WO2023145438A1 - 熱伝導性付加硬化型シリコーン組成物、及びその硬化物 - Google Patents

熱伝導性付加硬化型シリコーン組成物、及びその硬化物 Download PDF

Info

Publication number
WO2023145438A1
WO2023145438A1 PCT/JP2023/000506 JP2023000506W WO2023145438A1 WO 2023145438 A1 WO2023145438 A1 WO 2023145438A1 JP 2023000506 W JP2023000506 W JP 2023000506W WO 2023145438 A1 WO2023145438 A1 WO 2023145438A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable silicone
thermally conductive
conductive addition
silicone composition
Prior art date
Application number
PCT/JP2023/000506
Other languages
English (en)
French (fr)
Inventor
啓太 北沢
正行 池野
幸士 長谷川
汐里 野中
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020247025133A priority Critical patent/KR20240136993A/ko
Priority to CN202380017826.6A priority patent/CN118591594A/zh
Publication of WO2023145438A1 publication Critical patent/WO2023145438A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver

Definitions

  • the present invention relates to a thermally conductive addition-curable silicone composition and its cured product.
  • a common problem with electronic component packages and power modules is heat generation during operation and the resulting deterioration in performance, and various heat dissipation technologies are used as a means to solve this problem.
  • a technique of radiating heat by arranging a cooling member in the vicinity of the heat-generating part and bringing them into close contact with each other to efficiently remove the heat from the cooling member is generally used.
  • heat dissipation grease that is thin and compressible and has excellent penetrability into the gap between the heat generating part and the cooling member is suitable from the viewpoint of heat dissipation performance.
  • thermal grease by compressing to the desired thickness and then heating and hardening, it is difficult for the thermal grease to flow out (pumping out) due to expansion and contraction due to the thermal history of repeated heat generation and cooling of the heat generating part.
  • Addition-curing thermal greases are particularly useful because they can increase the reliability of modules (eg, US Pat.
  • JP-A-2002-327116 JP-A-2004-130646 JP 2009-234112 A Japanese Patent Application Laid-Open No. 2009-209230 JP 2010-095730 A JP 2008-031336 A Japanese Patent Application Laid-Open No. 2007-177001 Japanese Patent Application Laid-Open No. 2008-260798 JP 2009-209165 A JP 2016-053140 A
  • an object of the present invention is to provide a thermally conductive addition-curable silicone composition with excellent heat dissipation properties.
  • the present invention provides a thermally conductive addition-curable silicone composition, (A) an organopolysiloxane having at least one aliphatic unsaturated hydrocarbon group per molecule and a kinematic viscosity at 25°C of 60 to 100,000 mm 2 /s; (B) a phenolic compound: an amount of 0.01 to 10% by mass based on the total composition; (C) silver powder: an amount of 10 to 98% by mass based on the total composition; (D) an organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule: an effective amount sufficient for the composition to form a cured product; (E) a platinum group metal catalyst: an effective amount;
  • a thermally conductive addition-curable silicone composition is provided comprising:
  • Such a thermally conductive addition-curable silicone composition is excellent in heat dissipation.
  • the component (B) is preferably a phenol compound represented by the following general formula (1A).
  • R 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydroxyl group.
  • R 3 is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms or a phenyl group, and each Xf is independently substituted with a hydrogen atom, a halogen atom or a fluorine atom having 1 to 10 carbon atoms.
  • Each ring ZZ independently represents an aromatic monocyclic or polycyclic ring having 3 to 20 carbon atoms, and the carbon atoms of the ring ZZ are substituted with a nitrogen atom, an oxygen atom, or a sulfur atom.
  • ka represents an integer of 0 to 2.
  • kb and kd represent 1 or 2.
  • kc and ke represent integers of 0 to 2.
  • Such a thermally conductive addition-curable silicone composition is more excellent in heat dissipation.
  • the component (B) is preferably a phenol compound represented by the following general formula (1B).
  • R 1 , R 2 and R 3 are the same as above.
  • Such a thermally conductive addition-curable silicone composition is more reliably excellent in heat dissipation.
  • the average particle size of the component (C) is 0.01 to 300 ⁇ m.
  • the resulting composition is uniform, does not have an excessively high viscosity, and has excellent extensibility.
  • (F) one or more addition curing reaction inhibitors selected from the group consisting of acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds, in an effective amount. is preferred.
  • the thermally conductive addition-curable silicone composition described above is sandwiched between two silicon plates having a diameter of 12.7 mm and heated at 125° C. for 1 hour under a pressure of 0.14 MPa.
  • a test piece for thermal resistance measurement was prepared, the thermal resistance value of the thermally conductive addition-curable silicone cured product was measured using a thermal conductivity measuring device, and the thickness of the test piece was measured using a microgauge.
  • the thickness of the thermally conductive addition-curable silicone cured product is calculated from the difference between the thickness of the silicone plate measured in advance and the thickness of the thermally conductive addition-curable silicone cured product.
  • Thermal conductivity obtained by deriving the thermal conductivity of the cured thermally conductive addition-curable silicone product from the thermal resistance value (mm 2 K/W) of the cured thermally conductive addition-curable silicone product ( ⁇ m) is 7.0 W/m ⁇ K or more.
  • Such a thermally conductive addition-curable silicone cured product has excellent heat dissipation.
  • the thermally conductive addition-curable silicone composition of the present invention achieves high thermal conductivity by blending a phenolic compound and silver powder. As a result, excellent heat dissipation performance can be exhibited by mounting in an electronic component package or a power module.
  • the present inventors have conducted intensive research to achieve the above objects, and as a result, identified an aliphatic unsaturated hydrocarbon group-containing organopolysiloxane, a phenolic compound, silver powder, an organohydrogenpolysiloxane, and a platinum group metal catalyst.
  • the inventors have found that a thermally conductive addition-curable silicone composition with excellent heat dissipation can be obtained by blending an amount of these compounds, and have completed the present invention.
  • the present invention provides a thermally conductive addition-curable silicone composition
  • A an organopolysiloxane having at least one aliphatic unsaturated hydrocarbon group per molecule and a kinematic viscosity at 25°C of 60 to 100,000 mm 2 /s
  • B a phenolic compound: an amount of 0.01 to 10% by mass based on the total composition
  • C silver powder: an amount of 10 to 98% by mass based on the total composition
  • D an organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule: an effective amount sufficient for the composition to form a cured product
  • E a platinum group metal catalyst: an effective amount
  • a thermally conductive addition-curable silicone composition comprising:
  • thermally Conductive Addition-Cure Silicone Composition The thermally conductive addition-curable silicone composition of the present invention comprises components (A) to (E) described later, and, if necessary, component (F) and other components. It contains Each component will be described in detail below.
  • Component (A) has at least 1, preferably 1 to 100, more preferably 2 to 50 aliphatic unsaturated hydrocarbon groups in one molecule, and has a kinematic viscosity at 25°C of 60 to 100,000 mm 2 /s.
  • the aliphatic unsaturated hydrocarbon group is preferably a monovalent hydrocarbon group having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably an alkenyl group, having an aliphatic unsaturated bond.
  • alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl, cyclohexenyl, and octenyl groups.
  • a vinyl group is particularly preferred.
  • the aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain, a silicon atom in the middle of the molecular chain, or both.
  • the organic group other than the aliphatic unsaturated hydrocarbon group, which is bonded to the silicon atom of the organopolysiloxane has 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms. It is a substituted or substituted monovalent hydrocarbon group.
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group;
  • Aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group; substituted with a halogen atom, a cyano group, etc., such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and the like.
  • the organopolysiloxane has a kinematic viscosity at 25° C. of 60 to 100,000 mm 2 /s, preferably 100 to 30,000 mm 2 /s. If the kinematic viscosity is less than 60 mm 2 /s, the physical properties of the thermally conductive addition-curable silicone composition are degraded, and if it exceeds 100,000 mm 2 /s, it is Extensibility is poor.
  • kinematic viscosity is a value at 25°C measured with an Ubbelohde-type Ostwald viscometer (hereinafter the same).
  • the molecular structure of the organopolysiloxane is not particularly limited as long as it has the properties described above. be done.
  • it preferably has a linear structure in which the main chain consists of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups.
  • the organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure.
  • the blending amount of component (A) is preferably 1.5 to 89% by mass, more preferably 1.7 to 50% by mass, and even more preferably 2 to 20% by mass, based on the total composition. If it is 89% by mass or less, the thermal conductivity is not poor, and if it is 1.5% by mass or more, the viscosity of the composition does not increase more than necessary and workability does not deteriorate.
  • the organopolysiloxane can be used singly or in combination of two or more.
  • Component (B) is a phenolic compound that is added as an additive to the thermally conductive addition-curable silicone composition.
  • the phenol compound is preferably a phenol compound represented by the following general formula (1A).
  • 1A a phenol compound represented by the following general formula
  • R 1 represents a hydrogen atom, a halogen atom, a cyano group, or a hydroxyl group.
  • R 3 is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms or a phenyl group, and each Xf is independently substituted with a hydrogen atom, a halogen atom or a fluorine atom having 1 to 10 carbon atoms.
  • Each ring ZZ independently represents an aromatic monocyclic or polycyclic ring having 3 to 20 carbon atoms, and the carbon atoms of the ring ZZ are substituted with a nitrogen atom, an oxygen atom, or a sulfur atom.
  • ka represents an integer of 0 to 2.
  • kb and kd represent 1 or 2.
  • kc and ke represent integers of 0 to 2.
  • linear, branched or cyclic (ka+2)-valent hydrocarbon group having 1 to 20 carbon atoms in Az include the following. (In the formula, broken lines indicate bonds.)
  • the linear, branched, or cyclic (ka+2)-valent fluorinated hydrocarbon group of Az having 1 to 20 carbon atoms is specifically , substituted with a fluorine atom can be exemplified.
  • Az preferably has 2 to 18 carbon atoms, more preferably 3 to 16 carbon atoms, and still more preferably 4 to 14 carbon atoms. It is also preferred that a portion of —CH 2 — constituting the hydrocarbon group is replaced with —Si(R 2 R 3 )— or —Si(R 2 R 3 )—O—.
  • linear, branched or cyclic alkyl groups having 1 to 6 carbon atoms for R 2 and R 3 include methyl, ethyl, propyl, isopropyl, n-butyl and sec-butyl. group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
  • linear, branched or cyclic monovalent hydrocarbon groups of Xf which may be substituted with fluorine atoms having 1 to 10 carbon atoms include methyl, ethyl, propyl, isopropyl, n- Alkyl groups such as butyl group, sec-butyl group, tert-butyl group, cyclopropyl group and cyclobutyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group and the like can be mentioned.
  • alkoxy group of Xf having 1 to 10 carbon atoms which may be substituted with a fluorine atom include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group and a tert-butoxy group. , cyclopropoxy group, trifluoromethoxy group, 2,2,2-trifluoroethoxy group and the like.
  • aromatic monocyclic or polycyclic ring ZZ having 3 to 20 carbon atoms include the following. Ring ZZ may further have a substituent as described below.
  • a phenol compound represented by the following general formula (1B) is particularly preferable as the phenol compound represented by the general formula (1A).
  • R 1 , R 2 and R 3 are the same as above.
  • the amount of component (B) is 0.01 to 10% by mass of the total composition, preferably 0.03 to 5% by mass, and more preferably 0.05 to 1.0% by mass. preferable. If the amount is less than 0.01% by mass, the effect of improving the heat dissipation of the thermally conductive addition-curable silicone composition is poor. It is uneconomical and uneconomical.
  • Component (C) is silver powder.
  • the method for producing the silver powder is not particularly limited, and examples thereof include an electrolysis method, a pulverization method, a heat treatment method, an atomization method, a reduction method and the like.
  • the shape is not particularly limited and may be flake-like, spherical, granular, amorphous, dendritic, needle-like, or the like.
  • the range is preferably 0.01 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the average particle diameter can be determined as a volume-based average value (or median diameter) in particle size distribution measurement by a laser beam diffraction method, for example.
  • component (C) can be used alone or in combination of two or more, and the ratio is not particularly limited and is arbitrary.
  • the amount of component (C) is 10 to 98% by mass, preferably 70 to 97% by mass, more preferably 80 to 95% by mass, based on the total composition. If the amount is more than 98% by mass, the viscosity of the composition may be significantly increased and the workability may be deteriorated.
  • Component (D) is an organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule, i.e., silicon-bonded hydrogen atoms (SiH groups) in one molecule. It is an organohydrogenpolysiloxane having 2 or more, particularly preferably 2 to 100, more preferably 2 to 50. In the organohydrogenpolysiloxane, the SiH groups in the molecule undergo an addition reaction with the unsaturated aliphatic hydrocarbon groups of component (A) in the presence of a platinum group metal catalyst to form a crosslinked structure. I wish I had.
  • the molecular structure of the organohydrogenpolysiloxane is not particularly limited as long as it has the properties described above. structure and the like. A linear structure and a cyclic structure are preferred.
  • the organohydrogenpolysiloxane has a kinematic viscosity at 25° C. of preferably 1 to 1,000 mm 2 /s, more preferably 10 to 300 mm 2 /s. If the kinematic viscosity is 1 mm 2 /s or more, the physical properties of the thermally conductive addition-curable silicone composition will not deteriorate. The extensibility of the silicone composition becomes good.
  • organic groups bonded to the silicon atoms of the organohydrogenpolysiloxane include unsubstituted or substituted monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups.
  • it is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group, aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group, these hydrogen
  • halogen atoms such as fluorine, bromine, and chlorine
  • cyano groups epoxy ring-containing organic groups (glycidyl groups or glycidyloxy group-substituted alkyl groups), etc., such as chloromethyl group and chloropropyl bromoethyl, trifluoropropyl, cyanoethyl, 2-glycidoxyethyl, 3-glycidoxypropyl, and 4-glycidoxybutyl groups.
  • a methyl group and a trifluoropropyl group are preferred.
  • the organohydrogenpolysiloxane may be used singly or in combination of two or more.
  • the amount of component (D) organohydrogenpolysiloxane to be blended is an effective amount sufficient for the composition to form a cured product, preferably the total number of aliphatic unsaturated hydrocarbon groups in component (A).
  • the number of SiH groups in the component (D) is 0.5 to 10, more preferably 0.7 to 7.5, more preferably 1.0 to 5.0. . If the amount of component (D) is at least the above lower limit, the addition reaction will proceed sufficiently and crosslinking will be sufficient. Moreover, if it is below the said upper limit, a crosslinked structure will not become uneven and the storage stability of a composition will not deteriorate.
  • Component (E) is a platinum group metal catalyst and functions to promote the addition reaction of the above components.
  • the platinum group metal catalyst conventionally known ones used for addition reactions can be used.
  • platinum-based, palladium-based, and rhodium-based catalysts can be used, but platinum or platinum compounds, which are relatively easily available, are preferred. Examples thereof include simple platinum, platinum black, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds.
  • the platinum group metal catalysts may be used singly or in combination of two or more.
  • the amount of component (E) to be added should be an effective amount as a catalyst, that is, an effective amount necessary to promote the addition reaction and cure the thermally conductive addition-curable silicone composition of the present invention. It is preferably 0.1 to 500 ppm, more preferably 1 to 200 ppm, and still more preferably 10 to 100 ppm based on the mass of platinum group metal atoms, relative to the entire composition. If the amount of the catalyst is at least the above lower limit, the effect as a catalyst can be obtained, and if it is at most the above upper limit, the catalytic effect is sufficient and economical.
  • thermally conductive addition-curable silicone composition of the present invention may optionally contain the following optional components.
  • Component (F) is one or more addition curing reactions selected from the group consisting of acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds that inhibit the progress of hydrosilylation reactions at room temperature. It is a regulator and can be added to prolong shelf life and pot life.
  • addition curing reaction controller conventionally known addition curing reaction controllers used in addition curing silicone compositions can be used.
  • acetylene compounds such as acetylene alcohols (eg, ethynylmethyldecylcarbinol, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol), tributylamine, tetra
  • nitrogen compounds such as methylethylenediamine and benzotriazole
  • organic phosphorus compounds such as triphenylphosphine, oxime compounds, and organic chloro compounds.
  • the amount may be an effective amount, preferably 0.05 to 10 parts by mass, more preferably 0.07 to 5 parts by mass, based on 100 parts by mass of component (A), More preferably, it is 0.1 to 2 parts by mass.
  • the amount of the reaction inhibitor is 0.05 parts by mass or more, the desired sufficient shelf life and pot life can be obtained, and when the amount is 10 parts by mass or less, the curability of the silicone composition does not deteriorate.
  • reaction control agent may be diluted with organo(poly)siloxane, toluene, or the like in order to improve dispersibility in the silicone composition.
  • the thermally conductive addition-curable silicone composition of the present invention may contain a non-reactive organo(poly)siloxane such as methylpolysiloxane in order to adjust the strength and viscosity of the composition.
  • a non-reactive organo(poly)siloxane such as methylpolysiloxane
  • one or more conventionally known thermally conductive fillers other than silver may be used in combination.
  • hydrolyzable organopolysiloxanes, various modified silicones, and hydrolyzable organosilanes may be blended for the purpose of improving the filling properties of the thermally conductive filler or imparting adhesiveness to the composition.
  • a solvent may be added to adjust the viscosity of the composition.
  • antioxidants such as 2,6-di-tert-butyl-4-methylphenol may optionally be contained in order to prevent deterioration of the thermally conductive addition-curable silicone composition.
  • dyes, pigments, flame retardants, anti-settling agents, thixotropic agents, etc. can be blended as needed.
  • Step of Preparing the Thermally Conductive Addition Curing Silicone Composition The method for producing the thermally conductive addition curing silicone composition of the present invention will be described.
  • the method for producing the thermally conductive addition-curable silicone composition of the present invention is not particularly limited, but the above-described components (A) to (E), and optionally component (F) and other components may be used.
  • component (A) to (E), and optionally component (F) and other components for example, Trimix, Twinmix, and Planetary Mixer (both registered trademarks of Inoue Seisakusho Co., Ltd. mixer), Using a mixer such as Ultra Mixer (registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.), Hibismix (registered trademark of mixer manufactured by Primix Co., Ltd.), etc., at 25 ° C. for usually 3 minutes to 24 hours, preferably A method of mixing for 5 minutes to 12 hours, particularly preferably 10 minutes to 6 hours, can be used. Further, degassing may be performed during mixing, and mixing may be performed while heating in the range of 40 to 170°C.
  • Ultra Mixer registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.
  • Hibismix registered trademark of mixer manufactured by Primix Co., Ltd.
  • degassing may be performed during mixing, and mixing may be performed while heating in the range of 40 to 170°C.
  • components (A) and (C) are preliminarily mixed at 70°C, and then components (B), (D) and (E) are mixed at 25°C.
  • a silicone composition is preferable from the viewpoint of exhibiting good thermal conductivity.
  • the optional component (F) after mixing the (A) and (C) components in advance, the (F) component is mixed, and then the (B), (D) and (E) components are preferably mixed.
  • the thermally conductive addition-curable silicone composition of the present invention has a viscosity measured at 25° C. of preferably 10 to 1,000 Pa ⁇ s, more preferably 20 to 700 Pa ⁇ s, still more preferably 40 to 600 Pa ⁇ s. is s. If the viscosity is 10 Pa ⁇ s or more, it is not difficult to maintain the shape, and workability such as precipitation of the silver powder does not deteriorate. Further, if the viscosity is 1,000 Pa ⁇ s or less, workability is not deteriorated, such as discharge and coating being not difficult.
  • the said viscosity can be obtained by adjusting the compounding quantity of each component mentioned above. Said viscosity can be measured, for example, at 25° C. using a Malcolm viscometer (type PC-1T).
  • the cured product of the thermally conductive addition-curable silicone composition of the present invention usually has a thermal conductivity of 0.5 to 100 W/m ⁇ K. It preferably has a thermal conductivity of 7.0 W/m ⁇ K or more in order to exhibit performance.
  • the curing conditions for heat-curing the thermally conductive addition-curable silicone composition of the present invention are not particularly limited, but usually 80 to 200° C., preferably 100 to 180° C., 15 minutes to 4 hours, It is preferably 30 minutes to 2 hours.
  • the thermally conductive addition-curable silicone cured product of the present invention is prepared by sandwiching the thermally conductive addition-curable silicone composition described above between two silicon plates having a diameter of 12.7 mm and applying a pressure of 0.14 MPa. Heat and cure at 125 ° C. for 1 hour in the state, prepare a test piece for thermal resistance measurement, measure the thermal resistance value of the thermally conductive addition-curable silicone cured product using a thermal conductivity measurement device, , the thickness of the test piece is measured with a microgauge, and the thickness of the thermally conductive addition-curable silicone cured product is calculated from the difference from the previously measured thickness of the silicon plate.
  • the thickness of the cured conductive addition-curable silicone product ( ⁇ m) ⁇ the thermal resistance value of the cured thermally conductive addition-curable silicone product (mm 2 K/W) gives the heat of the cured thermally conductive addition-curable silicone product. It is preferable that the thermal conductivity is 7.0 W/m ⁇ K or more when the conductivity is derived.
  • the kinematic viscosity indicates the value at 25° C. measured by an Ubbelohde-type Ostwald viscometer.
  • thermally conductive addition-curable silicone composition of the present invention were prepared.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25°C of 600 mm 2 /s
  • A-2 Both ends blocked with dimethylvinylsilyl groups, 25°C
  • A-3 having a kinematic viscosity of 30,000 mm 2 /s at 25° C.:
  • Organopolysiloxane having a kinematic viscosity of 800 mm 2 /s at 25° C. represented by the following formula (2)
  • B-1 a phenol compound represented by the following formula (3)
  • B-2 a phenol compound represented by the following formula (4)
  • B-3 a phenol compound represented by the following formula (5)
  • B-4 a phenol compound represented by the following formula (6)
  • B-5 a phenol compound represented by the following formula (7)
  • Component C-1 Flake-like silver powder with an average particle size of 15 ⁇ m, a tap density of 4.0 g/mL, and a specific surface area of 0.5 m 2 /g C-2: an average particle size of 4 ⁇ m, a tap density of 2.2 g/mL , flaky silver powder having a specific surface area of 2.0 m 2 /g C-3: average particle diameter of 4 ⁇ m, tap density of 2.3 g/mL, flaky silver powder having a specific surface area of 0.9 m 2 /g C-4: average grain Flake-like silver powder C-5 with a diameter of 2 ⁇ m, a tap density of 2.4 g/mL, and a specific surface area of 0.9 m 2 /g: an average particle diameter of 3 ⁇ m, a tap density of 6.9 g/mL, and a specific surface area of 0.2 m 2 /g spherical silver powder
  • E-1 A solution of a platinum-divinyltetramethyldisiloxane complex dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass)
  • E-2 Solution of platinum-divinyltetramethyldisiloxane complex dissolved in ethanol (platinum atom content: 3% by mass)
  • thermally conductive addition-curable silicone composition obtained by the above method was measured for viscosity and thermal conductivity according to the following methods. The results are shown in Tables 1-4.
  • thermal conductivity of the thermally conductive addition-curable silicone cured product was derived from the following formula.
  • the thermally conductive addition-curable silicone composition of the present invention achieves high thermal conductivity by blending a phenolic compound and silver powder. As a result, excellent heat dissipation performance can be exhibited by mounting in an electronic component package or a power module.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、熱伝導性付加硬化型シリコーン組成物であって、(A)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン、(B)フェノール化合物:組成物全体に対し0.01~10質量%となる量、(C)銀粉末:組成物全体に対し10~98質量%となる量、(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:組成物が硬化物を形成するのに足る有効量、(E)白金族金属触媒:有効量、を含むものであることを特徴とする熱伝導性付加硬化型シリコーン組成物である。これにより、放熱性に優れた熱伝導性付加硬化型シリコーン組成物が提供される。

Description

熱伝導性付加硬化型シリコーン組成物、及びその硬化物
 本発明は、熱伝導性付加硬化型シリコーン組成物、及びその硬化物に関する。
 電子部品パッケージやパワーモジュールに共通する課題として、動作中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。とりわけ、発熱部の付近に冷却部材を配置して両者を密接させたうえで、冷却部材から効率的に除熱することにより放熱する技術が一般的である。
 その際、発熱部と冷却部材との間に隙間があると、熱伝導率の悪い空気が介在することにより伝熱性が低下し、発熱部材の温度が十分に下がらなくなってしまう。このような空気の介在を防ぎ、熱伝導を向上させるため、熱伝導率がよく、部材の表面に追随性のある放熱材料、例えば放熱グリースや放熱シートが用いられている(例えば、特許文献1~9)。
 実際の電子部品パッケージやパワーモジュールの熱対策としては、薄く圧縮可能であり発熱部と冷却部材との隙間への侵入性に優れる放熱グリースが、放熱性能の観点から好適である。さらに所望の厚みに圧縮後に加熱硬化させることで、発熱部の発熱と冷却を反復する熱履歴による膨張・収縮に起因する放熱グリースの流れ出し(ポンピングアウト)を発生しづらくし、電子部品パッケージやパワーモジュールの信頼性を高めることができる、付加硬化型の放熱グリースがとりわけ有用である(例えば、特許文献10)。
 近年、電子部品パッケージやパワーモジュールの高出力・高性能化、自動運転車両用半導体やIoTといった新しいアプリケーションへ対応するため、放熱材料にも一層の高熱伝導化の要求がある。そうした要求を満足しうる熱伝導性付加硬化型シリコーン組成物が求められている。
特開2002-327116号公報 特開2004-130646号公報 特開2009-234112号公報 特開2009-209230号公報 特開2010-095730号公報 特開2008-031336号公報 特開2007-177001号公報 特開2008-260798号公報 特開2009-209165号公報 特開2016-053140号公報
 従って、本発明は、上記事情に鑑みなされたもので、放熱性に優れた熱伝導性付加硬化型シリコーン組成物を提供することを目的とする。
 上記課題を解決するために、本発明では、熱伝導性付加硬化型シリコーン組成物であって、
(A)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm/sであるオルガノポリシロキサン、
(B)フェノール化合物:組成物全体に対し0.01~10質量%となる量、
(C)銀粉末:組成物全体に対し10~98質量%となる量、
(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:組成物が硬化物を形成するのに足る有効量、
(E)白金族金属触媒:有効量、
を含むものである熱伝導性付加硬化型シリコーン組成物を提供する。
 このような熱伝導性付加硬化型シリコーン組成物であれば、放熱性に優れる。
 また、本発明では、前記(B)成分が下記一般式(1A)で示されるフェノール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子、ハロゲン原子、シアノ基、又は水酸基を示す。Azは炭素数1~20の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。R、Rは炭素数1~6の直鎖状、分岐状、もしくは環状のアルキル基、又はフェニル基である。Xfはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のフッ素原子で置換されてよい直鎖状、分岐状、もしくは環状の1価炭化水素基、炭素数1~10のフッ素原子で置換されてよいアルコキシ基、又は電子求引基を示す。Zは単結合、又は酸素原子を示す。環ZZはそれぞれ独立に炭素数3~20の芳香族性の単環、又は多環を示す。前記環ZZの炭素原子は、窒素原子、酸素原子、又は硫黄原子に置換されていてもよい。kaは0~2の整数を示す。kb及びkdは1又は2を示す。kc及びkeは0~2の整数を示す。)
 このような熱伝導性付加硬化型シリコーン組成物であれば、より放熱性に優れる。
 また、本発明では、前記(B)成分が下記一般式(1B)で示されるフェノール化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Az’は炭素数1~19の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。kaは0又は1を示す。kb、kc、kd、keは1又は2を示す。R、R、Rは前記と同じである。)
 このような熱伝導性付加硬化型シリコーン組成物であれば、より確実に放熱性に優れる。
 また、本発明では、前記(C)成分の平均粒径が0.01~300μmであることが好ましい。
 このような熱伝導性付加硬化型シリコーン組成物であれば、得られる組成物が均一となり、粘度が高くなりすぎず、伸展性に優れる。
 また、本発明では、さらに、(F)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物、及び有機クロロ化合物からなる群より選択される1種以上の付加硬化反応制御剤を有効量含有するものであることが好ましい。
 このような熱伝導性付加硬化型シリコーン組成物であれば、所望とする十分なシェルフライフ、ポットライフが得られるとともに、シリコーン組成物の硬化性が低下するおそれがない。
 また、本発明では、直径12.7mmの2枚のシリコン板の間に上記に記載の熱伝導性付加硬化型シリコーン組成物を挟み込み、0.14MPaの圧力を掛けた状態にて125℃で1時間加熱硬化させ、熱抵抗測定用の試験片を作製し、熱伝導性付加硬化型シリコーン硬化物の熱抵抗値を熱伝導率測定装置を用いて測定し、さらに、前記試験片の厚みをマイクロゲージにて測定し、あらかじめ測定しておいた前記シリコン板の厚さとの差分から前記熱伝導性付加硬化型シリコーン硬化物の厚さを算出し、その後、前記熱伝導性付加硬化型シリコーン硬化物の厚さ(μm)÷前記熱伝導性付加硬化型シリコーン硬化物の熱抵抗値(mm・K/W)から前記熱伝導性付加硬化型シリコーン硬化物の熱伝導率を導出したときの熱伝導率が7.0W/m・K以上であることを特徴とする熱伝導性付加硬化型シリコーン硬化物を提供する。
 このような熱伝導性付加硬化型シリコーン硬化物であれば、放熱性に優れるものとなる。
 本発明の熱伝導性付加硬化型シリコーン組成物は、フェノール化合物と銀粉末を配合することで高熱伝導化を達成したものである。その結果、電子部品パッケージやパワーモジュールへ実装することで優れた放熱性能を発現することができる。
 上述のように、放熱性に優れる熱伝導性付加硬化型シリコーン組成物の開発が求められていた。
 本発明者らは、上記目的を達成するために鋭意研究を行った結果、脂肪族不飽和炭化水素基含有オルガノポリシロキサン、フェノール化合物、銀粉末、オルガノハイドロジェンポリシロキサン、白金族金属触媒を特定量配合することで、放熱性に優れる熱伝導性付加硬化型シリコーン組成物が得られることを見出し、本発明をなすに至った。
 即ち、本発明は、熱伝導性付加硬化型シリコーン組成物であって、
(A)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm/sであるオルガノポリシロキサン、
(B)フェノール化合物:組成物全体に対し0.01~10質量%となる量、
(C)銀粉末:組成物全体に対し10~98質量%となる量、
(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:組成物が硬化物を形成するのに足る有効量、
(E)白金族金属触媒:有効量、
を含むものである熱伝導性付加硬化型シリコーン組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
熱伝導性付加硬化型シリコーン組成物
 本発明の熱伝導性付加硬化型シリコーン組成物は、後述する(A)~(E)成分と、必要によりこれに加えて(F)成分やその他の成分を含有するものである。以下各成分について詳細に説明する。
(A)成分
 (A)成分は、1分子中に少なくとも1個、好ましくは1~100個、より好ましくは2~50個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm/sであるオルガノポリシロキサンである。
 脂肪族不飽和炭化水素基は、好ましくは、脂肪族不飽和結合を有する、炭素数2~8、さらに好ましくは炭素数2~6の1価炭化水素基であり、より好ましくはアルケニル基である。例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。特に好ましくはビニル基である。脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子、分子鎖途中のケイ素原子のいずれに結合していてもよく、両者に結合していてもよい。
 前記オルガノポリシロキサンのケイ素原子に結合する、脂肪族不飽和炭化水素基以外の有機基としては、炭素数1~18、好ましくは炭素数1~10、さらに好ましくは炭素数1~8の、非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。特にはメチル基、トリフルオロプロピル基であることが好ましい。
 前記オルガノポリシロキサンは、25℃での動粘度が、60~100,000mm/s、好ましくは100~30,000mm/sである。該動粘度が60mm/s未満であると、熱伝導性付加硬化型シリコーン組成物の物理的特性が低下し、100,000mm/sを超えると、熱伝導性付加硬化型シリコーン組成物の伸展性が乏しいものとなる。
 本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である(以下、同じ)。
 前記オルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、一部分岐状構造、又は環状構造を有する直鎖状構造等が挙げられる。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するのが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造又は環状構造を有していてもよい。
 (A)成分の配合量は、組成物全体に対し1.5~89質量%が好ましく、1.7~50質量%がより好ましく、2~20質量%がさらに好ましい。89質量%以下であれば、熱伝導性に乏しいものとならず、1.5質量%以上であれば、組成物の粘度が必要以上に増加せず、作業性が低下しない。
 前記オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(B)成分
 (B)成分はフェノール化合物であり、熱伝導性付加硬化型シリコーン組成物の添加剤として配合されるものである。フェノール化合物としては、下記一般式(1A)で示されるフェノール化合物であることが好ましい。なお、以下の説明中、化学式で表される構造によっては不斉炭素が存在し、エナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るものがあるが、その場合は一つの式でそれらの異性体を代表して表す。それらの異性体は単独で用いてもよいし、混合物として用いてもよい。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子、ハロゲン原子、シアノ基、又は水酸基を示す。Azは炭素数1~20の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。R、Rは炭素数1~6の直鎖状、分岐状、もしくは環状のアルキル基、又はフェニル基である。Xfはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のフッ素原子で置換されてよい直鎖状、分岐状、もしくは環状の1価炭化水素基、炭素数1~10のフッ素原子で置換されてよいアルコキシ基、又は電子求引基を示す。Zは単結合、又は酸素原子を示す。環ZZはそれぞれ独立に炭素数3~20の芳香族性の単環、又は多環を示す。前記環ZZの炭素原子は、窒素原子、酸素原子、又は硫黄原子に置換されていてもよい。kaは0~2の整数を示す。kb及びkdは1又は2を示す。kc及びkeは0~2の整数を示す。)
 Azの炭素数1~20の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基としては、具体的には下記のものを例示できる。
Figure JPOXMLDOC01-appb-C000006
(式中、破線は結合手を示す。)
Figure JPOXMLDOC01-appb-C000007
(式中、破線は結合手を示す。)
Figure JPOXMLDOC01-appb-C000008
(式中、破線は結合手を示す。)
 Azの炭素数1~20の直鎖状、分岐状、もしくは環状の(ka+2)価のフッ素化炭化水素基としては、具体的には上記の炭化水素基中の水素原子の一部又は全部が、フッ素原子に置換されたものを例示できる。また炭化水素基を構成する-CH-が、-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。Azの炭素数は好ましくは2~18、より好ましくは3~16、さらに好ましくは4~14である。また炭化水素基を構成する-CH-の一部が、-Si(R)-、又は-Si(R)-O-に置換されているのが好ましい。
 R、Rの炭素数1~6の直鎖状、分岐状、もしくは環状のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。
 Xfの炭素数1~10のフッ素原子で置換されてよい直鎖状、分岐状、もしくは環状の1価炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロプロピル基、シクロブチル基等のアルキル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基等を挙げることができる。
 Xfの炭素数1~10のフッ素原子で置換されてよいアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロプロポキシ基、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基等を挙げることができる。
 Xfの電子求引基の具体例としては、カルボニル基、アルコキシカルボニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、スルホン酸エステル基、アミド基、-O-C(=O)-G-(Gは硫黄原子又はNHである)等を挙げることができる。
 環ZZの炭素数3~20の芳香族性の単環、又は多環として、具体的には下記のものを例示できる。下記のように環ZZはさらに置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1A)で示されるフェノール化合物としては、下記一般式(1B)で示されるフェノール化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、Az’は炭素数1~19の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。kaは0又は1を示す。kb、kc、kd、keは1又は2を示す。R、R、Rは前記と同じである。)
 上記一般式(1A)および(1B)で示される化合物として、具体的には下記のものを例示できる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 (B)成分の配合量は、組成物全体に対し0.01~10質量%となる量であり、0.03~5質量%が好ましく、0.05~1.0質量%配合量がより好ましい。配合量が、0.01質量%未満であると熱伝導性付加硬化型シリコーン組成物の放熱性向上に資する効果に乏しく、10質量%を超えても放熱性向上効果が大幅に増大することはなく不経済であるため好ましくない。
(C)成分
 (C)成分は銀粉末である。銀粉末の製造方法は特に限定されるものではないが、例えば電解法、粉砕法、熱処理法、アトマイズ法、還元法等が挙げられる。また、その形状は、フレーク状、球状、粒状、不定形状、樹枝状、針状等、特に限定されるものではない。
 (C)成分の平均粒径は、0.01μm以上であれば、得られる組成物の粘度が高くなりすぎず、伸展性に優れたものとなり、300μm以下であれば、得られる組成物が均一となるため、0.01~300μmの範囲、好ましくは0.1~100μmの範囲、より好ましくは1~50μmの範囲が好ましい。なお、平均粒径は、例えば、レーザー光回折法による粒度分布測定における体積基準の平均値(又はメジアン径)として求めることができる。
 また、(C)成分は1種を単独で又は2種以上を組み合わせて使用することができ、その割合は特に限定されず任意である。
 (C)成分の配合量は、組成物全体に対し10~98質量%となる量であり、70~97質量%が好ましく、80~95質量%がより好ましい。98質量%より多いと、組成物の粘度増加が著しく作業性が低下する恐れがあり、10質量%より少ないと熱伝導性に乏しいものとなる。
(D)成分
 (D)成分は、1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン、即ちケイ素原子に結合した水素原子(SiH基)を1分子中に2個以上、特に好ましくは2~100個、さらに好ましくは2~50個有するオルガノハイドロジェンポリシロキサンである。該オルガノハイドロジェンポリシロキサンは、分子中のSiH基が、上述した(A)成分が有する脂肪族不飽和炭化水素基と白金族金属触媒の存在下に付加反応し、架橋構造を形成できるものであればよい。
 前記オルガノハイドロジェンポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、環状構造、一部分岐状構造、又は環状構造を有する直鎖状構造等が挙げられる。好ましくは直鎖状構造、環状構造である。
 前記オルガノハイドロジェンポリシロキサンは、25℃での動粘度が、好ましくは1~1,000mm/s、より好ましくは10~300mm/sである。前記動粘度が1mm/s以上であれば、熱伝導性付加硬化型シリコーン組成物の物理的特性が低下するおそれがなく、1,000mm/s以下であれば、熱伝導性付加硬化型シリコーン組成物の伸展性が良好なものとなる。
 前記オルガノハイドロジェンポリシロキサンのケイ素原子に結合した有機基としては、脂肪族不飽和炭化水素基以外の非置換又は置換の1価炭化水素基が挙げられる。特には、炭素数1~12、好ましくは炭素数1~10の、非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、これらの水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基、エポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基、2-グリシドキシエチル基、3-グリシドキシプロピル基、及び4-グリシドキシブチル基等が挙げられる。これらの中でも、メチル基、トリフルオロプロピル基が好ましい。
 前記オルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を混合して使用してもよい。
 (D)成分のオルガノハイドロジェンポリシロキサンの配合量は、組成物が硬化物を形成するのに足る有効量であり、好ましくは(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(D)成分中のSiH基の個数が0.5~10となる量、より好ましくは0.7~7.5となる量、さらに好ましくは1.0~5.0となる量である。(D)成分の量が上記下限値以上であれば、付加反応が十分に進行し、架橋が十分となる。また、上記上限値以下であれば、架橋構造が不均一とならず、組成物の保存性が悪化しない。
(E)成分
 (E)成分は白金族金属触媒であり、上述した成分の付加反応を促進するために機能する。白金族金属触媒は、付加反応に用いられる従来公知のものを使用することができる。例えば白金系、パラジウム系、ロジウム系の触媒が挙げられるが、中でも比較的入手しやすい白金又は白金化合物が好ましい。例えば、白金の単体、白金黒、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。白金族金属触媒は1種単独でも2種以上を組み合わせて使用してもよい。
 (E)成分の配合量は触媒としての有効量、即ち、付加反応を促進して本発明の熱伝導性付加硬化型シリコーン組成物を硬化させるために必要な有効量であればよい。好ましくは、組成物全体に対し、白金族金属原子に換算した質量基準で0.1~500ppm、より好ましくは1~200ppm、さらに好ましくは10~100ppmである。触媒の量が上記下限値以上であれば、触媒としての効果が得られ、また上記上限値以下であれば、触媒効果が十分であり経済的である。
 本発明の熱伝導性付加硬化型シリコーン組成物は、上記成分の他に、必要に応じてさらに以下の任意成分を添加することができる。
(F)成分
 (F)成分は室温でのヒドロシリル化反応の進行を抑えるアセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物、及び有機クロロ化合物からなる群より選択される1種以上の付加硬化反応制御剤であり、シェルフライフ、ポットライフを延長させるために添加することができる。該付加硬化反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の付加硬化反応制御剤を使用することができる。これには、例えば、アセチレンアルコール類(例えば、エチニルメチルデシルカルビノール、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (F)成分を配合する場合の配合量は有効量でよく、(A)成分100質量部に対し、0.05~10質量部が好ましく、より好ましくは0.07~5質量部であり、さらに好ましくは0.1~2質量部である。反応制御剤の量が0.05質量部以上であれば、所望とする十分なシェルフライフ、ポットライフが得られ、また、10質量部以下であれば、シリコーン組成物の硬化性が低下しない。
 また反応制御剤は、シリコーン組成物への分散性を良くするために、オルガノ(ポリ)シロキサンやトルエン等で希釈して使用してもよい。
その他の成分
 本発明の熱伝導性付加硬化型シリコーン組成物は、組成物の強度や粘度を調整するためにメチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。さらに、銀以外の従来公知の熱伝導性充填剤を1種以上併用してもよい。さらに、熱伝導性充填剤の充填性を向上する目的や、組成物に接着性を付与する目的で、加水分解性オルガノポリシロキサンや各種変成シリコーン、加水分解性オルガノシランを配合してもよい。さらに、組成物の粘度を調整するための溶剤を配合してもよい。さらに、熱伝導性付加硬化型シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。さらに、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を、必要に応じて配合することができる。
熱伝導性付加硬化型シリコーン組成物を作製する工程
 本発明における熱伝導性付加硬化型シリコーン組成物の製造方法について説明する。本発明における熱伝導性付加硬化型シリコーン組成物の製造方法は特に限定されるものではないが、上述の(A)~(E)成分、必要によりこれに加えて(F)成分やその他の成分を含有する熱伝導性付加硬化型シリコーン組成物を作製する工程を有する。
 上述した(A)~(E)成分、及び必要により(F)成分やその他成分を、例えば、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも(株)井上製作所製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスミックス(プライミクス株式会社製混合機の登録商標)等の混合機等を用いて、25℃で通常3分~24時間、好ましくは5分~12時間、特に好ましくは10分~6時間混合する方法が挙げられる。また混合時に脱気を行ってもよく、40~170℃の範囲で加熱しながら混合してもよい。
 本発明においては、予め(A)及び(C)成分を70℃で混合し、その後、(B)、(D)及び(E)成分を25℃で混合することが、熱伝導性付加硬化型シリコーン組成物が良好な熱伝導性を発現する観点から好ましい。なお、任意成分である(F)成分を配合する場合は、予め(A)及び(C)成分を混合後、(F)成分を混合し、その後(B)、(D)及び(E)成分を混合することが好ましい。
 本発明の熱伝導性付加硬化型シリコーン組成物は、25℃にて測定される粘度が、好ましくは10~1,000Pa・s、より好ましくは20~700Pa・s、さらに好ましくは40~600Pa・sである。粘度が、10Pa・s以上であれば、形状保持が困難とならず、銀粉末が沈降しない等、作業性が悪くならない。また粘度が1,000Pa・s以下であれば、吐出や塗布が困難とならない等、作業性が悪くならない。前記粘度は、上述した各成分の配合量を調整することにより得ることができる。前記粘度は例えば、マルコム粘度計(タイプPC-1T)を用いて25℃で測定することができる。
 また本発明の熱伝導性付加硬化型シリコーン組成物の硬化物は、通常0.5~100W/m・Kの熱伝導率を有するが、電子部品パッケージやパワーモジュールへ実装した際に優れた放熱性能を発現するために7.0W/m・K以上の熱伝導率を有することが好ましい。
 本発明の熱伝導性付加硬化型シリコーン組成物を加熱硬化する場合の硬化条件は、特に制限されるものでないが、通常80~200℃、好ましくは100~180℃で、15分~4時間、好ましくは30分~2時間である。
 特に、本発明の熱伝導性付加硬化型シリコーン硬化物は、直径12.7mmの2枚のシリコン板の間に上記に記載の熱伝導性付加硬化型シリコーン組成物を挟み込み、0.14MPaの圧力を掛けた状態にて125℃で1時間加熱硬化させ、熱抵抗測定用の試験片を作製し、熱伝導性付加硬化型シリコーン硬化物の熱抵抗値を熱伝導率測定装置を用いて測定し、さらに、前記試験片の厚みをマイクロゲージにて測定し、あらかじめ測定しておいた前記シリコン板の厚さとの差分から前記熱伝導性付加硬化型シリコーン硬化物の厚さを算出し、その後、前記熱伝導性付加硬化型シリコーン硬化物の厚さ(μm)÷前記熱伝導性付加硬化型シリコーン硬化物の熱抵抗値(mm・K/W)から前記熱伝導性付加硬化型シリコーン硬化物の熱伝導率を導出したときの熱伝導率が7.0W/m・K以上であることが好ましい。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度はウベローデ型オストワルド粘度計による25℃の値を示す。
 初めに、本発明の熱伝導性付加硬化型シリコーン組成物を調製する以下の各成分を用意した。
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm/sのジメチルポリシロキサン
A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が30,000mm/sのジメチルポリシロキサン
A-3:下記式(2)で示される、25℃における動粘度が800mm/sのオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000018
(B)成分
B-1:下記式(3)で示されるフェノール化合物
Figure JPOXMLDOC01-appb-C000019
B-2:下記式(4)で示されるフェノール化合物
Figure JPOXMLDOC01-appb-C000020
B-3:下記式(5)で示されるフェノール化合物
Figure JPOXMLDOC01-appb-C000021
B-4:下記式(6)で示されるフェノール化合物
Figure JPOXMLDOC01-appb-C000022
B-5:下記式(7)で示されるフェノール化合物
Figure JPOXMLDOC01-appb-C000023
(C)成分
C-1:平均粒径15μm、タップ密度4.0g/mL、比表面積0.5m/gのフレーク状銀粉末
C-2:平均粒径4μm、タップ密度2.2g/mL、比表面積2.0m/gのフレーク状銀粉末
C-3:平均粒径4μm、タップ密度2.3g/mL、比表面積0.9m/gのフレーク状銀粉末
C-4:平均粒径2μm、タップ密度2.4g/mL、比表面積0.9m/gのフレーク状銀粉末
C-5:平均粒径3μm、タップ密度6.9g/mL、比表面積0.2m/gの球状銀粉末
(D)成分
D-1:下記式(8)で示されるメチルハイドロジェンジメチルポリシロキサン
(25℃における動粘度=100mm/s)
Figure JPOXMLDOC01-appb-C000024
D-2:下記式(9)で示されるメチルハイドロジェントリフルオロプロピルメチルポリシロキサン
(25℃における動粘度=60mm/s)
Figure JPOXMLDOC01-appb-C000025
(E)成分
E-1:白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
E-2:白金-ジビニルテトラメチルジシロキサン錯体をエタノールに溶解した溶液(白金原子含有量:3質量%)
(F)成分
F-1:下記式(10)で示される1-エチニル-1-シクロヘキサノール
Figure JPOXMLDOC01-appb-C000026
[実施例1~17、比較例1~7]
熱伝導性付加硬化型シリコーン組成物の調製
 上記(A)~(F)成分を、下記表1~4に示す配合量で、下記に示す方法で配合して熱伝導性付加硬化型シリコーン組成物を調製した。なお、表においてSiH/SiViは(A)成分中のアルケニル基の個数の合計に対する(D)成分のSiH基の個数の合計の比である。
 0.3リットルのハイビスミックス(プライミクス株式会社製)に、(A)、(C)成分を加え、70℃で1時間混合した。これを40℃以下となるまで冷却した後、(F)、(E)、(D)、及び(B)成分を加え、均一になるように混合し、組成物を調製した。
 上記方法で得られた各熱伝導性付加硬化型シリコーン組成物について、下記の方法に従い、粘度、熱伝導率を測定した。結果を表1~4に示す。
[粘度]
 各熱伝導性付加硬化型シリコーン組成物の絶対粘度を、マルコム粘度計(タイプPC-1T)を用いて25℃で測定した(ロータAで10rpm、ズリ速度6[1/s])。
[熱伝導率]
 直径12.7mmの2枚のシリコン板の間に各熱伝導性付加硬化型シリコーン組成物を挟み込み、0.14MPaの圧力を掛けた状態にて125℃で1時間加熱硬化させ、熱抵抗測定用の試験片を作製し、熱伝導性付加硬化型シリコーン硬化物の熱抵抗値を測定した。さらに、試験片の厚みをマイクロゲージにて測定し、あらかじめ測定しておいたシリコン板の厚さとの差分から熱伝導性付加硬化型シリコーン硬化物の厚さを算出した。その後、下記式から熱伝導性付加硬化型シリコーン硬化物の熱伝導率を導出した。
(熱伝導性付加硬化型シリコーン硬化物の厚さ、μm)÷(熱伝導性付加硬化型シリコーン硬化物の熱抵抗値、mm・K/W)
 なお、熱抵抗測定には、ナノフラッシュ(ニッチェ社製、LFA447)を用いた。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表1~4の結果より、本発明の要件を満たす実施例1~17の熱伝導性付加硬化型シリコーン組成物の硬化物では(B)成分のフェノール化合物の添加により、(B)成分のフェノール化合物を含まない、対応する比較例1~7の熱伝導性付加硬化型シリコーン組成物の硬化物と比較して、熱伝導率が大幅に向上していることがわかる。
 従って、本発明の熱伝導性付加硬化型シリコーン組成物は、フェノール化合物と銀粉末とを配合することで高熱伝導化を達成したものである。その結果、電子部品パッケージやパワーモジュールへ実装することで優れた放熱性能を発現することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  熱伝導性付加硬化型シリコーン組成物であって、
    (A)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm/sであるオルガノポリシロキサン、
    (B)フェノール化合物:組成物全体に対し0.01~10質量%となる量、
    (C)銀粉末:組成物全体に対し10~98質量%となる量、
    (D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:組成物が硬化物を形成するのに足る有効量、
    (E)白金族金属触媒:有効量、
    を含むものであることを特徴とする熱伝導性付加硬化型シリコーン組成物。
  2.  前記(B)成分が下記一般式(1A)で示されるフェノール化合物であることを特徴とする請求項1に記載の熱伝導性付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、ハロゲン原子、シアノ基、又は水酸基を示す。Azは炭素数1~20の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。R、Rは炭素数1~6の直鎖状、分岐状、もしくは環状のアルキル基、又はフェニル基である。Xfはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~10のフッ素原子で置換されてよい直鎖状、分岐状、もしくは環状の1価炭化水素基、炭素数1~10のフッ素原子で置換されてよいアルコキシ基、又は電子求引基を示す。Zは単結合、又は酸素原子を示す。環ZZはそれぞれ独立に炭素数3~20の芳香族性の単環、又は多環を示す。前記環ZZの炭素原子は、窒素原子、酸素原子、又は硫黄原子に置換されていてもよい。kaは0~2の整数を示す。kb及びkdは1又は2を示す。kc及びkeは0~2の整数を示す。)
  3.  前記(B)成分が下記一般式(1B)で示されるフェノール化合物であることを特徴とする請求項2に記載の熱伝導性付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Az’は炭素数1~19の直鎖状、分岐状、もしくは環状の(ka+2)価の炭化水素基、又はフッ素化炭化水素基を示し、炭化水素基を構成する-CH-が-O-、-C(=O)-、又は-Si(R)-に置換されていてもよい。kaは0又は1を示す。kb、kc、kd、keは1又は2を示す。R、R、Rは前記と同じである。)
  4.  前記(C)成分の平均粒径が0.01~300μmであることを特徴とする請求項1から請求項3のいずれか1項に記載の熱伝導性付加硬化型シリコーン組成物。
  5.  さらに、(F)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物、及び有機クロロ化合物からなる群より選択される1種以上の付加硬化反応制御剤を有効量含有するものであることを特徴とする請求項1から請求項4のいずれか1項に記載の熱伝導性付加硬化型シリコーン組成物。
  6.  直径12.7mmの2枚のシリコン板の間に請求項1から請求項5のいずれか1項に記載の熱伝導性付加硬化型シリコーン組成物を挟み込み、0.14MPaの圧力を掛けた状態にて125℃で1時間加熱硬化させ、熱抵抗測定用の試験片を作製し、熱伝導性付加硬化型シリコーン硬化物の熱抵抗値を熱伝導率測定装置を用いて測定し、さらに、前記試験片の厚みをマイクロゲージにて測定し、あらかじめ測定しておいた前記シリコン板の厚さとの差分から前記熱伝導性付加硬化型シリコーン硬化物の厚さを算出し、その後、前記熱伝導性付加硬化型シリコーン硬化物の厚さ(μm)÷前記熱伝導性付加硬化型シリコーン硬化物の熱抵抗値(mm・K/W)から前記熱伝導性付加硬化型シリコーン硬化物の熱伝導率を導出したときの熱伝導率が7.0W/m・K以上であることを特徴とする熱伝導性付加硬化型シリコーン硬化物。
PCT/JP2023/000506 2022-01-31 2023-01-12 熱伝導性付加硬化型シリコーン組成物、及びその硬化物 WO2023145438A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247025133A KR20240136993A (ko) 2022-01-31 2023-01-12 열전도성 부가경화형 실리콘 조성물, 및 그의 경화물
CN202380017826.6A CN118591594A (zh) 2022-01-31 2023-01-12 导热性加成固化型有机硅组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022012772A JP2023111110A (ja) 2022-01-31 2022-01-31 熱伝導性付加硬化型シリコーン組成物、及びその硬化物
JP2022-012772 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145438A1 true WO2023145438A1 (ja) 2023-08-03

Family

ID=87471228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000506 WO2023145438A1 (ja) 2022-01-31 2023-01-12 熱伝導性付加硬化型シリコーン組成物、及びその硬化物

Country Status (5)

Country Link
JP (1) JP2023111110A (ja)
KR (1) KR20240136993A (ja)
CN (1) CN118591594A (ja)
TW (1) TW202342693A (ja)
WO (1) WO2023145438A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150048A (ja) * 1993-10-06 1995-06-13 Toray Dow Corning Silicone Co Ltd 導電性シリコーンゴム組成物
JP2002327116A (ja) 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP2004130646A (ja) 2002-10-10 2004-04-30 Shin Etsu Chem Co Ltd 熱伝導性シート
JP2004168920A (ja) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンエラストマー組成物
JP2007177001A (ja) 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2008031336A (ja) 2006-07-31 2008-02-14 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物及びその製造方法
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209230A (ja) 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2009234112A (ja) 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd 熱伝導性積層体およびその製造方法
JP2010095730A (ja) 2010-01-18 2010-04-30 Shin-Etsu Chemical Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2014218604A (ja) * 2013-05-09 2014-11-20 信越化学工業株式会社 シリコーンエラストマー粒子および該シリコーンエラストマー粒子を含む水分散液
WO2016017495A1 (ja) * 2014-07-28 2016-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
JP2016053140A (ja) 2014-09-04 2016-04-14 信越化学工業株式会社 シリコーン組成物
CN109679352A (zh) * 2018-12-28 2019-04-26 深圳德邦界面材料有限公司 一种导电泡棉及其制备方法
WO2021220724A1 (ja) * 2020-04-27 2021-11-04 デクセリアルズ株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150048A (ja) * 1993-10-06 1995-06-13 Toray Dow Corning Silicone Co Ltd 導電性シリコーンゴム組成物
JP2002327116A (ja) 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP2004130646A (ja) 2002-10-10 2004-04-30 Shin Etsu Chem Co Ltd 熱伝導性シート
JP2004168920A (ja) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンエラストマー組成物
JP2007177001A (ja) 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2008031336A (ja) 2006-07-31 2008-02-14 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物及びその製造方法
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209230A (ja) 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2009234112A (ja) 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd 熱伝導性積層体およびその製造方法
JP2010095730A (ja) 2010-01-18 2010-04-30 Shin-Etsu Chemical Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2014218604A (ja) * 2013-05-09 2014-11-20 信越化学工業株式会社 シリコーンエラストマー粒子および該シリコーンエラストマー粒子を含む水分散液
WO2016017495A1 (ja) * 2014-07-28 2016-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
JP2016053140A (ja) 2014-09-04 2016-04-14 信越化学工業株式会社 シリコーン組成物
CN109679352A (zh) * 2018-12-28 2019-04-26 深圳德邦界面材料有限公司 一种导电泡棉及其制备方法
WO2021220724A1 (ja) * 2020-04-27 2021-11-04 デクセリアルズ株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート

Also Published As

Publication number Publication date
JP2023111110A (ja) 2023-08-10
CN118591594A (zh) 2024-09-03
KR20240136993A (ko) 2024-09-19
TW202342693A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
KR102360378B1 (ko) 실리콘 조성물
TWI538996B (zh) 導熱性聚矽氧潤滑脂組成物
JP5898139B2 (ja) 熱伝導性シリコーン組成物
JP5832983B2 (ja) シリコーン組成物
JP5472055B2 (ja) 熱伝導性シリコーングリース組成物
JP5947267B2 (ja) シリコーン組成物及び熱伝導性シリコーン組成物の製造方法
JP7325324B2 (ja) 熱伝導性シリコーン組成物
TWI848003B (zh) 加成硬化型聚矽氧組成物及其製造方法
WO2019138991A1 (ja) シリコーン組成物
JP2015212318A (ja) 熱伝導性シリコーン組成物
TW201940596A (zh) 矽酮組成物
JP7355708B2 (ja) 熱伝導性付加硬化型シリコーン組成物
WO2023132192A1 (ja) 高熱伝導性シリコーン組成物
WO2023145438A1 (ja) 熱伝導性付加硬化型シリコーン組成物、及びその硬化物
WO2022239519A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7335678B2 (ja) 熱伝導性付加硬化型シリコーン組成物及びその硬化物
WO2020031669A1 (ja) シリコーン組成物及びその製造方法
JP7514804B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン硬化物
JP2022184636A (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2024048335A1 (ja) 熱伝導性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247025133

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023746653

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023746653

Country of ref document: EP

Effective date: 20240902