g/eq. ⁇ 1000 g/eq. , more preferably 100 g/eq. ⁇ 500 g/eq. , particularly preferably 100 g/eq. ⁇ 300 g/eq. is.
  • Active group equivalents represent the mass of curing agent per equivalent of active groups.
  • the quantitative ratio of the epoxy resin to the curing agent is obtained by dividing the mass of the non-volatile component of the component (B) by the epoxy equivalent.
  • a be the total value
  • b be the total value obtained by dividing the mass of the non-volatile component of component (C) by the active ester group equivalent
  • b be the total value of all the values obtained by dividing the mass of the non-volatile component of component (F) by the active group equivalent.
  • (b + c) / a is preferably 1.0 or more, more preferably 1.01 or more, further preferably 1.1 to 1.10 or more, and 1 .2 to 1.20 or more, particularly preferably 1.25 or more, preferably 2.0 or less, more preferably 1.75 or less, still more preferably 1.5 or less. 4 to 1.40 or less is even more preferred, and 1.3 to 1.30 or less is particularly preferred.
  • the content of (F) other curing agent in the resin composition may be 0% by mass or greater than 0% by mass when the non-volatile component in the resin composition is 100% by mass, It is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 1.0% by mass or more, preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass. % by mass or less, and more preferably 2% by mass or less.
  • the content of (F) other curing agent in the resin composition may be 0% by mass or greater than 0% by mass when the resin component in the resin composition is 100% by mass, Preferably 0.1% by mass or more, more preferably 1.0% by mass or more, still more preferably 3.0% by mass or more, particularly preferably 5.0% by mass or more, preferably 50% by mass or less, more preferably is 20% by mass or less, more preferably 10% by mass or less, and even more preferably 6% by mass or less.
  • the resin composition of the present invention may contain (G) a curing accelerator as an optional component.
  • curing accelerators examples include phosphorus-based curing accelerators, urea-based curing accelerators, guanidine-based curing accelerators, imidazole-based curing accelerators, metal-based curing accelerators, and amine-based curing accelerators.
  • the curing accelerator may be used singly or in combination of two or more.
  • Phosphorus curing accelerators include, for example, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis(tetrabutylphosphonium) pyromellitate, tetrabutylphosphonium hydro Aliphatic phosphonium salts such as genhexahydrophthalate, tetrabutylphosphonium 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenolate, di-tert-butylmethylphosphonium tetraphenylborate; methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphospho
  • Urea-based curing accelerators include, for example, 1,1-dimethylurea; 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, 3- Aliphatic dimethylurea such as cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl )-1,1-dimethylurea, 3-(3-chloro-4-methylphenyl)-1,1-dimethylurea, 3-(2-methylphenyl)-1,1-dimethylurea, 3-(4- methylphenyl)-1,1-dimethylurea, 3-(3,4-dimethylphenyl)-1,1-dimethylurea, 3-(4-isopropylphenyl)-1,1-dimethyl
  • Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-d
  • imidazole-based curing accelerator a commercially available product may be used, for example, "1B2PZ”, “2MZA-PW”, “2PHZ-PW” manufactured by Shikoku Kasei Co., Ltd., "P200-H50” manufactured by Mitsubishi Chemical Corporation. etc.
  • metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic iron complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo (5,4,0)-undecene and the like.
  • amine-based curing accelerator a commercially available product may be used, such as "MY-25” manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
  • the content of the (G) curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 15% by mass or less, more preferably It is 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the lower limit of the content of (E) the curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more, 0 0.001% by weight or more, 0.01% by weight or more, 0.1% by weight or more, 0.5% by weight or more, and the like.
  • the resin composition of the present invention may contain a polymer compound as the (H) component.
  • polymer compounds examples include phenoxy resins, polyvinyl acetal resins, polyolefin resins, polybutadiene resins, polyimide resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, polycarbonate resins, polyether resins. Ether ketone resins and polyester resins can be mentioned.
  • a polymer compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polystyrene equivalent weight average molecular weight of the polymer compound is preferably in the range of 8,000 to 70,000, more preferably in the range of 10,000 to 60,000, and even more preferably in the range of 20,000 to 60,000.
  • the polystyrene-equivalent weight average molecular weight of the polymer compound is measured by a gel permeation chromatography (GPC) method. Specifically, the polystyrene-equivalent weight-average molecular weight of the polymer compound was measured using LC-9A/RID-6A manufactured by Shimadzu Corporation as a measuring device and Shodex K-800P/K-804L/K- manufactured by Showa Denko Co., Ltd. as a column. 804L can be measured at a column temperature of 40° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.
  • phenoxy resins include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, and terpene.
  • the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
  • a phenoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • phenoxy resins include Mitsubishi Chemical's "1256” and “4250” (both phenoxy resins containing bisphenol A skeleton), "YX8100” (phenoxy resin containing bisphenol S skeleton), and “YX6954” (bisphenolacetophenone). Skeleton-containing phenoxy resin), and in addition, Nippon Steel Chemical & Materials "FX280” and “FX293”, Mitsubishi Chemical Corporation “YX7553”, “YL6794", "YL7213", “YL7290” and “YL7482” etc. are mentioned.
  • polyvinyl acetal resins examples include polyvinyl formal resins and polyvinyl butyral resins, with polyvinyl butyral resins being preferred.
  • Specific examples of polyvinyl acetal resins include Denka Butyral 4000-2, Denka Butyral 5000-A, Denka Butyral 6000-C, Denka Butyral 6000-EP, Sekisui Chemical Co., Ltd. S-LEC BH series, BX series, KS series, BL series, BM series, etc. manufactured by the company.
  • polyimide resin a resin having an imide structure (preferably a cyclic imide structure) can be used.
  • an imidized product of a diamine compound and an acid anhydride may be used.
  • the diamine compound for preparing the polyimide resin is not particularly limited, and examples thereof include aliphatic diamine compounds and aromatic diamine compounds.
  • aliphatic diamine compounds examples include 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, and 1,5-diaminopentane.
  • 1,10-diaminodecane and other linear aliphatic diamine compounds 1,2-diamino-2-methylpropane, 2,3-diamino-2,3-butane, and 2-methyl-1,5- Branched aliphatic diamine compounds such as diaminopentane; 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexyl) alicyclic diamine compounds such as amines); dimer acid-type diamines (hereinafter also referred to as "dimer diamines"), etc., preferably dimer diamines.
  • dimer acid-type diamines hereinafter also referred to as "dimer diamines"
  • a dimer acid-type diamine is a diamine compound obtained by substituting two terminal carboxylic acid groups (--COOH) of a dimer acid with an aminomethyl group ( --CH.sub.2-- NH.sub.2 ) or an amino group ( --NH.sub.2 ).
  • a dimer acid is a compound obtained by dimerizing an unsaturated fatty acid (preferably one having 11 to 22 carbon atoms, particularly preferably one having 18 carbon atoms), and its industrial production process is also known.
  • aromatic diamine compounds examples include phenylenediamine compounds, naphthalenediamine compounds, and dianiline compounds.
  • a phenylenediamine compound means a compound containing a benzene ring having two amino groups, such as 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 2,4-diamino toluene, 2,6-diaminotoluene, 3,5-diaminobiphenyl, 2,4,5,6-tetrafluoro-1,3-phenylenediamine and the like.
  • a naphthalenediamine compound means a compound containing a naphthalene ring having two amino groups, such as 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,6-diaminonaphthalene, 2,3-diamino Naphthalene etc. are mentioned.
  • a dianiline compound means a compound containing two aniline structures in the molecule.
  • a commercially available diamine compound may be used, or one synthesized by a known method may be used.
  • a diamine compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the acid anhydride for preparing the polyimide resin is not particularly limited, but tetracarboxylic acid anhydrides are suitable, and examples thereof include aromatic tetracarboxylic acid dianhydrides and aliphatic tetracarboxylic acid dianhydrides. be done.
  • aromatic tetracarboxylic dianhydride examples include benzenetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, anthracenetetracarboxylic dianhydride, diphthalic dianhydride and the like, preferably It is diphthalic dianhydride.
  • Benzenetetracarboxylic dianhydride means a dianhydride derived from a compound containing a benzene ring having four carboxy groups, such as pyromellitic dianhydride, 1,2,3,4-benzenetetra Carboxylic acid dianhydride etc. are mentioned.
  • Naphthalenetetracarboxylic dianhydride means a dianhydride derived from a compound containing a naphthalene ring having four carboxy groups, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2 , 3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • Anthracenetetracarboxylic dianhydride means a dianhydride derived from a compound containing an anthracene ring having four carboxy groups, for example, 2,3,6,7-anthracenetetracarboxylic dianhydride, etc. mentioned.
  • Diphthalic dianhydride means a compound containing two phthalic anhydride structures in the molecule.
  • diphthalic dianhydride examples include 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride, 3, 3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride anhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 2,3,3',4'-diphenyl ether Tetracarbox
  • Examples of aliphatic tetracarboxylic dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexane-1,2,3,4-tetracarboxylic acid dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 3,3',4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis ( Cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4'-bis(cyclohexane- 1,2-dicarboxylic acid) dianhydride, oxy-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dian
  • a commercially available acid anhydride such as tetracarboxylic dianhydride may be used, or one synthesized by a known method or a method equivalent thereto may be used.
  • An acid anhydride may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyimide resins include "Likacoat SN20” and “Likacoat PN20” manufactured by Shin Nippon Rika.
  • Specific examples of polyimide resins include linear polyimide obtained by reacting bifunctional hydroxyl-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (described in JP-A-2006-37083), and a polysiloxane skeleton.
  • modified polyimides such as polyimide containing (described in JP-A-2002-12667 and JP-A-2000-319386).
  • polyamideimide resins include “Vylomax HR11NN” and “Vylomax HR16NN” manufactured by Toyobo Co., Ltd.
  • polyamideimide resins include modified polyamideimides such as polysiloxane skeleton-containing polyamideimides "KS9100” and “KS9300” manufactured by Hitachi Chemical Co., Ltd.
  • polyethersulfone resin examples include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polysulfone resins include polysulfone "P1700” and “P3500” manufactured by Solvay Advanced Polymers.
  • the content of component (E) in the resin composition may be determined according to the properties required for the resin composition.
  • the resin component of 100% by mass, for example, it is 0.1% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, 0.6% by mass or more, 0.6% by mass or more, and 0.1% by mass or more. It is 8% by mass or more, or 1% by mass or more.
  • the upper limit of the content of component (E) is not particularly limited, but may be, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, or 15% by mass or less.
  • the resin composition of the present invention may further contain optional additives as non-volatile components.
  • additives include radical polymerization initiators such as peroxide-based radical polymerization initiators and azo-based radical polymerization initiators; phenol-based curing agents, naphthol-based curing agents, acid anhydride-based curing agents, and thiols.
  • Epoxy curing agents other than active ester compounds such as system curing agents, benzoxazine curing agents, cyanate ester curing agents, carbodiimide curing agents, imidazole curing agents; organic fillers such as rubber particles; organic copper compounds, organic zinc compounds, organic metal compounds such as organic cobalt compounds; coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black; polymerization inhibitors such as hydroquinone, catechol, pyrogallol, phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Antifoaming agents; UV absorbers such as benzotriazole UV absorbers; Adhesion improvers such as urea silane; Antioxidants such as hindered phenol-based antioxidants and hindered amine-based antioxidants; fluorescent brighteners such as stilbene derivatives; surfactants
  • Dispersants such as acid ester-based dispersants, polyoxyalkylene-based dispersants, acetylene-based dispersants, silicone-based dispersants, anionic dispersants, cationic dispersants; borate-based stabilizers, titanate-based stabilizers, aluminate-based dispersants Stabilizers such as stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic anhydride-based stabilizers can be used.
  • Other additives may be used singly or in combination of two or more at any ratio.
  • the content of other additives can be appropriately set by those skilled in the art.
  • the resin composition of the present invention may further contain an arbitrary organic solvent as a volatile component in addition to the non-volatile components described above.
  • an arbitrary organic solvent as a known one can be used as appropriate, and the type thereof is not particularly limited.
  • organic solvents examples include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ester solvents such as butyrolactone; ether solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, and diphenyl ether; alcohol solvents such as methanol, ethanol, propanol, butanol, and ethylene glycol; Ether ester solvents such as 2-ethoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, ⁇ -butyrolactone, methyl methoxypropionate; methyl lactate, ethyl lactate, methyl 2-hydroxyisobuty
  • the content of the (K) organic solvent is not particularly limited, but when all components in the resin composition are 100% by mass, for example, 60% by mass or less, 40% by mass or less , 30% by mass or less, 20% by mass or less, 15% by mass or less, 10% by mass or less, and the like.
  • the resin composition of the present invention is, for example, placed in any preparation vessel (A) a silane compound represented by formula (A-1), (B) an epoxy resin, and (C) an active ester compound, if necessary ( D) inorganic filler, optionally (E) radically polymerizable compound, optionally (F) other curing agent, optionally (G) curing accelerator, optionally (H) other Additives and, if necessary, (K) an organic solvent can be added in any order and/or partially or wholly at the same time and mixed. Also, during the process of adding and mixing each component, the temperature can be set appropriately, and heating and/or cooling may be performed temporarily or over time.
  • the resin composition may be stirred or shaken using a stirring or shaking device such as a mixer to uniformly disperse.
  • a stirring or shaking device such as a mixer to uniformly disperse.
  • defoaming may be performed under low pressure conditions such as vacuum.
  • the resin composition of the present invention contains (A) a silane compound represented by formula (A-1), (B) an epoxy resin, and (C) an active ester compound.
