WO2023149043A1 - スイッチングデバイスとその製造方法 - Google Patents

スイッチングデバイスとその製造方法 Download PDF

Info

Publication number
WO2023149043A1
WO2023149043A1 PCT/JP2022/041516 JP2022041516W WO2023149043A1 WO 2023149043 A1 WO2023149043 A1 WO 2023149043A1 JP 2022041516 W JP2022041516 W JP 2022041516W WO 2023149043 A1 WO2023149043 A1 WO 2023149043A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electric field
gate
field relaxation
gate trench
Prior art date
Application number
PCT/JP2022/041516
Other languages
English (en)
French (fr)
Inventor
正和 渡部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280089557.XA priority Critical patent/CN118633146A/zh
Publication of WO2023149043A1 publication Critical patent/WO2023149043A1/ja
Priority to US18/669,766 priority patent/US20240304665A1/en

Links

Images

Classifications

    • H01L29/0623
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • H01L29/1095
    • H01L29/1608
    • H01L29/42376
    • H01L29/66068
    • H01L29/66734
    • H01L29/7813

Definitions

  • the technology disclosed in this specification relates to a switching device and its manufacturing method.
  • Japanese Patent Publication No. 2018-116986 discloses a switching device having a trench-type gate electrode.
  • This switching device has a p-type electric field relaxation region in contact with the bottom surface of the gate trench.
  • the electric field relaxation region is surrounded by an n-type drift region.
  • the electric field relaxation region suppresses electric field concentration in the vicinity of the lower end of the gate trench.
  • an electric field relaxation region is formed by implanting a p-type impurity into a part of the drift region.
  • an n-type layer and a p-type layer are sequentially epitaxially grown on the semiconductor substrate.
  • a gate trench is then formed in the top surface of the semiconductor substrate.
  • the gate trench is formed such that the lower end of the gate trench is positioned within the electric field relaxation region.
  • a gate electrode is then formed in the gate trench. In this manufacturing method, it is necessary to form the gate trench in alignment with the electric field relaxation region so that the bottom surface of the gate trench is positioned within the electric field relaxation region.
  • the gate trench may be laterally displaced with respect to the field relief region.
  • the gate trench 120 may be laterally displaced with respect to the electric field relaxation region 130, and the corner portion 120c at the lower end of the gate trench 120 may protrude outside the electric field relaxation region 130.
  • FIG. 12 When the corner portion 120c of the gate trench 120 protrudes from the electric field relaxation region 130 in this way, the electric field tends to concentrate in the vicinity of the corner portion 120c, and the breakdown voltage of the switching device is lowered. For this reason, in the manufacturing method disclosed in Japanese Patent Publication No.
  • the bottom surface of the gate trench is positioned within the electric field relaxation region. must be significantly wider than the width of the gate trench.
  • the position D130 of the lower end of the electric field relaxation region 130 also varies. If the position of the lower end of the electric field relaxation region varies in the vertical direction, the characteristics of the switching device will vary.
  • this specification proposes a technique for forming an electric field relaxation region with high positional accuracy.
  • the switching device comprises a semiconductor substrate having a gate trench on an upper surface, a gate electrode disposed in the gate trench and insulated from the semiconductor substrate by a gate insulating film, and the gate isolation on the side of the gate trench.
  • an n-type source region in contact with a film a p-type body region in contact with the gate insulating film at the side of the gate trench below the source region; and the gate insulation at the bottom of the gate trench.
  • the manufacturing method includes forming the source region and the body region in the semiconductor substrate having the drift region; forming a mask having an opening in the upper surface of the semiconductor substrate having the drift region; forming the electric field relaxation region in the drift region by implanting a p-type impurity into the semiconductor substrate through the opening after forming the mask; forming the gate trench by etching the top surface of the semiconductor substrate in such a manner that the electric field relaxation region remains below the gate trench; and forming the gate insulating film and the gate electrode after forming the gate insulating film and the gate electrode.
  • the step of forming the source region and the body region may be performed at any time.
  • the step of forming the source region and the body region may be performed before the step of forming the mask, or may be performed after the step of forming the gate electrode.
  • the electric field relaxation region can be formed with high positional accuracy.
  • Sectional drawing of MOSFET10 of an Example Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the manufacturing method of MOSFET10 of an Example. Explanatory drawing of the current path of MOSFET10 of an Example. Explanatory drawing of the current path of MOSFET of a comparative example. Sectional drawing of MOSFET of a modification. FIG.
  • FIG. 5 is a cross-sectional view showing lateral misalignment of the electric field relaxation region with respect to the gate trench;
  • FIG. 4 is a cross-sectional view showing variations in the vertical position of the electric field relaxation region when p-type impurities are implanted into the bottom surface of the gate trench;
  • the electric field relaxation region in the step of forming the electric field relaxation region, may be formed so that the width of the electric field relaxation region increases toward the bottom.
  • the gate trench in the step of forming the gate trench, may be formed so that the width of the gate trench becomes narrower toward the bottom.
  • An example manufacturing method disclosed in this specification may further include a step of etching the side surface of the gate trench after the step of forming the gate trench.
  • the width of the portion where the drift region is in contact with the gate insulating film above the electric field relaxation region is widened, and variation in the mirror capacitance of the switching element is suppressed.
  • the width of the bottom surface of the gate trench may be narrower than the width of the electric field relaxation region.
  • the gate trench may be formed such that the electric field relaxation region is in contact with each corner portion between the bottom surface of the gate trench and the side surface of the gate trench.
  • the drift region includes a low concentration region and a high concentration region having a higher n-type impurity concentration than the low concentration region and arranged above the low concentration region.
  • the electric field relaxation region may be formed within the high concentration region such that a lower end of the electric field relaxation region is positioned within the high concentration region.
  • This specification proposes a switching device.
  • This switching device includes a semiconductor substrate having a plurality of gate trenches on its upper surface, a plurality of gate electrodes arranged in the plurality of gate trenches and insulated from the semiconductor substrate by a gate insulating film, and a plurality of gate electrodes. an n-type source region in contact with the gate insulating film on the side of the gate trench; and a p-type body in contact with the gate insulating film on the side of the plurality of gate trenches under the plurality of source regions.
  • a plurality of p-type electric field relaxation regions in contact with the gate insulating film at bottom surfaces of the plurality of gate trenches; There may be an n-type drift region in contact with the side surfaces and bottom surfaces of the plurality of electric field relaxation regions.
  • a shift between a widthwise center of the gate trench and a widthwise center of the electric field relaxation region below the gate trench may be 0.1 ⁇ m or less.
  • Variation in the thickness direction of the semiconductor substrate from the upper surface of the semiconductor substrate to the lower ends of the electric field relaxation regions may be ⁇ 2% or less among the plurality of electric field relaxation regions.
  • this switching element since the lateral shift between the gate trench and the electric field relaxation region is small, electric field concentration can be suitably suppressed in the vicinity of the lower end of the gate trench. Further, in this switching element, variations in the position of the lower end of the electric field relaxation region in the depth direction (that is, in the thickness direction of the semiconductor substrate) are small. Therefore, this switching element is less likely to cause variations in characteristics. Also, a switching element having an electric field relaxation region with high positional accuracy can be manufactured by any of the manufacturing methods described above.
  • the width of the bottom surface of the gate trench may be narrower than the width of the electric field relaxation region below the gate trench.
  • the electric field relaxation region may be in contact with each corner portion between the bottom surface of the gate trench and the side surface of the gate trench.
  • FIG. 1 shows a MOSFET (metal oxide semiconductor field effect transistor) 10 of an embodiment.
  • MOSFET 10 has a semiconductor substrate 12 .
  • the semiconductor substrate 12 is made of SiC (that is, silicon carbide).
  • the semiconductor substrate 12 may be made of other materials such as silicon.
  • the thickness direction of the semiconductor substrate 12 is referred to as the z-direction
  • one direction parallel to the upper surface 12a of the semiconductor substrate 12 is referred to as the x-direction
  • the direction parallel to the upper surface 12a of the semiconductor substrate 12 and orthogonal to the x-direction is referred to as the x-direction. It is called the y-direction.
  • a plurality of gate trenches 14 are provided in the upper surface 12 a of the semiconductor substrate 12 .
  • Each gate trench 14 is spaced apart in the x-direction.
  • Each gate trench 14 extends long in the y direction.
  • the inner surface of each gate trench 14 is covered with a gate insulating film 16 .
  • a gate electrode 18 is arranged in each gate trench 14 .
  • Each gate electrode 18 is insulated from the semiconductor substrate 12 by a corresponding gate insulating film 16 .
  • An upper surface of each gate electrode 18 is covered with an interlayer insulating film 20 .
  • the MOSFET 10 has a source electrode 22 and a drain electrode 24 .
  • the source electrode 22 covers the upper surface 12 a of the semiconductor substrate 12 and the interlayer insulating film 20 .
  • the source electrode 22 is in contact with the semiconductor substrate 12 on the upper surface 12a.
