WO2023148852A1 - 表示装置および表示装置の製造方法 - Google Patents

表示装置および表示装置の製造方法 Download PDF

Info

Publication number
WO2023148852A1
WO2023148852A1 PCT/JP2022/004094 JP2022004094W WO2023148852A1 WO 2023148852 A1 WO2023148852 A1 WO 2023148852A1 JP 2022004094 W JP2022004094 W JP 2022004094W WO 2023148852 A1 WO2023148852 A1 WO 2023148852A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display device
layer
insulating layer
transistor
Prior art date
Application number
PCT/JP2022/004094
Other languages
English (en)
French (fr)
Inventor
正智 本城
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2022/004094 priority Critical patent/WO2023148852A1/ja
Publication of WO2023148852A1 publication Critical patent/WO2023148852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a display device and a method of manufacturing a display device.
  • Patent Document 1 discloses a top-gate transistor in which a source electrode and a drain electrode are formed over a base insulating film containing silicon oxynitride, and an oxide semiconductor is formed to fill a gap between these electrodes. ing.
  • JP 2013-058738 (published on March 28, 2013)
  • JP 2013-77815 (published on April 25, 2013)
  • a conventional configuration such as that of Patent Document 1 has the problem that transistor characteristics cannot be improved.
  • a display device includes a substrate and a first transistor positioned above the substrate, the display device positioned above the substrate and orthogonal to a normal direction of the substrate. a first electrode and a second electrode spaced apart in a direction; an insulating layer positioned between the first electrode and the second electrode and comprising a spreadable insulating material; and at least a portion of which functions as a channel of the first transistor. and an oxide semiconductor layer in contact with the upper surface of the insulating layer.
  • transistor characteristics can be improved more than conventionally.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a display device according to the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a first transistor according to the present disclosure shown in FIG. 1
  • FIG. FIG. 3 is a schematic cross-sectional view showing a configuration example of a display device according to a comparative example
  • 4 is a schematic cross-sectional view showing the configuration of the first transistor of the comparative example shown in FIG. 3
  • FIG. 4 is a schematic cross-sectional view showing a step of patterning the oxide semiconductor layer of the comparative example shown in FIG. 3
  • FIG. FIG. 5 is a diagram showing the difference in voltage-current characteristics of the second semiconductor depending on whether or not the third metal layer is patterned
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic plan view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic plan view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic
  • FIG. 4A is a schematic plan view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic plan view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic cross-sectional view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • FIG. 4A is a schematic plan view showing an example of a process for forming a thin film transistor layer according to the present disclosure
  • 1 is a schematic cross-sectional view showing a configuration example of a first transistor according to an embodiment of the present disclosure
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a first transistor according to an embodiment of the present disclosure
  • FIG. 19 is a schematic cross-sectional view showing an example of a process of forming the first transistor shown in FIG. 18
  • FIG. 19 is a schematic cross-sectional view showing an example of a process of forming the first transistor shown in FIG. 18;
  • FIG. 19 is a schematic cross-sectional view showing an example of a process of forming the first transistor shown in FIG. 18;
  • “same layer” means formed in the same process (film formation step), and “lower layer” means formed in a process earlier than the layer to be compared. and the “upper layer” means that it is formed in a process after the layer to be compared.
  • X and Y may be in direct contact, or X and Y do not have to be in direct contact.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a display device 2 according to the present disclosure.
  • the display device 2 according to the present disclosure includes a resin substrate 10, a base coat layer BC above the resin substrate 10, a thin film transistor layer 12 above the base coat layer BC, and a light emitting layer above the thin film transistor layer 12.
  • An element layer 14 and a sealing layer 18 above the light emitting element layer 14 are provided.
  • the display device 2 includes a plurality of pixel circuits PC and a light emitting element Ed connected to each pixel circuit PC.
  • the resin substrate 10 may be either a rigid substrate or a flexible substrate.
  • the resin substrate 10 is a substrate made of resin such as polyimide.
  • the thin film transistor layer 12 includes a silicon-based semiconductor layer SC2, a gate insulating film GI, a gate electrode GE (second gate electrode), a first interlayer insulating film ILD1 (inorganic insulating film), a metal layer M3, and an insulating layer IM. , an oxide semiconductor layer SC1, a gate insulating film TGI, a gate electrode TGE (first gate electrode), a second interlayer insulating film ILD2, a metal layer SE, and an organic planarization film PL in this order from the lower layer to the upper layer. .
  • the thin film transistor layer 12 includes a first transistor Tr1 and a second transistor Tr2.
  • the first transistor Tr1 and the second transistor Tr2 are included in the pixel circuit PC.
  • the first transistor Tr1 will be described later.
  • the second transistor Tr2 includes a silicon-based semiconductor layer SC2, a gate insulating film GI above the silicon-based semiconductor layer SC2, and a gate electrode GE above the gate insulating film GI.
  • the silicon-based semiconductor layer SC2 may contain any of monocrystalline silicon, polycrystalline silicon, and amorphous silicon.
  • the oxide semiconductor layer SC1 includes an oxide semiconductor.
  • An example of an oxide semiconductor is indium gallium zinc oxide (InGaZnO).
  • the insulating layer IM is formed by applying and solidifying a liquid 20 (see FIG. 9) containing a coating type insulating material.
  • the insulating layer IM includes a coating type insulating material.
  • the insulating layer IM may include, for example, at least one of an SOG (spin on glass) material, an oxide containing alkaline earth metals, and an oxide containing lanthanides. The insulating layer IM will be described later.
  • the light emitting element layer 14 has a pixel electrode PE, a bank BK above the pixel electrode PE, an active layer 16 above the bank BK, and a common electrode CE above the active layer 16 .
  • the active layer 16 includes at least a light-emitting layer.
  • the display device 2 include an OLED display device in which the light-emitting layer is an organic light-emitting layer and a QLED display device in which the light-emitting layer is a quantum dot light-emitting layer.
  • the active layer 16 may further include any one or more of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like.
  • the display device 2 is not limited to the above.
  • the display device 2 may include, for example, a glass substrate instead of the resin substrate 10 .
  • the display device 2 may for example be a liquid crystal display device comprising an active matrix substrate comprising a substrate and a thin film transistor layer 12 .
  • the display device 2 may be, for example, a rigid display device or a flexible display device.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the first transistor Tr1 according to the present disclosure shown in FIG.
  • the first transistor Tr1 is a thin film transistor (TFT), and includes (1) first electrodes 22 and (2) the oxide semiconductor layer SC1 in contact with the upper surface of the insulating layer IM, the first electrode 22, and the second electrode 24; and (3) the gate insulating film TGI above the oxide semiconductor layer SC1. , and (4) a gate electrode TGE (first gate electrode) in the upper layer of the gate insulating film TGI.
  • the first electrode 22 and the second electrode 24 are in the same layer and included in the metal layer M3.
  • One of the first electrode 22 and the second electrode 24 is a source electrode, and the other is a drain electrode.
  • the oxide semiconductor layer SC1 has at least the channel portion 30 and may additionally have the first low resistance portion 26 and the second low resistance portion 28 .
  • the channel portion 30 functions as a channel of the first transistor Tr1.
  • the channel portion 30 is in contact with the upper surface of the insulating layer IM and overlaps the gate electrode TGE in plan view.
  • the first low-resistance portion 26 is positioned on the first electrode 22 side with respect to the channel portion 30 and has an electrical resistance value smaller than that of the channel portion 30 .
  • the first low resistance portion 26 is in contact with the upper surface of the first electrode 22 .
  • the first low resistance portion 26 may also be in contact with the side surface of the first electrode 22 .
  • the second low-resistance portion 28 is located on the second electrode 24 side with respect to the channel portion 30 and has an electrical resistance value smaller than that of the channel portion 30 .
  • the second low resistance portion 28 is in contact with at least one of the top surface and the side surface of the second electrode 24 .
  • the second low resistance portion 28 may also be in contact with the side surface of the second electrode 24 .
  • the insulating layer IM is formed at least in the gap between the first electrode 22 and the second electrode 24 of the first transistor Tr1.
  • the insulating layer IM is in contact with both side surfaces of the first electrode 22 and the second electrode 24 .
  • the insulating layer IM may be formed so as to surround each of the first electrode 22 and the second electrode 24 of the first transistor Tr1 in plan view.
  • the upper surface of the insulating layer IM is substantially flat. Also, the distance from the upper surface of the insulating layer IM to the upper surface of the resin substrate 10 is smaller than the distance from the upper surface of the first electrode 22 and the upper surface of the second electrode 24 of the first transistor Tr1 to the upper surface of the resin substrate 10 .
  • the insulating layer IM, the first electrode 22 and the second electrode 24 are provided on the first interlayer insulating film ILD1. Therefore, the upper surface of the insulating layer IM is located between the upper surface of the first electrode 22 and the upper surface of the first interlayer insulating film ILD1, or between the upper surface of the second electrode 24 and the upper surface of the first interlayer insulating film ILD1. To position.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a display device 102 according to a comparative example. As shown in FIG. 3, the display device 102 according to the comparative example is similar to that shown in FIG. It has the same configuration as the display device 2 according to the present disclosure.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the first transistor Tr101 shown in FIG.
  • the oxide semiconductor layer SC1 includes the side surfaces of the first electrode 22 and the second electrode 24 and the first electrode between the first electrode 22 and the second electrode 24 . It is in contact with the upper surface of the one interlayer insulating film ILD1.
  • the oxide semiconductor layer SC1 in contact with the side surfaces of the first electrode 22 and the second electrode 24 tends to be formed thinner than the oxide semiconductor layer SC1 in contact with the upper surface of the first interlayer insulating film ILD1.
  • FIG. 5 is a schematic cross-sectional view showing a step of patterning the oxide semiconductor layer SC1 shown in FIG.
  • a photoresist layer PR is formed over the oxide semiconductor layer SC1.
  • a cavity CV is generated between the oxide semiconductor layer SC1 and the photoresist layer PR at a position corresponding to the angle between the upper surface of the first interlayer insulating film ILD1 and the inclined side surface of the source or drain electrode.
  • the etchant for etching the oxide semiconductor layer SC1 permeates into the cavity CB. Therefore, the oxide semiconductor layer SC1 is likely to be discontinued (so-called "discontinued") due to a step between the first interlayer insulating film ILD1 and the source electrode or the drain electrode.
  • the upper surface of the first interlayer insulating film ILD1 may deteriorate when the metal layer M3 is patterned, or a residue of the metal layer M3 may remain.
  • FIG. 6 shows (1) the case where the first transistor Tr101 is formed by patterning the metal layer M3 (with M3 patterning), and (2) the case where the oxide semiconductor layer SC1 is patterned without forming the metal layer M3.
  • FIG. 10 is a semilogarithmic graph showing the current-voltage characteristics of the first transistor Tr101 when the oxide semiconductor layer SC1 is connected to the source electrode and the drain electrode through the top contact (without M3 patterning). The vertical axis in FIG. 6 is logarithmic.
  • the gap between the first electrode 22 and the second electrode 24 is filled with the insulating layer IM.
  • the step between the upper surface of the insulating layer IM and the upper surface of the first electrode 22 or the second electrode 24 is greater than the step between the upper surface of the first interlayer insulating film ILD1 and the upper surface of the first electrode 22 or the second electrode 24. is also small. Therefore, the oxide semiconductor layer SC1 in the configuration according to the present disclosure illustrated in FIG. 2 is less likely to be cut off, compared to the configuration of the comparative example illustrated in FIG. 4 .
  • the oxide semiconductor layer SC1 does not contact the upper surface of the first interlayer insulating film ILD1, the deterioration of the upper surface of the first interlayer insulating film ILD1 and the residue of the metal layer M3 do not affect the oxide semiconductor layer SC1.
  • the rise characteristics of the transistor Tr1 are not degraded.
  • the first transistor Tr1 according to the present disclosure has higher transistor characteristics.
  • the manufacturing method of the display device 2 according to the present disclosure includes steps of forming the base coat layer BC, the thin film transistor layer 12, the light emitting element layer 14, and the sealing layer 18 above the resin substrate 10 in this order.
  • 7, 9, 11, 13 and 15 are schematic cross-sectional views each showing an example of the process of forming the thin film transistor layer 12 according to the present disclosure.
  • 8, 10, 12, 14 and 16 are schematic plan views each showing an example of a process for forming a thin film transistor layer 12 according to the present disclosure.
  • a silicon-based semiconductor layer SC2 As shown in FIGS. 7 and 8, first, a silicon-based semiconductor layer SC2, a gate insulating film GI, a gate electrode GE, a first interlayer insulating film ILD1, and a metal layer M3 are formed in this order on the base coat layer BC, and patterned appropriately. do.
  • the first electrode 22 and the second electrode 24 are arranged so that the first electrode 22 and the second electrode 24 are separated from each other in a direction orthogonal to the normal direction of the upper surface of the resin substrate 10. Form.
  • a liquid 20 containing a coating-type insulating material is applied to the entire surface so as to cover the first interlayer insulating film ILD1 and the metal layer M3 to form a coating film.
  • liquid 20 is applied to the gap between first electrode 22 and second electrode 24 .
  • the liquid 20 containing the coating-type insulating material may be an insulator when solidified (that is, the insulating layer IM), and the liquid 20 itself may be either a conductor or an insulator.
  • the liquid 20 containing the coating type insulating material may be any liquid such as a liquid in which powder of the insulating material is dispersed in a solvent.
  • the coating method may be any method such as spin coating, bar coating, or spraying.
  • the coating film of the liquid 20 is baked to form the insulating layer IM.
  • the insulating layer IM is formed over the first electrode 22 and the second electrode 24 , the gap therebetween, and around the first electrode 22 and the second electrode 24 .
  • the thickness of the portion of the insulating layer IM formed over the first electrode 22 and the second electrode 24 is thinner than the thickness of the portion of the insulating layer IM formed in the gap therebetween.
  • the upper surfaces of both the first electrode 22 and the second electrode 24 are exposed from the insulating layer IM, and the insulating layer IM covers at least the first electrode 22 and the second electrode 24.
  • the insulating layer IM is etched so that it remains in the gap between.
  • the insulating layer IM is etched until a portion of the side surface of the first electrode 22 and a portion of the side surface of the second electrode 24 are exposed.
  • the distance from the upper surface of the insulating layer IM to the upper surface of the resin substrate 10 is smaller than the distance from the upper surface of the first electrode 22 and the upper surface of the second electrode 24 to the upper surface of the resin substrate 10 .
  • the etching method may be dry etching or wet etching.
  • the thickness of the first interlayer insulating film ILD1 is set so that the gate electrode of the second transistor Tr2 remains covered with the first interlayer insulating film ILD1 even after etching.
  • the thickness, material, and etching conditions are set.
  • an oxide semiconductor layer SC1 is formed and patterned on the metal layer M3 and the insulating layer IM.
  • a gate insulating film TGI and a gate electrode TGE are formed in this order over the oxide semiconductor layer SC1.
  • a process of doping or reducing the oxide semiconductor layer SC1 may be performed.
  • a region of the oxide semiconductor layer SC1 including a portion overlapping under the gate electrode TGE remains as the channel portion 30, and the other regions are reduced in resistance to form the first low-resistance portion 26 and the second low-resistance portion. It becomes the resistance part 28 .
  • a second interlayer insulating film ILD2 is formed, contact holes are formed as appropriate, and a metal layer SE and an organic planarization film PL are formed. Thus, a thin film transistor layer 12 is formed.
  • the manufacturing method of the display device 2 according to the present disclosure is not limited to this.
  • the resin substrate 10 is flexible, a laminate including the thin film transistor layer 12 is formed on a rigid substrate different from the resin substrate 10, the laminate is peeled off from the rigid substrate, and attached to the resin substrate 10.
  • FIG. 17 is a schematic cross-sectional view showing a configuration example of the first transistor Tr1 according to this embodiment.
  • the distance from the upper surface of the insulating layer IM to the upper surface of the resin substrate 10 is 1.5 mm from the upper surfaces of both the first electrode 22 and the drain electrode of the first transistor Tr1. It is the same as the display device 2 according to the first embodiment described above, except that the distance to the upper surface of the resin substrate 10 is the same.
  • Such an insulating layer IM can be realized by adjusting etching conditions when etching the insulating layer IM.
  • FIG. 18 is a schematic cross-sectional view showing a configuration example of the first transistor Tr1 according to this embodiment.
  • the display device 2 according to the present embodiment is similar to the display device according to the first embodiment described above, except that the distance from the upper surface of the insulating layer IM to the upper surface of the resin substrate 10 is uneven. 2.
  • the upper surface of the liquid 20 containing the coating-type insulating material may become uneven due to surface tension. Further, when the liquid 20 containing the coating-type insulating material is solidified, the liquid 20 containing the coating-type insulating material or the insulating layer IM expands and/or expands due to temperature changes and/or state changes from liquid to solid. It may shrink and have an uneven top surface. In such a case, the distance from the upper surface of the insulating layer IM to the upper surface of the resin substrate 10 may become uneven.
  • FIG. 19 is a schematic cross-sectional view showing an example of the process of forming the first transistor Tr1 shown in FIG. As shown in FIG. 19, therefore, after the liquid 20 containing the coating-type insulating material is solidified, the upper surface of the insulating layer IM is positioned at the gap between the first electrode 22 and the second electrode 24 of the first transistor Tr1. , may be formed in a valley shape. Specifically, the first electrode 22 and the second electrode 24 of the insulating layer IM are closer than the distance from the upper surface of the portion of the insulating layer IM formed on the first electrode 22 and the second electrode 24 to the upper surface of the resin substrate 10 .
  • It may be formed such that the distance from the upper surface of the portion formed by the gap of the electrode 24 to the upper surface of the resin substrate 10 is small.
  • the entire upper surface thereof may be inclined or curved, or only the upper surface near the side surfaces of the first electrode 22 and the second electrode 24 may be inclined or curved.
  • FIG. 20 is a schematic cross-sectional view showing an example of the process of forming the first transistor Tr1 shown in FIG.
  • the top surface of the insulating layer IM remains valley-shaped at the gap even after the insulating layer IM is etched.
  • the distance at the edge where the upper surface of the insulating layer IM is in contact with the first electrode 22 and the second electrode 24 is greater than the distance between the first electrode 22 and the second electrode 24. It is formed such that the distance at the intermediate position between the second electrodes 24 is small.
  • the insulating layer IM may have a valley-shaped upper surface in the gap between the first electrode 22 and the second electrode 24.
  • the upper surface of the insulating layer IM may have other shapes such as a mountain shape or a corrugated shape in the gap.
  • the present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

表示装置(2)は、第1電極(22)および第2電極(24)の間隙に位置し、塗布型絶縁材料を含む絶縁層(IM)と、少なくとも一部が第1トランジスタ(Tr1)のチャネルとして機能し、絶縁層(IM)の上面に接する酸化物半導体層(SC1)と、を備える。

Description

表示装置および表示装置の製造方法
 本発明は、表示装置および表示装置の製造方法に関する。
 特許文献1には、トップゲート型のトランジスタにおいて、酸窒化珪素を含む下地絶縁膜上にソース電極およびドレイン電極を形成し、これら電極の間隙を埋めるように酸化物半導体を形成する構成が開示されている。
特開2013-058738(2013年3月28日公開) 特開2013-77815(2013年4月25日公開)
 特許文献1のような従来の構成では、トランジスタ特性が高められないという問題がある。
 本開示の一態様に係る表示装置は、基板と、前記基板の上方に位置する第1トランジスタとを備える表示装置であって、前記基板の上方に位置し、前記基板の法線方向と直交する方向に離間した第1電極および第2電極と、前記第1電極および前記第2電極の間隙に位置し、塗布型絶縁材料を含む絶縁層と、少なくとも一部が前記第1トランジスタのチャネルとして機能し、前記絶縁層の上面に接する酸化物半導体層と、を備える構成である。
 本開示の一態様によれば、従来よりもトランジスタ特性が高められる。
本開示に係る表示装置の構成例を示す概略断面図である。 図1に示した本開示に係る第1トランジスタの構成例を示す概略断面図である。 比較例に係る表示装置の構成例を示す概略断面図である。 図3に示した比較例の第1トランジスタの構成を示す概略断面図である。 図3に示した比較例の酸化物半導体層をパターニングする工程を示す概略断面図である。 第3金属層のパターニングの有無による第2半導体の電圧電流特性の違いを示す図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略断面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略平面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略断面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略平面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略断面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略平面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略断面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略平面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略断面図である。 本開示に係る薄膜トランジスタ層を形成する工程の一例を示す概略平面図である。 本開示の一実施形態に係る第1トランジスタの構成例を示す概略断面図である。 本開示の一実施形態に係る第1トランジスタの構成例を示す概略断面図である。 図18に示した第1トランジスタを形成する工程の一例を示す概略断面図である。 図18に示した第1トランジスタを形成する工程の一例を示す概略断面図である。
 本開示において、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
 以下において、「Xの上にYを~」、「Xより上にYを~」および「Xの上方にYを~」と記載した場合、XとYが直に接してもよいし、XとYが直に接しなくてもよい。
 〔実施形態1〕
 (表示装置の構成)
 図1は、本開示に係る表示装置2の構成例を示す概略断面図である。図1に示すように、本開示に係る表示装置2は、樹脂基板10と、樹脂基板10より上層のベースコート層BCと、ベースコート層BCより上層の薄膜トランジスタ層12と、薄膜トランジスタ層12より上層の発光素子層14と、発光素子層14より上層の封止層18とを備える。
 表示装置2は、複数の画素回路PCと、各画素回路PCに接続する発光素子Edとを含む。
 樹脂基板10は、剛性基板であっても、可撓性基板であってもよい。樹脂基板10は、ポリイミドなどの樹脂によって構成されている基板である。
 本実施形態に係る薄膜トランジスタ層12は、シリコン系半導体層SC2、ゲート絶縁膜GI、ゲート電極GE(第2ゲート電極)、第1層間絶縁膜ILD1(無機絶縁膜)、金属層M3、絶縁層IM、酸化物半導体層SC1、ゲート絶縁膜TGI、ゲート電極TGE(第1ゲート電極)、第2層間絶縁膜ILD2、金属層SE、および有機平坦化膜PLを、下層から上層に向かってこの順に含む。
 薄膜トランジスタ層12は、第1トランジスタTr1と第2トランジスタTr2とを含む。第1トランジスタTr1および第2トランジスタTr2は、画素回路PCに含まれる。
 第1トランジスタTr1については後述する。
 第2トランジスタTr2は、シリコン系半導体層SC2、シリコン系半導体層SC2の上層のゲート絶縁膜GI、ゲート絶縁膜GIの上層のゲート電極GEを含んでいる。
 シリコン系半導体層SC2は、単結晶シリコン、多結晶シリコン、アモルファスシリコンの何れを含んでもよい。酸化物半導体層SC1は、酸化物半導体を含む。酸化物半導体の一例として、酸化インジウムガリウム亜鉛(InGaZnO)が挙げられる。
 絶縁層IMは、塗布型絶縁材料を含む液体20(図9参照)を塗布および固化することによって形成される。絶縁層IMは、塗布型絶縁材料を含む。絶縁層IMは例えば、SOG(spin on glass:スピンオンガラス)材料、アルカリ土類金属を含む酸化物、およびランタノイドを含む酸化物の少なくとも1つを含んでいても良い。絶縁層IMについては後述する。
 発光素子層14は、画素電極PEと、画素電極PEより上層のバンクBKと、バンクBKより上層の活性層16と、活性層16より上層の共通電極CEと有する。
 活性層16は少なくとも発光層を含む。ここで、表示装置2の種類として、発光層が有機発光層であるOLED表示装置、および、発光層が量子ドット発光層であるQLED表示装置が挙げられる。活性層16はさらに、正孔注入層、正孔輸送層、電子輸送層、電子注入層などの何れか1つ以上を含んでもよい。
 本開示に係る表示装置2は、上述に限らない。表示装置2は例えば、樹脂基板10の代わりに、ガラス基板を備えてもよい。表示装置2は例えば、基板および薄膜トランジスタ層12を含むアクティブマトリックス基板を備える液晶表示装置であってもよい。表示装置2は例えば、剛性表示装置であっても可撓性表示装置であってもよい。
 (第1トランジスタの構成)
 図2は、図1に示した本開示に係る第1トランジスタTr1の構成例を示す概略断面図である。図2に示すように、第1トランジスタTr1は、薄膜トランジスタ(thin film transistor:TFT)であり、(1)樹脂基板10の上面の法線方向と直交する方向に、互いに離間した第1電極22および第2電極24と、(2)絶縁層IMの上面と第1電極22と第2電極24とに接する酸化物半導体層SC1と、(3)酸化物半導体層SC1の上層のゲート絶縁膜TGIと、(4)ゲート絶縁膜TGIの上層のゲート電極TGE(第1ゲート電極)と、を有する。第1電極22および第2電極24は、同層であり、金属層M3に含まれる。第1電極22および第2電極24は、何れか一方がソース電極であり、他方がドレイン電極である。
 酸化物半導体層SC1は、チャネル部30を少なくとも有し、加えて、第1低抵抗部26と第2低抵抗部28とを有し得る。
 チャネル部30は、第1トランジスタTr1のチャネルとして機能する。チャネル部30は、絶縁層IMの上面に接し、ゲート電極TGEに平面視で重畳する。
 第1低抵抗部26は、チャネル部30に対して第1電極22の側に位置し、チャネル部30よりも電気抵抗値が小さい。第1低抵抗部26は、第1電極22の上面に接する。第1低抵抗部26は、第1電極22の側面にも接してよい。
 第2低抵抗部28は、チャネル部30に対して第2電極24の側に位置し、チャネル部30よりも電気抵抗値が小さい。第2低抵抗部28は、第2電極24の上面および側面の少なくとも一方に接する。第2低抵抗部28は、第2電極24の側面にも接してよい。
 (絶縁層IM)
 絶縁層IMは少なくとも、第1トランジスタTr1の第1電極22および第2電極24の間の間隙に形成されている。絶縁層IMは、第1電極22および第2電極24の両方の側面に接している。絶縁層IMは加えて、第1トランジスタTr1の第1電極22および第2電極24それぞれを平面視で囲むように形成されてよい。
 絶縁層IMの上面は略平坦である。また、絶縁層IMの上面から樹脂基板10の上面までの距離は、第1トランジスタTr1の第1電極22の上面および第2電極24の上面から樹脂基板10の上面までの距離より小さい。絶縁層IM、第1電極22および第2電極24は、第1層間絶縁膜ILD1の上に設けられている。したがって、絶縁層IMの上面は、第1電極22の上面と第1層間絶縁膜ILD1の上面との間、または、第2電極24の上面と第1層間絶縁膜ILD1の上面との間、に位置する。
 (比較例)
 図3は、比較例に係る表示装置102の構成例を示す概略断面図である。図3に示すように、比較例に係る表示装置102は、薄膜トランジスタ層112の第1層間絶縁膜ILD1と酸化物半導体層SC1との間に絶縁層IMが無い点を除いて、図1に示した本開示に係る表示装置2と同様の構成を備える。
 図4は、図3に示した第1トランジスタTr101の構成を示す概略断面図である。図4に示すように、比較例に係る第1トランジスタTr101において、酸化物半導体層SC1は、第1電極22および第2電極24の側面と、第1電極22および第2電極24の間の第1層間絶縁膜ILD1の上面とに接触する。第1電極22および第2電極24の側面に接する酸化物半導体層SC1は、第1層間絶縁膜ILD1の上面に接する酸化物半導体層SC1と比較して薄く形成される傾向にある。
 (本開示に係る構成と比較例の構成との比較)
 図5は、図3に示した酸化物半導体層SC1をパターニングする工程を示す概略断面図である。図5に示すように、比較例に係る酸化物半導体層SC1をパターニングするときに、酸化物半導体層SC1の上にフォトレジスト層PRを形成する。このとき、第1層間絶縁膜ILD1の上面とソース電極またはドレイン電極の傾斜側面との間の角に対応する位置において、酸化物半導体層SC1とフォトレジスト層PRとの間に空洞CVが生じることがある。そして、酸化物半導体層SC1をエッチングするエッチング液が空洞CBに染み込む。このため、酸化物半導体層SC1が第1層間絶縁膜ILD1とソース電極またはドレイン電極との間の段差によって途切れ(いわゆる「段切れ」)しやすい。
 加えて、第1層間絶縁膜ILD1の上面は、金属層M3をパターニングするときに劣化していたり、金属層M3の残渣が残っていたり、することがある。
 図6は、(1)金属層M3をパターニングして第1トランジスタTr101を形成した場合(M3パターニングあり)と、(2)金属層M3を形成せずに酸化物半導体層SC1をパターニングして、トップコンタクトで酸化物半導体層SC1をソース電極およびドレイン電極に接続した場合(M3パターニングなし)と、の第1トランジスタTr101の電流電圧特性を片対数グラフで示す。図6の縦軸は対数表示である。
 図6に示すように、M3パターニングありの場合に、第1トランジスタTr101の立ち上がり特性が劣化する(S値が大きくなる)ことが分かる。この劣化は、第1層間絶縁膜ILD1の上面の劣化および金属層M3の残渣に起因すると考えられる。
 図2に示したように本開示に係る第1トランジスタTr1において、第1電極22と第2電極24との間の間隙が絶縁層IMによって埋められている。絶縁層IMの上面と第1電極22または第2電極24の上面との間の段差は、第1層間絶縁膜ILD1の上面と第1電極22または第2電極24の上面との間の段差よりも小さい。このため、図4に示した比較例の構成と比較して、図2に示した本開示に係る構成における酸化物半導体層SC1が段切れし難い。さらに、酸化物半導体層SC1が第1層間絶縁膜ILD1の上面に接触しないので、第1層間絶縁膜ILD1の上面の劣化および金属層M3の残渣が酸化物半導体層SC1に影響せず、第1トランジスタTr1の立ち上がり特性が劣化しない。
 従って、本開示に係る第1トランジスタTr1と比較例の第1トランジスタTr101とを比較すると、本開示に係る第1トランジスタTr1のほうがトランジスタ特性が高い。
 (製造方法)
 本開示に係る表示装置2の製造方法は、樹脂基板10より上層にベースコート層BC、薄膜トランジスタ層12、発光素子層14、封止層18を形成する工程をこの順に含む。
 図7、図9、図11、図13および図15は各々、本開示に係る薄膜トランジスタ層12を形成する工程の一例を示す概略断面図である。図8、図10、図12、図14および図16は各々、本開示に係る薄膜トランジスタ層12を形成する工程の一例を示す概略平面図である。
 図7および図8に示すように、まず、ベースコート層BC上にシリコン系半導体層SC2、ゲート絶縁膜GI、ゲート電極GE、第1層間絶縁膜ILD1、金属層M3をこの順に形成し、適宜パターニングする。
 金属層M3の形成およびパターニングにおいては、樹脂基板10の上面の法線方向と直交する方向に第1電極22および第2電極24が互いから離れるように、第1電極22および第2電極24を形成する。
 図9および図10に示すように次に、第1層間絶縁膜ILD1および金属層M3を覆うように、塗布型絶縁材料を含む液体20を全面的に塗布し、塗膜を形成する。ここで、液体20は、第1電極22および第2電極24の間隙に塗布される。
 塗布型絶縁材料を含む液体20は、固化した(すなわち絶縁層IMである)ときに絶縁体であればよく、液体20自体は導電体であっても絶縁体であってもよい。塗布型絶縁材料を含む液体20は、絶縁材料の粉末が溶媒に分散した液体など任意の液体でよい。塗布方法は、スピンコート法、バーコート法、噴霧法、など任意の方法でよい。
 次に、液体20の塗膜を焼成し、絶縁層IMを形成する。絶縁層IMは、第1電極22および第2電極24の上と、その間の間隙と、第1電極22および第2電極24の周囲と、に形成される。ここで、第1電極22および第2電極24の上に形成された絶縁層IMの部分の厚さは、その間の間隙に形成された絶縁層IMの部分の厚さと比較して、薄い。
 図11および図12に示すように次に、第1電極22および第2電極24の両方の上面が絶縁層IMから露出し、かつ、絶縁層IMが少なくとも第1電極22および第2電極24の間の間隙に残るように、絶縁層IMをエッチングする。本実施形態では、第1電極22の側面の一部とおよび第2電極24の側面の一部とが露出するまで、絶縁層IMをエッチングする。この結果、絶縁層IMの上面から樹脂基板10の上面までの距離が、第1電極22の上面および第2電極24の上面から樹脂基板10の上面までの距離より小さい。
 エッチング方法は、ドライエッチングでもウェットエッチングでもよい。ここで第1層間絶縁膜ILD1がエッチングされる場合、エッチング後も第2トランジスタTr2のゲート電極が第1層間絶縁膜ILD1で覆われているままであるように、第1層間絶縁膜ILD1の厚さおよび材質とエッチング条件とを設定する。
 図13および図14に示すように次に、金属層M3および絶縁層IMの上に、酸化物半導体層SC1を形成およびパターニングする。
 図15および図16に示すように次に、酸化物半導体層SC1の上に、ゲート絶縁膜TGIおよびゲート電極TGEを順に形成する。加えて、酸化物半導体層SC1をドーピングまたは還元する処理を行ってよい。この処理によって、酸化物半導体層SC1のうちゲート電極TGEの下に重畳する部分を含む領域がチャネル部30として残り、その他の領域が、低抵抗化して、第1低抵抗部26および第2低抵抗部28となる。
 続いて、第2層間絶縁膜ILD2を形成し、適宜コンタクトホールを形成し、金属層SEおよび有機平坦化膜PLを形成する。これによって、薄膜トランジスタ層12が形成される。
 本開示に係る表示装置2の製造方法は、これに限らない。例えば樹脂基板10が可撓性である場合、樹脂基板10とは別の剛性基板の上に薄膜トランジスタ層12を含む積層体を形成し、積層体を剛性基板から剥離し、樹脂基板10に貼り付けてもよい。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図17は、本実施形態に係る第1トランジスタTr1の構成例を示す概略断面図である。図17に示すように、本実施形態に係る表示装置2は、絶縁層IMの上面から樹脂基板10の上面までの距離が、第1トランジスタTr1の第1電極22およびドレイン電極の両方の上面から樹脂基板10の上面までの距離と同一である点を除いて、前述の実施形態1に係る表示装置2と同一である。
 このような絶縁層IMは、絶縁層IMをエッチングするときのエッチング条件を調整することによって実現できる。
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図18は、本実施形態に係る第1トランジスタTr1の構成例を示す概略断面図である。図18に示すように、本実施形態に係る表示装置2は、絶縁層IMの上面から樹脂基板10の上面までの距離が不均一である点を除いて、前述の実施形態1に係る表示装置2と同一である。
 塗布型絶縁材料を含む液体20を塗布するときに、表面張力によって、塗布型絶縁材料を含む液体20の上面が非平坦になることがある。また、塗布型絶縁材料を含む液体20を固化するときに、温度変化および/または液体から固体への状態変化に起因して、塗布型絶縁材料を含む液体20または絶縁層IMが膨張および/または収縮し、その上面が非平坦になることがある。このような場合、絶縁層IMの上面のから樹脂基板10の上面までの距離が不均一になることがある。
 図19は、図18に示した第1トランジスタTr1を形成する工程の一例を示す概略断面図である。図19に示すように、このため、塗布型絶縁材料を含む液体20の固化後、絶縁層IMの上面が、第1トランジスタTr1の第1電極22と第2電極24との間の間隙にて、谷型形状に形成されてよい。具体的には、絶縁層IMの第1電極22および第2電極24の上に形成された部分の上面から樹脂基板10の上面までの距離よりも、絶縁層IMの第1電極22および第2電極24の間隙にて形成された部分の上面から樹脂基板10の上面までの距離が小さいように、形成されてよい。当該間隙に形成された部分に関し、その上面全体が傾斜または湾曲しても、第1電極22および第2電極24の側面の近傍部分の上面のみが傾斜または湾曲してもよい。
 図20は、図18に示した第1トランジスタTr1を形成する工程の一例を示す概略断面図である。図20に示すように、谷型に形成された場合、絶縁層IMをエッチングした後も、絶縁層IMの上面が間隙にて谷型である。具体的には、絶縁層IMの上面から樹脂基板10の上面までの距離に関し、絶縁層IMの上面が第1電極22および第2電極24に接する縁での距離よりも、第1電極22および第2電極24の間の中間位置での距離が小さいように、形成される。
 したがって、本実施形態に係る絶縁層IMは、表示装置2の断面視において、第1電極22と第2電極24との間の間隙にて、絶縁層IMの上面が谷型形状になってよい。これに限らず、間隙にて絶縁層IMの上面が山型形状または波型形状など他の形状であってもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 2 表示装置
 10 樹脂基板(基板)
 22 第1電極
 24 第2電極
 26 第1低抵抗部
 28 第2低抵抗部
 30 チャネル部
 GE ゲート電極(第2ゲート電極)
 ILD1 第1層間絶縁膜(無機絶縁膜)
 IM 絶縁層
 PC 画素回路
 SC1 酸化物半導体層
 SC2 シリコン系半導体層
 TGI ゲート絶縁膜
 TGE ゲート電極(第1ゲート電極)
 Tr1 第1トランジスタ
 Tr2 第2トランジスタ

 

Claims (15)

  1.  基板と、前記基板の上方に位置する第1トランジスタとを備える表示装置であって、
     前記基板の上方に位置し、前記基板の法線方向と直交する方向に離間した第1電極および第2電極と、
     前記第1電極および前記第2電極の間隙に位置し、塗布型絶縁材料を含む絶縁層と、
     少なくとも一部が前記第1トランジスタのチャネルとして機能し、前記絶縁層の上面に接する酸化物半導体層と、を備える表示装置。
  2.  前記酸化物半導体層は、前記チャネルとして機能するチャネル部と、前記チャネル部よりも電気抵抗値が小さい第1および第2低抵抗部とを含み、
     前記第1低抵抗部が前記第1電極の上面に接し、前記第2低抵抗部が前記第2電極の上面に接する、請求項1に記載の表示装置。
  3.  前記第1低抵抗部が前記第1電極の側面に接し、前記第2低抵抗部が前記第2電極の側面に接する、請求項2に記載の表示装置。
  4.  前記絶縁層は、前記第1電極および前記第2電極の側面に接する、請求項1~3の何れか1項に記載の表示装置。
  5.  前記絶縁層の上面から前記基板の上面までの距離は、前記第1電極および前記第2電極の上面から前記基板の上面までの距離よりも小さい、請求項1~3のいずれか1項に記載の表示装置。
  6.  前記絶縁層の上面から前記基板の上面までの距離は、前記第1電極および前記第2電極の上面から前記基板の上面までの距離と同一である、1~3のいずれか1項に記載の表示装置。
  7.  前記絶縁層の上面が谷型形状である、請求項1~4のいずれか1項に記載の表示装置。
  8.  前記絶縁層は、スピンオンガラス材料、アルカリ土類金属を含む酸化物、およびランタノイドを含む酸化物の少なくとも1つを含んでいる、請求項1~7のいずれか1項に記載の表示装置。
  9.  前記第1トランジスタは、酸化物半導体層上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位置する第1ゲート電極とを含む、請求項1~8のいずれか1項に記載の表示装置。
  10.  前記第1電極および第2電極それぞれが、前記絶縁層によって囲まれている、請求項1~9のいずれか1項に記載の表示装置。
  11.  前記絶縁層の下に無機絶縁膜を備える、請求項1~10のいずれか1項に記載の表示装置。
  12.  シリコン系半導体層と前記シリコン系半導体層の上方に位置する第2ゲート電極とを含む第2トランジスタを備え、
     前記第2ゲート電極が前記無機絶縁膜で覆われている、請求項11に記載の表示装置。
  13.  基板の上方に、前記基板の法線方向と直交する方向に離間した第1電極および第2電極を形成する工程と、
     前記第1電極および前記第2電極の間隙に位置し、塗布型絶縁材料を含む絶縁層を形成する工程と、
     少なくとも一部が第1トランジスタのチャネルとして機能し、前記絶縁層の上面に接する酸化物半導体層を形成する工程と、を含む、表示装置の製造方法。
  14.  前記塗布型絶縁材料を含む液体を、前記第1電極上、前記第2電極上および前記間隙に塗布することで塗膜を形成する、請求項13に記載の表示装置の製造方法。
  15.  前記塗膜を焼成し、焼成後の塗膜を前記第1電極および前記第2電極の上面が露出するようにエッチングすることで前記絶縁層を形成する、請求項14に記載の表示装置の製造方法。
PCT/JP2022/004094 2022-02-02 2022-02-02 表示装置および表示装置の製造方法 WO2023148852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004094 WO2023148852A1 (ja) 2022-02-02 2022-02-02 表示装置および表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004094 WO2023148852A1 (ja) 2022-02-02 2022-02-02 表示装置および表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023148852A1 true WO2023148852A1 (ja) 2023-08-10

Family

ID=87553382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004094 WO2023148852A1 (ja) 2022-02-02 2022-02-02 表示装置および表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2023148852A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124312A (ja) * 2009-12-09 2011-06-23 Sony Corp 金属酸化物半導体薄膜の製造方法及び電子デバイスの製造方法
KR20150101413A (ko) * 2014-02-24 2015-09-03 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 이를 이용한 표시장치
JP2016029727A (ja) * 2008-12-26 2016-03-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
US20160163745A1 (en) * 2014-12-03 2016-06-09 Apple Inc. Organic Light-Emitting Diode Display With Double Gate Transistors
JP2018022879A (ja) * 2016-07-20 2018-02-08 株式会社リコー 電界効果型トランジスタ、及びその製造方法、並びに表示素子、画像表示装置、及びシステム
JP2019029528A (ja) * 2017-07-31 2019-02-21 凸版印刷株式会社 薄膜トランジスタ
JP2019054284A (ja) * 2018-12-12 2019-04-04 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
WO2021166067A1 (ja) * 2020-02-18 2021-08-26 三菱電機株式会社 薄膜トランジスタ基板および表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029727A (ja) * 2008-12-26 2016-03-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2011124312A (ja) * 2009-12-09 2011-06-23 Sony Corp 金属酸化物半導体薄膜の製造方法及び電子デバイスの製造方法
KR20150101413A (ko) * 2014-02-24 2015-09-03 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 이를 이용한 표시장치
US20160163745A1 (en) * 2014-12-03 2016-06-09 Apple Inc. Organic Light-Emitting Diode Display With Double Gate Transistors
JP2018022879A (ja) * 2016-07-20 2018-02-08 株式会社リコー 電界効果型トランジスタ、及びその製造方法、並びに表示素子、画像表示装置、及びシステム
JP2019029528A (ja) * 2017-07-31 2019-02-21 凸版印刷株式会社 薄膜トランジスタ
JP2019054284A (ja) * 2018-12-12 2019-04-04 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
WO2021166067A1 (ja) * 2020-02-18 2021-08-26 三菱電機株式会社 薄膜トランジスタ基板および表示装置

Similar Documents

Publication Publication Date Title
JP4430568B2 (ja) 半導体素子及びその製造方法
KR101193196B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
JP4113197B2 (ja) 有機電界発光表示装置
KR100763913B1 (ko) 박막 트랜지스터의 제조방법
US8749069B2 (en) Semiconductor device and method of fabricating the same
US7521717B2 (en) Thin film transistor, flat panel display device, and method of fabricating the same
US8022398B2 (en) Thin film transistor, method of forming the same and flat panel display device having the same
KR101019048B1 (ko) 어레이 기판 및 이의 제조방법
KR100579182B1 (ko) 유기 전계 발광 표시 장치의 제조 방법
US11177293B2 (en) Array substrate and fabricating method thereof, and display device
JP2007220818A (ja) 薄膜トランジスタ及びその製法
JP2005222068A (ja) 有機電界発光表示装置及びその製造方法
KR20120070870A (ko) 유기전계 발광소자용 기판 및 그 제조 방법
US11355569B2 (en) Active device substrate comprising silicon layer and manufacturing method thereof
WO2023148852A1 (ja) 表示装置および表示装置の製造方法
KR20110058356A (ko) 어레이 기판 및 이의 제조방법
KR100623253B1 (ko) 유기 전계 발광 소자의 제조방법
US20040262608A1 (en) Design for thin film transistor to improve mobility
KR100867921B1 (ko) 박막 트랜지스터의 제조방법
KR100600875B1 (ko) 평판 표시 장치용 반도체 소자 및 그 형성 방법
KR100611217B1 (ko) 유기 보호막을 사용한 유기 전계 발광 표시 장치
KR100600877B1 (ko) 반도체 소자 및 그 제조 방법
KR100870019B1 (ko) 박막 트랜지스터 기판 및 그의 제조 방법
KR100359022B1 (ko) 폴리실리콘형 박막트랜지스터 제조 방법
CN113113551A (zh) 一种显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578247

Country of ref document: JP

Kind code of ref document: A