  • A a silane compound represented by formula (A-1)
  • B an epoxy resin
  • C an active ester compound
  • the cured product of the resin composition of the present invention may have the feature of being able to suppress an increase in melt viscosity. Therefore, in one embodiment, a frequency of 1 Hz, a strain of 5 degrees, a load of 100 g, a temperature increase rate of 5 ° C./min, and a temperature range of 60 ° C. to 180 ° C. are performed using a dynamic viscoelasticity measuring device as in Test Example 3 below.
  • the lowest melt viscosity when measured is preferably 4000 poise or less, 3000 poise or less, more preferably 2000 poise or less, 1700 poise or less, still more preferably 1500 poise or less, 1300 poise or less, and particularly preferably 1100 poise or less.
  • an inorganic filler containing hollow silica preferably 2000 poise or less, more preferably 1700 poise or less, even more preferably 1500 poise or less, still more preferably 1300 poise or less, particularly preferably It can be 1100 poise or less.
  • a cured product of the resin composition of the present invention may have a low dielectric loss tangent (Df). Therefore, in one embodiment, the dielectric loss tangent (Df) of the cured product of the resin composition when measured at 5.8 GHz and 23° C. as in Test Example 1 below is preferably 0.020 or less and 0.010 or less. , more preferably 0.009 or less, 0.008 or less, still more preferably 0.007 or less, 0.006 or less, even more preferably 0.005 or less, and particularly preferably 0.004 or less.
  • the cured product of the resin composition of the present invention can have a low average coefficient of thermal expansion (CTE). Therefore, in one embodiment, an evaluation sample cut into a length of 20 mm and a width of 6 mm as in Test Example 2 below is measured at a temperature increase rate of 5 ° C./min. can be, for example, 50 ppm or less, preferably 40 ppm or less, more preferably 30 ppm or less, even more preferably 28 ppm or less, even more preferably 25 ppm or less, and particularly preferably 23 ppm or less.
  • the cured product of the resin composition of the present invention can have a low dielectric constant (Dk). Therefore, in one embodiment, the dielectric constant (Dk) of the cured product of the resin composition when measured at 5.8 GHz and 23° C. as in Test Example 1 below is preferably 5.0 or less, more preferably It can be 4.0 or less, more preferably 3.5 or less, and even more preferably 3.3 or less, especially when the resin composition contains (D) an inorganic filler containing hollow silica, it should be even lower. can be, for example, 5.0 or less, preferably 4.0 or less, more preferably 3.5 or less, still more preferably 3.3 or less, even more preferably 3.0 or less, particularly preferably 2.8 or less .
  • the resin composition of the present invention can be suitably used as a resin composition for insulation, particularly as a resin composition for forming an insulation layer.
  • a resin composition for forming an insulating layer for forming a conductor layer (including a rewiring layer) formed on an insulating layer (resin for forming an insulating layer for forming a conductor layer composition).
  • a resin composition for forming an insulating layer of a printed wiring board (resin composition for forming an insulating layer of a printed wiring board).
  • the resin composition of the present invention also includes resin sheets, sheet laminate materials such as prepreg, solder resists, underfill materials, die bonding materials, semiconductor encapsulants, hole-filling resins, component-embedding resins, and the like. It can be used in a wide range of applications.
  • the resin composition of the present invention is used as an insulating layer for forming a rewiring layer.
  • a resin composition for forming a rewiring layer and a resin composition for sealing a semiconductor chip (a resin composition for semiconductor chip sealing).
  • a rewiring layer may be further formed on the encapsulation layer when the semiconductor chip package is manufactured.
  • the resin composition of the present invention provides an insulating layer with good part-embedding properties, it can be suitably used when the printed wiring board is a component-embedded circuit board.
  • the resin composition of the present invention can be applied in the form of a varnish, it is industrially preferably used in the form of a sheet-like laminated material containing the resin composition.
  • the resin sheets and prepregs shown below are preferable.
  • the resin sheet comprises a support and a resin composition layer provided on the support, and the resin composition layer is formed from the resin composition of the present invention.
  • the thickness of the resin composition layer is preferably 50 ⁇ m or less, more It is preferably 40 ⁇ m or less.
  • the lower limit of the thickness of the resin composition layer is not particularly limited, it can be usually 5 ⁇ m or more, 10 ⁇ m or more, or the like.
  • the support examples include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferable.
  • plastic material examples include polyethylene terephthalate (hereinafter sometimes abbreviated as "PET”) and polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylic such as polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • TAC triacetyl cellulose
  • PES polyether sulfide
  • polyether ketones polyimides, and the like.
  • polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
  • examples of the metal foil include copper foil and aluminum foil, with copper foil being preferred.
  • a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and other metals (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. may be used.
  • the support may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface to be bonded to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used in the release layer of the release layer-attached support includes, for example, one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins.
  • a commercially available product may be used, for example, "SK-1", “ AL-5", “AL-7”, Toray's "Lumirror T60", Teijin's "Purex”, and Unitika's "Unipeel”.
  • the thickness of the support is not particularly limited, it is preferably in the range of 5 ⁇ m to 75 ⁇ m, more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness of the release layer-attached support as a whole is preferably within the above range.
  • the resin sheet may further contain any layer as necessary.
  • an optional layer include a protective film conforming to the support provided on the surface of the resin composition layer not bonded to the support (that is, the surface opposite to the support). be done.
  • the thickness of the protective film is not particularly limited, it is, for example, 1 ⁇ m to 40 ⁇ m.
  • the resin sheet is prepared by, for example, using a liquid resin composition as it is, or preparing a resin varnish by dissolving the resin composition in an organic solvent, coating it on a support using a die coater or the like, and drying it. It can be produced by forming a resin composition layer.
  • organic solvent examples include the same organic solvents as those described as components of the resin composition.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Drying may be carried out by known methods such as heating and blowing hot air.
  • the drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less.
  • the temperature is 50° C. to 150° C. for 3 minutes to 10 minutes.
  • a resin composition layer can be formed by drying for minutes.
  • the resin sheet can be rolled up and stored.
  • the resin sheet has a protective film, it can be used by peeling off the protective film.
  • the prepreg is formed by impregnating a sheet-like fiber base material with the resin composition of the present invention.
  • the sheet-like fiber base material used for the prepreg is not particularly limited, and those commonly used as prepreg base materials such as glass cloth, aramid nonwoven fabric, and liquid crystal polymer nonwoven fabric can be used.
  • the thickness of the sheet-like fiber base material is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the lower limit of the thickness of the sheet-like fiber base material is not particularly limited. Usually, it is 10 ⁇ m or more.
  • a prepreg can be manufactured by a known method such as a hot melt method or a solvent method.
  • the thickness of the prepreg can be in the same range as the resin composition layer in the resin sheet described above.
  • the sheet-like laminated material of the present invention can be suitably used for forming an insulating layer of a printed wiring board (for an insulating layer of a printed wiring board), and for forming an interlayer insulating layer of a printed wiring board (for a printed wiring board). for interlayer insulating layers of wiring boards).
  • the printed wiring board of the present invention includes an insulating layer made of a cured product obtained by curing the resin composition of the present invention.
  • a printed wiring board can be manufactured, for example, using the resin sheet described above by a method including the following steps (I) and (II).
  • (I) A step of laminating a resin sheet on the inner layer substrate so that the resin composition layer of the resin sheet is bonded to the inner layer substrate
  • (II) Curing (for example, thermosetting) the resin composition layer to form an insulating layer process
  • the “inner layer substrate” used in step (I) is a member that serves as a printed wiring board substrate, and includes, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. etc.
  • the substrate may also have a conductor layer on one or both sides thereof, and the conductor layer may be patterned.
  • An inner layer substrate having conductor layers (circuits) formed on one side or both sides of the substrate is sometimes referred to as an "inner layer circuit board.”
  • an intermediate product on which an insulating layer and/or a conductor layer are to be further formed when manufacturing a printed wiring board is also included in the "inner layer board" as used in the present invention.
  • an inner layer board with built-in components may be used.
  • Lamination of the inner layer substrate and the resin sheet can be performed, for example, by heat-pressing the resin sheet to the inner layer substrate from the support side.
  • the member for thermocompression bonding the resin sheet to the inner layer substrate include heated metal plates (such as SUS end plates) and metal rolls (SUS rolls).
  • thermocompression bonding member instead of pressing the thermocompression member directly onto the resin sheet, it is preferable to press through an elastic material such as heat-resistant rubber so that the resin sheet can sufficiently follow the uneven surface of the inner layer substrate.
  • Lamination of the inner layer substrate and the resin sheet may be performed by a vacuum lamination method.
  • the thermocompression temperature is preferably in the range of 60° C. to 160° C., more preferably 80° C. to 140° C.
  • the thermocompression pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0 .29 MPa to 1.47 MPa
  • the heat pressing time is preferably 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • Lamination can be carried out under reduced pressure conditions, preferably at a pressure of 26.7 hPa or less.
  • Lamination can be done with a commercially available vacuum laminator.
  • Commercially available vacuum laminators include, for example, a vacuum pressurized laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, a batch-type vacuum pressurized laminator, and the like.
  • the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression member from the support side. Pressing conditions for the smoothing treatment may be the same as the thermocompression bonding conditions for the lamination described above. Smoothing treatment can be performed with a commercially available laminator. Lamination and smoothing may be performed continuously using the above-mentioned commercially available vacuum laminator.
  • the support may be removed between step (I) and step (II), or may be removed after step (II).
  • step (II) the resin composition layer is cured (for example, thermally cured) to form an insulating layer made of the cured resin composition.
  • Curing conditions for the resin composition layer are not particularly limited, and conditions that are usually employed when forming an insulating layer of a printed wiring board may be used.
  • the thermosetting conditions for the resin composition layer vary depending on the type of resin composition, etc., but in one embodiment, the curing temperature is preferably 120° C. to 240° C., more preferably 150° C. to 220° C., and even more preferably 150° C. to 220° C. is between 170°C and 210°C.
  • the curing time can be preferably 5 minutes to 120 minutes, more preferably 10 minutes to 100 minutes, even more preferably 15 minutes to 100 minutes.
  • the resin composition layer may be preheated at a temperature lower than the curing temperature before thermally curing the resin composition layer.
  • the resin composition layer is cured at a temperature of 50° C. to 120° C., preferably 60° C. to 115° C., more preferably 70° C. to 110° C. for 5 minutes or more, It may be preheated for preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes, even more preferably 15 minutes to 100 minutes.
  • steps (III) to (V) may be carried out according to various methods known to those skilled in the art that are used in the manufacture of printed wiring boards.
  • the support is removed after step (II), the support may be removed between step (II) and step (III), between step (III) and step (IV), or step ( It may be carried out between IV) and step (V). If necessary, the steps (II) to (V) of forming the insulating layer and the conductor layer may be repeated to form a multilayer wiring board.
  • the printed wiring board of the present invention can be manufactured using the prepreg described above.
  • the manufacturing method is basically the same as in the case of using a resin sheet.
  • the step (III) is a step of drilling holes in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer.
  • Step (III) may be performed using, for example, a drill, laser, plasma, or the like, depending on the composition of the resin composition used to form the insulating layer. The dimensions and shape of the holes may be appropriately determined according to the design of the printed wiring board.
  • Step (IV) is a step of roughening the insulating layer. Smear is usually also removed in this step (IV).
  • the procedure and conditions of the roughening treatment are not particularly limited, and known procedures and conditions that are commonly used in forming insulating layers of printed wiring boards can be employed.
  • the insulating layer can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralizing treatment with a neutralizing liquid in this order.
  • the swelling liquid used for the roughening treatment is not particularly limited, but examples thereof include alkaline solutions, surfactant solutions, etc., preferably alkaline solutions, more preferably sodium hydroxide solutions and potassium hydroxide solutions. preferable.
  • Examples of commercially available swelling liquids include "Swelling Dip Securigans P" and "Swelling Dip Securigans SBU” manufactured by Atotech Japan.
  • the swelling treatment with the swelling liquid is not particularly limited, but can be performed, for example, by immersing the insulating layer in the swelling liquid at 30.degree. C. to 90.degree. C. for 1 to 20 minutes. From the viewpoint of suppressing swelling of the resin of the insulating layer to an appropriate level, it is preferable to immerse the insulating layer in a swelling liquid at 40° C. to 80° C. for 5 minutes to 15 minutes.
  • the oxidizing agent used for the roughening treatment is not particularly limited, but examples include an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide.
  • the roughening treatment with an oxidizing agent such as an alkaline permanganate solution is preferably carried out by immersing the insulating layer in an oxidizing agent solution heated to 60° C. to 100° C. for 10 to 30 minutes.
  • the permanganate concentration in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dosing Solution Security P" manufactured by Atotech Japan.
  • an acidic aqueous solution is preferable, and commercially available products include, for example, "Reduction Solution Securigant P" manufactured by Atotech Japan.
  • the treatment with the neutralizing solution can be performed by immersing the treated surface roughened with the oxidizing agent in the neutralizing solution at 30°C to 80°C for 5 to 30 minutes. From the viewpoint of workability, etc., a method of immersing an object roughened with an oxidizing agent in a neutralizing solution at 40° C. to 70° C. for 5 to 20 minutes is preferable.
  • the step (V) is a step of forming a conductor layer, and forms the conductor layer on the insulating layer.
  • the conductor material used for the conductor layer is not particularly limited.
  • the conductor layer contains one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. Contains metal.
  • the conductor layer may be a single metal layer or an alloy layer, and the alloy layer may be, for example, an alloy of two or more metals selected from the above group (for example, a nickel-chromium alloy, a copper- nickel alloys and copper-titanium alloys).
  • single metal layers of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, nickel-chromium alloys, copper- Nickel alloys and copper/titanium alloy alloy layers are preferred, and single metal layers of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel/chromium alloy alloy layers are more preferred, and copper single metal layers are preferred.