  • the source electrode 22 is insulated from the gate electrode 18 by the interlayer insulating film 20 .
  • the drain electrode 24 covers the entire lower surface 12 b of the semiconductor substrate 12 .
  • the semiconductor substrate 12 has a plurality of source regions 30 , a plurality of contact regions 32 , a body region 34 , a plurality of electric field relaxation regions 36 , a drift region 38 and a drain region 40 .
  • Each source region 30 is an n-type region with a high n-type impurity concentration. Each source region 30 is provided in a range facing the upper surface 12 a of the semiconductor substrate 12 . Each source region 30 is in ohmic contact with source electrode 22 . Each source region 30 is in contact with the gate insulating film 16 at the upper end of the side surface of the gate trench 14 .
  • Each contact region 32 is a p-type region with a high p-type impurity concentration. Each contact region 32 is provided in a range sandwiched between the source regions 30 and facing the upper surface 12 a of the semiconductor substrate 12 . Each contact region 32 is in ohmic contact with the source electrode 22 .
  • the body region 34 is a p-type region having a lower p-type impurity concentration than the contact region 32.
  • a body region 34 is disposed below the plurality of source regions 30 and the plurality of contact regions 32 .
  • the body region 34 is in contact with the plurality of source regions 30 and the plurality of contact regions 32 from below.
  • the body region 34 is in contact with the gate insulating film 16 on the side surface of each gate trench 14 below each source region 30 .
  • Each electric field relaxation region 36 is a p-type region having a p-type impurity concentration lower than that of the contact region 32 .
  • Each electric field relaxation region 36 is located below the corresponding gate trench 14 .
  • Each electric field relaxation region 36 extends long in the y-direction along the bottom surface of the corresponding gate trench 14 .
  • Each electric field relaxation region 36 is in contact with the gate insulating film 16 over the entire bottom surface of the corresponding gate trench 14 .
  • Each electric field relaxation region 36 is connected to the body region 34 by a p-type region provided at a position (not shown). However, in other embodiments, each electric field relaxation region 36 may not be connected to the body region 34 and may float with respect to the body region 34 .
  • the drift region 38 is an n-type region with a relatively low n-type impurity concentration.
  • Drift region 38 is provided below body region 34 .
  • the drift region 38 is in contact with the gate insulating film on the side surface of each gate trench 14 below the body region 34 .
  • the drift region 38 contacts the side and bottom surfaces of each electric field relaxation region 36 .
  • the drift region 38 has a high concentration region 38a and a low concentration region 38b.
  • the high-concentration region 38 a has a lower n-type impurity concentration than the source region 30 .
  • the low concentration region 38b has a lower n-type impurity concentration than the high concentration region 38a.
  • the high-concentration regions 38 a are distributed from the lower surface of the body region 34 to positions below the lower ends of the electric field relaxation regions 36 .
  • the high-concentration region 38a is in contact with the body region 34 from below.
  • the high concentration region 38 a is in contact with the gate insulating film 16 on the side surface of each gate trench 14 below the body region 34 . That is, the high-concentration region 38a is in contact with the gate insulating film 16 in the range between the electric field relaxation region 36 and the body region 34 (that is, the range of width W38 shown in FIG. 1) among the side surfaces of each gate trench 14. .
  • the high-concentration region 38 a is in contact with the side and bottom surfaces of each electric field relaxation region 36 . That is, the lower end of each electric field relaxation region 36 is positioned within the high concentration region 38a.
  • the low-concentration region 38b is arranged below the high-concentration region 38a.
  • the low-concentration region 38b is in contact with the high-concentration region 38a from below.
  • a lightly doped region 38b is separated from each field relaxation region 36 by a heavily doped region 38a. That is, the low-concentration region 38b is not in contact with each electric field relaxation region 36.
  • the drain region 40 is an n-type region having an n-type impurity concentration higher than that of the drift region 38 (that is, an n-type impurity concentration higher than both the high concentration region 38a and the low concentration region 38b).
  • the drain region 40 is arranged below the low concentration region 38b.
  • the drain region 40 is in contact with the low concentration region 38b from below.
  • the drain region 40 is arranged in a range facing the lower surface 12b of the semiconductor substrate 12 .
  • the drain region 40 is in ohmic contact with the drain electrode 24 .
  • the center C14 indicates the center of the gate trench 14 in the width direction (that is, x direction) of the gate trench 14 .
  • the center C36 indicates the center of the electric field relaxation region 36 in the width direction (that is, x direction) of the electric field relaxation region 36 .
  • the deviation between the center C14 of the gate trench 14 and the center C36 of the electric field relaxation region 36 is 0.1 ⁇ m or less. That is, in the x direction, the center C14 of the gate trench 14 and the center C36 of the electric field relaxation region 36 substantially coincide.
  • the width W14 of the bottom of the gate trench 14 is narrower than the width W36 of the electric field relaxation region 36 at the bottom of the gate trench 14 . Therefore, each corner portion 14 c connecting the bottom surface of the gate trench 14 and the side surface of the gate trench 14 is covered with the electric field relaxation region 36 . That is, the electric field relaxation region 36 is in contact with the gate insulating film 16 at each corner portion 14 c of the gate trench 14 .
  • the distance L36 indicates the distance in the z direction from the upper surface 12a of the semiconductor substrate 12 to the lower end of the electric field relaxation region 36. Variation in the distance L36 is ⁇ 2% or less between the plurality of electric field relaxation regions 36 of the MOSFET 10 . That is, the variation of the distance L36 is extremely small.
  • the semiconductor substrate 12 shown in FIG. 2 (that is, the semiconductor substrate 12 before processing) is prepared.
  • the semiconductor substrate 12 shown in FIG. 2 is made of SiC.
  • the semiconductor substrate 12 may be made of other materials such as silicon.
  • the semiconductor substrate 12 shown in FIG. 2 has a drain region 40, a low concentration region 38b and a high concentration region 38a.
  • a low concentration region 38b is arranged above the drain region 40, and a high concentration region 38a is arranged above the low concentration region 38b.
  • the low concentration region 38b and the high concentration region 38a may be regions formed by epitaxial growth or may be regions formed by ion implantation. Electrodes, insulating films, and the like are not provided on the upper surface 12a and the lower surface 12b of the semiconductor substrate 12 in FIG.
  • the source region 30, the contact region 32, and the body region 34 are formed as shown in FIG.
  • a mask 50 made of silicon oxide is formed on the upper surface 12a of the semiconductor substrate 12.
  • a plurality of openings 52 are formed in the mask 50 by photolithography, etching, or the like.
  • the mask 50 is formed so that each opening 52 is positioned above each portion of the semiconductor substrate 12 where the gate trench 14 and the electric field relaxation region 36 are to be formed.
  • the upper surface 12a of the semiconductor substrate 12 is exposed.
  • p-type impurity ions are implanted into the semiconductor substrate 12 through the mask 50 .
  • the p-type impurity is shielded by the mask 50 in the portion where the mask 50 exists. Therefore, p-type impurities are implanted into the semiconductor substrate 12 through each opening 52 .
  • the p-type impurity is implanted by adjusting the implantation energy of the p-type impurity so that the implanted p-type impurity reaches the high concentration region 38a and does not reach the low concentration region 38b. That is, the p-type impurity is implanted within the shaded area shown in FIG.
  • the p-type impurity is implanted at a higher concentration than the high-concentration region 38a. Therefore, a p-type electric field relaxation region 36 is formed in the high concentration region 38a. Thus, a p-type electric field relaxation region 36 is formed below the opening 52 .
  • the electric field relaxation region 36 is formed such that the lower end of the electric field relaxation region 36 is positioned within the high concentration region 38a (that is, the lower end of the electric field relaxation region 36 does not touch the low concentration region 38b).
  • the n-type impurity concentration of the source region 30 is higher than the implanted p-type impurity concentration. Therefore, the p-type impurity implantation range 30x of the source region 30 remains n-type. In the p-type impurity implantation range 34x of the body region 34, the p-type impurity concentration of the body region 34 increases.
  • the implantation depth of the p-type impurity can be controlled with relatively high accuracy. Therefore, between the electric field relaxation regions 36, variations in the depth direction of the lower ends of the electric field relaxation regions 36 are extremely small. That is, the variation in the distance L36 between the electric field relaxation regions 36 is extremely small. That is, according to this manufacturing method, the position of the lower end of the electric field relaxation region 36 in the z direction can be accurately controlled.
  • the width in the x direction of the p-type impurity implantation range (that is, the hatched range) shown in FIG. 5 increases toward the bottom. Therefore, the width W36 of the lower portion of the electric field relaxation region 36 is slightly wider than the width W52 of the opening 52.
  • the upper surface 12a of the semiconductor substrate 12 is etched using the mask 50 used for the p-type impurity implantation. That is, the upper surface 12 a of the semiconductor substrate 12 is etched within the opening 52 of the mask 50 .
  • gate trenches 14 are formed in the upper surface 12a of the semiconductor substrate 12, as shown in FIG.
  • the gate trenches 14 are formed by etching the semiconductor substrate 12 in the z-direction within the openings 52 by anisotropic etching such as reactive ion etching.
  • the gate trench 14 is formed through the source region 30 and the body region 34 to reach the electric field relaxation region 36 .
  • the gate trench 14 is formed so that the electric field relaxation region 36 remains below the gate trench 14 .
  • the gate trench 14 By forming the gate trench 14, most of the p-type impurity implantation range 30x in the source region 30 and the p-type impurity implantation range 34x in the body region 34 shown in FIG. 5 are removed. Because the ion implantation shown in FIG. 5 and the etching shown in FIG. Therefore, the center C14 of the gate trench 14 can be aligned with the center C36 of the electric field relaxation region 36 with high accuracy. That is, according to this manufacturing method, the positional deviation in the x direction between the center C14 of the gate trench 14 and the center C36 of the electric field relaxation region 36 can be set to 0.1 ⁇ m or less.
  • the etching conditions are adjusted to form the gate trenches 14 so that the width of the gate trenches 14 in the x direction becomes narrower toward the bottom. Therefore, the width W14k of the bottom surface of the gate trench 14 in the x direction is slightly narrower than the width W52 of the opening 52 . As described above, the width W36 of the lower portion of the electric field relaxation region 36 is slightly wider than the width W52 of the opening 52. As shown in FIG. Therefore, the electric field relaxation regions 36 exist on both sides of the bottom surface of the gate trench 14 in the x direction. That is, the corner portion 14 c of the gate trench 14 is covered with the electric field relaxation region 36 .
  • the mask 50 is removed.
  • a carbon film covering the upper surface 12a of the semiconductor substrate 12 and the inner surface of the gate trench 14 is formed.
  • the semiconductor substrate 12 is annealed to activate the p-type impurities implanted into the semiconductor substrate 12 .
  • the carbon film prevents silicon atoms from diffusing from the semiconductor substrate 12 to the outside during the annealing process. After the annealing process, the carbon film is removed.
  • the upper surface 12a of the semiconductor substrate 12 and the inner surface of the gate trench 14 are etched by isotropic etching (for example, CDE (chemical dry etching), etc.).
  • CDE chemical dry etching
  • the damaged layer existing on the upper surface 12a and the inner surface of the gate trench 14 that is, the layer damaged by ion implantation, etching, etc.
  • the width of the gate trench 14 is slightly expanded.
  • the width of the bottom surface of the gate trench 14 is expanded from the width W14k shown in FIG. 6 to the width W14 shown in FIG.
  • a gate insulating film 16 covering the inner surface of the gate trench 14 is formed.
  • the source region 30 is in contact with the gate insulating film 16 at the upper end portions of the side surfaces of the gate trench 14 .
  • the body region 34 is in contact with the gate insulating film 16 on the side surface of the gate trench 14 below the source region 30 .
  • the high-concentration region 38a is in contact with the gate insulating film 16 below the body region 34 (that is, the range between the body region 34 and the electric field relaxation region 36).
  • the electric field relaxation region 36 is in contact with the gate insulating film 16 at the bottom surface of the gate trench 14 and the side surfaces near the bottom surface.
  • gate electrodes 18 are formed in the gate trenches 14 .
  • an interlayer insulating film 20 is formed so as to cover the upper surface of the gate electrode 18 .
  • source electrode 22 is formed to cover top surface 12 a of semiconductor substrate 12 and interlayer insulating film 20 .
  • a drain electrode 24 is formed to cover the lower surface 12b of the semiconductor substrate 12. As shown in FIG. As a result, the MOSFET 10 shown in FIG. 1 is completed.
  • the MOSFET 10 is used with the drain electrode 24 applied with a higher potential than the source electrode 22 .
  • a potential higher than the gate threshold is applied to the gate electrode 18 .
  • a channel is formed in the portion of the body region 34 near the gate insulating film 16 .
  • electrons flow from the drain region 40 to the source region 30 through the channels of the lightly doped region 38b, the heavily doped region 38a, and the body region 34, as indicated by arrows 92 in FIG. That is, the MOSFET 10 is turned on.
  • the potential of the gate electrode 18 is lowered to a potential equal to or lower than the gate threshold, the channel disappears and the flow of electrons stops. That is, the MOSFET 10 is turned off.
  • MOSFET 10 When the MOSFET 10 is turned off, a depletion layer spreads from the body region 34 to the drift region 38. By depleting the drift region 38 , the high voltage applied between the drain electrode 24 and the source electrode 22 can be held in the MOSFET 10 . Further, when the MOSFET 10 is turned off, a depletion layer spreads from the electric field relaxation region 36 to the high concentration region 38a around the lower end of the gate trench 14. FIG. Electric field concentration around the lower end of the gate trench 14 is suppressed by the depletion layer extending from the electric field relaxation region 36 to the high-concentration region 38a. Therefore, MOSFET 10 has a high withstand voltage. As shown in FIG.
  • the electric field relaxation region 36 is hardly misaligned with respect to the gate trench 14. Therefore, even if the width W36 of the electric field relaxation region 36 is not so wide, the corner portion 14c protrudes outside the electric field relaxation region 36. can be suppressed. Since the width W36 of the electric field relaxation region 36 can be made relatively narrow, the MOSFET 10 can be miniaturized. Also, since the width W36 of the electric field relaxation region 36 can be made relatively narrow, electrons can flow in a relatively short path as indicated by arrows 92 in FIG. Therefore, the ON resistance of the MOSFET 10 can be lowered.
  • a dashed line 90 in FIG. 9 indicates a depletion layer that spreads from the electric field relaxation region 36 to its periphery due to the built-in potential when the MOSFET 10 is on.
  • arrows 92 in FIG. 9 indicate paths through which electrons flow when MOSFET 10 is on.
  • electrons flow avoiding the depletion layer 90 when the MOSFET 10 is on. Since the n-type impurity concentration of the high-concentration region 38a adjacent to the electric field relaxation region 36 is relatively high, the range over which the depletion layer 90 spreads is narrow. Therefore, the electrons can travel relatively short paths, as indicated by arrows 92 . Therefore, the ON resistance of MOSFET 10 is low. Further, FIG.
  • FIG. 10 shows, as a comparative example, a current path in a MOSFET in which the electric field relaxation region 36 is formed to protrude from the high-concentration region 38a to the low-concentration region 38b.
  • the electric field relaxation region 36 is in contact with the low concentration region 38b as shown in FIG. 10
  • the n-type impurity concentration of the low concentration region 38b is low.
  • the depletion layer 90 spreads widely in the low-concentration region 38 b in this manner, electrons flow by detouring greatly to avoid the depletion layer 90 as indicated by arrows 94 .
  • the path through which electrons flow becomes longer, and the on-resistance of the MOSFET increases.
  • the position of the lower end of the electric field relaxation region greatly varies due to variations in the depth of the gate trench.
  • the electric field relaxation region 36 may contact the low concentration region 38b as shown in FIG. Therefore, if the electric field relaxation diffusion region is formed by implanting p-type impurities into the bottom surface of the gate trench, the on-resistance of the MOSFET increases.
  • the gate trench 14 is formed after the electric field relaxation region 36 is formed, so the position of the lower end of the electric field relaxation region 36 (that is, the distance L36) is the depth of the gate trench 14. is not affected by the variability of Therefore, according to the manufacturing method of the embodiment, variations in the position of the lower end of the electric field relaxation region 36 can be suppressed, and the electric field relaxation region 36 can be prevented from being formed in contact with the low concentration region 38b. Therefore, by manufacturing the MOSFET 10 by the manufacturing method of the embodiment, variations in the on-resistance of the MOSFET 10 can be suppressed.
  • the electric field relaxation region 36 is formed so that the width becomes wider toward the bottom, and the gate trench 14 is formed so that the width becomes narrower toward the bottom. Therefore, the width W36 of the electric field relaxation region 36 can be made wider than the width W14 of the gate trench 14 at the position of the bottom surface of the gate trench 14 . Thereby, the gate trench 14 and the electric field relaxation region 36 can be arranged so that the corner portion 14 c of the gate trench 14 is reliably covered with the electric field relaxation region 36 . Therefore, electric field concentration in the vicinity of the lower end of the gate trench 14 can be more reliably prevented.
  • the electric field relaxation region 36 it is not necessary to form the electric field relaxation region 36 so as to become wider toward the bottom, and it is not necessary to form the gate trench 14 so as to become narrower toward the bottom.
  • the gate trench 14 need not be formed so as to become narrower toward the bottom.
  • the gate trench 14 it is not necessary to form the electric field relaxation region 36 so that the width becomes wider toward the bottom.
  • the electric field relaxation region 36 and the gate trench 14 may have any shape.
  • the electric field relaxation region 36 can be formed with high accuracy. ) in the z-direction is suppressed. Width W 38 affects the Miller capacitance of MOSFET 10 . According to the manufacturing method of the embodiment described above, variations in the width W38 are suppressed, so variations in the mirror capacitance of the MOSFET 10 can be suppressed.
  • the side surfaces of the gate trench 14 are etched after the gate trench 14 is formed. By etching the side surface of the gate trench 14, a wide width W38 can be ensured. By securing a wide width W38, variations in the width W38 are suppressed, and variations in the mirror capacitance are more effectively suppressed.
  • the drift region 38 has the high-concentration region 38a and the low-concentration region 38b.
  • drift region 38 may be composed of a single concentration n-type region. Even in this case, variation in the position of the lower end of the electric field relaxation region 36 (that is, the distance L36) is suppressed, thereby suppressing variation in the characteristics of the MOSFET.
  • the source region 30, the contact region 32, and the body region 34 are formed before the electric field relaxation region 36 and the gate trench 14 are formed.
  • the source region 30, the contact region 32, and the body region 34 may be formed by ion implantation or the like after the electric field relaxation region 36 and the gate trench 14 are formed.
  • MOSFETs have been described in the above-described embodiments, the technology disclosed herein may be applied to other switching devices (eg, IGBTs (insulated gate bipolar transistors), etc.).
  • IGBTs insulated gate bipolar transistors

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

スイッチングデバイス(10)の製造方法であって、ドリフト領域(38)を有する半導体基板(12)にソース領域(30)とボディ領域(34)を形成する工程と、前記ドリフト領域を有する前記半導体基板の前記上面に開口部(52)を有するマスク(50)を形成する工程と、前記マスクを形成した後に前記開口部を介して前記半導体基板にp型不純物を注入することによって前記ドリフト領域内に電界緩和領域(36)を形成する工程と、前記電界緩和領域を形成した後に前記開口部内でゲートトレンチ(14)を形成する工程であって前記ゲートトレンチの下側に前記電界緩和領域が残存するように前記ゲートトレンチを形成する工程と、前記ゲートトレンチを形成した後にゲート絶縁膜(16)とゲート電極(18)を形成する工程、を有する。

Description

スイッチングデバイスとその製造方法
(関連出願の相互参照)
 本出願は、2022年2月4日に出願された日本特許出願特願2022-016677の関連出願であり、この日本特許出願に基づく優先権を主張するものであり、この日本特許出願に記載された全ての内容を、本明細書を構成するものとして援用する。
 本明細書に開示の技術は、スイッチングデバイスとその製造方法に関する。
 日本特許公開2018-116986号公報には、トレンチ型のゲート電極を有するスイッチングデバイスが開示されている。このスイッチングデバイスは、ゲートトレンチの底面に接する位置にp型の電界緩和領域を有している。電界緩和領域は、n型のドリフト領域に囲まれている。電界緩和領域によって、ゲートトレンチの下端部近傍における電界集中が抑制される。
 日本特許公開2018-116986号公報のスイッチングデバイスの製造方法では、ドリフト領域の一部にp型不純物が注入されることによって、電界緩和領域が形成される。次に、半導体基板上にn型層とp型層が順次エピタキシャル成長される。次に、半導体基板の上面にゲートトレンチが形成される。ここでは、ゲートトレンチの下端が電界緩和領域内に位置するように、ゲートトレンチが形成される。その後、ゲートトレンチ内にゲート電極が形成される。この製造方法では、ゲートトレンチの底面が電界緩和領域内に位置するように、電界緩和領域に対して位置合わせをしてゲートトレンチを形成する必要がある。しかしながら、フォトリソグラフィのアライメント精度がそれほど高くないため、ゲートトレンチが電界緩和領域に対して横方向にずれる場合がある。例えば、図12のようにゲートトレンチ120が電界緩和領域130に対して横方向に位置ずれし、ゲートトレンチ120の下端のコーナー部120cが電界緩和領域130から外側にはみ出す場合がある。このようにゲートトレンチ120のコーナー部120cが電界緩和領域130からはみ出すと、コーナー部120cの近傍で電界が集中し易くなり、スイッチングデバイスの耐圧が低下する。このため、日本特許公開2018-116986号公報の製造方法では、ゲートトレンチが電界緩和領域に対して横方向にずれた場合でもゲートトレンチの底面が電界緩和領域内に位置するように、電界緩和領域の幅をゲートトレンチの幅に対して大幅に広くする必要がある。電界緩和領域の幅を広くすると、スイッチングデバイスのオン抵抗が高くなったり、スイッチングデバイスが大型化する等の問題が生じる。
 また、電界緩和領域よりも先にゲートトレンチを形成し、ゲートトレンチの底面にp型不純物を注入して電界緩和領域を形成する方法も存在する。しかしながら、この製造方法では、電界緩和領域の下端の縦方向の位置(すなわち、半導体基板の厚み方向における位置)がばらつき易いという問題が生じる。すなわち、半導体基板の上面にゲートトレンチを形成するときには、一般に、ゲートトレンチの深さに大きいばらつきが生じる。このため、ゲートトレンチの底面にp型不純物を注入して電界緩和領域を形成すると、電界緩和領域の下端の位置が縦方向において大きくばらつく。例えば、図13のように、ゲートトレンチ140の深さD140にばらつきが存在する場合には、ゲートトレンチ140の底面にp型不純物を注入して電界緩和領域130を形成すると、ゲートトレンチの深さD140のばらつきの影響によって電界緩和領域130の下端の位置D130もばらつく。電界緩和領域の下端の位置が縦方向においてばらつくと、スイッチングデバイスの特性にばらつきが生じる。
 したがって、本明細書では、電界緩和領域を高い位置精度で形成する技術を提案する。
 本明細書は、スイッチングデバイスの製造方法を提案する。前記スイッチングデバイスが、上面にゲートトレンチを有する半導体基板と、前記ゲートトレンチ内に配置されているとともにゲート絶縁膜によって前記半導体基板から絶縁されているゲート電極と、前記ゲートトレンチの側面で前記ゲート絶縁膜に接しているn型のソース領域と、前記ソース領域の下側の前記ゲートトレンチの前記側面で前記ゲート絶縁膜に接しているp型のボディ領域と、前記ゲートトレンチの底面で前記ゲート絶縁膜に接しているp型の電界緩和領域と、前記ボディ領域の下側の前記ゲートトレンチの前記側面で前記ゲート絶縁膜に接しているとともに前記電界緩和領域の側面と底面に接しているn型のドリフト領域、を有する。前記製造方法が、前記ドリフト領域を有する前記半導体基板に前記ソース領域と前記ボディ領域を形成する工程と、前記ドリフト領域を有する前記半導体基板の前記上面に開口部を有するマスクを形成する工程と、前記マスクを形成した後に前記開口部を介して前記半導体基板にp型不純物を注入することによって前記ドリフト領域内に前記電界緩和領域を形成する工程と、前記電界緩和領域を形成した後に前記開口部内で前記半導体基板の前記上面をエッチングすることによって前記ゲートトレンチを形成する工程であって前記ゲートトレンチの下側に前記電界緩和領域が残存するように前記ゲートトレンチを形成する工程と、前記ゲートトレンチを形成した後に前記ゲート絶縁膜と前記ゲート電極を形成する工程、を有する。
 なお、前記ソース領域と前記ボディ領域を形成する前記工程は、いつ実施されてもよい。例えば、前記ソース領域と前記ボディ領域を形成する前記工程が、前記マスクを形成する前記工程の前に実施されてもよいし、前記ゲート電極を形成する前記工程の後に実施されてもよい。
 この製造方法では、マスクの開口部を介して半導体基板にp型不純物を注入することによって電界緩和領域を形成した後に、同じマスクの開口部内で半導体基板の上面をエッチングすることによってゲートトレンチを形成する。このため、電界緩和領域とゲートトレンチの横方向における位置ずれを抑制できる。また、この製造方法では、電界緩和領域を形成した後にゲートトレンチを形成するので、電界緩和領域の下端の位置がゲートトレンチの深さばらつきの影響を受けない。このため、電界緩和領域の下端の位置の縦方向におけるばらつきが抑制される。このように、この製造方法によれば、ゲートトレンチに対する電界緩和領域の横方向におけるずれを抑制するとともに電界緩和領域の下端の位置の縦方向におけるばらつきを抑制することができる。すなわち、電界緩和領域を高い位置精度で形成することができる。
実施例のMOSFET10の断面図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の製造方法の説明図。 実施例のMOSFET10の電流経路の説明図。 比較例のMOSFETの電流経路の説明図。 変形例のMOSFETの断面図。 電界緩和領域のゲートトレンチに対する横方向の位置ずれを示す断面図。 ゲートトレンチの底面にp型不純物を注入する場合の電界緩和領域の縦方向の位置のばらつきを示す断面図。
 本明細書が開示する一例の製造方法においては、前記電界緩和領域を形成する前記工程では、下側ほど前記電界緩和領域の幅が広くなるように前記電界緩和領域を形成してもよい。
 この構成によれば、ゲートトレンチの底面近傍で電界緩和領域の幅が広くなるので、ゲートトレンチの底面全体が電界緩和領域に覆われ易く、ゲートトレンチの下端近傍における電界集中を効果的に抑制できる。
 本明細書が開示する一例の製造方法においては、前記ゲートトレンチを形成する前記工程では、下側ほど前記ゲートトレンチの幅が狭くなるように前記ゲートトレンチを形成してもよい。
 この構成によれば、ゲートトレンチの底面の幅が狭くなるので、ゲートトレンチの底面全体が電界緩和領域に覆われ易く、ゲートトレンチの下端近傍における電界集中を効果的に抑制できる。
 本明細書が開示する一例の製造方法においては、前記ゲートトレンチを形成する前記工程の後に、前記ゲートトレンチの前記側面をエッチングする工程をさらに有していてもよい。
 この構成によれば、電界緩和領域の上側でドリフト領域がゲート絶縁膜に接する部分の幅が広くなり、スイッチング素子のミラー容量のばらつきが抑制される。
 本明細書が開示する一例の製造方法においては、前記ゲートトレンチの前記底面の幅が前記電界緩和領域の幅よりも狭くてもよい。前記ゲートトレンチを形成する前記工程では、前記ゲートトレンチの前記底面と前記ゲートトレンチの前記側面の間の各コーナー部に前記電界緩和領域が接するように前記ゲートトレンチを形成してもよい。
 この構成によれば、ゲートトレンチの下端近傍における電界集中を効果的に抑制できる。
 本明細書が開示する一例の製造方法においては、前記ドリフト領域が、低濃度領域と、前記低濃度領域よりもn型不純物濃度が高いとともに前記低濃度領域の上側に配置されている高濃度領域、を有していてもよい。前記電界緩和領域を形成する前記工程では、前記電界緩和領域の下端が前記高濃度領域内に位置するように前記電界緩和領域を前記高濃度領域内に形成してもよい。
 この構成によれば、電界緩和領域の下端の位置が深さ方向にばらつき難いので、電界緩和領域の下端を高濃度領域の下端よりも上側に位置させることが容易である。電界緩和領域の下端を高濃度領域の下端よりも上側に位置させることで、スイッチング素子のオン抵抗を低減することができる。
 本明細書は、スイッチングデバイスを提案する。このスイッチングデバイスは、上面に複数のゲートトレンチを有する半導体基板と、前記複数のゲートトレンチ内に配置されているとともにゲート絶縁膜によって前記半導体基板から絶縁されている複数のゲート電極と、前記複数のゲートトレンチの側面で前記ゲート絶縁膜に接しているn型のソース領域と、前記複数のソース領域の下側の前記複数のゲートトレンチの前記側面で前記ゲート絶縁膜に接しているp型のボディ領域と、前記複数のゲートトレンチの底面で前記ゲート絶縁膜に接しているp型の複数の電界緩和領域と、前記ボディ領域の下側の前記複数のゲートトレンチの前記側面で前記ゲート絶縁膜に接しているとともに前記複数の電界緩和領域の側面と底面に接しているn型のドリフト領域、を有していてもよい。前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの幅方向における中心と前記ゲートトレンチの下側の前記電界緩和領域の幅方向における中心のずれが、0.1μm以下であってもよい。前記複数の電界緩和領域の間において、前記半導体基板の前記上面から前記電界緩和領域の下端までの前記半導体基板の厚み方向における距離のばらつきが±2%以下であってもよい。
 このスイッチング素子では、ゲートトレンチと電界緩和領域の横方向のずれが小さいので、ゲートトレンチの下端近傍において好適に電界集中を抑制できる。また、このスイッチング素子では、電界緩和領域の下端の位置の深さ方向(すなわち、半導体基板の厚み方向)におけるばらつきが小さい。したがって、このスイッチング素子では特性のばらつきが生じ難い。また、このように電界緩和領域の位置精度が高いスイッチング素子は、上述した何れかの製造方法によって製造可能である。
 本明細書が開示する一例のスイッチングデバイスでは、前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの前記底面の幅が前記ゲートトレンチの下側の前記電界緩和領域の幅よりも狭くてもよい。前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの前記底面と前記ゲートトレンチの前記側面の間の各コーナー部に前記電界緩和領域が接していてもよい。
 この構成によれば、ゲートトレンチの下端近傍における電界集中を効果的に抑制できる。
 図1は、実施例のMOSFET(metal oxide semiconductor field effect transistor)10を示している。MOSFET10は、半導体基板12を有している。半導体基板12は、SiC(すなわち、炭化シリコン)によって構成されている。但し、半導体基板12は、シリコン等の他の材料によって構成されていてもよい。なお、以下では、半導体基板12の厚み方向をz方向といい、半導体基板12の上面12aに平行な一方向をx方向といい、半導体基板12の上面12aに平行でx方向と直交する方向をy方向という。
 半導体基板12の上面12aには、複数のゲートトレンチ14が設けられている。各ゲートトレンチ14は、x方向に間隔を開けて配置されている。各ゲートトレンチ14は、y方向に長く伸びている。各ゲートトレンチ14の内面は、ゲート絶縁膜16によって覆われている。各ゲートトレンチ14内に、ゲート電極18が配置されている。各ゲート電極18は、対応するゲート絶縁膜16によって半導体基板12から絶縁されている。各ゲート電極18の上面は、層間絶縁膜20によって覆われている。
 MOSFET10は、ソース電極22とドレイン電極24を有している。ソース電極22は、半導体基板12の上面12aと層間絶縁膜20を覆っている。ソース電極22は、上面12aにおいて半導体基板12に接している。ソース電極22は、層間絶縁膜20によってゲート電極18から絶縁されている。ドレイン電極24は、半導体基板12の下面12bの全域を覆っている。
 半導体基板12は、複数のソース領域30、複数のコンタクト領域32、ボディ領域34、複数の電界緩和領域36、ドリフト領域38、及び、ドレイン領域40を有している。
 各ソース領域30は、高いn型不純物濃度を有するn型領域である。各ソース領域30は、半導体基板12の上面12aに面する範囲に設けられている。各ソース領域30は、ソース電極22にオーミック接触している。各ソース領域30は、ゲートトレンチ14の側面の上端部において、ゲート絶縁膜16に接している。
 各コンタクト領域32は、高いp型不純物濃度を有するp型領域である。各コンタクト領域32は、ソース領域30に挟まれた範囲であって、半導体基板12の上面12aに面する範囲に設けられている。各コンタクト領域32は、ソース電極22にオーミック接触している。
 ボディ領域34は、コンタクト領域32よりも低いp型不純物濃度を有するp型領域である。ボディ領域34は、複数のソース領域30及び複数のコンタクト領域32の下側に配置されている。ボディ領域34は、複数のソース領域30及び複数のコンタクト領域32に対して下側から接している。ボディ領域34は、各ソース領域30の下側の各ゲートトレンチ14の側面において、ゲート絶縁膜16に接している。
 各電界緩和領域36は、コンタクト領域32よりも低いp型不純物濃度を有するp型領域である。各電界緩和領域36は、対応するゲートトレンチ14の下側に配置されている。各電界緩和領域36は、対応するゲートトレンチ14の底面に沿ってy方向に長く伸びている。各電界緩和領域36は、対応するゲートトレンチ14の底面の全域において、ゲート絶縁膜16に接している。なお、各電界緩和領域36は、図示しない位置に設けられたp型領域によってボディ領域34に接続されている。但し、他の実施形態においては、各電界緩和領域36は、ボディ領域34に接続されておらず、ボディ領域34に対してフローティングしていてもよい。
 ドリフト領域38は、比較的低いn型不純物濃度を有するn型領域である。ドリフト領域38は、ボディ領域34の下側に設けられている。ドリフト領域38は、ボディ領域34の下側の各ゲートトレンチ14の側面でゲート絶縁膜に接している。ドリフト領域38は、各電界緩和領域36の側面と底面に接している。ドリフト領域38は、高濃度領域38aと低濃度領域38bを有している。高濃度領域38aは、ソース領域30よりも低いn型不純物濃度を有している。低濃度領域38bは、高濃度領域38aよりも低いn型不純物濃度を有している。
 高濃度領域38aは、ボディ領域34の下面の位置から各電界緩和領域36の下端よりも下側の位置まで分布している。高濃度領域38aは、ボディ領域34に対して下側から接している。高濃度領域38aは、ボディ領域34の下側の各ゲートトレンチ14の側面でゲート絶縁膜16に接している。すなわち、高濃度領域38aは、各ゲートトレンチ14の側面のうちの電界緩和領域36とボディ領域34の間の範囲(すなわち、図1に示す幅W38の範囲)でゲート絶縁膜16に接している。高濃度領域38aは、各電界緩和領域36の側面と底面に接している。すなわち、各電界緩和領域36の下端は、高濃度領域38a内に位置している。
 低濃度領域38bは、高濃度領域38aの下側に配置されている。低濃度領域38bは、高濃度領域38aに対して下側から接している。低濃度領域38bは、高濃度領域38aによって各電界緩和領域36から分離されている。すなわち、低濃度領域38bは、各電界緩和領域36に接していない。
 ドレイン領域40は、ドリフト領域38よりも高いn型不純物濃度(すなわち、高濃度領域38aと低濃度領域38bのいずれよりも高いn型不純物濃度)を有するn型領域である。ドレイン領域40は、低濃度領域38bの下側に配置されている。ドレイン領域40は、低濃度領域38bに対して下側から接している。ドレイン領域40は、半導体基板12の下面12bに面する範囲に配置されている。ドレイン領域40は、ドレイン電極24にオーミック接触している。
 図1において、中心C14は、ゲートトレンチ14の幅方向(すなわち、x方向)におけるゲートトレンチ14の中心を示している。また、図1において、中心C36は、電界緩和領域36の幅方向(すなわち、x方向)における電界緩和領域36の中心を示している。MOSFET10が有する全てのゲートトレンチ14において、ゲートトレンチ14の中心C14と電界緩和領域36の中心C36のずれは0.1μm以下である。すなわち、x方向において、ゲートトレンチ14の中心C14と電界緩和領域36の中心C36が略一致している。また、MOSFET10が有する全てのゲートトレンチ14において、ゲートトレンチ14の底面の幅W14は、ゲートトレンチ14の底面の位置における電界緩和領域36の幅W36よりも狭い。したがって、ゲートトレンチ14の底面とゲートトレンチ14の側面を接続する各コーナー部14cは、電界緩和領域36によって覆われている。すなわち、ゲートトレンチ14の各コーナー部14cにおいて、電界緩和領域36がゲート絶縁膜16に接している。
 図1において、距離L36は、半導体基板12の上面12aから電界緩和領域36の下端までのz方向における距離を示している。MOSFET10が有する複数の電界緩和領域36の間において、距離L36のばらつきは±2%以下である。すなわち、距離L36のばらつきは極めて小さい。
 次に、実施例のMOSFET10の製造方法について説明する。まず、図2に示す半導体基板12(すなわち、加工前の半導体基板12)を準備する。図2に示す半導体基板12は、SiCによって構成されている。但し、半導体基板12は、シリコン等の他の材料によって構成されていてもよい。図2に示す半導体基板12は、ドレイン領域40、低濃度領域38b、及び、高濃度領域38aを有している。ドレイン領域40の上側に低濃度領域38bが配置されており、低濃度領域38bの上側に高濃度領域38aが配置されている。低濃度領域38b及び高濃度領域38aは、エピタキシャル成長によって形成された領域であってもよいし、イオン注入によって形成された領域であってもよい。図2の半導体基板12の上面12a及び下面12bには、電極、絶縁膜等が設けられていない。
 まず、図2の半導体基板12に対してエピタキシャル成長、イオン注入等を実施することによって、図3に示すようにソース領域30、コンタクト領域32、及び、ボディ領域34を形成する。
 次に、図4に示すように、半導体基板12の上面12a上に、酸化シリコンによって構成されたマスク50を形成する。次に、フォトリソグラフィ、エッチング等によって、マスク50に複数の開口部52を形成する。ここでは、各開口部52が、半導体基板12のうちのゲートトレンチ14と電界緩和領域36を形成すべき各部分の上部に位置するようにマスク50を形成する。各開口部52内には、半導体基板12の上面12aが露出している。
 次に、図5に示すように、マスク50を介して半導体基板12にp型不純物をイオン注入する。マスク50が存在する部分では、マスク50によってp型不純物が遮蔽される。このため、p型不純物は、各開口部52を介して半導体基板12に注入される。ここでは、p型不純物の注入エネルギーを調整することによって、注入されるp型不純物が高濃度領域38aに達するとともに低濃度領域38bに達しないように、p型不純物を注入する。すなわち、図5に示す斜線範囲内にp型不純物を注入する。高濃度領域38aのp型不純物の注入範囲には、高濃度領域38aよりも高濃度にp型不純物が注入される。このため、高濃度領域38a内に、p型の電界緩和領域36が形成される。このように、開口部52の下側に、p型の電界緩和領域36が形成される。電界緩和領域36は、電界緩和領域36の下端が高濃度領域38a内に位置するように(すなわち、電界緩和領域36の下端が低濃度領域38bに接しないように)形成される。ソース領域30のp型不純物の注入範囲30xでは、ソース領域30のn型不純物濃度が注入されたp型不純物の濃度よりも高い。したがって、ソース領域30のp型不純物の注入範囲30xは、n型に維持される。ボディ領域34のp型不純物の注入範囲34xでは、ボディ領域34のp型不純物濃度が上昇する。
 p型不純物の注入深さは、比較的高い精度で制御することができる。したがって、電界緩和領域36の間において、電界緩和領域36の下端の深さ方向におけるばらつきは極めて小さい。すなわち、電界緩和領域36の間において、距離L36のばらつきは極めて小さい。すなわち、この製造方法によれば、電界緩和領域36の下端のz方向における位置を正確に制御することができる。
 また、p型不純物が半導体基板12中をz方向に進行するときに、p型不純物が散乱されてx方向に拡散する。したがって、図5に示すp型不純物の注入範囲(すなわち、斜線範囲)のx方向の幅は、下側ほど拡大している。したがって、電界緩和領域36の下側部分の幅W36は、開口部52の幅W52よりも少し広い。
 次に、p型不純物注入で使用したマスク50をそのまま使用して、半導体基板12の上面12aをエッチングする。すなわち、マスク50の開口部52内で半導体基板12の上面12aをエッチングする。これによって、図6に示すように、半導体基板12の上面12aにゲートトレンチ14を形成する。ここでは、反応性イオンエッチング等の異方性エッチングにより開口部52内で半導体基板12をz方向にエッチングすることで、ゲートトレンチ14を形成する。ここでは、ソース領域30とボディ領域34を貫通して電界緩和領域36に達するゲートトレンチ14を形成する。ここでは、ゲートトレンチ14の下側に電界緩和領域36が残存するようにゲートトレンチ14を形成する。ゲートトレンチ14を形成することで、図5に示すソース領域30内のp型不純物の注入範囲30xとボディ領域34内のp型不純物の注入範囲34xの大部分が除去される。図5に示すイオン注入と図6に示すエッチングが同じマスク50を用いて実施されるので、ゲートトレンチ14が電界緩和領域36と重なる位置に正確に形成される。このため、ゲートトレンチ14の中心C14を電界緩和領域36の中心C36に対して高い精度で一致させることができる。すなわち、この製造方法によれば、ゲートトレンチ14の中心C14と電界緩和領域36の中心C36とのx方向における位置ずれを0.1μm以下とすることができる。
 また、ゲートトレンチ14の形成工程では、エッチング条件を調整することで、ゲートトレンチ14のx方向における幅が下側ほど狭くなるようにゲートトレンチ14を形成する。このため、ゲートトレンチ14の底面のx方向における幅W14kは、開口部52の幅W52よりも少し狭い。上述したように、電界緩和領域36の下側部分の幅W36は開口部52の幅W52よりも少し広い。したがって、ゲートトレンチ14の底面のx方向の両側に、電界緩和領域36が存在している。すなわち、ゲートトレンチ14のコーナー部14cが、電界緩和領域36に覆われている。
 次に、マスク50を除去する。次に、半導体基板12の上面12aとゲートトレンチ14の内面を覆う炭素膜を形成する。次に、半導体基板12をアニールすることで、半導体基板12に注入されたp型不純物を活性化させる。なお、炭素膜は、アニール工程中に半導体基板12からシリコン原子が外部へ拡散することを防止する。アニール工程後に、炭素膜を除去する。
 次に、図7に示すように、半導体基板12の上面12aとゲートトレンチ14の内面を等方性エッチング(例えば、CDE(chemical dry etching)など)によりエッチングする。これによって、上面12aとゲートトレンチ14の内面に存在するダメージ層(すなわち、イオン注入、エッチング等によりダメージを受けた層)を除去する。また、このようにゲートトレンチ14の側面をエッチングすることで、ゲートトレンチ14の幅がわずかに拡大する。例えば、ゲートトレンチ14の底面の幅が、図6に示す幅W14kから図7に示す幅W14に拡大する。ゲートトレンチ14の幅の拡大量がわずかであるので、ゲートトレンチ14の底面近傍においては、ゲートトレンチ14の側面に隣接する位置に電界緩和領域36が残存する。また、ゲートトレンチ14の幅がわずかに拡大することで、電界緩和領域36の上側部分(すなわち、図6の部分36u)が除去される。このため、図7に示すように、電界緩和領域36の上部において、高濃度領域38aがゲートトレンチ14の側面に露出する。
 次に、図8に示すように、ゲートトレンチ14の内面を覆うゲート絶縁膜16を形成する。その結果、ソース領域30が、ゲートトレンチ14の側面の上端部でゲート絶縁膜16に接する。また、ボディ領域34が、ソース領域30の下側のゲートトレンチ14の側面でゲート絶縁膜16に接する。また、高濃度領域38aが、ボディ領域34の下側(すなわち、ボディ領域34と電界緩和領域36の間の範囲)でゲート絶縁膜16に接する。また、電界緩和領域36が、ゲートトレンチ14の底面とその底面近傍の側面でゲート絶縁膜16に接する。次に、図8に示すように、ゲートトレンチ14内にゲート電極18を形成する。
 その後、図1に示すように、ゲート電極18の上面を覆うように層間絶縁膜20を形成する。次に、半導体基板12の上面12aと層間絶縁膜20を覆うようにソース電極22を形成する。次に、半導体基板12の下面12bを覆うようにドレイン電極24を形成する。その結果、図1に示すMOSFET10が完成する。
 次に、MOSFET10の動作について説明する。MOSFET10は、ドレイン電極24にソース電極22よりも高電位が印加された状態で使用される。ゲート電極18にゲート閾値よりも高い電位を印加すると、ボディ領域34のゲート絶縁膜16近傍の部分にチャネルが形成される。その結果、図9の矢印92に示すように、ドレイン領域40から低濃度領域38b、高濃度領域38a、及び、ボディ領域34のチャネルを通ってソース領域30へ電子が流れる。すなわち、MOSFET10がオンする。ゲート電極18の電位をゲート閾値以下の電位まで引き下げると、チャネルが消失し、電子の流れが停止する。すなわち、MOSFET10がオフする。
 MOSFET10がオフすると、ボディ領域34からドリフト領域38へ空乏層が広がる。ドリフト領域38が空乏化することで、ドレイン電極24とソース電極22の間に印加される高電圧をMOSFET10で保持することができる。また、MOSFET10がオフするときに、電界緩和領域36からゲートトレンチ14の下端周辺の高濃度領域38aに空乏層が広がる。このように電界緩和領域36から高濃度領域38aに広がる空乏層によって、ゲートトレンチ14の下端周辺における電界集中が抑制される。したがって、MOSFET10は高い耐圧を有している。なお、図12のように、ゲートトレンチと電界緩和領域の間の位置ずれによってゲートトレンチのコーナー部が電界緩和領域の外側に位置すると、コーナー部周辺で電界集中が生じる。これに対し、上記の製造方法では、共通のマスク50を用いて電界緩和領域36とゲートトレンチ14を形成するので、電界緩和領域36のゲートトレンチ14に対する位置ずれ(より詳細には、電界緩和領域36の中心C36のゲートトレンチ14の中心C14に対する位置ずれ)を抑制できる。したがって、コーナー部14cが電界緩和領域36の外側にはみ出すことを抑制できる。したがって、上記の製造方法によれば、ゲートトレンチ14の下端近傍における電界集中をより確実に防止できる。また、上記の製造方法では、電界緩和領域36のゲートトレンチ14に対する位置ずれがほとんど生じないので、電界緩和領域36の幅W36がそれほど広くなくてもコーナー部14cが電界緩和領域36の外側にはみ出すことを抑制できる。電界緩和領域36の幅W36を比較的狭くすることができるので、MOSFET10を小型化することができる。また、電界緩和領域36の幅W36を比較的狭くすることができるので、図9の矢印92に示すように電子が比較的短い経路で流れることができる。このため、MOSFET10のオン抵抗を低くすることができる。
 図9の破線90は、MOSFET10がオンしているときにビルトインポテンシャルによって電界緩和領域36からその周辺に広がる空乏層を示している。また、上述したように、図9の矢印92は、MOSFET10がオンしているときに電子が流れる経路を示している。図9に示すように、MOSFET10がオンしているときに、電子は空乏層90を避けて流れる。電界緩和領域36に隣接する高濃度領域38aのn型不純物濃度が比較的高いので、空乏層90が広がる範囲は狭い。したがって、矢印92に示すように、電子は比較的短い経路で流れることができる。したがって、MOSFET10のオン抵抗が低い。また、図10は、比較例として、電界緩和領域36が高濃度領域38aから低濃度領域38bにはみ出して形成されたMOSFETにおける電流経路を示している。図10のように電界緩和領域36が低濃度領域38bに接すると、低濃度領域38bのn型不純物濃度が低いので、MOSFET10がオンしているときにビルトインポテンシャルによって空乏層90が高濃度領域38aから低濃度領域38b内に広く広がる。このように空乏層90が低濃度領域38b内に広く広がると、矢印94に示すように、電子が空乏層90を避けるために大きく迂回して流れる。その結果、電子が流れる経路が長くなり、MOSFETのオン抵抗が高くなる。例えば、図13に示すゲートトレンチの底面にp型不純物を注入する電界緩和領域の形成方法では、ゲートトレンチの深さのばらつきの影響によって電界緩和領域の下端の位置が大きくばらつく。その結果、図9のように高濃度領域38a内に電界緩和領域36を形成しようとする場合に、図10のように電界緩和領域36が低濃度領域38bに接する場合がある。したがって、ゲートトレンチの底面にp型不純物を注入する方法によって電界緩和拡散領域を形成すると、MOSFETのオン抵抗のばらつきが大きくなる。これに対し、上記の実施例の製造方法では、電界緩和領域36を形成した後にゲートトレンチ14を形成するので、電界緩和領域36の下端の位置(すなわち、距離L36)がゲートトレンチ14の深さのばらつきの影響を受けない。このため、実施例の製造方法によれば、電界緩和領域36の下端の位置のばらつきを抑制でき、電界緩和領域36が低濃度領域38bに接するように形成されることを防止できる。したがって、実施例の製造方法によってMOSFET10を製造することで、MOSFET10のオン抵抗のばらつきを抑制できる。
 また、上述した実施例の製造方法では、電界緩和領域36を下側ほど幅が広くなるように形成し、ゲートトレンチ14を下側ほど幅が狭くなるように形成する。したがって、ゲートトレンチ14の底面の位置において、電界緩和領域36の幅W36をゲートトレンチ14の幅W14よりも広くすることができる。これによって、ゲートトレンチ14のコーナー部14cが電界緩和領域36で確実に覆われるようにゲートトレンチ14と電界緩和領域36を配置することができる。このため、ゲートトレンチ14の下端近傍における電界集中をより確実に防止できる。なお、他の実施形態においては、電界緩和領域36を下側ほど幅が広くなるように形成しなくてもよいし、ゲートトレンチ14を下側ほど幅が狭くなるように形成しなくてもよい。例えば、電界緩和領域36を下側ほど幅が広くなるように形成する場合には、ゲートトレンチ14を下側ほど幅が狭くなるように形成しなくてもよい。また、ゲートトレンチ14を下側ほど幅が狭くなるように形成する場合には、電界緩和領域36を下側ほど幅が広くなるように形成しなくてもよい。ゲートトレンチ14のコーナー部14cを電界緩和領域36で覆うことができれば、電界緩和領域36とゲートトレンチ14の形状はどのような形状であっても構わない。
 また、上述した実施例の製造方法によれば、電界緩和領域36を高精度に形成できるので、高濃度領域38aがゲート絶縁膜16に接する部分(すなわち、ボディ領域34と電界緩和領域36の間の部分)のz方向の幅W38のばらつきが抑制される。幅W38は、MOSFET10のミラー容量に影響する。上述した実施例の製造方法によれば、幅W38のばらつきが抑制されるので、MOSFET10のミラー容量のばらつきを抑制できる。特に、上述した実施例の製造方法では、ゲートトレンチ14を形成した後にゲートトレンチ14の側面をエッチングする。ゲートトレンチ14の側面をエッチングすると、幅W38を広く確保することができる。幅W38を広く確保すると、幅W38のばらつきが抑制され、ミラー容量のばらつきがより効果的に抑制される。
 なお、上述した実施例では、ドリフト領域38が高濃度領域38aと低濃度領域38bを有していた。しかしながら、図11に示すように、ドリフト領域38が単一濃度のn型領域によって構成されていてもよい。この場合でも、電界緩和領域36の下端の位置(すなわち、距離L36)のばらつきが抑制されることで、MOSFETの特性のばらつきを抑制できる。
 また、上述した実施例の製造方法では、電界緩和領域36とゲートトレンチ14を形成する前にソース領域30、コンタクト領域32、及び、ボディ領域34を形成した。しかしながら、電界緩和領域36とゲートトレンチ14を形成した後に、イオン注入等によってソース領域30、コンタクト領域32、及び、ボディ領域34を形成してもよい。
 また、上述した実施例では、MOSFETについて説明したが、他のスイッチングデバイス(例えば、IGBT(insulated gate bipolar transistor)など)に本明細書に開示の技術を適用してもよい。
 以上、実施形態について詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。

Claims (8)

  1.  スイッチングデバイス(10)の製造方法であって、
     前記スイッチングデバイスが、
     上面にゲートトレンチ(14)を有する半導体基板(12)と、
     前記ゲートトレンチ内に配置されており、ゲート絶縁膜(16)によって前記半導体基板から絶縁されているゲート電極(18)と、
     前記ゲートトレンチの側面で前記ゲート絶縁膜に接しているn型のソース領域(30)と、
     前記ソース領域の下側の前記ゲートトレンチの前記側面で前記ゲート絶縁膜に接しているp型のボディ領域(34)と、
     前記ゲートトレンチの底面で前記ゲート絶縁膜に接しているp型の電界緩和領域(36)と、
     前記ボディ領域の下側の前記ゲートトレンチの前記側面で前記ゲート絶縁膜に接しており、前記電界緩和領域の側面と底面に接しているn型のドリフト領域(38)、
     を有し、
     前記製造方法が、
     前記ドリフト領域を有する前記半導体基板に前記ソース領域と前記ボディ領域を形成する工程と、
     前記ドリフト領域を有する前記半導体基板の前記上面に開口部(52)を有するマスク(50)を形成する工程と、
     前記マスクを形成した後に前記開口部を介して前記半導体基板にp型不純物を注入することによって前記ドリフト領域内に前記電界緩和領域を形成する工程と、
     前記電界緩和領域を形成した後に前記開口部内で前記半導体基板の前記上面をエッチングすることによって前記ゲートトレンチを形成する工程であって、前記ゲートトレンチの下側に前記電界緩和領域が残存するように前記ゲートトレンチを形成する工程と、
     前記ゲートトレンチを形成した後に前記ゲート絶縁膜と前記ゲート電極を形成する工程、
     を有する製造方法。
  2.  前記電界緩和領域を形成する前記工程では、下側ほど前記電界緩和領域の幅が広くなるように前記電界緩和領域を形成する、請求項1に記載の製造方法。
  3.  前記ゲートトレンチを形成する前記工程では、下側ほど前記ゲートトレンチの幅が狭くなるように前記ゲートトレンチを形成する、請求項2に記載の製造方法。
  4.  前記ゲートトレンチを形成する前記工程の後に、前記ゲートトレンチの前記側面をエッチングする工程をさらに有する請求項1~3のいずれか一項に記載の製造方法。
  5.  前記ゲートトレンチの前記底面の幅が前記電界緩和領域の幅よりも狭く、
     前記ゲートトレンチを形成する前記工程では、前記ゲートトレンチの前記底面と前記ゲートトレンチの前記側面の間の各コーナー部(14c)に前記電界緩和領域が接するように前記ゲートトレンチを形成する、
     請求項1~4のいずれか一項に記載の製造方法。
  6.  前記ドリフト領域が、低濃度領域(38b)と、前記低濃度領域よりもn型不純物濃度が高いとともに前記低濃度領域の上側に配置されている高濃度領域(38a)、を有し、
     前記電界緩和領域を形成する前記工程では、前記電界緩和領域の下端が前記高濃度領域内に位置するように前記電界緩和領域を前記高濃度領域内に形成する、
     請求項1~5のいずれか一項に記載の製造方法。
  7.  スイッチングデバイス(10)であって、
     上面に複数のゲートトレンチ(14)を有する半導体基板(12)と、
     前記複数のゲートトレンチ内に配置されており、ゲート絶縁膜(16)によって前記半導体基板から絶縁されている複数のゲート電極(18)と、
     前記複数のゲートトレンチの側面で前記ゲート絶縁膜に接しているn型のソース領域(30)と、
     前記複数のソース領域の下側の前記複数のゲートトレンチの前記側面で前記ゲート絶縁膜に接しているp型のボディ領域(34)と、
     前記複数のゲートトレンチの底面で前記ゲート絶縁膜に接しているp型の複数の電界緩和領域(36)と、
     前記ボディ領域の下側の前記複数のゲートトレンチの前記側面で前記ゲート絶縁膜に接しており、前記複数の電界緩和領域の側面と底面に接しているn型のドリフト領域(38)、
     を有し、
     前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの幅方向における中心(C14)と前記ゲートトレンチの下側の前記電界緩和領域の幅方向における中心(C36)のずれが、0.1μm以下であり、
     前記複数の電界緩和領域の間において、前記半導体基板の前記上面から前記電界緩和領域の下端までの前記半導体基板の厚み方向における距離(L36)のばらつきが±2%以下である、
     スイッチングデバイス。
  8.  前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの前記底面の幅が前記ゲートトレンチの下側の前記電界緩和領域の幅よりも狭く、
     前記複数のゲートトレンチのそれぞれにおいて、前記ゲートトレンチの前記底面と前記ゲートトレンチの前記側面の間の各コーナー部(14c)に前記電界緩和領域が接している、
     請求項7に記載のスイッチングデバイス。
PCT/JP2022/041516 2022-02-04 2022-11-08 スイッチングデバイスとその製造方法 WO2023149043A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280089557.XA CN118633146A (zh) 2022-02-04 2022-11-08 开关器件及其制造方法
US18/669,766 US20240304665A1 (en) 2022-02-04 2024-05-21 Switching device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016677 2022-02-04
JP2022016677A JP2023114354A (ja) 2022-02-04 2022-02-04 スイッチングデバイスとその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/669,766 Continuation US20240304665A1 (en) 2022-02-04 2024-05-21 Switching device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2023149043A1 true WO2023149043A1 (ja) 2023-08-10

Family

ID=87552152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041516 WO2023149043A1 (ja) 2022-02-04 2022-11-08 スイッチングデバイスとその製造方法

Country Status (4)

Country Link
US (1) US20240304665A1 (ja)
JP (1) JP2023114354A (ja)
CN (1) CN118633146A (ja)
WO (1) WO2023149043A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235546A (ja) * 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2010232627A (ja) * 2009-03-04 2010-10-14 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2018206923A (ja) * 2017-06-02 2018-12-27 富士電機株式会社 絶縁ゲート型半導体装置及びその製造方法
JP2018207101A (ja) * 2017-06-07 2018-12-27 富士電機株式会社 半導体装置及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235546A (ja) * 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2010232627A (ja) * 2009-03-04 2010-10-14 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2018206923A (ja) * 2017-06-02 2018-12-27 富士電機株式会社 絶縁ゲート型半導体装置及びその製造方法
JP2018207101A (ja) * 2017-06-07 2018-12-27 富士電機株式会社 半導体装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
JP2023114354A (ja) 2023-08-17
CN118633146A (zh) 2024-09-10
US20240304665A1 (en) 2024-09-12

Similar Documents

Publication Publication Date Title
CN107546268B (zh) 半导体器件及制造其的方法
KR101864889B1 (ko) 수평형 디모스 트랜지스터 및 그 제조방법
US20180151711A1 (en) Semiconductor device, rc-igbt, and method of manufacturing semiconductor device
US11251299B2 (en) Silicon carbide semiconductor device and manufacturing method of same
JP7017733B2 (ja) 半導体装置および半導体装置の製造方法
CN114582863A (zh) 沟槽栅功率器件
KR20230082182A (ko) 고전압 반도체 소자 및 제조방법
CN117099213A (zh) 半导体装置及其制造方法
WO2023112547A1 (ja) 半導体装置
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
JP7106896B2 (ja) 半導体装置
TWI808020B (zh) 碳化矽半導體功率電晶體及其製造方法
WO2023149043A1 (ja) スイッチングデバイスとその製造方法
US11967634B2 (en) Semiconductor device and method of manufacturing the same
KR102335490B1 (ko) 반도체 소자 및 그 제조 방법
CN112466924A (zh) 碳化硅半导体装置及碳化硅半导体装置的制造方法
WO2024070021A1 (ja) 半導体装置
US20200279947A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
KR102464348B1 (ko) 듀얼 쉴드 구조를 가지는 실리콘 카바이드 전력 반도체 장치 및 그 제조 방법
EP4307381A1 (en) Field-effect transistor
KR102359373B1 (ko) 고전압 반도체소자의 제조방법
JP7151395B2 (ja) 半導体装置の製造方法
US20230299144A1 (en) Silicon carbide semiconductor device
JP7230477B2 (ja) トレンチゲート型のスイッチング素子の製造方法
JP2024137200A (ja) 電界効果トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280089557.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE