WO2023142857A1 - 一种瑞美吉泮的制备方法 - Google Patents

一种瑞美吉泮的制备方法 Download PDF

Info

Publication number
WO2023142857A1
WO2023142857A1 PCT/CN2022/142971 CN2022142971W WO2023142857A1 WO 2023142857 A1 WO2023142857 A1 WO 2023142857A1 CN 2022142971 W CN2022142971 W CN 2022142971W WO 2023142857 A1 WO2023142857 A1 WO 2023142857A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
solvent
tert
solvate
Prior art date
Application number
PCT/CN2022/142971
Other languages
English (en)
French (fr)
Inventor
房杰
郭万成
褚定军
谢晓强
Original Assignee
奥锐特药业(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥锐特药业(天津)有限公司 filed Critical 奥锐特药业(天津)有限公司
Publication of WO2023142857A1 publication Critical patent/WO2023142857A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of medicinal chemistry, and in particular relates to a preparation method of remegepam.
  • Rimegepant (compound of formula II, English name Rimegepant) is a potent, selective, competitive, orally active calcitonin gene-related peptide (CGRP) antagonist for the acute treatment of migraine in adults . It was approved for marketing by the US Food and Drug Administration (FDA) on February 27, 2020.
  • CGRP calcitonin gene-related peptide
  • WO2011046997 reports two synthetic methods of remegepam:
  • Route 1 contains an azidation reaction step. It is well known that the operation of azidation reaction has great safety hazards. The azidation product itself is a high-energy compound, and storage and transportation have safety risks. Moreover, the purification method of Remegepam disclosed in WO2011046997 adopts the FCC method, that is, flash column chromatography, and this purification method is not suitable for large-scale industrial production.
  • WO2011046997 only discloses route 2, without disclosing the corresponding example, WO2012050764 supplements the example of route 2, and the yield is 78.3%.
  • the inventor repeated the method in Example 3 of WO2012050764 he found that the compound of formula IV in Route 2 had extremely poor solubility in the solvent tetrahydrofuran. % remaining, even if the reaction time is extended, the raw material is no longer converted. If the reaction temperature is raised, the by-products increase greatly. Under the optimal conditions of this method, the yield of remegepam is only 66%, and the HPLC purity is 93%.
  • the commercially available pharmaceutical crystal form of Remegepam is the hemisulfate sesquihydrate reported in WO2013130402 (hereinafter referred to as the compound of formula V).
  • the maximum daily dose of Remegepam is 75mg.
  • known impurities should be controlled below 0.15%, and unknown impurities should be controlled below 0.10%.
  • the compound of formula II has extremely poor solubility in conventional solvents (less than 0.02 g/mL), and it is not easy to purify to a purity of more than 99.5%.
  • the purpose of the present invention is to provide a preparation method of Remegepam with mild conditions, high yield, high product purity, easy operation and suitable for industrial production.
  • a preparation method of Remegepam comprising the steps of:
  • the solvent 1 is selected from the following group: dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, 1,4-dioxahexa ring, methyl isobutyl ketone, or a combination thereof, preferably dimethyl sulfoxide or N,N-dimethylformamide.
  • the base is selected from the group consisting of lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, magnesium tert-butoxide, sodium hydroxide, potassium hydroxide, sodium ethoxide, sodium methoxide, Or a combination thereof, preferably sodium tert-butoxide or potassium tert-butoxide.
  • the method also has one or more of the following features:
  • the solvent 2 is selected from dichloromethane, 1,2-dichloroethane, chloroform, toluene, ethyl acetate, methyl tetrahydrofuran or a combination thereof, preferably dichloromethane;
  • the molar ratio of the compound of formula III to the base is 1:1.5-4.5, preferably 1:2-3; and/or
  • reaction temperature is 10-40°C, preferably 20-35°C.
  • step (3) the organic phase is washed with water 1-3 times, preferably 2-3 times, before being concentrated.
  • the method also includes the following refining steps:
  • the solvent 3 is selected from the group consisting of n-heptane, petroleum ether, methyl tertiary ether, acetonitrile, tetrahydrofuran, methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, ethanol, methanol, isopropanol, butanol, acetone, Butanone, or a combination thereof, preferably ethyl acetate, a mixed solvent of acetonitrile-n-heptane (such as a volume ratio of 1:0.5-2, preferably 1:0.8-1.2, more preferably 1:1), or tetrahydrofuran and A mixed solvent of n-heptane (for example, the volume ratio is 1:0.5-2, preferably 1:0.8-1.2, more preferably 1:1).
  • a method for purifying Remegepam comprising the steps of:
  • step 2) Slurry the compound of formula I obtained in step 1) in solvent 5, collect the solid to obtain a high-purity product of compound of formula II;
  • the solvent X is methyl tert-butyl ether or isopropyl ether.
  • step 1) includes: adding solvent 4 to the crude compound of formula II, heating to 40-80°C, adding solvent X after the solid dissolves, stirring for 0.5-1.5 hours, cooling down (0-30°C), collecting the solid to obtain Compound of formula I.
  • step 2) includes: adding the compound of formula I to solvent 5, heating to 50-70°C, beating for 0.5-1.5 hours, cooling to 0-30°C, and collecting the solid to obtain a high-purity product of the compound of formula II.
  • the solvent 4 is selected from the group consisting of dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, 1,4-dioxane, Methyl isobutyl ketone, methanol, dichloromethane, chloroform or combinations thereof; preferably, selected from dimethylsulfoxide, N,N-dimethylformamide or 1,4-dioxane.
  • the solvent 5 is a mixed solvent of an organic solvent and water, and the organic solvent is selected from the group consisting of ethanol, methanol, isopropanol, acetone, tetrahydrofuran, or a combination thereof, preferably ethanol/water or tetrahydrofuran/water.
  • the volume ratio of the organic solvent to water in the solvent 5 is 5-30:1, preferably 5-20:1, such as 8:1, 10:1, 15:1 or 18:1.
  • the weight ratio of solvent 4 to the compound of formula I is 1:2-5, such as 1:3 or 1:4.
  • the volume ratio of solvent 4 to solvent X is 1:3-15, preferably 1:5-10.
  • the purity of the crude compound of formula II is 80-95%.
  • the crude compound of formula II is prepared from the first aspect of the present invention.
  • the purity of the high-purity refined product of the compound of formula II is >99.5%, preferably ⁇ 99.7%, ⁇ 99.8%.
  • a compound of formula I is provided, which is a solvate of a compound of formula II, and the structural formula is as follows:
  • X is methyl tert-butyl ether or isopropyl ether.
  • the molar ratio of the compound of formula II to X is 1:1.
  • the compound of formula I is a methyl tert-butyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern has characteristic peaks at the following 2 ⁇ values: 4.2 ⁇ 0.2°, 14.9 ⁇ 0.2° , 16.8 ⁇ 0.2°, 18.2 ⁇ 0.2°, 20.6 ⁇ 0.2°.
  • the compound of formula I is a methyl tert-butyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern also has characteristic peaks at one or more of the following 2 ⁇ values: 8.3 ⁇ 0.2 °, 12.6 ⁇ 0.2°, 15.4 ⁇ 0.2°, 20.4 ⁇ 0.2°, 21.0 ⁇ 0.2°.
  • the compound of formula I is the methyl tert-butyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern has characteristic peaks at the following 2 ⁇ values: 4.2 ⁇ 0.2°, 8.3 ⁇ 0.2 °, 8.9 ⁇ 0.2°, 10.1 ⁇ 0.2°, 12.6 ⁇ 0.2°, 13.1 ⁇ 0.2°, 14.9 ⁇ 0.2°, 15.4 ⁇ 0.2°, 15.9 ⁇ 0.2°, 16.8 ⁇ 0.2°, 18.2 ⁇ 0.2°, 19.0 ⁇ 0.2 °, 19.4 ⁇ 0.2°, 20.4 ⁇ 0.2°, 20.6 ⁇ 0.2°, 21.0 ⁇ 0.2°, 22.5 ⁇ 0.2°, 23.2 ⁇ 0.2°, 24.1 ⁇ 0.2°, 24.6 ⁇ 0.2°, 25.1 ⁇ 0.2°, 26.4 ⁇ 0.2 °, 27.8 ⁇ 0.2°, 30.4 ⁇ 0.2°, 35.3 ⁇ 0.2°, 39.4 ⁇ 0.2°.
  • the methyl tert-butyl ether solvate of the compound of formula II also has one or more technical characteristics selected from the following group:
  • the differential scanning calorimetry diagram (DSC diagram) of the methyl tert-butyl ether solvate of the compound of formula II has an endothermic peak in the range of 164 to 182°C;
  • thermogravimetric analysis chart of the methyl tert-butyl ether solvate of the compound of formula II has a weight loss of about 12.2 ⁇ 0.2% in the range of 155°C to 200°C.
  • the initial value of the differential scanning calorimetry diagram (DSC diagram) of the methyl tert-butyl ether solvate of the compound of formula II is 164.0 ⁇ 2°C and/or the peak value is 172.7 ⁇ 2°C °C;
  • the methyl tert-butyl ether solvate of the compound of formula II also has one or more technical characteristics selected from the following group:
  • thermogravimetric analysis diagram of the methyl tert-butyl ether solvate of the compound of formula II is basically as shown in FIG. 4 .
  • the compound of formula I is the isopropyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern has characteristic peaks at the following 2 ⁇ values: 4.2 ⁇ 0.2°, 16.9 ⁇ 0.2°, 20.5 ⁇ 0.2° 0.2°, 16.7 ⁇ 0.2°, 15.8 ⁇ 0.2°.
  • the compound of formula I is the isopropyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern also has characteristic peaks at one or more of the following 2 ⁇ values: 8.4 ⁇ 0.2°, 12.6 ⁇ 0.2°, 15.6 ⁇ 0.2°, 19.4 ⁇ 0.2°, 22.7 ⁇ 0.2°.
  • the compound of formula I is the isopropyl ether solvate of the compound of formula II, and its X-ray powder diffraction pattern has characteristic peaks at the following 2 ⁇ values: 4.2 ⁇ 0.2°, 4.7 ⁇ 0.2°, 8.4 ⁇ 0.2° 0.2°, 12.6 ⁇ 0.2°, 13.9 ⁇ 0.2°, 14.8 ⁇ 0.2°, 15.1 ⁇ 0.2°, 15.2 ⁇ 0.2°, 15.6 ⁇ 0.2°, 15.8 ⁇ 0.2°, 16.7 ⁇ 0.2°, 16.9 ⁇ 0.2°, 18.1 ⁇ 0.2°, 18.7 ⁇ 0.2°, 18.9 ⁇ 0.2°, 19.2 ⁇ 0.2°, 19.4 ⁇ 0.2°, 20.5 ⁇ 0.2°, 21.6 ⁇ 0.2°, 22.7 ⁇ 0.2°, 22.9 ⁇ 0.2°, 23.8 ⁇ 0.2°, 24.7 ⁇ 0.2°, 26.3 ⁇ 0.2°, 26.5 ⁇ 0.2°, 30.3 ⁇ 0.2°, 30.4 ⁇ 0.2°, 34.2 ⁇ 0.2°.
  • the isopropyl ether solvate of the compound of formula II also has one or more technical characteristics selected from the following group:
  • the differential scanning calorimetry diagram (DSC diagram) of the isopropyl ether solvate of the compound of formula II has an endothermic peak in the range of 105 to 160°C;
  • the infrared absorption spectrum of the isopropyl ether solvate of the compound of formula II is at 3384 ⁇ 10, 3328 ⁇ 10, 3166 ⁇ 10, 2937 ⁇ 10, 2829 ⁇ 10, 1596 ⁇ 10, 1572 ⁇ 10, and Absorption peak at 1469 ⁇ 10cm-1; and/or
  • thermogravimetric analysis chart of the isopropyl ether solvate of the compound of formula II has a weight loss of about 15.0 ⁇ 0.2% in the range of 105°C to 170°C.
  • the differential scanning calorimetry chart (DSC chart) of the isopropyl ether solvate of the compound of formula II has an initial value of 105.0 ⁇ 2°C and/or a peak value of 157.9 ⁇ 2°C.
  • the isopropyl ether solvate of the compound of formula II also has one or more technical characteristics selected from the following group:
  • thermogravimetric analysis (TGA) diagram of the isopropyl ether solvate of the compound of formula II is basically shown in FIG. 10 .
  • the present invention provides a method for preparing a compound of formula I, comprising the steps of: 1) adding solvent X to a solution of a crude compound of formula II in solvent 4, collecting the solid to obtain a compound of formula I, wherein the solvent X is methyl tert-butyl ether or isopropyl ether.
  • step 1) includes: adding solvent 4 to the crude compound of formula II, heating to 40-80°C, adding solvent X after the solid dissolves, stirring for 0.5-1.5 hours, cooling down (0-30°C), collecting the solid to obtain Compound of formula I.
  • the weight ratio of solvent 4 to the compound of formula I is 1:2-5, such as 1:3 or 1:4.
  • the volume ratio of solvent 4 to solvent X is 1:3-15, preferably 1:5-10.
  • the purity of the crude compound of formula II is 80-95%.
  • the crude compound of formula II is prepared according to the first aspect of the present invention.
  • the purity of the compound of formula I is >99.5%, preferably ⁇ 99.7%, ⁇ 99.8%.
  • the purity of the crude compound of formula II is about 80%, the compound of formula I with a high purity of 99.5% or more can be directly obtained by the method of the fourth aspect of the present invention without further purification.
  • the fifth aspect of the present invention provides the use of the compound of formula I according to the fourth aspect of the present invention for the preparation of intermediates of remegepam or remegepam hemisulfate sesquihydrate.
  • the compound of formula I of the present invention is easier to obtain with high purity (>95%), and is very suitable as an intermediate substance of high purity (eg, purity>99.5%, preferably ⁇ 99.7%, ⁇ 99.8%) Remegepam.
  • solubility of the compound of formula I is much stronger than that of the compound of formula II, and can be dissolved in THF, DCM, EtOH, MeOH and other conventional solvents at room temperature, so that it can be conveniently used to prepare the hemisulfate sesquihydrate of remegepam substance (compound of formula V), and the salt-forming process will not cause an increase in the amount of impurities or the generation of new impurities.
  • the sixth aspect of the present invention provides a method for preparing remegepam hemisulfate sesquihydrate (compound of formula V), comprising the steps of:
  • X is methyl tert-butyl ether or isopropyl ether.
  • the solvent 6 is a mixed solvent of an organic solvent and water, and the organic solvent is selected from the group consisting of ethanol, methanol, isopropanol, acetone, tetrahydrofuran, preferably ethanol/water or THF/water.
  • the method includes the steps of: adding the compound of formula I into solvent 6, heating to 50-70°C, and dissolving the solid; adding sulfuric acid solution dropwise, and stirring for 1-2 hours; cooling down (0-30°C), collecting The solid affords the compound of formula V.
  • the solvent 6 has a volume ratio of organic solvent to water of 3-15:1, preferably 3-10:1, such as 5:1 or 8:1.
  • the compound of formula I is prepared according to the fourth aspect of the present invention.
  • the purity of the compound of formula I is >99.5%, preferably ⁇ 99.7%, ⁇ 99.8%.
  • the purity of the compound of formula V is >99.5%, preferably ⁇ 99.7%, ⁇ 99.8%.
  • Fig. 1 is the PXRD collection of illustrative plates of remegepam methyl tert-butyl ether solvate of the present invention
  • Fig. 2 is the DSC collection of illustrative plates of remegepam methyl tert-butyl ether solvate of the present invention
  • Fig. 3 is the IR spectrum of remegepam methyl tert-butyl ether solvate of the present invention
  • Fig. 4 is the TGA collection of illustrative plates of remegepam methyl tert-butyl ether solvate of the present invention
  • Fig. 5 is the 1 H-NMR spectrum of remegepam methyl tert-butyl ether solvate of the present invention.
  • Fig. 6 is the HPLC collection of illustrative plates of remegepam methyl tert-butyl ether solvate of the present invention
  • Fig. 7 is the PXRD collection of illustrative plates of remegepam isopropyl ether solvate of the present invention.
  • Fig. 8 is the DSC collection of illustrative plates of remegepam isopropyl ether solvate of the present invention.
  • Fig. 9 is the IR spectrum of remegepam isopropyl ether solvate of the present invention.
  • Fig. 10 is the TGA collection of illustrative plates of remegepam isopropyl ether solvate of the present invention.
  • Fig. 11 is the PXRD pattern of remegepam hemisulfate sesquihydrate of the present invention.
  • Fig. 12 is the HPLC spectrum of remegepam hemisulfate sesquihydrate of the present invention.
  • the present inventor provides a preparation method of Remegepam, the preparation method of the present invention has mild conditions, high yield, high product purity, easy operation, and is suitable for industrial production .
  • the present invention also provides a purification method for obtaining high-purity Ramezepam or its pharmaceutically acceptable crystal form. The inventors unexpectedly found that by forming a specific solvate intermediate, the originally difficult-to-purify Ramezepam can be made The purity of the product prepared by Gepam is increased to more than 99.5%, and the present invention is completed on this basis.
  • the term "about” when used in reference to a specifically recited value means that the value may vary by no more than 1% from the recited value.
  • the expression “about 100” includes all values between 99 and 101 and in between (eg, 99.1, 99.2, 99.3, 99.4, etc.).
  • the term “comprises” or “includes (comprising)” can be open, semi-closed and closed. In other words, the term also includes “consisting essentially of”, or “consisting of”.
  • room temperature or "normal temperature” refers to a temperature of 4-40°C, preferably 25 ⁇ 5°C.
  • a preparation method of Remegepam comprising the steps of:
  • the base is selected from the group consisting of lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, magnesium tert-butoxide, sodium hydroxide, potassium hydroxide, sodium ethoxide, sodium methoxide, or combinations thereof, Preference is given to sodium tert-butoxide or potassium tert-butoxide.
  • the solvent 1 is selected from the group consisting of dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, 1,4-diox Hexacyclic, methyl isobutyl ketone, or a combination thereof, preferably dimethylsulfoxide or N,N-dimethylformamide.
  • the reaction substrate and the product can be completely dissolved in the solvent 1.
  • the solvent 2 is selected from dichloromethane, 1,2-dichloroethane, chloroform, toluene, ethyl acetate, methyl tetrahydrofuran or combinations thereof, preferably dichloromethane.
  • the organic phase is washed with water 1-3 times, preferably 2-3 times, before being concentrated.
  • the solvent 2 is immiscible with water, and the water washing step can effectively wash off the solvent 1 and water-soluble impurities, and leave the remegepam, which is easily soluble in the solvent 2, in the organic phase.
  • the method also includes the following refining steps:
  • the solvent 3 is selected from the group consisting of n-heptane, petroleum ether, methyl tertiary ether, acetonitrile, tetrahydrofuran, methyl tetrahydrofuran, ethyl acetate, isopropyl acetate, ethanol, methanol, isopropanol, butanol, acetone, Butanone, or a combination thereof, preferably ethyl acetate, a mixed solvent of acetonitrile-n-heptane (such as a volume ratio of 1:0.5-2, preferably 1:0.8-1.2, more preferably 1:1), or tetrahydrofuran and A mixed solvent of n-heptane (such as a volume ratio of 1:0.5-2, preferably 1:0.8-1.2, more preferably 1:1); preferably, when using a mixed solvent, first use a good solvent (such as acetonitrile or tetrahydrofuran) to dissolve the crude compound of
  • step 2) Slurry the compound of formula I obtained in step 1) in solvent 5, collect the solid to obtain a high-purity product of compound of formula II;
  • the solvent X is methyl tert-butyl ether, isopropyl ether.
  • the present inventors unexpectedly found that after preparing the relatively low-purity crude compound of formula II into its methyl tert-butyl ether solvate or isopropyl ether tert-butyl solvate, the product purity can be increased to more than 99.5%. Therefore, the problem that the crude product of remegepam is difficult to purify can be solved, and the requirements of purity (>99.5%) and impurities (known impurities ⁇ 0.15%, unknown impurities ⁇ 0.10%) specified for its medicinal use can be met.
  • the methyl tert-butyl ether solvate of the compound of formula II of the present invention and the isopropyl ether tert-butyl solvate of the compound of formula II are very suitable as the preparation of high-purity ramegepam or its pharmaceutically acceptable salt intermediates.
  • the crude compound of formula II is prepared by the above method of the present invention.
  • the present invention also provides the methyl tert-butyl ether solvate of the compound of formula II, and the isopropyl ether tert-butyl solvate of the compound of formula II (as shown in formula I).
  • X is methyl tert-butyl ether or isopropyl ether.
  • the molar ratio of the compound of formula II to X is 1:1.
  • the methyl tert-butyl ether solvate of the compound of formula II of the present invention also has characteristic peaks at one or more of the following 2 ⁇ values: 8.3 ⁇ 0.2 °, 12.6 ⁇ 0.2 °, 15.4 ⁇ 0.2°, 20.4 ⁇ 0.2°, 21.0 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the methyl tert-butyl ether solvate of the compound of formula II is basically as shown in FIG. 1 .
  • the X-ray powder diffraction peak table is basically as shown in Table 1;
  • the differential scanning calorimetry (DSC) diagram of the methyl tert-butyl ether solvate of the compound of formula II is basically shown in FIG. 2 .
  • the infrared absorption spectrum of the methyl tert-butyl ether solvate of the compound of formula II is basically shown in FIG. 3 .
  • thermogravimetric analysis diagram of the methyl tert-butyl ether solvate of the compound of formula II is basically shown in FIG. 4 .
  • the X-ray powder diffraction pattern of the isopropyl ether solvate of the compound of formula II provided by the present invention has characteristic peaks at the following 2 ⁇ values: 4.2 ⁇ 0.2°, 16.9 ⁇ 0.2°, 20.5 ⁇ 0.2°, 16.7 ⁇ 0.2° 0.2°, 15.8 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the isopropyl ether solvate of the compound of formula II is substantially as shown in FIG. 7 .
  • the X-ray powder diffraction peak table is basically as shown in Table 2;
  • DSC differential scanning calorimetry
  • the infrared absorption spectrum of the isopropyl ether solvate of the compound of formula II is basically shown in FIG. 9 .
  • thermogravimetric analysis (TGA) of the isopropyl ether solvate of the compound of formula II is basically shown in FIG. 10 .
  • the present invention also provides the use of the above-mentioned solvate for the preparation of an intermediate of remegepam or remegepam hemisulfate sesquihydrate.
  • the present invention also provides a preparation method of the above-mentioned solvate, comprising the steps of: 1) adding solvent X to the solution of the crude compound of formula II in solvent 4, collecting the solid to obtain the compound of formula I, wherein the solvent X is Methyl tert-butyl ether or isopropyl ether.
  • the solvent 4 is selected from the group consisting of dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, 1,4-diox Hexacyclic, methyl isobutyl ketone, methanol, dichloromethane, chloroform or combinations thereof; preferably, selected from dimethylsulfoxide, N,N-dimethylformamide or 1,4-dioxane.
  • the present invention also provides a method for preparing remegepam hemisulfate sesquihydrate (compound of formula V), comprising the steps of:
  • X is methyl tert-butyl ether or isopropyl ether.
  • the compound of formula I is prepared by the above method of the present invention.
  • the raw material compound of formula III and compound of formula IV can be prepared by the method disclosed in WO2012050764.
  • X-ray powder diffractometer BRUKER AXS D2PHASER X-ray powder diffractometer; radiation source: Intensity ratio ⁇ 1/ ⁇ 2 is 0.5; generator (Generator) kv: 30.0kv; generator (Generator) mA: 10.0mA; initial 2 ⁇ : 2.000°, scanning range: 2.0000 ⁇ 40.000°.
  • METTLEER DSC1 differential scanning calorimeter heating program 20 °C ⁇ 300 °C temperature rise 10 °C per minute.
  • Detection wavelength 210 nm.
  • the phase was dry, and 251 g of a foamy solid of the compound of formula II was obtained, with an HPLC purity of 82.6%.
  • THF (1250 mL) was added to the foamy solid, and stirred at room temperature for 0.5-1 hour to dissolve the solid.
  • n-Heptane (1250 mL) was added, and a large amount of white solid precipitated out. Stirring was continued for 1 hour. After filtration, 206 g of the compound of formula II was obtained, with a yield of 100% and an HPLC purity of 94.4%.
  • the solvent system solution state yield purity 1 EtOH 15V, reflow for 2 hours Slurry 62.5% 98.20% 2 CH3CN 15V, reflow for 3 hours Slurry 90% 97.98% 3 EtOH 15V, water 1V, reflux for 1 hour Slurry 62.5% 98.90% 4 CH3CN 4V, DCM1V, 2 hours at 40°C Slurry 89.6% 98.03% 5 Dissolve DMF4V, add toluene 6V at 40 ⁇ 50°C clarify Not precipitated / 6 EA 10V, reflow for 2 hours Slurry 94% 95.0%
  • Example 2 Add 100 g of the bubbly solid compound of formula II obtained in Example 1 (HPLC purity 82.6%), DMF (320 mL) into the reaction kettle, and heat to 45-60° C. to dissolve the solid.
  • MTBE (1400 mL) was added, a large amount of solid precipitated out, and stirring was continued at 45-60° C. for 1-2 hours. Cool to 5-15°C, filter, wash the solid with MTBE (200 mL), and dry in vacuo at 45-60°C to obtain 91.2 g of the compound of formula I with a yield of 95.0% and an HPLC purity of 99.86%, without more than 0.10% of unknown impurities.
  • the compound of formula I (180 g, 290 mmol) prepared in Example 5, THF/water (volume ratio 4:1, 1260 mL) was added to the reaction kettle, and stirred. Heat to 50-60°C. A THF solution (540 mL) of concentrated sulfuric acid (8 mL, 145 mmol) was added dropwise over 0.5-1 hour. Maintain 50-60°C and continue stirring for 1-2 hours. Cool to 5-10°C, filter, and vacuum-dry at 25-30°C to obtain 162 g of a white solid with a yield of 93%, an HPLC purity of 99.86%, and no unknown impurities greater than 0.10%.

Abstract

本发明公开了一种瑞美吉泮的制备方法,具体地,包括步骤:1)在溶剂1中,在碱存在下,式(III)化合物与式(IV)化合物发生反应;2)反应结束后,加入溶剂2,调节pH<10;和3)将有机相浓缩得到式(II)化合物粗品。本发明的方法条件温和,收率高,产品纯度高,符合现有ICH法规对杂质的要求;操作简便,适合工业化生产。

Description

一种瑞美吉泮的制备方法 技术领域
本发明属于药物化学技术领域,具体涉及瑞美吉泮的制备方法。
背景技术
瑞美吉泮(式II化合物,英文名Rimegepant)是一种有效的、选择性的、竞争性的、口服活性的降钙素基因相关肽(CGRP)拮抗剂,用于成人偏头痛的急性治疗。于2020年2月27日获得美国食品药品监督管理局(FDA)批准上市。
WO2011046997报道了瑞美吉泮的两种合成方法:
路线1:
Figure PCTCN2022142971-appb-000001
路线2:
Figure PCTCN2022142971-appb-000002
路线1含有叠氮化反应步骤,众所周知叠氮化反应操作有很大的安全隐患,叠氮化产物本身为高能化合物,存储运输都有安全风险。而且WO2011046997公开的瑞美吉泮纯化方法采用的是FCC法,即快速色谱柱层析,此纯化方法也不适合工业化大生产。
WO2011046997只公开了路线2,没有公开相应的实施例,WO2012050764补充了路线2的实施例,收率为78.3%。发明人在重复WO2012050764实施例3的方法时,发现路线2 中的式IV化合物在溶剂四氢呋喃中的溶解性极差,反应过程中反应体系一直为浆状,没有溶清过程,原料有10~20%的剩余,即使延长反应时间,原料也不再转化。如果提高反应温度,则副产物大大增加。此方法最优条件下得到瑞美吉泮的收率只有66%,HPLC纯度93%。
此外,瑞美吉泮的上市药用晶型为WO2013130402报道的半硫酸盐倍半水合物(以下称式V化合物)。瑞美吉泮日最大剂量为75mg,根据ICH Q3A对杂质的要求,已知杂质需要控制在0.15%以下,未知杂质需要控制在0.10%以下。而式II化合物在常规溶剂中溶剂度极差(小于0.02g/mL),不容易纯化到纯度99.5%以上。
发明内容
本发明的目的是提供一种条件温和,收率高,产品纯度高、操作简便,适合工业化生产的瑞美吉泮的制备方法。
本发明第一方面,提供了一种瑞美吉泮的制备方法,包括步骤:
1)在溶剂1中,在碱存在下,式III化合物与式IV化合物发生反应;
2)反应结束后,加入溶剂2,调节pH<10;和
3)将有机相浓缩得到式II化合物粗品;
Figure PCTCN2022142971-appb-000003
其中,所述的溶剂1选自下组:二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,或其组合,优选二甲亚砜或N,N-二甲基甲酰胺。
在另一优选例中,所述的碱选自下组:叔丁醇锂,叔丁醇钠,叔丁醇钾,叔丁醇镁,氢氧化钠,氢氧化钾,乙醇钠、甲醇钠,或其组合,优选叔丁醇钠或叔丁醇钾。
在另一优选例中,所述方法还具有一个或多个下述特征:
(a)所述的溶剂2选自二氯甲烷,1,2-二氯乙烷,氯仿,甲苯,乙酸乙酯,甲基四氢呋喃或其组合,优选二氯甲烷;
(b)所述pH调节至7-10,如7、8或9;
(c)式III化合物与式IV化合物的摩尔比为1:1~2.5,优选1:1.3~1.5;
(d)式III化合物与所述的碱的摩尔比为1:1.5~4.5,优选1:2~3;和/或
(e)所述反应的温度为10-40℃,较佳地,20-35℃。
在另一优选例中,步骤(3)中,所述有机相在浓缩前经过1-3次水洗步骤,较佳地,2-3次。
在另一优选例中,所述方法还包括以下精制步骤:
i)将步骤3)得到的式II化合物粗品用溶剂3打浆,然后过滤得到式II化合物精品;
所述溶剂3选自下组:正庚烷,石油醚,甲叔醚,乙腈,四氢呋喃,甲基四氢呋喃,乙酸乙酯,乙酸异丙酯,乙醇,甲醇,异丙醇,丁醇,丙酮,丁酮,或其组合,优选乙酸乙酯,乙腈正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1),或四氢呋喃与正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1)。
本发明第二方面,提供了一种瑞美吉泮的纯化方法,包括步骤:
1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物;
2)将步骤1)得到的式I化合物在溶剂5中打浆,收集固体得到式II化合物高纯度精品;
反应式如下:
Figure PCTCN2022142971-appb-000004
所述的溶剂X为甲基叔丁基醚或异丙醚。
另一优选例中,步骤1)包括:式II化合物粗品加入溶剂4,加热至40~80℃,固体溶解后加入溶剂X,搅拌0.5~1.5小时,降温(0~30℃),收集固体得到式I化合物。
另一优选例中,步骤2)包括:式I化合物加入到溶剂5中,加热至50~70℃,打浆0.5~1.5小时,降温至0~30℃,收集固体得到式II化合物高纯度精品。
所述的溶剂4选自下组:二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,甲醇,二氯甲烷,氯仿或其组合;较佳地,选自二甲亚砜,N,N-二甲基甲酰胺或1,4-二氧六环。
所述的溶剂5为有机溶剂与水的混合溶剂,所述的有机溶剂选自下组:乙醇,甲醇,异丙醇,丙酮,四氢呋喃,或其组合,优选乙醇/水或四氢呋喃/水。
所述溶剂5的有机溶剂与水的体积比为5~30:1,优选为5~20:1,如8:1、10:1、15:1或18:1。
在另一优选例中,溶剂4与式I化合物的重量比为1:2-5,如1:3或1:4。
在另一优选例中,溶剂4与溶剂X的体积比为1:3-15,较佳地1:5-10。
在另一优选例中,所述式II化合物粗品的纯度为80~95%。
在另一优选例中,所述式II化合物粗品是由本发明第一方面制备的。
在另一优选例中,所述式II化合物高纯度精品的纯度>99.5%,较佳地,≥99.7%、≥99.8%。
本发明第三方面,提供了一种式I化合物,为式II化合物的溶剂合物,结构式如下:
Figure PCTCN2022142971-appb-000005
其中,X为甲基叔丁基醚或异丙醚。
另一优选例中,式II化合物与X摩尔比为1:1。
另一优选例中,所述的式I化合物为式II化合物的甲基叔丁基醚溶剂合物,其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、14.9±0.2°、16.8±0.2°、18.2±0.2°、20.6±0.2°。
另一优选例中,所述的式I化合物为式II化合物的甲基叔丁基醚溶剂合物,其X射线粉末衍射图还在一个或多个下述2θ值具有特征峰:8.3±0.2°、12.6±0.2°、15.4±0.2°、20.4±0.2°、21.0±0.2°。
另一优选例中,所述的式I化合物为式II化合物的甲基叔丁基醚溶剂合物,其X射线粉末衍射图在下述2θ值处具有特征峰:4.2±0.2°、8.3±0.2°、8.9±0.2°、10.1±0.2°、12.6±0.2°、13.1±0.2°、14.9±0.2°、15.4±0.2°、15.9±0.2°、16.8±0.2°、18.2±0.2°、19.0±0.2°、19.4±0.2°、20.4±0.2°、20.6±0.2°、21.0±0.2°、22.5±0.2°、23.2±0.2°、24.1±0.2°、24.6±0.2°、25.1±0.2°、26.4±0.2°、27.8±0.2°、30.4±0.2°、35.3±0.2°、39.4±0.2°。
另一优选例中,所述式II化合物的甲基叔丁基醚溶剂合物还具有一个或多个选自下组的技术特征:
(1)所述式II化合物的甲基叔丁基醚溶剂合物的差示扫描量热分析图(DSC图)在164~182℃范围内有一个吸热峰;
(2)所述式II化合物的甲基叔丁基醚溶剂合物的红外吸收谱图在3387±10、3324±10、3150±10、2976±10、2866±10、1702±10、1595±10、和1572±10cm-1处有吸收峰;和/或
(3)所述式II化合物的甲基叔丁基醚溶剂合物热重分析图(TGA图)在155℃至200℃的范围内有约12.2±0.2%的失重。
另一优选例中,所述式II化合物的甲基叔丁基醚溶剂合物的差示扫描量热分析图(DSC图)的起始值为164.0±2℃和/或峰值为172.7±2℃;
另一优选例中,所述式II化合物的甲基叔丁基醚溶剂合物还具有一个或多个选自 下组的技术特征:
(1)所述式II化合物的甲基叔丁基醚溶剂合物的X射线粉末衍射图基本如图1所示;
(2)所述式II化合物的甲基叔丁基醚溶剂合物的差示扫描量热分析图(DSC)基本如图2所示;
(3)所述式II化合物的甲基叔丁基醚溶剂合物的红外吸收谱图基本如图3所示;和/或
(4)所述式II化合物的甲基叔丁基醚溶剂合物的热重分析图(TGA图)基本如图4所示。
另一优选例中,所述的式I化合物为式II化合物的异丙醚溶剂合物,其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、16.9±0.2°、20.5±0.2°、16.7±0.2°、15.8±0.2°。
另一优选例中,所述的式I化合物为式II化合物的异丙醚溶剂合物,其X射线粉末衍射图还在一个或多个下述2θ值具有特征峰:8.4±0.2°、12.6±0.2°、15.6±0.2°、19.4±0.2°、22.7±0.2°。
另一优选例中,所述的式I化合物为式II化合物的异丙醚溶剂合物,其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、4.7±0.2°、8.4±0.2°、12.6±0.2°、13.9±0.2°、14.8±0.2°、15.1±0.2°、15.2±0.2°、15.6±0.2°、15.8±0.2°、16.7±0.2°、16.9±0.2°、18.1±0.2°、18.7±0.2°、18.9±0.2°、19.2±0.2°、19.4±0.2°、20.5±0.2°、21.6±0.2°、22.7±0.2°、22.9±0.2°、23.8±0.2°、24.7±0.2°、26.3±0.2°、26.5±0.2°、30.3±0.2°、30.4±0.2°、34.2±0.2°。
另一优选例中,所述式II化合物的异丙醚溶剂合物还具有一个或多个选自下组的技术特征:
(1)所述式II化合物的异丙醚溶剂合物的差示扫描量热分析图(DSC图)在105~160℃范围内有一个吸热峰;
(2)所述式II化合物的异丙醚溶剂合物的红外吸收谱图在3384±10、3328±10、3166±10、2937±10、2829±10、1596±10、1572±10、和1469±10cm-1处有吸收峰;和/或
(3)所述式II化合物的异丙醚溶剂合物的热重分析图(TGA图)在105℃至170℃的范围内有约15.0±0.2%的失重。
另一优选例中,所述式II化合物的异丙醚溶剂合物的差示扫描量热分析图(DSC图)的起始值为105.0±2℃和/或峰值为157.9±2℃。
另一优选例中,所述式II化合物的异丙醚溶剂合物还具有一个或多个选自下组的技术特征:
(1)所述式II化合物的异丙醚溶剂合物的X射线粉末衍射图基本如图7所示;
(2)所述式II化合物的异丙醚溶剂合物的差示扫描量热分析图(DSC)基本如图8所示;
(3)所述式II化合物的异丙醚溶剂合物的红外吸收谱图基本如图9所示;和/或
(4)所述式II化合物的异丙醚溶剂合物的热重分析图(TGA)基本如图10所示。
本发明第四方面,提供了一种式I化合物的制备方法,包括步骤:1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物,其中,所述的溶剂X为甲基叔丁基醚或异丙醚。
另一优选例中,步骤1)包括:式II化合物粗品加入溶剂4,加热至40~80℃,固体溶解后加入溶剂X,搅拌0.5~1.5小时,降温(0~30℃),收集固体得到式I化合物。
在另一优选例中,溶剂4与式I化合物的重量比为1:2-5,如1:3或1:4。
在另一优选例中,溶剂4与溶剂X的体积比为1:3-15,较佳地1:5-10。
在另一优选例中,所述式II化合物粗品的纯度为80~95%。
在另一优选例中,所述式II化合物粗品本发明第一方面制备的。
在另一优选例中,所述式I化合物的纯度>99.5%,较佳地,≥99.7%、≥99.8%。
进一步地,式II化合物粗品纯度为80%左右的情况下,无需进一步精制,可通过本发明第四方面的方法直接得到99.5%以上高纯度的式I化合物。
本发明第五方面,提供了本发明第四方面的式I化合物的用于制备瑞美吉泮或瑞美吉泮半硫酸盐倍半水合物的中间体的用途。
本发明的式I化合物更易于获得高纯度(>95%),非常适合作为高纯度(如纯度>99.5%,较佳地,≥99.7%、≥99.8%)瑞美吉泮的中间体物质。
进一步地,式I化合物溶解性较式II化合物增强很多,室温下可以溶解在THF,DCM,EtOH,MeOH等常规溶剂中,从而可方便地用于制备瑞美吉泮的半硫酸盐倍半水合物(式V化合物),且成盐过程不会造成杂质量增大或新杂质的产生。
本发明第六方面,提供了一种瑞美吉泮半硫酸盐倍半水合物(式V化合物)的制备方法,包括步骤:
1)将式I化合物溶解于溶剂6中,滴加硫酸溶液,收集固体得到式V化合物;
反应式如下:
Figure PCTCN2022142971-appb-000006
其中,X为甲基叔丁基醚或异丙醚。
在另一优选例中,所述的溶剂6为有机溶剂与水的混合溶剂,所述的有机溶剂选 自下组:乙醇,甲醇,异丙醇,丙酮,四氢呋喃,较佳地为乙醇/水或四氢呋喃/水。
另一优选例中,所述方法包括步骤:将式I化合物加入溶剂6,加热至50~70℃,固体溶解;滴加硫酸溶液,搅拌1~2小时;降温(0~30℃),收集固体得到式V化合物。
另一优选例中,所述溶剂6的有机溶剂与水的体积比为3~15:1,优选为3~10:1,如5:1或8:1。
在另一优选例中,所述式I化合物为本发明第四方面制备的。
在另一优选例中,所述式I化合物的纯度>99.5%,较佳地,≥99.7%、≥99.8%。
在另一优选例中,所述式V化合物的纯度>99.5%,较佳地,≥99.7%、≥99.8%。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的PXRD图谱;
图2为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的DSC图谱;
图3为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的IR图谱;
图4为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的TGA图谱;
图5为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的 1H-NMR图谱;
图6为本发明的瑞美吉泮甲基叔丁基醚溶剂合物的HPLC图谱;
图7为本发明的瑞美吉泮异丙醚溶剂合物的PXRD图谱;
图8为本发明的瑞美吉泮异丙醚溶剂合物的DSC图谱;
图9为本发明的瑞美吉泮异丙醚溶剂合物的IR图谱;
图10为本发明的瑞美吉泮异丙醚溶剂合物的TGA图谱;
图11为本发明的瑞美吉泮半硫酸盐倍半水合物的PXRD图谱;
图12为本发明的瑞美吉泮半硫酸盐倍半水合物的HPLC图谱。
具体实施方式
本发明人经过广泛而深入的研究,通过大量筛选和测试,提供了一种瑞美吉泮的制备方法,本发明的制备方法条件温和,收率高,产品纯度高、操作简便,适合工业化生产。此外,本发明还提供了一种获得高纯度瑞美吉泮或其药用晶型的纯化方法,本发明人意外地发现,通过形成特定的溶剂化物中间体,可使原本难以纯化的瑞美吉泮制备产物纯度提高到99.5%以上,在此基础上完成了本发明。
术语
除非另有定义,否则本文中所用的全部技术术语和科学术语均具有如本发明所属领域普通技术人员通常理解的相同含义。
如本文所用,在提到具体列举的数值中使用时,术语“约”意指该值可以从列举的值变动不多于1%。例如,如本文所用,表述“约100”包括99和101和之间的全部值(例如,99.1、99.2、99.3、99.4等)。
如本文所用,术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由……构成”、或“由……构成”。
如本文所用,术语“室温”或“常温”是指温度为4-40℃,较佳地,25±5℃。
瑞美吉泮的制备方法
一种瑞美吉泮的制备方法,包括步骤:
1)在溶剂1中,在碱存在下,式III化合物与式IV化合物发生反应;
2)反应结束后,加入溶剂2,调节pH<10;和
3)将有机相浓缩得到式II化合物粗品;
Figure PCTCN2022142971-appb-000007
优选地,所述的碱选自下组:叔丁醇锂,叔丁醇钠,叔丁醇钾,叔丁醇镁,氢氧化钠,氢氧化钾,乙醇钠、甲醇钠,或其组合,优选叔丁醇钠或叔丁醇钾。
优选地,所述的溶剂1选自下组:二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,或其组合,优选二甲亚砜或N,N-二甲基甲酰胺。在反应过程中,反应底物和产物均能够完全溶解在所述溶剂1中。
优选地,所述的溶剂2选自二氯甲烷,1,2-二氯乙烷,氯仿,甲苯,乙酸乙酯,甲基四氢呋喃或其组合,优选二氯甲烷。
优选地,步骤(3)中,所述有机相在浓缩前经过1-3次水洗步骤,较佳地,2-3次。溶剂2与水不互溶,所述水洗步骤能够将溶剂1及水溶性的杂质有效洗除,而将易溶于溶剂2的瑞美吉泮留在有机相中。
进一步地,所述方法还包括以下精制步骤:
i)将步骤3)得到的式II化合物粗品用溶剂3打浆,然后过滤得到式II化合物精品;
所述溶剂3选自下组:正庚烷,石油醚,甲叔醚,乙腈,四氢呋喃,甲基四氢呋喃,乙酸乙酯,乙酸异丙酯,乙醇,甲醇,异丙醇,丁醇,丙酮,丁酮,或其组合,优选乙酸乙酯,乙腈正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1),或四氢呋喃与正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1);优选地,当使用混合溶剂是,先用良溶剂(如乙腈或四氢呋喃)将式II化合物粗品溶解,然后加入不良溶剂(如正庚烷或乙酸乙酯)打浆析出得式II化合物精品。
纯化方法
进一步地,提供了一种瑞美吉泮的纯化方法,包括步骤:
1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物;
2)将步骤1)得到的式I化合物在溶剂5中打浆,收集固体得到式II化合物高纯度精品;
反应式如下:
Figure PCTCN2022142971-appb-000008
所述的溶剂X为甲基叔丁基醚,异丙醚。
本发明人意外的发现,将纯度相对较低的式II化合物粗品制备成其甲基叔丁基醚溶剂合物或异丙醚叔丁基溶剂合物后,产品纯度可提高至99.5%以上,从而能够解决瑞美吉泮粗品难以纯化的问题,并能够达到其药用所规定的纯度(>99.5%)和杂质(已知杂质<0.15%,未知杂质<0.10%)要求。
基于此,本发明的式II化合物的甲基叔丁基醚溶剂合物、及式II化合物的异丙醚叔丁基溶剂合物非常适合作为制备高纯度瑞美吉泮或其药学上可接受的盐的中间体。
优选地,所述式II化合物粗品为本发明的上述方法制备的。
溶剂合物
本发明还提供了式II化合物的甲基叔丁基醚溶剂合物、及式II化合物的异丙醚叔丁基溶剂合物(如式I所示)。
结构式如下:
Figure PCTCN2022142971-appb-000009
其中,X为甲基叔丁基醚或异丙醚。其中,式II化合物与X摩尔比为1:1。
优选地,本发明的所述式II化合物的甲基叔丁基醚溶剂合物,其X射线粉末衍射图还在一个或多个下述2θ值具有特征峰:8.3±0.2°、12.6±0.2°、15.4±0.2°、20.4±0.2°、21.0±0.2°。
优选地,所述式II化合物的甲基叔丁基醚溶剂合物的X射线粉末衍射图基本如图1所示。X射线粉末衍射峰表基本如表1所示;
表1
NO. 2θ(°) 相对强度(%)
1 4.2±0.2° 100%
2 8.3±0.2° 4.4%
3 8.9±0.2° 0.4%
4 10.1±0.2° 1.8%
5 12.6±0.2° 4.2%
6 13.1±0.2° 1.2%
7 14.9±0.2° 9.0%
8 15.4±0.2° 5.2%
9 15.9±0.2° 3.5%
10 16.8±0.2° 8.8%
11 18.2±0.2° 10.0%
12 19.0±0.2° 2.1%
13 19.4±0.2° 1.6%
14 20.4±0.2° 6.4%
15 20.6±0.2° 6.8%
16 21.0±0.2° 4.2%
17 22.5±0.2° 1.0%
18 23.2±0.2° 1.5%
19 24.1±0.2° 1.6%
20 24.6±0.2° 1.8%
21 25.1±0.2° 0.7%
22 26.4±0.2° 2.4%
23 27.8±0.2° 1.0%
24 30.4±0.2° 1.0%
25 35.3±0.2° 0.4%
26 39.4±0.2° 0.9%
所述式II化合物的甲基叔丁基醚溶剂合物的差示扫描量热分析图(DSC)基本如图2所示。
所述式II化合物的甲基叔丁基醚溶剂合物的红外吸收谱图基本如图3所示。
所述式II化合物的甲基叔丁基醚溶剂合物的热重分析图(TGA图)基本如图4所示。
进一步的,本发明提供的所述式II化合物的异丙醚溶剂合物其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、16.9±0.2°、20.5±0.2°、16.7±0.2°、15.8±0.2°。
优选地,所述式II化合物的异丙醚溶剂合物的X射线粉末衍射图基本如图7所示。X射线粉末衍射峰表基本如表2所示;
表2
NO. 2θ(°) 相对强度(%)
1 4.2±0.2° 100%
2 4.7±0.2° 0.7%
3 8.4±0.2° 4.6%
4 12.6±0.2° 4.2%
5 13.9±0.2° 1.9%
6 14.8±0.2° 1.9%
7 15.1±0.2° 2.0%
8 15.2±0.2° 2.1%
9 15.6±0.2° 3.9%
10 15.8±0.2° 4.8%
11 16.7±0.2° 6.9%
12 16.9±0.2° 9.7%
13 18.1±0.2° 0.6%
14 18.7±0.2° 1.6%
15 18.9±0.2° 2.0%
16 19.2±0.2° 2.2%
17 19.4±0.2° 2.4%
18 20.5±0.2° 8.2%
19 21.6±0.2° 2.0%
20 22.7±0.2° 2.3%
21 22.9±0.2° 2.1%
22 23.8±0.2° 0.3%
23 24.7±0.2° 0.9%
24 26.3±0.2° 1.9%
25 26.5±0.2° 1.2%
26 30.3±0.2° 1.1%
27 30.4±0.2° 0.9%
28 34.2±0.2° 0.3%
此外,本发明的所述式II化合物的异丙醚溶剂合物的差示扫描量热分析图(DSC)基本如图8所示。
所述式II化合物的异丙醚溶剂合物的红外吸收谱图基本如图9所示。
所述式II化合物的异丙醚溶剂合物的热重分析图(TGA)基本如图10所示。
本发明还提供了上述溶剂合物用于制备瑞美吉泮或瑞美吉泮半硫酸盐倍半水合物的中间体的用途。
此外,本发明还提供了上述溶剂合物的制备方法,包括步骤:1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物,其中,所述的溶剂X为甲基叔丁基醚或异丙醚。
优选地,所述的溶剂4选自下组:二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,甲醇,二氯甲烷,氯仿或其组合;较佳地,选自二甲亚砜,N,N-二甲基甲酰胺或1,4-二氧六环。
瑞美吉泮半硫酸盐倍半水合物(式V化合物)的制备方法
更进一步地,本发明还提供了一种瑞美吉泮半硫酸盐倍半水合物(式V化合物)的制备方法,包括步骤:
1)将式I化合物溶解于溶剂6中,滴加硫酸溶液,收集固体得到式V化合物;
反应式如下:
Figure PCTCN2022142971-appb-000010
其中,X为甲基叔丁基醚或异丙醚。
以本发明的上述溶剂合物(式I化合物)为原料,其溶解性较式II化合物增强很多,室温下可以溶解在THF,DCM,EtOH,MeOH等常规溶剂中,从而可方便地用于制备瑞美吉泮的半硫酸盐倍半水合物(式V化合物),且成盐过程不会造成杂质量增大或新杂质的产生。
优选地,所述式I化合物为本发明的上述方法制备的。
本发明的主要优点包括:
1)本发明的制备式II化合物的反应过程中反应物体系保持均相,式III化合物转化率可达100%。反应后处理简单,式II化合物收率可高达95%。
2)本发明人意外的发现,通过制备式I化合物,可以得到99.8%以上的式II化合物和式V化合物,纯化收率可高达95%以上。且均无大于0.10%的未知杂质,符合ICH Q3A对杂质的要求,溶剂残留,ROI(灼烧残渣)均合格。
下面结合具体实施,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
原料式III化合物和式IV化合物可通过WO2012050764公开的方法制备得到。
通用方法:
1.XRPD图谱测定方法
X-射线粉末衍射仪器:BRUKER AXS D2PHASER X-射线粉末衍射仪;辐射源:
Figure PCTCN2022142971-appb-000011
强度比α1/α2为0.5;发生器(Generator)kv:30.0kv;发生器(Generator)mA:10.0mA;起始的2θ:2.000°,扫描范围:2.0000~40.000°。
2.DSC测定方法
METTLEER DSC1差式扫描量热仪升温程序:20℃~300℃每分钟升温10℃。
3.TGA测定方法
仪器型号:METTLEER TGA/DSC1热重分析仪升温程序:30℃~450℃每分钟升温10℃。
4.红外吸收测定方法
仪器型号:PerkinElmer Spectrun Two傅里叶变换红外光谱仪溴化钾压片扫描范围4400-450cm -1分辨率为4cm -1扫描4次。
5.HPLC检测条件:
仪器:Agilent 1260series HPLC.
色谱柱:Waters XSelect CSH C18,4.6mm×250mm,5μm
柱温:15℃
样品室温度:25℃
流动相A:0.02%H 3PO 4in water
流动相B:色谱纯乙腈
表3
时间(min) %流动相A %流动相B
0 98 2
5 98 2
10 80 20
18 78 22
25 70 30
33 5 95
37 5 95
37.1 98 2
55 98 2
流速:1毫升/分钟
测定时间:55分钟
检测波长:210纳米。
实施例1式II化合物的制备
氮气保护,室温下,反应釜中加入DMSO(3500mL),式III化合物100g(344mmol)和式IV化合物154g(482mmol),搅拌,加入叔丁醇钾96g(826mmol),室温反应6小 时。HPLC监控式III化合物转化完全,加入DCM(1000mL),2N盐酸水溶液调节PH=7~9,分层,水相用DCM(200mL)萃取三次,合并有机相,水(200mL)洗一次,浓缩有机相至干,得到式II化合物的泡状固体251g,HPLC纯度82.6%。于泡状固体中加入THF(1250mL),室温下搅拌0.5~1小时,使固体溶解。加入正庚烷(1250mL),大量白色固体析出。继续搅拌1小时。过滤,得到式II化合物206g,收率100%,HPLC纯度94.4%。
实施例2式II化合物的制备
氮气保护,室温下,反应釜中加入DMF(8000mL),式III化合物100g(344mmol)和式IV化合物143g(447mmol),搅拌,加入叔丁醇钾117g(963mmol),室温反应8小时。HPLC监控式III化合物转化完全,加入DCM(1500mL),3N盐酸水溶液调节PH=8~9,分层,水相用DCM(200mL)萃取两次,合并有机相,水(300mL)洗两次,浓缩有机相至300mL得到式II化合物的DCM溶液,HPLC纯度82.2%。取上述溶液150mL,浓缩干得到泡状固体126g,HPLC纯度82.4%。将泡状固体按照实施例1的方法进行纯化,得到式II化合物102g,收率99%,HPLC纯度94.1%。
实施例3式II化合物的制备
氮气保护,室温下,反应釜中加入DMSO(600mL),式III化合物150g(516mmol)和式IV化合物231g(723mmol),搅拌,加入叔丁醇钠126g(1290mmol),室温反应10小时。HPLC监控式III化合物转化完全,加入DCM(1500mL),2N盐酸水溶液调节PH=7~8,分层,水相用DCM(300mL)萃取三次,合并有机相,水(300mL)洗两次,浓缩干有机相,加入乙酸乙酯(750mL),析出大量固体,冷却至0~10℃,过滤得到式II化合物295g,收率99%,HPLC纯度95.8%。
对比例1式II化合物的制备
氮气保护,室温下,反应瓶中加入THF(30mL),式III化合物2g(10.5mmol)和式IV化合物3.6g(11.5mmol),搅拌,加入20%叔丁醇钾的THF溶液14g(24mmol),室温反应2小时,体系为浆状。HPLC监控反应,原料剩余13%,延长2小时基本无变化。加入20%氯化钠水溶液(12mL),随后加入20%柠檬酸(6mL),分层,有机相用20%氯化钠水溶液(30mL)洗涤,浓缩至干得到粘稠状液体。加入二氯甲烷(50mL),无水硫酸钠干燥,浓缩至干,HPLC纯度66.1%。粗品用乙醇正庚烷重结晶得到式II化合物2.4g,收率66%,HPLC纯度93.7%。
对比例2式II化合物的纯化
将实施例1、实施例3和对比例1得到的式II化合物用不同常规溶剂进行纯化,得到的结果差别不大,如表4所示:
表4
  溶剂体系 溶液状态 收率 纯度
1 EtOH 15V,回流2小时 浆状 62.5% 98.20%
2 CH3CN 15V,回流3小时 浆状 90% 97.98%
3 EtOH 15V,水1V,回流1小时 浆状 62.5% 98.90%
4 CH3CN 4V,DCM1V,40℃2小时 浆状 89.6% 98.03%
5 DMF4V溶解,40~50℃加入甲苯6V 澄清 未析出 /
6 EA 10V,回流2小时 浆状 94% 95.0%
从表4中可以看出,采用常规方法纯化纯度为94%左右的式II化合物粗品,很难满足将纯度提高到99.5%以上的要求。
实施例4式I化合物(甲基叔丁基醚溶剂合物)的制备
反应釜中加入实施例1中制备的式II化合物白色固体100g(HPLC纯度94.4%),DMF(400mL),搅拌,加热至45~60℃,使固体溶解。加入MTBE(2000mL),析出大量固体,45~60℃继续搅拌0.5~1小时。冷却至10~20℃,过滤,MTBE(200mL)洗涤固体两次,45~60℃真空干燥,得到式I化合物104g,收率94.9%,HPLC纯度99.86%,无大于0.10%未知杂质,HPLC图谱如图6所示。进行PXRD、DSC、IR、TGA和 1H-NMR检测,图谱如图1-5所示。
实施例5式I化合物(甲基叔丁基醚溶剂合物)的制备
反应釜中加入实施例1中得到的式II化合物泡状固体100g(HPLC纯度82.6%),DMF(320mL),加热至45~60℃,使固体溶解。加入MTBE(1400mL),析出大量固体,45~60℃继续搅拌1~2小时。冷却至5~15℃,过滤,MTBE(200mL)洗涤固体,45~60℃真空干燥,得到式I化合物91.2g,收率95.0%,HPLC纯度99.86%,无大于0.10%未知杂质。
实施例6式I化合物(甲基叔丁基醚溶剂合物)的制备
反应釜中加入实施例2中制备的式II化合物的DCM溶液(150mL),DMF(300mL),加热至45~60℃。加入MTBE(1500mL),析出大量固体,45~60℃继续搅拌0.5~1小时。冷却至10~20℃,过滤,MTBE(100mL)洗涤固体两次,45~60℃真空干燥,得到 式I化合物94g,收率94.0%,HPLC纯度99.79%,无大于0.10%未知杂质。
实施例7式I化合物(甲基叔丁基醚溶剂合物)的制备
反应釜中加入实施例3中制备的式II化合物53g,DMSO(150mL),加热至45~55℃,使固体溶解。加入MTBE(1000mL),析出大量固体,45~55℃继续搅拌0.5~1小时,冷却至15~25℃,过滤,MTBE(100mL)洗涤固体两次,45~60℃真空干燥,得到式I化合物53g,收率90.1%,HPLC纯度99.80%,无大于0.10%未知杂质。
实施例8式I化合物(异丙醚溶剂合物)的制备
反应釜中加入实施例3中制备的式II化合物53g,DMF(150mL),加热至50~60℃,使固体溶解。加入异丙醚(750mL),析出大量固体,50~60℃继续搅拌1小时,冷却至15~25℃,过滤,异丙醚(100mL)洗涤固体两次,45~55℃真空干燥,得到式I化合物55.6g,收率为92%,HPLC纯度99.85%,无大于0.10%未知杂质。进行PXRD、DSC、IR和TGA检测,图谱如图7-10所示。
实施例10高纯度式II化合物的制备
室温下,反应釜中加实施例5中制备的式I化合物(20g,36.8mmol),乙醇/水(体积比20:1,200mL),搅拌,加热至55~70℃,体系为非均相,继续搅拌0.5~1.5小时。冷却至10~30℃,过滤,干燥得到式II化合物16.6g,收率为97%,HPLC纯度99.86%,无大于0.10%未知杂质。
实施例11式V化合物的制备
氮气保护,室温下,反应釜中加入实施例5中制备的式I化合物(90g,145mmol),乙醇/水(体积比5:1,720mL),搅拌。加热至50~70℃,滴加浓硫酸(4mL,72.5mmol)的乙醇/水溶液(体积比5:1,270mL),0.5~1小时加完。维持50~70℃,继续搅拌1~2小时。冷却至5~15℃,过滤,25~30℃真空干燥,得到白色固体83g,收率95%,HPLC纯度99.9%,无大于0.10%未知杂质,HPLC图谱如图12所示。进行PXRD检测,PXRD图谱如图11所示,与WO2013130402公开的基本一致,ROI:0.05%。
实施例12式V化合物的制备
氮气保护,室温下,反应釜中加实施例5中制备的式I化合物(180g,290mmol),THF/水(体积比4:1,1260mL),搅拌。加热至50~60℃。滴加浓硫酸(8mL,145mmol)的THF溶液(540mL),0.5~1小时加完。维持50~60℃,继续搅拌1~2小时。冷却至5~10℃,过滤,25~30℃真空干燥,得到白色固体162g,收率93%,HPLC纯度99.86%, 无大于0.10%未知杂质。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (14)

  1. 一种瑞美吉泮的制备方法,包括步骤:
    1)在溶剂1中,在碱存在下,式III化合物与式IV化合物发生反应;
    2)反应结束后,加入溶剂2,调节pH<10;和
    3)将有机相浓缩得到式II化合物粗品;
    Figure PCTCN2022142971-appb-100001
    其中,所述的溶剂1选自下组:二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,或其组合,优选二甲亚砜或N,N-二甲基甲酰胺。
  2. 如权利要求1所述的制备方法,其特征在于,所述方法还具有一个或多个下述特征:
    (a)所述的溶剂2选自二氯甲烷,1,2-二氯乙烷,氯仿,甲苯,乙酸乙酯,甲基四氢呋喃或其组合,优选二氯甲烷;
    (b)所述pH调节至7-10,如7、8或9;
    (c)式III化合物与式IV化合物的摩尔比为1:1~2.5,优选1:1.3~1.5;
    (d)式III化合物与所述的碱的摩尔比为1:1.5~4.5,优选1:2~3;和/或
    (e)所述反应的温度为10-40℃,较佳地,20-35℃;
    (f)所述的碱选自下组:叔丁醇锂,叔丁醇钠,叔丁醇钾,叔丁醇镁,氢氧化钠,氢氧化钾,乙醇钠、甲醇钠,或其组合,优选叔丁醇钠或叔丁醇钾。
  3. 如权利要求1所述的制备方法,其特征在于,所述方法还包括以下精制步骤:
    i)将步骤3)得到的式II化合物粗品用溶剂3打浆,然后过滤得到式II化合物精品;
    所述溶剂3选自下组:正庚烷,石油醚,甲叔醚,乙腈,四氢呋喃,甲基四氢呋喃,乙酸乙酯,乙酸异丙酯,乙醇,甲醇,异丙醇,丁醇,丙酮,丁酮,或其组合,优选乙酸乙酯,乙腈正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1),或四氢呋喃与正庚烷的混合溶剂(如体积比为1:0.5-2,较佳地1:0.8-1.2,更佳地1:1)。
  4. 一种瑞美吉泮的纯化方法,包括步骤:
    1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物;
    2)将步骤1)得到的式I化合物在溶剂5中打浆,收集固体得到式II化合物高纯度精 品;
    反应式如下:
    Figure PCTCN2022142971-appb-100002
    所述的溶剂X为甲基叔丁基醚或异丙醚。
  5. 如权利要求4所述的纯化方法,其特征在于,所述的溶剂4选自二甲亚砜,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N□甲基吡咯烷酮,1,4-二氧六环,甲基异丁酮,甲醇,二氯甲烷,氯仿或其组合;较佳地,选自二甲亚砜,N,N-二甲基甲酰胺或1,4-二氧六环,和/或
    所述的溶剂5为有机溶剂与水的混合溶剂,所述的有机溶剂选自乙醇,甲醇,异丙醇,丙酮,四氢呋喃,或其组合,优选乙醇/水或四氢呋喃/水。
  6. 一种式I化合物,为式II化合物的溶剂合物,结构式如下:
    Figure PCTCN2022142971-appb-100003
    其中,X为甲基叔丁基醚或异丙醚。
  7. 如权利要求6所述的式I化合物,其特征在于,所述的式I化合物为式II化合物的甲基叔丁基醚溶剂合物,其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、14.9±0.2°、16.8±0.2°、18.2±0.2°、20.6±0.2°。
  8. 如权利要求7所述的式I化合物,其特征在于,所述的式I化合物为式II化合物的甲基叔丁基醚溶剂合物,其还具有一个或多个选自下列的特征:
    (i)X射线粉末衍射图还在下述一个或多个2θ值处具有特征峰:
    8.3±0.2°、12.6±0.2°、15.4±0.2°、20.4±0.2°、21.0±0.2°;
    (ii)所述式II化合物的甲基叔丁基醚溶剂合物的差示扫描量热分析图(DSC图)在164~182℃范围内有一个吸热峰;
    (iii)所述式II化合物的甲基叔丁基醚溶剂合物的红外吸收谱图在3387±10、3324±10、3150±10、2976±10、2866±10、1702±10、1595±10、和1572±10cm -1处有吸收峰;
    (iv)所述式II化合物的甲基叔丁基醚溶剂合物热重分析图(TGA图)在155℃至 200℃的范围内有约12.2±0.2%的失重。
  9. 如权利要求6所述的式I化合物,其特征在于,所述的式I化合物为式II化合物的异丙醚溶剂合物,其X射线粉末衍射图在下述2θ值具有特征峰:4.2±0.2°、16.9±0.2°、20.5±0.2°、16.7±0.2°、15.8±0.2°。
  10. 如权利要求9所述的式I化合物,其特征在于,所述的式I化合物为式II化合物的异丙醚溶剂合物,其还具有一个或多个选自下列的特征:
    (i)X射线粉末衍射图还在下述一个或多个2θ值处具有特征峰:
    8.4±0.2°、12.6±0.2°、15.6±0.2°、19.4±0.2°、22.7±0.2°;
    (ii)所述式II化合物的异丙醚溶剂合物的差示扫描量热分析图(DSC图)在105~160℃范围内有一个吸热峰;
    (iii)所述式II化合物的异丙醚溶剂合物的红外吸收谱图在3384±10、3328±10、3166±10、2937±10、2829±10、1596±10、1572±10、和1469±10cm-1处有吸收峰;
    (iv)所述式II化合物的异丙醚溶剂合物的热重分析图(TGA图)在105℃至170℃的范围内有约15.0±0.2%的失重。
  11. 一种如权利要求6-10任一项所述的式I化合物的制备方法,其特征在于,包括步骤:1)向式II化合物粗品在溶剂4的溶液中加入溶剂X,收集固体得到式I化合物,其中,所述的溶剂X为甲基叔丁基醚或异丙醚。
  12. 如权利要求6-10任一项所述的式I化合物的用于制备瑞美吉泮或瑞美吉泮半硫酸盐倍半水合物的中间体的用途。
  13. 一种瑞美吉泮半硫酸盐倍半水合物(式V化合物)的制备方法,包括步骤:
    1)将如权利要求6-10任一项所述的式I化合物溶解于溶剂6中,滴加硫酸溶液,收集固体得到式V化合物;
    反应式如下:
    Figure PCTCN2022142971-appb-100004
    其中,X为甲基叔丁基醚或异丙醚。
  14. 如权利要求13所述的制备方法,其特征在于,所述的溶剂6为有机溶剂与水的混合溶剂,所述的有机溶剂选自乙醇,甲醇,异丙醇,丙酮,四氢呋喃,较佳地为乙醇/水或四氢呋喃/水。
PCT/CN2022/142971 2022-01-27 2022-12-28 一种瑞美吉泮的制备方法 WO2023142857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210101201.5 2022-01-27
CN202210101201.5A CN116554164A (zh) 2022-01-27 2022-01-27 一种瑞美吉泮的制备方法

Publications (1)

Publication Number Publication Date
WO2023142857A1 true WO2023142857A1 (zh) 2023-08-03

Family

ID=87470492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142971 WO2023142857A1 (zh) 2022-01-27 2022-12-28 一种瑞美吉泮的制备方法

Country Status (2)

Country Link
CN (1) CN116554164A (zh)
WO (1) WO2023142857A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050764A1 (en) * 2010-10-12 2012-04-19 Bristol-Myers Squibb Company Process for the preparation of cycloheptapyridine cgrp receptor antagonists
CN102656159A (zh) * 2009-10-14 2012-09-05 百时美施贵宝公司 Cgrp受体拮抗剂
CN104136437A (zh) * 2012-02-27 2014-11-05 百时美施贵宝公司 N-(5s,6s,9r)-4-(2-氧代-2,3-二氢-1h-咪唑并[4,5-b]吡啶-1-基)哌啶-1-羧酸5-氨基-6-(2,3-二氟苯基)-6,7,8,9-四氢-5h-环庚三烯并[b]吡啶-9-基酯半硫酸盐

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656159A (zh) * 2009-10-14 2012-09-05 百时美施贵宝公司 Cgrp受体拮抗剂
WO2012050764A1 (en) * 2010-10-12 2012-04-19 Bristol-Myers Squibb Company Process for the preparation of cycloheptapyridine cgrp receptor antagonists
CN104136437A (zh) * 2012-02-27 2014-11-05 百时美施贵宝公司 N-(5s,6s,9r)-4-(2-氧代-2,3-二氢-1h-咪唑并[4,5-b]吡啶-1-基)哌啶-1-羧酸5-氨基-6-(2,3-二氟苯基)-6,7,8,9-四氢-5h-环庚三烯并[b]吡啶-9-基酯半硫酸盐

Also Published As

Publication number Publication date
CN116554164A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR101358661B1 (ko) 아비라테론―3―에스테르의 메탄설포네이트 염, 및 메틸 3차―부틸 에테르 중의 용액으로부터 아비라테론―3―에스테르의 염의 회수
JP5584709B2 (ja) 5−(2−{[6−(2,2−ジフルオロ−2−フェニルエトキシ)ヘキシル]アミノ}−1−ヒドロキシエチル)−8−ヒドロキシキノリン−2(1h)−オンの製造方法
TWI703163B (zh) 舒更葡糖鈉之製備方法及其晶型
JP2023524626A (ja) ロキサデュスタット及びその中間体の合成方法とその中間体
CN110183445B (zh) 莫西沙星及其衍生物的合成方法
EP3649116A1 (en) A process for preparing alectinib or a pharmaceutically acceptable salt thereof
WO2023142857A1 (zh) 一种瑞美吉泮的制备方法
TW201802103A (zh) 一種奧貝膽酸及其中間體的製備方法
CN107188888A (zh) 一种制备甲磺酸迈瑞替尼的方法
JP2008525521A (ja) 実質的に純粋な4−アミノ−1−イソブチル−1H−イミダゾ[4,5−c]−キノリン(イミキモド)の調製方法
KR20100028543A (ko) 아로마타제 억제제의 제조 방법
CN111995625B (zh) 一种多索茶碱的制备方法
EP1534705A1 (en) Process for preparing zolmitriptan compounds
CN111675653A (zh) 一种4-氨基喹啉类化合物的杂质制备方法及其用途
CN113004281A (zh) 一种恩替卡韦中间体的制备方法
WO2021043200A1 (zh) 一种喹唑啉衍生物的制备方法及其结晶
WO2022022367A1 (zh) 一种高纯度结晶的制备方法
CN110105361B (zh) 一种Evodiakine及其衍生物的制备方法
CN114957098B (zh) 一种制备喷他佐辛中间体的方法
WO2023001299A1 (zh) 式i化合物的晶型及其制备和应用
EP2540717B1 (en) Lamivudine oxalate and preparation method thereof
CN114591236A (zh) 一种茚达特罗的改进制备方法
CN115594692A (zh) 一种制备抗流感病毒药物中间体的方法
JPH051053A (ja) 6−(3−ジメチルアミノプロピオニル)フオルスコリンの新規製造法
CN113336753A (zh) 一种利奥西呱的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923642

Country of ref document: EP

Kind code of ref document: A1