  • a metal layer is more preferred.
  • the conductor layer may have a single layer structure or a multi-layer structure in which two or more single metal layers or alloy layers made of different kinds of metals or alloys are laminated.
  • the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of nickel-chromium alloy.
  • the thickness of the conductor layer is generally 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m, depending on the desired printed wiring board design.
  • the conductor layer may be formed by plating.
  • a conductive layer having a desired wiring pattern can be formed by plating the surface of an insulating layer by a conventionally known technique such as a semi-additive method or a full-additive method. It is preferably formed by a method.
  • a semi-additive method is shown below.
  • a plating seed layer is formed on the surface of the insulating layer by electroless plating.
  • a mask pattern is formed on the formed plating seed layer to expose a portion of the plating seed layer corresponding to a desired wiring pattern.
  • the mask pattern is removed. After that, the unnecessary plating seed layer is removed by etching or the like, and a conductor layer having a desired wiring pattern can be formed.
  • the conductor layer may be formed using metal foil.
  • step (V) is preferably performed between step (I) and step (II).
  • step (I) the support is removed and a metal foil is laminated on the exposed surface of the resin composition layer.
  • Lamination of the resin composition layer and the metal foil may be carried out by a vacuum lamination method. The lamination conditions may be the same as those described for step (I).
  • step (II) is performed to form an insulating layer.
  • a conductor layer having a desired wiring pattern can be formed by conventional known techniques such as the subtractive method and the modified semi-additive method.
  • a metal foil can be produced by a known method such as an electrolysis method or a rolling method.
  • Commercially available metal foils include, for example, HLP foil and JXUT-III foil manufactured by JX Nippon Mining & Metals Co., Ltd., 3EC-III foil and TP-III foil manufactured by Mitsui Kinzoku Mining Co., Ltd., and the like.
  • a semiconductor device of the present invention includes the printed wiring board of the present invention.
  • the semiconductor device of the present invention can be manufactured using the printed wiring board of the present invention.
  • semiconductor devices examples include various semiconductor devices used in electrical products (such as computers, mobile phones, digital cameras, televisions, etc.) and vehicles (such as motorcycles, automobiles, trains, ships, aircraft, etc.).
  • Example 1 Naphthalene skeleton epoxy resin (manufactured by DIC “HP-4032-SS”, epoxy equivalent 144 g / eq.) 15 parts, active ester curing agent (manufactured by DIC “HPC-8150-62T", nonvolatile component 62% by mass toluene solution , Active ester group equivalent 234 g / eq.) 43 parts, diphenyldimethoxysilane ("KBM-202SS” manufactured by Shin-Etsu Chemical Co., Ltd.) 0.2 parts as component (A), aminotriazine-containing cresol novolac resin (manufactured by DIC Corporation "LA-3018-50P", 1-methoxy-2-propanol solution with 50% by mass of non-volatile components) 5 parts, inorganic filler (amine-based alkoxysilane compound ("KBM573" manufactured by Shin-Etsu Chemical Co., Ltd.) surface-treated spherical shape 140 parts of silic
  • a resin varnish was prepared in the same manner as in Example 1, except that the amount of the inorganic filler was changed to 145 parts and 2 parts of an MEK solution of maleimide compound A (62% by mass of non-volatile components) was added as the maleimide compound. Obtained.
  • Example 3 In Example 1, the amount of the inorganic filler was changed to 145 parts, and 2 parts of a maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd., a toluene solution with a nonvolatile content of 60% by mass) was added. A resin varnish was obtained in the same manner as in Example 1.
  • a maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd., a toluene solution with a nonvolatile content of 60% by mass) was added.
  • MIR-5000-60T manufactured by Nippon Kayaku Co., Ltd., a toluene solution with a nonvolatile content of 60% by mass
  • Example 4 In Example 1, the amount of the inorganic filler was changed to 145 parts, and 2 parts of a maleimide compound (“MIR-3000-70MT” manufactured by Nippon Kayaku Co., Ltd., a MEK/toluene solution with a nonvolatile content of 70% by mass) was added. obtained a resin varnish in the same manner as in Example 1.
  • a maleimide compound (“MIR-3000-70MT” manufactured by Nippon Kayaku Co., Ltd., a MEK/toluene solution with a nonvolatile content of 70% by mass
  • Example 5 A resin varnish was obtained in the same manner as in Example 1, except that the amount of the inorganic filler was changed to 145 parts and 2 parts of a maleimide compound ("BMI-1500" manufactured by Digigna Molecules) was added. rice field.
  • BMI-1500 a maleimide compound manufactured by Digigna Molecules
  • Example 2 In Example 1, 0.2 parts of the silane compound (manufactured by Shin-Etsu Chemical Co., Ltd. "KBM-202SS”) was not used as the component (A), and dimethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. "KBM- 22”) A resin varnish was obtained in the same manner as in Example 1, except that 0.2 part was used.
  • Example 21 Example 1 except that the amount of the inorganic filler was changed to 145 parts in Example 1, and 2 parts of a maleimide compound ("SLK-2700" manufactured by Shin-Etsu Chemical Co., Ltd., a toluene solution with a nonvolatile content of 50% by mass) was added. A resin varnish was obtained in the same manner as
  • Example 22 In Example 1, the amount of the inorganic filler was changed to 145 parts, and a styryl resin ("OPE-2St-1200" manufactured by Mitsubishi Gas Chemical Co., Ltd., a toluene solution with a nonvolatile content of 65% by mass) was used as another radically polymerizable compound. A resin varnish was obtained in the same manner as in Example 1 except that 2 parts were added.
  • a styryl resin (“OPE-2St-1200" manufactured by Mitsubishi Gas Chemical Co., Ltd., a toluene solution with a nonvolatile content of 65% by mass
  • Example 23 In Example 1, the amount of the inorganic filler was changed to 145 parts, and 2 parts of a styryl resin (a divinylbenzene copolymer prepared by the following procedure, a toluene solution with a nonvolatile content of 50% by mass) was used as another radically polymerizable compound.
  • a resin varnish was obtained in the same manner as in Example 1 except that
  • Example 24 In Example 1, the amount of the inorganic filler was changed to 145 parts, and 2 parts of a phenoxy resin (manufactured by Mitsubishi Chemical Corporation "YX7553BH30", MEK/cyclohexanone mixed solution with a non-volatile content of 30% by mass) was added as a polymer compound. Except for this, a resin varnish was obtained in the same manner as in Example 1.
  • a phenoxy resin manufactured by Mitsubishi Chemical Corporation "YX7553BH30", MEK/cyclohexanone mixed solution with a non-volatile content of 30% by mass
  • Example 25 In Example 1, the amount of the inorganic filler was changed to 145 parts, and as the polymer compound, polyimide resin (polyimide resin 1 prepared by the following procedure, cyclohexanone solution with a nonvolatile content of 30% by mass) was added. A resin varnish was obtained in the same manner as in Example 1.
  • polyimide resin 1 4,4′-[Propane-2,2-diylbis(1,4-phenyleneoxy)]diphthalic dianhydride (SABIC 330.0 g of "BisDA-1000" manufactured by Innovative Plastics Japan LLC), 1065.4 g of cyclohexanone, and 213.09 g of methylcyclohexane were charged and heated to 60°C.
  • Tables 1 to 5 below show the amounts (parts by mass) of components (A) to (G) containing volatile components used in the resin varnishes (resin compositions) of Examples and Comparative Examples, and the measurement results of test examples.
  • the non-volatile content (% by mass) of each component is shown in the "N.V.” column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

誘電正接を低く抑え、且つ、溶融粘度の上昇を抑えることができる硬化物を得ることができる樹脂組成物を提供する。該樹脂組成物は、(A)下記式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物を含む。 (RO)SiAr4-n (A-1) (式中、Rはアルキル基を表し、Arはアリール基を表し、nは1又は2を表す。)

Description

樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置
 本発明は、エポキシ樹脂を含む樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置に関する。
 プリント配線板の製造技術として、絶縁層と導体層を交互に積み重ねるビルドアップ方式による製造方法が知られている。ビルドアップ方式による製造方法において、一般に、絶縁層は樹脂組成物を硬化させて形成される。近年、絶縁層の誘電正接等の誘電特性のさらなる向上が求められている。
 これまでに、絶縁層を形成するための樹脂組成物として、一般的なフェノール系硬化剤の代わりに、活性エステル化合物を配合したエポキシ樹脂組成物を用いることにより、絶縁層の誘電正接をより低く抑えることができることが知られている(特許文献1)。
特開2020-23714号公報
 しかし、活性エステル化合物を使用した場合、得られる硬化物(絶縁層)の溶融粘度が高くなる傾向がある。
 本発明の課題は、誘電正接を低く抑え、且つ、溶融粘度の上昇を抑えることができる硬化物を得ることができる樹脂組成物を提供することにある。
 本発明の課題を達成すべく、本発明者らは鋭意検討した結果、樹脂組成物の成分として、エポキシ樹脂、及び活性エステル化合物を使用し、さらに、特定構造のシラン化合物を含有することにより、意外にも、誘電正接を低く抑え、且つ、溶融粘度の上昇を抑えることができる硬化物を得ることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の内容を含む。
[1]
 (A)下記式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物を含む樹脂組成物。
(RO)SiAr4-n   (A-1)
(式中、Rはアルキル基を表し、Arはアリール基を表し、nは1又は2を表す。)
[2]
 樹脂組成物中の樹脂成分を100質量%とした場合、(A)成分の含有量が0.05質量%以上、1質量%以下である、上記[1]に記載の樹脂組成物。
[3]
 さらに(D)無機充填剤を含む、上記[1]又は[2]に記載の樹脂組成物。
[4]
 (D)無機充填剤が表面処理剤により表面処理されており、表面処理剤が(A)成分とは異なるアルコキシシラン化合物である、上記[3]に記載の樹脂組成物。
[5]
 (A)成分とは異なるアルコキシシラン化合物がアミノ系シランカップリング剤を含む、上記[4]に記載の樹脂組成物。
[6]
 さらに(E)ラジカル重合性化合物を含む、上記[1]~[5]の何れか1項に記載の樹脂組成物。
[7]
 (E)ラジカル重合性化合物が(E1)マレイミド化合物を含む、上記[6]に記載の樹脂組成物。
[8]
 (E1)マレイミド化合物が、(E1-1a)トリメチルインダン骨格を含むマレイミド化合物、及び(E1-2)マレイミド基の窒素原子と直接結合している芳香環骨格を含むマレイミド樹脂からなる群より選択される少なくとも1つを含む、上記[7]に記載の樹脂組成物。
[9]
 プリント配線板の層間絶縁層形成用である、上記[1]~[8]の何れか1項に記載の樹脂組成物。
[10]
 上記[1]~[9]の何れか1項に記載の樹脂組成物の硬化物。
[11]
 上記[1]~[9]の何れか1項に記載の樹脂組成物を含有する、シート状積層材料。
[12]
 支持体と、当該支持体上に設けられた上記[1]~[9]の何れか1項に記載の樹脂組成物から形成される樹脂組成物層と、を有する樹脂シート。
[13]
 上記[1]~[9]の何れか1項に記載の樹脂組成物の硬化物からなる絶縁層を備えるプリント配線板。
[14]
 上記[13]に記載のプリント配線板を含む、半導体装置。
 本発明によれば、誘電正接を低く抑え、且つ、溶融粘度の上昇を抑えることができる硬化物を得ることができる樹脂組成物;当該樹脂組成物の硬化物;当該樹脂組成物を含むシート状積層材料及び樹脂シート;並びに、当該樹脂組成物の硬化物を含むプリント配線板及び半導体装置を提供することができる。
 以下、本発明について、実施形態及び例示物を示して詳細に説明する。ただし、本発明は下記の実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、各成分の量は、別途明示のない限り、不揮発成分の量である。
 以下の説明において、「樹脂組成物中の不揮発成分」とは、別途明示のない限り、(D)無機充填材を含み得る。また、以下の説明において、「樹脂成分」とは、別途明示のない限り、樹脂組成物に含まれる不揮発成分のうち、(D)無機充填材を除いた成分をいい、ここで、(D)無機充填材は後述の表面処理された無機充填材であってもよい。
<樹脂組成物>
 本発明の樹脂組成物は、(A)式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物を含む。このような樹脂組成物を用いることにより、低誘電正接と低溶融粘度との両立が可能な硬化物を得ることができる。また、本発明では、通常、さらに、平均熱膨張率(CTE)が低い硬化物を得ることもでき、またさらに、比誘電率が低い硬化物を得ることもできる。
 本発明の樹脂組成物は、(A)式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物の他に、さらに任意の成分を含んでいてもよい。任意の成分としては、例えば、(D)無機充填材、(E)ラジカル重合性化合物、(F)その他の硬化剤、(G)硬化促進剤、(H)その他の添加剤、及び(K)有機溶剤が挙げられる。本明細書中、上記(A)~(K)の各成分をそれぞれ「(A)成分」、「(B)成分」等ともいう場合がある。以下、樹脂組成物に含まれる各成分について詳細に説明する。
<(A)式(A-1)で表されるシラン化合物>
 本発明で用いられるシラン化合物は、下記式(A-1)で表される化合物である限り、特に限定はされない。本明細書において、当該(A)成分を単に「特定シラン化合物」ということがある。
(RO)SiAr4-n   (A-1)
(式中、Rはアルキル基を表し、Arはアリール基を表し、nは1又は2を表す。)
 Rとしてのアルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~4のアルキル基が更に好ましく、メチル基、エチル基、プロピル基、イソプロピル基及びシクロプロピル基から選択される1種以上が更により好ましい。
 Arとしてのアリール基としては、炭素数6~10のアリール基が好ましく、置換基を有するアリール基であってもよく、置換基としては、例えば、炭素数1~10のアルキル基等が挙げられ、炭素数1~6のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、炭素数1~4のアルキル基が更に好ましく、メチル基、エチル基、プロピル基、イソプロピル基及びシクロプロピル基から選択される1種以上が更により好ましく、メチル基が特に好ましい。Arとしてのアリール基としては、フェニル基、トリル基、キシリル基、及びナフチル基からなる群より選択される少なくとも1つが好ましく、フェニル基、トリル基、及びキシリル基からなる群より選択される少なくとも1つがより好ましく、フェニル基が更に好ましい。
 nとしては、2が好ましい。
 具体的な特定シラン化合物としては、例えば、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルメトキシエトキシシラン、ジフェニルメトキシプロポキシシラン、ジフェニルエトキシプロポキシシラン等のジフェニルジアルコキシシラン;トリフェニルメトキシシラン、トリフェニルエトキシシラン、トリフェニルプロポキシシラン等のトリフェニルアルコキシシラン;等が挙げられ、ジフェニルジアルコキシシランが好ましく、ジフェニルジメトキシシランがより好ましい。
 樹脂組成物に特定シラン化合物を含有させると、樹脂組成物に含まれる粒子や成分の分散性が良好となり、樹脂組成物から得られる硬化物の溶融粘度の上昇を抑えることができる。なかでも、樹脂組成物が(D)無機充填材を含む場合、樹脂組成物から得られる硬化物の溶融粘度は上昇する傾向にあるが、特定シラン化合物を包含させることにより、(D)無機充填材(粒子)の分散性が良好となり、樹脂組成物から得られる硬化物の溶融粘度の上昇を効果的に抑えることができる。特定シラン化合物は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 (A)成分の含有量は、樹脂組成物中の不揮発成分100質量%に対して、例えば0.01質量%以上、好ましくは0.05質量%以上であり、また、例えば1質量%以下であり、好ましくは0.8質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.3質量%以下、さらにより好ましくは0.2質量%以下である。
 (A)成分の含有量は、樹脂組成物中の樹脂成分100質量%に対して、例えば0.05質量%以上、0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3ないし0.30質量%以上、さらに好ましくは0.32質量%以上であり、また、例えば1質量%以下であり、好ましくは0.8質量%以下、より好ましくは0.6質量%以下、さらに好ましくは0.5ないし0.50質量%以下、さらにより好ましくは0.45質量%以下である。
<(B)エポキシ樹脂>
 本発明の樹脂組成物は、(B)エポキシ樹脂を含有する。(B)エポキシ樹脂とは、エポキシ基を有する硬化性樹脂を意味する。
 (B)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂等が挙げられる。(B)エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 樹脂組成物は、(B)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。(B)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。
 エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、或いは液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよい。本発明の樹脂組成物におけるエポキシ樹脂は、固体状エポキシ樹脂であるか、或いは液状エポキシ樹脂と固体状エポキシ樹脂との組み合わせであることが好ましく、固体状エポキシ樹脂であることがより好ましい。
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。
 固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂が好ましい。
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」、「HP-7200L」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3000FH」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」(ナフタレン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN375」(ジヒドロキシナフタレン型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YX4000HK」、「YL7890」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(フェノールアラルキル型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂);日本化薬社製の「WHR991S」(フェノールフタルイミジン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (B)エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、固体状エポキシ樹脂に対する液状エポキシ樹脂の質量比(液状エポキシ樹脂/固体状エポキシ樹脂)は、特に限定されるものではないが、好ましくは10以下、より好ましくは5以下、さらに好ましくは1以下である。
 (B)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5,000g/eq.、より好ましくは60g/eq.~2,000g/eq.、さらに好ましくは70g/eq.~1,000g/eq.、さらにより好ましくは80g/eq.~500g/eq.である。エポキシ当量は、エポキシ基1当量あたりの樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。
 (B)エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
 (B)成分の含有量は、樹脂組成物中の不揮発成分100質量%に対して、例えば1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは7質量%以上、さらにより好ましくは7.5質量%以上であり、また、例えば30質量%以下であり、好ましくは20質量%以下、より好ましくは18質量%以下、さらに好ましくは15質量%以下、さらにより好ましくは12ないし12.0質量%以下である。
 (B)成分の含有量は、樹脂組成物中の樹脂成分100質量%に対して、例えば10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上、さらにより好ましくは30質量%以上、特に好ましくは32ないし32.0質量%以上であり、また、例えば60質量%以下であり、好ましくは55質量%以下、より好ましくは50質量%以下、さらに好ましくは45質量%以下、さらにより好ましくは40質量%以下、特に好ましくは35質量%以下である。
<(C)活性エステル化合物>
 本発明の樹脂組成物は、(C)活性エステル化合物を含有する。(C)活性エステル化合物は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。(C)活性エステル化合物は、(B)エポキシ樹脂と反応して(B)エポキシ樹脂を架橋させる機能を有し得る。(C)活性エステル化合物としては、炭素-炭素不飽和結合を有するものであってもよい。
 (C)活性エステル化合物としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル化合物は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル化合物が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル化合物がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
 具体的には、(C)活性エステル化合物としては、ジシクロペンタジエン型活性エステル化合物、ナフタレン構造を含むナフタレン型活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもジシクロペンタジエン型活性エステル化合物、及びナフタレン型活性エステル化合物から選ばれる少なくとも1種であることがより好ましく、ジシクロペンタジエン型活性エステル化合物がさらに好ましい。ジシクロペンタジエン型活性エステル化合物としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物が好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。
 (C)活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「EXB-8000L」、「EXB-8000L-65M」、「EXB-8000L-65TM」、「HPC-8000L-65TM」、「HPC-8000」、「HPC-8000-65T」、「HPC-8000H」、「HPC-8000H-65TM」、(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB-8100L-65T」、「EXB-8150-60T」、「EXB-8150-62T」、「EXB-9416-70BK」、「HPC-8150-60T」、「HPC-8150-62T」(DIC社製)、;りん含有活性エステル化合物として、「EXB9401」(DIC社製)、フェノールノボラックのアセチル化物である活性エステル化合物として「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物である活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱ケミカル社製)、スチリル基及びナフタレン構造を含む活性エステル化合物として「PC1300-02-65MA」(エア・ウォーター社製)等が挙げられる。
 (C)活性エステル化合物の活性エステル基当量は、好ましくは50g/eq.~500g/eq.、より好ましくは50g/eq.~400g/eq.、さらに好ましくは100g/eq.~300g/eq.である。活性エステル基当量は、活性エステル基1当量あたりの活性エステル化合物の質量である。
 (B)成分と(C)成分との量比は、(B)成分の不揮発成分の質量をエポキシ当量で除した値を全て合計した値をaとし、(C)成分の不揮発成分の質量を活性エステル基当量で除した値を全て合計した値をbとしたとき、b/aが1.0以上であることが好ましく、1.01以上がより好ましく、1.05以上が更に好ましく、1.1ないし1.10以上が更により好ましく、1.11以上が特に好ましく、また、2.0以下であることが好ましく、1.5以下がより好ましく、1.4以下が更に好ましく、1.3以下が更により好ましい。(B)成分と(C)成分との量比をかかる範囲内とすることにより、本発明の効果を容易に得ることができる。
 (C)成分の含有量は、樹脂組成物中の不揮発成分100質量%に対して、例えば3質量%以上、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは10質量%以上、さらにより好ましくは13質量%以上であり、また、例えば40質量%以下であり、好ましくは35質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下、さらにより好ましくは21質量%以下である。
 (C)成分の含有量は、樹脂組成物中の樹脂成分100質量%に対して、例えば30質量%以上、好ましくは40質量%以上、より好ましくは45質量%以上、さらに好ましくは50質量%以上、さらにより好ましくは55質量%以上、特に好ましくは57質量%以上であり、また、例えば80質量%以下であり、好ましくは75質量%以下、より好ましくは70質量%以下、さらに好ましくは65質量%以下、さらにより好ましくは60質量%以下である。
<(D)無機充填材>
 本発明の樹脂組成物は、任意成分として(D)無機充填材を含む場合がある。(D)無機充填材は、粒子の状態で樹脂組成物に含まれる。(D)無機充填材は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。
 (D)無機充填材の材料としては、無機化合物を用いる。(D)無機充填材の材料としては、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でも、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては球形シリカが好ましい。(D)無機充填材は、1種類単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 (D)無機充填材の市販品としては、例えば、日鉄ケミカル&マテリアル社製の「SP60-05」、「SP507-05」;アドマテックス社製の「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」、「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」、「180nmSX-C1」;デンカ社製の「UFP-30」、「DAW-03」、「FB-105FD」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;太平洋セメント社製の「セルフィアーズ」、「MGH-005」;日揮触媒化成社製の「エスフェリーク」、「BA-1」、「BA-S」などが挙げられる。
 (D)無機充填材の平均粒径は、特に限定されるものではないが、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは2μm以下、さらにより好ましくは1μm以下、特に好ましくは0.7μm以下である。(D)無機充填材の平均粒径の下限は、特に限定されるものではないが、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.07μm以上、特に好ましくは0.1μm以上である。(D)無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出した。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。
 (D)無機充填材の比表面積は、特に限定されるものではないが、好ましくは0.1m/g以上、より好ましくは0.5m/g以上、さらに好ましくは1m/g以上、特に好ましくは3m/g以上である。(D)無機充填材の比表面積の上限は、特に限定されるものではないが、好ましくは100m/g以下、より好ましくは70m/g以下、さらに好ましくは50m/g以下、特に好ましくは40m/g以下である。無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。
 (D)無機充填材は、適切な表面処理剤で表面処理されていることが好ましい。表面処理されることにより、(D)無機充填材の耐湿性及び分散性を高めることができる。表面処理剤としては、(A)成分とは異なるアルコキシシラン化合物が好ましく、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル系シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-8-アミノオクチルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;トリス-(トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレート系シランカップリング剤;3-ウレイドプロピルトリアルコキシシラン等の等のウレイド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤;3-トリメトキシシリルプロピルコハク酸無水物等の酸無水物系シランカップリング剤;等のシランカップリング剤;メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等の非シランカップリング-アルコキシシラン化合物等が挙げられる。また、表面処理剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 表面処理剤の市販品としては、例えば、信越化学工業社製の「KBM-1003」、「KBE-1003」(ビニル系シランカップリング剤);「KBM-303」、「KBM-402」、「KBM-403」、「KBE-402」、「KBE-403」(エポキシ系シランカップリング剤);「KBM-1403」(スチリル系シランカップリング剤);「KBM-502」、「KBM-503」、「KBE-502」、「KBE-503」(メタクリル系シランカップリング剤);「KBM-5103」(アクリル系シランカップリング剤);「KBM-602」、「KBM-603」、「KBM-903」、「KBE-903」、「KBE-9103P」、「KBM-573」、「KBM-575」(アミノ系シランカップリング剤);「KBM-9659」(イソシアヌレート系シランカップリング剤);「KBE-585」(ウレイド系シランカップリング剤);「KBM-802」、「KBM-803」(メルカプト系シランカップリング剤);「KBE-9007N」(イソシアネート系シランカップリング剤);「X-12-967C」(酸無水物系シランカップリング剤);「KBM-13」、「KBM-22」、「KBM-103」、「KBE-13」、「KBE-22」、「KBE-103」、「KBM-3033」、「KBE-3033」、「KBM-3063」、「KBE-3063」、「KBE-3083」、「KBM-3103C」、「KBM-3066」、「KBM-7103」(非シランカップリング-アルコキシシラン化合物)等が挙げられる。
 表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、無機充填材100質量%は、0.2質量%~5質量%の表面処理剤で表面処理されていることが好ましく、0.2質量%~3質量%で表面処理されていることがより好ましく、0.3質量%~2質量%で表面処理されていることがさらに好ましい。
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、樹脂組成物の溶融粘度やシート形態での溶融粘度の上昇を防止する観点から、1.0mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。
 (D)無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。
 樹脂組成物中の(D)無機充填材の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下、さらにより好ましくは76質量%以下であり得る。樹脂組成物中の(D)無機充填材の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば0質量%以上、1質量%以上、10質量%以上、20質量%以上、30質量%以上等であり得、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは55質量%以上、さらにより好ましくは60質量%以上、特に好ましくは61質量%以上であり得る。
<(E)ラジカル重合性化合物>
 本発明の樹脂組成物は、任意成分として(E)ラジカル重合性化合物を含む場合がある。(E)ラジカル重合性化合物は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。
 ラジカル重合性化合物としては、1分子中に1個以上(好ましくは2個以上)のラジカル重合性不飽和基を有する限り、その種類は特に限定されない。ラジカル重合性化合物としては、例えば、ラジカル重合性不飽和基として、マレイミド基、ビニル基、アリル基、スチリル基、ビニルフェニル基、アクリロイル基、メタクリロイル基、フマロイル基、及びマレオイル基から選ばれる1種以上を有する化合物が挙げられる。中でも、誘電特性に優れる硬化物が得られやすいという観点から、(E1)マレイミド化合物、及び/又は(E2)その他のラジカル重合性化合物を含むことが好ましい。(E2)その他のラジカル重合性化合物は、マレイミド基を有さず、マレイミド基以外のラジカル重合性不飽和基を有する化合物であり、中でも、(メタ)アクリル樹脂及びスチリル樹脂から選ばれる1種以上を含むことが好ましい。
 (E1)マレイミド化合物としては、1分子中に1個以上(好ましくは2個以上)のマレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)を有する限り、その種類は特に限定されない。マレイミド化合物としては、例えば、「BMI-3000J」、「BMI-5000」、「BMI-1400」、「BMI-1500」、「BMI-1700」、「BMI-689」(いずれもデジグナーモレキュールズ社製)、「SLK-2700」(信越化学工業社製)などの、脂肪族骨格(好ましくはダイマージアミン由来の炭素原子数36の脂肪族骨格)を含むマレイミド樹脂などが挙げられるが、(E1-1)発明協会公開技報公技番号2020-500211号に記載される、インダン骨格を含むマレイミド樹脂;「MIR-3000-70MT」、「MIR-5000-60T」(いずれも日本化薬社製)、「BMI-4000」(大和化成社製)、「BMI-80」(ケイアイ化成社製)などの、(E1-2)マレイミド基の窒素原子と直接結合している芳香環骨格を含むマレイミド樹脂が好ましく、後者の(E1-2)マレイミド樹脂としては、「MIR-5000-60T」(日本化薬社製)などの、(E1-2a)マレイミド基の窒素原子と直接結合している芳香環骨格を含み、分子中に3個以上の芳香族環を含むビスマレイミド樹脂がより好ましい。
 (E1)マレイミド化合物としては、なかでも、インダン骨格を含むマレイミド化合物(本明細書において、「(E1-1)特定マレイミド化合物」ともいう。)を含むことが好ましく、(E1-1a)トリメチルインダン骨格を含むマレイミド化合物を含むことがより好ましい。(E1-1)特定マレイミド化合物は、例えば、発明協会公開技報公技番号2020-500211号に記載の方法によって製造できる。この発明協会公開技報公技番号2020-500211号に記載の製造方法によれば、トリメチルインダン骨格の繰り返し単位数に分布があるマレイミド化合物を得ることができる。この方法で得られるマレイミド化合物は、下記式(M1)で表される構造を含む。よって、(E1)マレイミド化合物は、式(M1)で表される構造を含むマレイミド化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000001
(式(M1)において、Rは、それぞれ独立に、炭素原子数1~10のアルキル基、炭素原子数1~10のアルキルオキシ基、炭素原子数1~10のアルキルチオ基、炭素原子数6~10のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数6~10のアリールチオ基、炭素原子数3~10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基、又は、メルカプト基を表し;Rは、それぞれ独立に、炭素原子数1~10のアルキル基、炭素原子数1~10のアルキルオキシ基、炭素原子数1~10のアルキルチオ基、炭素原子数6~10のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数6~10のアリールチオ基、炭素原子数3~10のシクロアルキル基、ハロゲン原子、水酸基、又は、メルカプト基を表し;nは、0.95~10.0の平均繰り返し単位数を表し;nは、それぞれ独立に、0~4の整数を表し;nは、それぞれ独立に、0~3の整数を表す。Rのアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、及びシクロアルキル基の水素原子は、ハロゲン原子で置換されていてもよい。Rのアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、及びシクロアルキル基の水素原子は、ハロゲン原子で置換されていてもよい。nが2~4の場合、Rは、同一環内で同じであってもよく異なっていてもよい。nが2~3の場合、Rは、同一環内で同じであってもよく異なっていてもよい。)
 式(M1)において、nは、平均繰り返し単位数を表し、その範囲は0.95~10.0である。発明協会公開技報公技番号2020-500211号に記載の製造方法によれば、式(M1)で表される構造を含む一群のマレイミド化合物が得られる。式(M1)中の平均繰り返し単位数nが1.00より小さくなりうることから分かるように、こうして得られる式(M1)で表される構造を含むマレイミド化合物には、トリメチルインダン骨格の繰り返し単位数が0のマレイミド化合物が含まれうる。そこで、式(M1)で表される構造を含むマレイミド化合物から、精製により、トリメチルインダン骨格の繰り返し単位数が0のマレイミド化合物を除いて(E1-1)特定マレイミド化合物を得て、その得られた(E1-1)特定マレイミド化合物のみを樹脂組成物が含んでいてもよい。しかし、トリメチルインダン骨格の繰り返し単位数が0のマレイミド化合物が樹脂組成物に含まれている場合でも、本発明の効果を得ることができる。また、精製を省略した場合、コストの抑制が可能である。そこで、トリメチルインダン骨格の繰り返し単位数が0のマレイミド化合物を除くことなく、式(M1)で表される構造を含むマレイミド化合物を樹脂組成物が含むことが好ましい。
 式(M1)において、平均繰り返し単位数nは、好ましくは0.95以上、より好ましくは0.98以上、更に好ましくは1.0以上、特に好ましくは1.1以上であり、好ましくは10.0以下、より好ましくは8.0以下、更に好ましくは7.0以下、特に好ましくは6.0以下である。平均繰り返し単位数nが前記の範囲にある場合、本発明の効果を顕著に得ることができる。特に、樹脂組成物のガラス転移温度を効果的に高めることができる。
 式(M1)で表される構造の例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(M1)で表される構造を含むマレイミド化合物は、更に、下記の式(M2)で示す構造を含んでいてもよい。例えば、式(M1)で表される構造を含むマレイミド化合物は、式(M1)において、nが3以下であり、且つ、マレイミド基が結合するベンゼン環のマレイミド基に対するオルト位及びパラ位のうち、2つ以上に、Rが結合していない場合に、式(M1)で表される構造に組み合わせて式(M2)で表される構造を含みうる。
Figure JPOXMLDOC01-appb-C000003
(式(M2)において、Rc1は、それぞれ独立に、炭素原子数1~10のアルキル基、炭素原子数1~10のアルキルオキシ基、炭素原子数1~10のアルキルチオ基、炭素原子数6~10のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数6~10のアリールチオ基、炭素原子数3~10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基、又は、メルカプト基を表し;Rc2は、それぞれ独立に、炭素原子数1~10のアルキル基、炭素原子数1~10のアルキルオキシ基、炭素原子数1~10のアルキルチオ基、炭素原子数6~10のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数6~10のアリールチオ基、炭素原子数3~10のシクロアルキル基、ハロゲン原子、水酸基、又は、メルカプト基を表し;nc1は、繰り返し単位数であり、1~20の整数を表し;nc2は、それぞれ独立に、0~4の整数を表し;nc3は、それぞれ独立に、0~3の整数を表し;*は、結合手を表す。Rc1のアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、及びシクロアルキル基の水素原子は、ハロゲン原子で置換されていてもよい。Rc2のアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、及びシクロアルキル基の水素原子は、ハロゲン原子で置換されていてもよい。nc2が2~4の場合、Rc1は、同一環内で同じであってもよく異なっていてもよい。nc3が2~3の場合、Rc2は、同一環内で同じであってもよく異なっていてもよい。)
 式(M1)で表される構造を含むマレイミド化合物は、ゲルパーミエーションクロマトグラフィー(GPC)測定から算出される分子量分布Mw/Mnが、特定の範囲にあることが好ましい。分子量分布は、重量平均分子量Mwを数平均分子量Mnで割り算して求められる値であり、「Mw/Mn」で表される。具体的には、式(M1)で表される構造を含むマレイミド化合物の分子量分布Mw/Mnは、好ましくは1.0~4.0、より好ましくは1.1~3.8、更に好ましくは1.2~3.6、特に好ましくは1.3~3.4である。式(M1)で表される構造を含むマレイミド化合物の分子量分布Mw/Mnが前記範囲にある場合、本発明の効果を顕著に得ることができる。
 式(M1)で表される構造を含むマレイミド化合物のうち、平均繰り返し単位数nが0のマレイミド化合物の量は、特定の範囲にあることが好ましい。式(M1)で表される構造を含むマレイミド化合物の前記GPC測定を行った場合、平均繰り返し単位数nが0のマレイミド化合物の量は、そのGPC測定の結果に基づいて面積%で表すことができる。詳細には、前記のGPC測定で得られるクロマトグラムにおいて、式(M1)で表される構造を含むマレイミド化合物のピークの総面積に対する、平均繰り返し単位数nが0のマレイミド化合物のピークの面積の割合(面積%)により、平均繰り返し単位数nが0のマレイミド化合物の量を表すことができる。具体的には、式(M1)で表される構造を含むマレイミド化合物の全量100面積%に対して、平均繰り返し単位数nが0のマレイミド化合物の量は、好ましくは32面積%以下、より好ましくは30面積%以下、更に好ましくは28面積%以下である。平均繰り返し単位数nが0のマレイミド化合物の量が前記の範囲にある場合、本発明の効果を顕著に得ることができる。
 式(M1)で表される構造を含むマレイミド化合物のマレイミド基当量は、好ましくは50g/eq.以上、より好ましくは100g/eq.以上、特に好ましくは200g/eq.以上であり、好ましくは2000g/eq.以下、より好ましくは1000g/eq.以下、特に好ましくは800g/eq.以下である。マレイミド基当量は、マレイミド基1当量あたりのマレイミド化合物の質量を表す。式(M1)で表される構造を含むマレイミド化合物のマレイミド基当量が前記範囲にある場合、本発明の効果を顕著に得ることができる。
 (E2)その他のラジカル重合性化合物のうち(メタ)アクリル樹脂としては、1分子中に1個以上(好ましくは2個以上)の(メタ)アクリロイル基を有する限り、その種類は特に限定されず、モノマー、オリゴマーであってもよい。ここで、「(メタ)アクリロイル基」という用語は、アクリロイル基及びメタクリロイル基の総称である。メタクリル樹脂としては、(メタ)アクリレートモノマーのほか、例えば、「A-DOG」(新中村化学工業社製)、「DCP-A」(共栄社化学社製)、「NPDGA」、「FM-400」、「R-687」、「THE-330」、「PET-30」、「DPHA」(何れも日本化薬社製)などの、(メタ)アクリル樹脂が挙げられる。
 スチリル樹脂としては、1分子中に1個以上(好ましくは2個以上)のスチリル基又はビニルフェニル基を有する限り、その種類は特に限定されず、モノマー、オリゴマーであってもよい。スチリル樹脂としては、例えば、「OPE-2St」、「OPE-2St 1200」、「OPE-2St 2200」(何れも三菱ガス化学社製)などの、スチリル樹脂が挙げられる。スチリル樹脂としてはまた、スチレンモノマーのほか、例えば、ジビニルベンゼン、2,4-ジビニルトルエン、2,6-ジビニルナフタレン、1,4-ジビニルナフタレン、4,4’-ジビニルビフェニル、1,2-ビス(4-ビニルフェニル)エタン、2,2-ビス(4-ビニルフェニル)プロパン、ビス(4-ビニルフェニル)エーテル等の芳香族ジビニル化合物の単独重合体、又はこれら芳香族ジビニル化合物と、スチレン、ビニルトルエン、エチルスチレン、ビニルナフタレン等の芳香族モノビニル化合物との共重合体が挙げられる。
 樹脂組成物中の(E)ラジカル重合性化合物の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、例えば10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2ないし2.0質量%以下である。
 樹脂組成物中の(E)ラジカル重合性化合物の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは1.5質量%以上、さらにより好ましくは2質量%以上、特に好ましくは2.5質量%以上であり、また、例えば20質量%以下、好ましくは10質量%以下、より好ましくは7質量%以下、さらに好ましくは5質量%以下、特に好ましくは3.5質量%以下である。
<(F)その他の硬化剤>
 本発明の樹脂組成物は、任意成分として(F)その他の硬化剤を含む場合がある。この(F)その他の硬化剤には、上述した(A)~(C)、(E)成分に該当するものは含めない。(F)その他の硬化剤は、上述した(C)活性エステル化合物と同じく、(B)エポキシ樹脂と反応して樹脂組成物を硬化させるエポキシ樹脂硬化剤としての機能を有しうる。(F)その他の硬化剤は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (F)その他の硬化剤としては、例えば、フェノール系硬化剤、カルボジイミド系硬化剤、酸無水物系硬化剤、アミン系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、及びチオール系硬化剤が挙げられる。中でも、フェノール系硬化剤及びカルボジイミド系硬化剤からなる群より選ばれる1種類以上の硬化剤を用いることが好ましい。
 フェノール系硬化剤としては、ベンゼン環、ナフタレン環等の芳香環に結合した水酸基を1分子中に1個以上、好ましくは2個以上有する硬化剤を用いうる。耐熱性及び耐水性の観点からは、ノボラック構造を有するフェノール系硬化剤が好ましい。また、密着性の観点からは、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。フェノール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、日鉄ケミカル&マテリアル社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」、「TD-2090-60M」等が挙げられる。
 カルボジイミド系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のカルボジイミド構造を有する硬化剤を用いうる。カルボジイミド系硬化剤の具体例としては、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサンビス(メチレン-t-ブチルカルボジイミド)等の脂肪族ビスカルボジイミド;フェニレン-ビス(キシリルカルボジイミド)等の芳香族ビスカルボジイミド等のビスカルボジイミド;ポリヘキサメチレンカルボジイミド、ポリトリメチルヘキサメチレンカルボジイミド、ポリシクロヘキシレンカルボジイミド、ポリ(メチレンビスシクロヘキシレンカルボジイミド)、ポリ(イソホロンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(フェニレンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(トリレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(ジエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(キシリレンカルボジイミド)、ポリ(テトラメチルキシリレンカルボジイミド)、ポリ(メチレンジフェニレンカルボジイミド)、ポリ[メチレンビス(メチルフェニレン)カルボジイミド]等の芳香族ポリカルボジイミド等のポリカルボジイミドが挙げられる。カルボジイミド系硬化剤の市販品としては、例えば、日清紡ケミカル社製の「カルボジライトV-02B」、「カルボジライトV-03」、「カルボジライトV-04K」、「カルボジライトV-07」及び「カルボジライトV-09」;ラインケミー社製の「スタバクゾールP」、「スタバクゾールP400」、「ハイカジル510」等が挙げられる。
 酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤を用いることができ、1分子内中に2個以上の酸無水物基を有する硬化剤が好ましい。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系硬化剤の市販品としては、例えば、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「OSA」;三菱ケミカル社製の「YH-306」、「YH-307」;日立化成社製の「HN-2200」、「HN-5500」;クレイバレイ社製「EF-30」、「EF-40」「EF-60」、「EF-80」等が挙げられる。
 アミン系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のアミノ基を有する硬化剤を用いうる。アミン系硬化剤としては、例えば、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、芳香族アミン類が好ましい。アミン系硬化剤は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系硬化剤の市販品としては、例えば、セイカ社製「SEIKACURE-S」;日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」;三菱ケミカル社製の「エピキュアW」;住友精化社製「DTDA」等が挙げられる。
 ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」;四国化成工業社製の「P-d」、「F-a」などが挙げられる。
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
 チオール系硬化剤としては、例えば、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリス(3-メルカプトプロピル)イソシアヌレート等が挙げられる。
 (F)その他の硬化剤の活性基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。活性基当量は、活性基1当量あたりの硬化剤の質量を表す。 
 エポキシ樹脂と硬化剤との量比、即ち、(B)成分と、(C)成分及び(F)成分との量比は、(B)成分の不揮発成分の質量をエポキシ当量で除した値を全て合計した値をaとし、(C)成分の不揮発成分の質量を活性エステル基当量で除した値を全て合計した値をbとし、(F)成分の不揮発成分の質量を活性基当量で除した値を全て合計した値をcとしたとき、(b+c)/aが1.0以上であることが好ましく、1.01以上がより好ましく、1.1ないし1.10以上が更に好ましく、1.2ないし1.20以上が更により好ましく、1.25以上が特に好ましく、また、2.0以下であることが好ましく、1.75以下がより好ましく、1.5以下が更に好ましく、1.4ないし1.40以下が更により好ましく、1.3ないし1.30以下が特に好ましい。エポキシ樹脂と硬化剤との量比をかかる範囲内とすることにより、本発明の効果を容易に得ることができる。
 樹脂組成物中の(F)その他の硬化剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、特に好ましくは1.0質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、さらにより好ましくは2質量%以下である。
 樹脂組成物中の(F)その他の硬化剤の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、さらに好ましくは3.0質量%以上、特に好ましくは5.0質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、さらにより好ましくは6質量%以下である。
<(G)硬化促進剤>
 本発明の樹脂組成物は、任意成分として(G)硬化促進剤を含む場合がある。
 硬化促進剤としては、例えば、リン系硬化促進剤、ウレア系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤、アミン系硬化促進剤等が挙げられる。(G)硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リン系硬化促進剤としては、例えば、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムラウレート、ビス(テトラブチルホスホニウム)ピロメリテート、テトラブチルホスホニウムハイドロジェンヘキサヒドロフタレート、テトラブチルホスホニウム2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノラート、ジ-tert-ブチルメチルホスホニウムテトラフェニルボレート等の脂肪族ホスホニウム塩;メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、プロピルトリフェニルホスホニウムブロマイド、ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、p-トリルトリフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラp-トリルボレート、トリフェニルエチルホスホニウムテトラフェニルボレート、トリス(3-メチルフェニル)エチルホスホニウムテトラフェニルボレート、トリス(2-メトキシフェニル)エチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等の芳香族ホスホニウム塩;トリフェニルホスフィン・トリフェニルボラン等の芳香族ホスフィン・ボラン複合体;トリフェニルホスフィン・p-ベンゾキノン付加反応物等の芳香族ホスフィン・キノン付加反応物;トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン、ジ-tert-ブチル(2-ブテニル)ホスフィン、ジ-tert-ブチル(3-メチル-2-ブテニル)ホスフィン、トリシクロヘキシルホスフィン等の脂肪族ホスフィン;ジブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ブチルジフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-イソプロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(4-tert-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,5-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(3,5-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリス(4-tert-ブトキシフェニル)ホスフィン、ジフェニル-2-ピリジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジフェニルホスフィノ)アセチレン、2,2’-ビス(ジフェニルホスフィノ)ジフェニルエーテル等の芳香族ホスフィン等が挙げられる。
 ウレア系硬化促進剤としては、例えば、1,1-ジメチル尿素;1,1,3-トリメチル尿素、3-エチル-1,1-ジメチル尿素、3-シクロヘキシル-1,1-ジメチル尿素、3-シクロオクチル-1,1-ジメチル尿素等の脂肪族ジメチルウレア;3-フェニル-1,1-ジメチル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、3-(2-メチルフェニル)-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、3-(3,4-ジメチルフェニル)-1,1-ジメチル尿素、3-(4-イソプロピルフェニル)-1,1-ジメチル尿素、3-(4-メトキシフェニル)-1,1-ジメチル尿素、3-(4-ニトロフェニル)-1,1-ジメチル尿素、3-[4-(4-メトキシフェノキシ)フェニル]-1,1-ジメチル尿素、3-[4-(4-クロロフェノキシ)フェニル]-1,1-ジメチル尿素、3-[3-(トリフルオロメチル)フェニル]-1,1-ジメチル尿素、N,N-(1,4-フェニレン)ビス(N’,N’-ジメチル尿素)、N,N-(4-メチル-1,3-フェニレン)ビス(N’,N’-ジメチル尿素)〔トルエンビスジメチルウレア〕等の芳香族ジメチルウレア等が挙げられる。
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、四国化成工業社製の「1B2PZ」、「2MZA-PW」、「2PHZ-PW」、三菱ケミカル社製の「P200-H50」等が挙げられる。
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられる。
 アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「MY-25」等が挙げられる。
 樹脂組成物中の(G)硬化促進剤の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは3質量%以下である。樹脂組成物中の(E)硬化促進剤の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0質量%以上、0.001質量%以上、0.01質量%以上、0.1質量%以上、0.5質量%以上等であり得る。
<(H)高分子化合物>
 本発明の樹脂組成物は、(H)成分として、高分子化合物を含んでもよい。
 高分子化合物としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂が挙げられる。高分子化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 高分子化合物のポリスチレン換算の重量平均分子量は8,000~70,000の範囲が好ましく、10,000~60,000の範囲がより好ましく、20,000~60,000の範囲がさらに好ましい。高分子化合物のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、高分子化合物のポリスチレン換算の重量平均分子量は、測定装置として島津製作所社製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。フェノキシ樹脂の具体例としては、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、日鉄ケミカル&マテリアル社製の「FX280」及び「FX293」、三菱ケミカル社製の「YX7553」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。
 ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、例えば、デンカ社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。
 ポリイミド樹脂としては、イミド構造(好ましくは環状イミド構造)を有する樹脂を用いることができる。ポリイミド樹脂としては、例えば、ジアミン化合物と酸無水物とのイミド化物を用いてよい。
 ポリイミド樹脂を調製するためのジアミン化合物としては、特に限定されず、例えば、脂肪族ジアミン化合物、及び芳香族ジアミン化合物を挙げることができる。
 脂肪族ジアミン化合物としては、例えば、1,2-エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、1,5-ジアミノペンタン、1,10-ジアミノデカン等の直鎖状の脂肪族ジアミン化合物;1,2-ジアミノ-2-メチルプロパン、2,3-ジアミノ-2,3-ブタン、及び2-メチル-1,5-ジアミノペンタン等の分岐鎖状の脂肪族ジアミン化合物;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン化合物;ダイマー酸型ジアミン(以下、「ダイマージアミン」ともいう。)等が挙げられ、好ましくはダイマージアミンである。ダイマー酸型ジアミンとは、ダイマー酸の二つの末端カルボン酸基(-COOH)が、アミノメチル基(-CH-NH)又はアミノ基(-NH)に置換されて得られるジアミン化合物を意味する。ダイマー酸は、不飽和脂肪酸(好ましくは炭素数11~22のもの、特に好ましくは炭素数18のもの)を二量化することにより得られる化合物であり、その工業的製造プロセスも公知である。
 芳香族ジアミン化合物としては、例えば、フェニレンジアミン化合物、ナフタレンジアミン化合物、ジアニリン化合物等が挙げられる。
 フェニレンジアミン化合物とは、2個のアミノ基を有するベンゼン環を含む化合物を意味し、例えば、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3,5-ジアミノビフェニル、2,4,5,6-テトラフルオロ-1,3-フェニレンジアミン等が挙げられる。
 ナフタレンジアミン化合物とは、2個のアミノ基を有するナフタレン環を含む化合物を意味し、例えば、1,5-ジアミノナフタレン、1,8-ジアミノナフタレン、2,6-ジアミノナフタレン、2,3-ジアミノナフタレン等が挙げられる。
 ジアニリン化合物とは、分子内に2個のアニリン構造を含む化合物を意味し、例えば、4,4’-ジアミノ-2,2’-ジトリフルオロメチル-1,1’-ビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル4-アミノベンゾエート、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-(ヘキサフルオロイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,3-ジイソプロピルベンゼン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,4-ジイソプロピルベンゼン、4,4’-(9-フルオレニリデン)ジアニリン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)ベンゼン、4,4’-ジアミノ-3,3’-ジメチル-1,1’-ビフェニル、4,4’-ジアミノ-2,2’-ジメチル-1,1’-ビフェニル、9,9’-ビス(3-メチル-4-アミノフェニル)フルオレン、5-(4-アミノフェノキシ)-3-[4-(4-アミノフェノキシ)フェニル]-1,1,3-トリメチルインダン等が挙げられる。
 ジアミン化合物は、市販されているものを用いてもよいし、公知の方法により合成したものを使用してもよい。ジアミン化合物は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリイミド樹脂を調製するための酸無水物としては、特に限定されないが、テトラカルボン酸無水物が好適であり、例えば、芳香族テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物が挙げられる。
 芳香族テトラカルボン酸二無水物としては、例えば、ベンゼンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、アントラセンテトラカルボン酸二無水物、ジフタル酸二無水物等が挙げられ、好ましくは、ジフタル酸二無水物である。
 ベンゼンテトラカルボン酸二無水物とは、4個のカルボキシ基を有するベンゼン環を含む化合物由来の二無水物を意味し、例えば、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物等が挙げられる。
 ナフタレンテトラカルボン酸二無水物とは、4個のカルボキシ基を有するナフタレン環を含む化合物由来の二無水物を意味し、例えば、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。
 アントラセンテトラカルボン酸二無水物とは、4個のカルボキシ基を有するアントラセン環を含む化合物由来の二無水物を意味し、例えば、2,3,6,7-アントラセンテトラカルボン酸二無水物等が挙げられる。
 ジフタル酸二無水物とは、分子内に2個の無水フタル酸構造を含む化合物を意味し、ジフタル酸二無水物における2個の無水フタル酸は、直接結合、或いは炭素原子、酸素原子、硫黄原子及び窒素原子から選ばれる1~100個(好ましくは1~50個、より好ましくは1~20個)の骨格原子を有する2価の連結基を介して結合し得る。ジフタル酸二無水物としては、具体的に、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物2,2’-ビス(3,4-ジカルボキシフェノキシフェニル)スルホン二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物等が挙げられる。
 テトラカルボン酸二無水物等の酸無水物は、市販されているものを用いてもよいし、公知の方法又はこれに準ずる方法により合成したものを使用してもよい。酸無水物は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 その他、ポリイミド樹脂としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006-37083号公報記載のもの)、ポリシロキサン骨格含有ポリイミド(特開2002-12667号公報及び特開2000-319386号公報等に記載のもの)等の変性ポリイミドが挙げられる。
 ポリアミドイミド樹脂の具体例としては、東洋紡績社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業社製のポリシロキサン骨格含有ポリアミドイミド「KS9100」、「KS9300」等の変性ポリアミドイミドが挙げられる。
 ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。
 本発明の樹脂組成物が(E)成分を含む場合、樹脂組成物中の(E)成分の含有量は、樹脂組成物に要求される特性に応じて決定してよいが、樹脂組成物中の樹脂成分を100質量%とした場合、例えば、0.1質量%以上であり、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、0.6質量%以上、0.8質量%以上又は1質量%以上である。(E)成分の含有量の上限は、特に限定されないが、例えば20質量%以下、18質量%以下、16質量%以下、15質量%以下などとし得る。
<(I)その他の添加剤>
 本発明の樹脂組成物は、不揮発成分として、さらに任意の添加剤を含んでいてもよい。このような添加剤としては、例えば、過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤等のラジカル重合開始剤;フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、チオール系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、イミダゾール系硬化剤等の活性エステル化合物以外のエポキシ硬化剤;ゴム粒子等の有機充填材;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック等の着色剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤、シリコーン系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等の分散剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤等が挙げられる。(F)その他の添加剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。(H)その他の添加剤の含有量は当業者であれば適宜設定できる。
<(K)有機溶剤>
 本発明の樹脂組成物は、上述した不揮発成分以外に、揮発性成分として、さらに任意の有機溶剤を含有する場合がある。(K)有機溶剤としては、公知のものを適宜用いることができ、その種類は特に限定されるものではない。(K)有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等のエーテル系溶剤;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶剤;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶剤;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶剤;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤等を挙げることができる。(K)有機溶剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 一実施形態において、(K)有機溶剤の含有量は、特に限定されるものではないが、樹脂組成物中の全成分を100質量%とした場合、例えば、60質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下等であり得る。
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、例えば、任意の調製容器に(A)式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物、必要に応じて(D)無機充填材、必要に応じて(E)ラジカル重合性化合物、必要に応じて(F)その他の硬化剤、必要に応じて(G)硬化促進剤、必要に応じて(H)その他の添加剤、及び必要に応じて(K)有機溶剤を、任意の順で及び/又は一部若しくは全部同時に加えて混合することによって、製造することができる。また、各成分を加えて混合する過程で、温度を適宜設定することができ、一時的に又は終始にわたって、加熱及び/又は冷却してもよい。また、加えて混合する過程において又はその後に、樹脂組成物を、例えば、ミキサーなどの撹拌装置又は振盪装置を用いて撹拌又は振盪し、均一に分散させてもよい。また、撹拌又は振盪と同時に、真空下等の低圧条件下で脱泡を行ってもよい。
<樹脂組成物の特性>
 本発明の樹脂組成物は、(A)式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物を含む。このような樹脂組成物を用いることにより、低誘電正接と低溶融粘度との両立が可能な硬化物を得ることができ、好ましくは、さらに、平均熱膨張率(CTE)が低い硬化物を得ることもでき、またさらに、比誘電率が低い硬化物を得ることができる。
 本発明の樹脂組成物の硬化物は、溶融粘度の上昇を抑えることができるという特徴を有し得る。したがって、一実施形態において、下記試験例3のように動的粘弾性測定装置を用いて周波数1Hz、歪み5度、荷重100g、昇温速度5℃/分、温度範囲60℃~180℃にて測定した場合の最低溶融粘度が、好ましくは4000poise以下、3000poise以下、より好ましくは2000poise以下、1700poise以下、さらに好ましくは1500poise以下、1300poise以下、特に好ましくは1100poise以下であり得、なかでも、樹脂組成物が中空シリカを含む(D)無機充填材を含有する場合は更に低くすることができ、好ましくは2000poise以下、より好ましくは1700poise以下、さらに好ましくは1500poise以下、さらにより好ましくは1300poise以下、特に好ましくは1100poise以下であり得る。
 本発明の樹脂組成物の硬化物は、誘電正接(Df)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例1のように5.8GHz、23℃で測定した場合の樹脂組成物の硬化物の誘電正接(Df)は、好ましくは0.020以下、0.010以下、より好ましくは0.009以下、0.008以下、さらに好ましくは0.007以下、0.006以下、さらにより好ましくは0.005以下、特に好ましくは0.004以下となり得る。
 本発明の樹脂組成物の硬化物は、平均熱膨張率(CTE)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例2のように長さ20mm、幅6mmに切り出した評価サンプルについて昇温速度5℃/分で測定した場合の樹脂組成物の硬化物の25℃から150℃の平均熱膨張率は、例えば50ppm以下、好ましくは40ppm以下、より好ましくは30ppm以下、さらに好ましくは28ppm以下、さらにより好ましくは25ppm以下、特に好ましくは23ppm以下となり得る。
 本発明の樹脂組成物の硬化物は、比誘電率(Dk)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例1のように5.8GHz、23℃で測定した場合の樹脂組成物の硬化物の比誘電率(Dk)は、好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.5以下、さらにより好ましくは3.3以下となり得、なかでも、樹脂組成物が中空シリカを含む(D)無機充填材を含有する場合は更に低くすることができ、例えば5.0以下、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.3以下、さらにより好ましくは3.0以下、特に好ましくは2.8以下となり得る。
<樹脂組成物の用途>
 本発明の樹脂組成物は、絶縁用途の樹脂組成物、特に、絶縁層を形成するための樹脂組成物として好適に使用することができる。具体的には、絶縁層上に形成される導体層(再配線層を含む)を形成するための当該絶縁層を形成するための樹脂組成物(導体層を形成するための絶縁層形成用樹脂組成物)として好適に使用することができる。また、後述するプリント配線板において、プリント配線板の絶縁層を形成するための樹脂組成物(プリント配線板の絶縁層形成用樹脂組成物)として好適に使用することができる。本発明の樹脂組成物はまた、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途で広範囲に使用できる。
 また、例えば、以下の(1)~(6)工程を経て半導体チップパッケージが製造される場合、本発明の樹脂組成物は、再配線層を形成するための絶縁層としての再配線形成層用の樹脂組成物(再配線形成層形成用の樹脂組成物)、及び半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)としても好適に使用することができる。半導体チップパッケージが製造される際、封止層上に更に再配線層を形成してもよい。
 (1)基材に仮固定フィルムを積層する工程、
 (2)半導体チップを、仮固定フィルム上に仮固定する工程、
 (3)半導体チップ上に封止層を形成する工程、
 (4)基材及び仮固定フィルムを半導体チップから剥離する工程、
 (5)半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程、及び
 (6)再配線形成層上に、導体層としての再配線層を形成する工程
 また、本発明の樹脂組成物は、部品埋め込み性に良好な絶縁層をもたらすことから、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。
<シート状積層材料>
 本発明の樹脂組成物は、ワニス状態で塗布して使用することもできるが、工業的には一般に、該樹脂組成物を含有するシート状積層材料の形態で用いることが好適である。
 シート状積層材料としては、以下に示す樹脂シート、プリプレグが好ましい。
 一実施形態において、樹脂シートは、支持体と、該支持体上に設けられた樹脂組成物層とを含んでなり、樹脂組成物層は本発明の樹脂組成物から形成される。
 樹脂組成物層の厚さは、プリント配線板の薄型化、及び当該樹脂組成物の硬化物が薄膜であっても絶縁性に優れた硬化物を提供できるという観点から、好ましくは50μm以下、より好ましくは40μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、5μm以上、10μm以上等とし得る。
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
 支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。
 また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
 支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
 一実施形態において、樹脂シートは、さらに必要に応じて、任意の層を含んでいてもよい。斯かる任意の層としては、例えば、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられた、支持体に準じた保護フィルム等が挙げられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを抑制することができる。
 樹脂シートは、例えば、液状の樹脂組成物をそのまま、或いは有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、これを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。
 有機溶剤としては、樹脂組成物の成分として説明した有機溶剤と同様のものが挙げられる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂組成物又は樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂組成物又は樹脂ワニスを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。
 樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
 一実施形態において、プリプレグは、シート状繊維基材に本発明の樹脂組成物を含浸させて形成される。
 プリプレグに用いるシート状繊維基材は特に限定されず、ガラスクロス、アラミド不織布、液晶ポリマー不織布等のプリプレグ用基材として常用されているものを用いることができる。プリント配線板の薄型化の観点から、シート状繊維基材の厚さは、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。シート状繊維基材の厚さの下限は特に限定されない。通常、10μm以上である。
 プリプレグは、ホットメルト法、ソルベント法等の公知の方法により製造することができる。
 プリプレグの厚さは、上述の樹脂シートにおける樹脂組成物層と同様の範囲とし得る。
 本発明のシート状積層材料は、プリント配線板の絶縁層を形成するため(プリント配線板の絶縁層用)に好適に使用することができ、プリント配線板の層間絶縁層を形成するため(プリント配線板の層間絶縁層用)により好適に使用することができる。
<プリント配線板>
 本発明のプリント配線板は、本発明の樹脂組成物を硬化して得られる硬化物からなる絶縁層を含む。
 プリント配線板は、例えば、上述の樹脂シートを用いて、下記(I)及び(II)の工程を含む方法により製造することができる。
 (I)内層基板上に、樹脂シートを、樹脂シートの樹脂組成物層が内層基板と接合するように積層する工程
 (II)樹脂組成物層を硬化(例えば熱硬化)して絶縁層を形成する工程
 工程(I)で用いる「内層基板」とは、プリント配線板の基板となる部材であって、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。また、該基板は、その片面又は両面に導体層を有していてもよく、この導体層はパターン加工されていてもよい。基板の片面または両面に導体層(回路)が形成された内層基板は「内層回路基板」ということがある。またプリント配線板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物も本発明でいう「内層基板」に含まれる。プリント配線板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用してもよい。
 内層基板と樹脂シートの積層は、例えば、支持体側から樹脂シートを内層基板に加熱圧着することにより行うことができる。樹脂シートを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、内層基板の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。
 内層基板と樹脂シートの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施され得る。
 積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。
 積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
 支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。
 工程(II)において、樹脂組成物層を硬化(例えば熱硬化)して、樹脂組成物の硬化物からなる絶縁層を形成する。樹脂組成物層の硬化条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常採用される条件を使用してよい。
 例えば、樹脂組成物層の熱硬化条件は、樹脂組成物の種類等によっても異なるが、一実施形態において、硬化温度は好ましくは120℃~240℃、より好ましくは150℃~220℃、さらに好ましくは170℃~210℃である。硬化時間は好ましくは5分間~120分間、より好ましくは10分間~100分間、さらに好ましくは15分間~100分間とすることができる。
 樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、50℃~120℃、好ましくは60℃~115℃、より好ましくは70℃~110℃の温度にて、樹脂組成物層を5分間以上、好ましくは5分間~150分間、より好ましくは15分間~120分間、さらに好ましくは15分間~100分間予備加熱してもよい。
 プリント配線板を製造するに際しては、(III)絶縁層に穴あけする工程、(IV)絶縁層を粗化処理する工程、(V)導体層を形成する工程をさらに実施してもよい。これらの工程(III)乃至工程(V)は、プリント配線板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(II)の後に除去する場合、該支持体の除去は、工程(II)と工程(III)との間、工程(III)と工程(IV)の間、又は工程(IV)と工程(V)との間に実施してよい。また、必要に応じて、工程(II)~工程(V)の絶縁層及び導体層の形成を繰り返して実施し、多層配線板を形成してもよい。
 他の実施形態において、本発明のプリント配線板は、上述のプリプレグを用いて製造することができる。製造方法は基本的に樹脂シートを用いる場合と同様である。
 工程(III)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(III)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法や形状は、プリント配線板のデザインに応じて適宜決定してよい。
 工程(IV)は、絶縁層を粗化処理する工程である。通常、この工程(IV)において、スミアの除去も行われる。粗化処理の手順、条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。
 粗化処理に用いる膨潤液としては特に限定されないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、特に限定されないが、例えば、30℃~90℃の膨潤液に絶縁層を1分間~20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に絶縁層を5分間~15分間浸漬させることが好ましい。
 粗化処理に用いる酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~100℃に加熱した酸化剤溶液に絶縁層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。
 また、粗化処理に用いる中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。
 中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。
 工程(V)は、導体層を形成する工程であり、絶縁層上に導体層を形成する。導体層に使用する導体材料は特に限定されない。
 好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。
 導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。
 導体層の厚さは、所望のプリント配線板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。
 一実施形態において、導体層は、メッキにより形成してよい。例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にメッキして、所望の配線パターンを有する導体層を形成することができ、製造の簡便性の観点から、セミアディティブ法により形成することが好ましい。以下、導体層をセミアディティブ法により形成する例を示す。
 まず、絶縁層の表面に、無電解メッキによりメッキシード層を形成する。次いで、形成されたメッキシード層上に、所望の配線パターンに対応してメッキシード層の一部を露出させるマスクパターンを形成する。露出したメッキシード層上に、電解メッキにより金属層を形成した後、マスクパターンを除去する。その後、不要なメッキシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。
 他の実施形態において、導体層は、金属箔を使用して形成してよい。金属箔を使用して導体層を形成する場合、工程(V)は、工程(I)と工程(II)の間に実施することが好適である。例えば、工程(I)の後、支持体を除去し、露出した樹脂組成物層の表面に金属箔を積層する。樹脂組成物層と金属箔との積層は、真空ラミネート法により実施してよい。積層の条件は、工程(I)について説明した条件と同様としてよい。次いで、工程(II)を実施して絶縁層を形成する。その後、絶縁層上の金属箔を利用して、サブトラクティブ法、モディファイドセミアディティブ法等の従来の公知の技術により、所望の配線パターンを有する導体層を形成することができる。
 金属箔は、例えば、電解法、圧延法等の公知の方法により製造することができる。金属箔の市販品としては、例えば、JX日鉱日石金属社製のHLP箔、JXUT-III箔、三井金属鉱山社製の3EC-III箔、TP-III箔等が挙げられる。
<半導体装置>
 本発明の半導体装置は、本発明のプリント配線板を含む。本発明の半導体装置は、本発明のプリント配線板を用いて製造することができる。
 半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
 以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。特に温度の指定が無い場合の温度条件は、室温(25℃)である。
[実施例1]
 ナフタレン骨格エポキシ樹脂(DIC社製「HP-4032-SS」、エポキシ当量144g/eq.)15部、活性エステル硬化剤(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量234g/eq.)43部、(A)成分としてのジフェニルジメトキシシラン(信越化学工業社製「KBM-202SS」)0.2部、アミノトリアジン含有クレゾールノボラック樹脂(DIC社製「LA-3018-50P」、不揮発成分50質量%の1-メトキシ-2-プロパノール溶液)5部、無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された球形シリカ(アドマテックス社製、「SO-C2」、平均粒径0.5μm、比表面積5.8m/g)140部、硬化促進剤として硬化触媒(四国化成工業社製、1B2PZ)0.5部を混合し、高速回転ミキサーを用いて均一に分散して、樹脂ワニスを得た。
[実施例2]
 発明協会公開技報公技番号2020-500211号の合成例1に記載の方法で合成された下記式(M)で表されるマレイミド化合物A(Mw/Mn=1.81、t’’=1.47(主に1、2又は3))のMEK溶液(不揮発成分62質量%)を準備した。
Figure JPOXMLDOC01-appb-C000004
 実施例1で、無機充填剤の量を145部に変更し、マレイミド化合物として、マレイミド化合物AのMEK溶液(不揮発成分62質量%)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例3]
 実施例1で、無機充填剤の量を145部に変更し、マレイミド化合物(日本化薬社製「MIR-5000-60T」、不揮発分60質量%のトルエン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例4]
 実施例1で、無機充填剤の量を145部に変更し、マレイミド化合物(日本化薬社製「MIR-3000-70MT」、不揮発分70質量%のMEK・トルエン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例5]
 実施例1で、無機充填剤の量を145部に変更し、マレイミド化合物(デジグナーモレキュールズ社製「BMI-1500」)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[比較例1]
 実施例1で、(A)成分としてのシラン化合物(信越化学工業社製「KBM-202SS」)0.2部を用いなかった以外は実施例1と同様に樹脂ワニスを得た。
[比較例2]
 実施例1で、(A)成分としてのシラン化合物(信越化学工業社製「KBM-202SS」)0.2部を用いず、その他のシラン化合物としてジメチルジメトキシシラン(信越化学工業社製「KBM-22」)0.2部を用いた以外は実施例1と同様に樹脂ワニスを得た。
[実施例6~10、比較例3]
 無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された球形シリカ(アドマテックス社製、「SO-C2」、平均粒径0.5μm、比表面積5.8m/g)を用いず、無機充填剤(アミン系アルコキシシラン化合物(信越化学工業社製「KBM-573」)で表面処理された球形シリカ(アドマテックス社製「SO-C1」、平均粒径0.3μm、比表面積10m/g)を用い、更に添加量を表に記載の通りに変更した以外は実施例1~5、比較例1と同様に樹脂ワニスを得た。
[実施例11~15、比較例4]
 無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された球形シリカ(アドマテックス社製、「SO-C2」、平均粒径0.5μm、比表面積5.8m/g)を用いず、無機充填剤(アミン系アルコキシシラン化合物(信越化学工業社製「KBM-573」)で表面処理された球形シリカ(アドマテックス社製「180nmSX-C1」、平均粒径0.18μm、比表面積20m/g)を用い、更に添加量を表に記載の通りに変更し、さらに、(A)成分としてのジフェニルジメトキシシラン(信越化学工業社製「KBM-202SS」)の添加量を表に記載の通りに変更した以外は実施例1~5、比較例1と同様に樹脂ワニスを得た。
[実施例16~20、比較例5]
 無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された球形シリカ(アドマテックス社製、「SO-C2」、平均粒径0.5μm、比表面積5.8m/g)の添加量を75部に変更し、更に無機充填剤(アミン系アルコキシシラン化合物(信越化学工業社製「KBM-573」)で表面処理された中空シリカ(日揮触媒化成社製「BA-S」、平均粒径3μm、比表面積2.2m/g)25部を用いた以外は実施例1~5、比較例1と同様に樹脂ワニスを得た。
[実施例21]
 実施例1で、無機充填剤の量を145部に変更し、マレイミド化合物(信越化学工業社製「SLK-2700」、不揮発分50質量%のトルエン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例22]
 実施例1で、無機充填剤の量を145部に変更し、その他のラジカル重合性化合物として、スチリル樹脂(三菱ガス化学社製「OPE-2St-1200」、不揮発分65質量%のトルエン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例23]
 実施例1で、無機充填剤の量を145部に変更し、その他のラジカル重合性化合物として、スチリル樹脂(下記手順で調製したジビニルベンゼン共重合体、不揮発分50質量%のトルエン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
-ジビニルベンゼン共重合体の調製-
 ジビニルベンゼン 3.0モル(390.6g)、エチルビニルベンゼン 1.8モル(229.4g)、スチレン 10.2モル(1066.3g)、酢酸n-プロピル 15.0モル(1532.0g)を5.0Lの反応器内に投入し、70℃で600ミリモルの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、60℃で減圧脱揮し、共重合体を回収した。得られた共重合体を秤量して、ジビニルベンゼン共重合体896.7gが得られたことを確認した。ジビニルベンゼン共重合体の重量平均分子量(Mw)は41300であった。
[実施例24]
 実施例1で、無機充填剤の量を145部に変更し、高分子化合物として、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発分30質量%のMEK・シクロヘキサノン混合溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
[実施例25]
 実施例1で、無機充填剤の量を145部に変更し、高分子化合物として、ポリイミド樹脂(下記手順で調製したポリイミド樹脂1、不揮発分30質量%のシクロヘキサノン溶液)2部を添加した以外は実施例1と同様に樹脂ワニスを得た。
-ポリイミド樹脂1の調製-
 撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、4,4’-[プロパン-2,2-ジイルビス(1,4-フェニレンオキシ)]ジフタル酸二無水物(SABICイノベーティブプラスチックスジャパン合同会社製「BisDA-1000」)330.0g、シクロヘキサノン1065.4g、及びメチルシクロヘキサン213.09gを仕込み、60℃まで加熱した。次いで、市販のダイマージアミン(クローダジャパン社製「PRIAMINE1075」)218.67g及び3,5-ジアミノ安息香酸(日本純良薬品社製「3,5-DABA」)30.35gを滴下した後、140℃で12時間かけてイミド化反応させることにより、ポリイミド樹脂1の溶液(不揮発分30.0%)を得た。
[作製例1:樹脂組成物層の厚さが40μmの樹脂シートAの作製]
 支持体として、離型層を備えたポリエチレンテレフタレートフィルム(リンテック社製「AL5」、厚さ38μm)を用意した。この支持体の離型層上に、実施例及び比較例で得られた樹脂ワニス(樹脂組成物)を、乾燥後の樹脂組成物層の厚さが40μmとなるように均一に塗布した。その後、樹脂組成物を80℃~100℃(平均90℃)で4分間乾燥させて、支持体及び樹脂組成物層を含む樹脂シートAを得た。
[作製例2:評価用硬化物Bの作製]
 実施例及び比較例で得られた樹脂シートAを190℃のオーブンで90分硬化した。オーブンから取り出した樹脂シートAから支持体を剥がすことにより、樹脂組成物層の硬化物を得た。その硬化物を長さ80mm、幅2mmに切り出し、評価用硬化物Bとした。
[試験例1:誘電率・誘電正接の測定]
 各評価用硬化物Bについて、アジレントテクノロジーズ(AgilentTechnologies)社製「HP8362B」を用いて、空洞共振摂動法により測定周波数5.8GHz、測定温度23℃にて、誘電率(Dk)、誘電正接の値(Df値)を測定した。2本の試験片にて測定を実施し、その平均を算出した。
[試験例2:平均熱膨張率の測定]
 各評価用硬化物Bを長さ20mm、幅6mmに切り出し評価サンプルとした。各評価サンプルについてリガク社製TMA装置を用い5℃/分の昇温速度で25℃から150℃の平均熱膨張率(CTE;ppm)を測定した。同一の試験片について2回測定を行い、2回目の値を記録した。
[試験例3:溶融粘度の測定]
 作製例1で得られた各樹脂シートAを、支持体から剥がし、ユービーエム社製動的粘弾性測定装置G-3000にて周波数1Hz、歪み5度、荷重100g、昇温速度5℃/分、温度範囲60℃~180℃にて測定した。
 実施例及び比較例の樹脂ワニス(樹脂組成物)の揮発成分を含む(A)~(G)成分の使用量(質量部)、試験例の測定結果を下記表1~5に示す。表1~5において、各成分の不揮発分(質量%)を「N.V.」欄に表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上により、(A)式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(B)活性エステル化合物を含む樹脂組成物を使用することにより、低誘電正接と低溶融粘度との両立が可能な硬化物を得ることができることがわかった。この硬化物は、さらに、平均熱膨張率(CTE)が低く、またさらに、比誘電率(Dk)が低いこともわかった。

Claims (14)

  1.  (A)下記式(A-1)で表されるシラン化合物、(B)エポキシ樹脂、及び(C)活性エステル化合物を含む樹脂組成物。
    (RO)SiAr4-n   (A-1)
    (式中、Rはアルキル基を表し、Arはアリール基を表し、nは1又は2を表す。)
  2.  樹脂組成物中の樹脂成分を100質量%とした場合、(A)成分の含有量が0.05質量%以上、1質量%以下である、請求項1に記載の樹脂組成物。
  3.  さらに(D)無機充填剤を含む、請求項1に記載の樹脂組成物。
  4.  (D)無機充填剤が表面処理剤により表面処理されており、表面処理剤が(A)成分とは異なるアルコキシシラン化合物である、請求項3に記載の樹脂組成物。
  5.  (A)成分とは異なるアルコキシシラン化合物がアミノ系シランカップリング剤を含む、請求項4に記載の樹脂組成物。
  6.  さらに(E)ラジカル重合性化合物を含む、請求項1に記載の樹脂組成物。
  7.  (E)ラジカル重合性化合物が(E1)マレイミド化合物を含む、請求項6に記載の樹脂組成物。
  8.  (E1)マレイミド化合物が、(E1-1a)トリメチルインダン骨格を含むマレイミド化合物、及び(E1-2a)マレイミド基の窒素原子と直接結合している芳香環骨格を含み、分子中に3個以上の芳香族環を含むビスマレイミド樹脂からなる群より選択される少なくとも1つを含む、請求項7に記載の樹脂組成物。
  9.  プリント配線板の層間絶縁層形成用である、請求項1に記載の樹脂組成物。
  10.  請求項1~9の何れか1項に記載の樹脂組成物の硬化物。
  11.  請求項1~9の何れか1項に記載の樹脂組成物を含有する、シート状積層材料。
  12.  支持体と、当該支持体上に設けられた請求項1~9の何れか1項に記載の樹脂組成物から形成される樹脂組成物層と、を有する樹脂シート。
  13.  請求項1~9の何れか1項に記載の樹脂組成物の硬化物からなる絶縁層を備えるプリント配線板。
  14.  請求項13に記載のプリント配線板を含む、半導体装置。
PCT/JP2023/003461 2022-02-03 2023-02-02 樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置 WO2023149521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023578625A JPWO2023149521A1 (ja) 2022-02-03 2023-02-02
CN202380019913.5A CN118647671A (zh) 2022-02-03 2023-02-02 树脂组合物、固化物、片状层叠材料、树脂片材、印刷布线板及半导体装置
KR1020247025995A KR20240137596A (ko) 2022-02-03 2023-02-02 수지 조성물, 경화물, 시트상 적층 재료, 수지 시트, 프린트 배선판, 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015824 2022-02-03
JP2022015824 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149521A1 true WO2023149521A1 (ja) 2023-08-10

Family

ID=87552578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003461 WO2023149521A1 (ja) 2022-02-03 2023-02-02 樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置

Country Status (5)

Country Link
JP (1) JPWO2023149521A1 (ja)
KR (1) KR20240137596A (ja)
CN (1) CN118647671A (ja)
TW (1) TW202348676A (ja)
WO (1) WO2023149521A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217683A (ja) * 2006-01-19 2007-08-30 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2009249424A (ja) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2010144086A (ja) * 2008-12-19 2010-07-01 Kyocera Chemical Corp ダイボンディングペースト、およびこれを用いた半導体装置
JP2016008280A (ja) * 2014-06-25 2016-01-18 味の素株式会社 樹脂組成物
WO2017010403A1 (ja) * 2015-07-10 2017-01-19 日立化成株式会社 エポキシ樹脂成形材料、成形物及び硬化物
JP2020050826A (ja) * 2018-09-28 2020-04-02 日立化成株式会社 封止用樹脂組成物、再配置ウエハ、半導体パッケージ、及び半導体パッケージの製造方法
JP2020132676A (ja) * 2019-02-13 2020-08-31 味の素株式会社 樹脂組成物
JP2021107496A (ja) * 2019-12-27 2021-07-29 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、および電子部品
JP2021161323A (ja) * 2020-04-01 2021-10-11 味の素株式会社 樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023714A (ja) 2019-10-24 2020-02-13 積水化学工業株式会社 樹脂材料及び多層プリント配線板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217683A (ja) * 2006-01-19 2007-08-30 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2009249424A (ja) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2010144086A (ja) * 2008-12-19 2010-07-01 Kyocera Chemical Corp ダイボンディングペースト、およびこれを用いた半導体装置
JP2016008280A (ja) * 2014-06-25 2016-01-18 味の素株式会社 樹脂組成物
WO2017010403A1 (ja) * 2015-07-10 2017-01-19 日立化成株式会社 エポキシ樹脂成形材料、成形物及び硬化物
JP2020050826A (ja) * 2018-09-28 2020-04-02 日立化成株式会社 封止用樹脂組成物、再配置ウエハ、半導体パッケージ、及び半導体パッケージの製造方法
JP2020132676A (ja) * 2019-02-13 2020-08-31 味の素株式会社 樹脂組成物
JP2021107496A (ja) * 2019-12-27 2021-07-29 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、および電子部品
JP2021161323A (ja) * 2020-04-01 2021-10-11 味の素株式会社 樹脂組成物

Also Published As

Publication number Publication date
JPWO2023149521A1 (ja) 2023-08-10
TW202348676A (zh) 2023-12-16
KR20240137596A (ko) 2024-09-20
CN118647671A (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
KR20210132616A (ko) 수지 조성물
JP2022108928A (ja) 樹脂組成物
KR20230132723A (ko) 수지 조성물
JP2022176199A (ja) 樹脂シート、及び樹脂組成物
KR20230063875A (ko) 수지 조성물
WO2023027013A1 (ja) 樹脂組成物
JP7494715B2 (ja) 樹脂組成物
WO2022102757A1 (ja) 樹脂組成物
JP2022151212A (ja) プリント配線板の製造方法
WO2023149521A1 (ja) 樹脂組成物、硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置
JP7311064B2 (ja) 樹脂組成物
JP7472839B2 (ja) 樹脂組成物
WO2023063266A1 (ja) 樹脂組成物
JP2022109003A (ja) 樹脂組成物
JP2022109004A (ja) 樹脂組成物
JP2022141184A (ja) 樹脂組成物
JP2023100523A (ja) 樹脂組成物
JP2024014835A (ja) 樹脂組成物
TW202411344A (zh) 樹脂組成物
KR20230122560A (ko) 수지 조성물
JP2023003393A (ja) 樹脂組成物
WO2022196696A1 (ja) 樹脂シート
JP2024058172A (ja) 樹脂組成物
JP2023069752A (ja) 樹脂組成物
TW202430594A (zh) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578625

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247025995

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE