WO2023142465A1 - 高精密运动台不同精度模式之间的切换方法和装置 - Google Patents
高精密运动台不同精度模式之间的切换方法和装置 Download PDFInfo
- Publication number
- WO2023142465A1 WO2023142465A1 PCT/CN2022/114249 CN2022114249W WO2023142465A1 WO 2023142465 A1 WO2023142465 A1 WO 2023142465A1 CN 2022114249 W CN2022114249 W CN 2022114249W WO 2023142465 A1 WO2023142465 A1 WO 2023142465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- switching
- precision
- mode
- output
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000010586 diagram Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67276—Production flow monitoring, e.g. for increasing throughput
Definitions
- the invention relates to the technical field of semiconductor equipment, in particular to a method and device for switching between different precision modes of a high-precision motion table.
- the switching process is rough, which has a large impact on the sports platform and is easy to cause damage to the precision equipment on the sports platform;
- the method for switching between different precision modes of the high-precision motion table uses the controller output inheritance method to complete the switching process, and realizes the stable and delay-free switching of the motion table between different precision servo modes.
- the specific technical scheme is as follows:
- a method for switching between different precision modes of a high-precision motion table comprising:
- the moving platform When the moving platform is running in servo mode s1, the moving platform receives the mode switching command and sends it to the mode state machine, wherein the servo mode s1 corresponds to the first precision sensor and controller A, and the servo mode s2 corresponds to the second precision sensor and controller B;
- the mode state machine completes the state switching corresponding to the servo mode s1 switching to the servo mode s2 within the current servo cycle T1, and transmits the mode switching instruction to the controller output holder, and the controller output holder will servo in the T1 cycle
- the output CtrA(T1) of controller A in mode s1 is latched for one cycle;
- the output function for controller switching is as follows:
- t time
- M means servo mode
- Cout(t) represents the output of the current controller at time t
- CtrA(t) represents the output of controller A at time t
- CtrB(T1) represents the output of controller B at time T1 when switching occurs
- CtrB(t) represents the output of controller B at time t
- CtrA(T1) represents the output of controller A at time T1 when switching occurs.
- the switching verification is performed within a plurality of servo cycles, and whether the switching is successful is determined according to the servo accuracy and system stability. If it is judged that the switching fails, then the servo mode s1 is automatically switched back.
- the error tracker clears the tracking errors of the controller A and the controller B to zero within a T1 period.
- the first precision sensor and the second precision sensor are respectively connected to the moving platform, both controller A and controller B are connected to the moving platform through the same controller output holder, and the first precision sensor is connected to the controller A through a switch , the second precision sensor is connected to the controller B through a switch, and the mode state machine is connected to the control terminal of the switch, so that the closing of the switch is controlled by the mode state machine to switch the controller.
- the switching verification is performed within not less than 10 servo cycles after the switching is completed.
- the mobile station before the mobile station receives the mode switching command and transmits it to the mode state machine, it first parses the received mode switching command.
- the present invention also provides a switching device between different precision modes of a high-precision motion table, including:
- the switching instruction receiving module is used to make the moving platform receive the mode switching instruction and send it to the mode state machine during the operation process of the moving platform in the servo mode s1, wherein the servo mode s1 corresponds to the first precision sensor and controller A, and the servo Mode s2 corresponds to the second precision sensor and controller B;
- the original output holding module is used to make the mode state machine complete the state switching corresponding to the servo mode s1 switching to the servo mode s2 within the current servo cycle T1, and transmit the mode switching instruction to the controller output holder, the control
- the device output holder latches the output CtrA (T1) of the controller A of the servo mode s1 in the T1 cycle for one cycle;
- control module which is used to switch from the first precision sensor to the second precision sensor, and switch from controller A to controller B, and controller B performs servo control based on the T1 period output CtrA (T1) of controller A.
- the continuing control module is provided with an output function of controller switching as follows:
- t time
- M means servo mode
- Cout(t) represents the output of the current controller at time t
- CtrA(t) represents the output of controller A at time t
- CtrB(T1) represents the output of controller B at time T1 when switching occurs
- CtrB(t) represents the output of controller B at time t
- CtrA(T1) represents the output of controller A at time T1 when switching occurs.
- the first precision sensor and the second precision sensor are respectively connected to the moving platform, both controller A and controller B are connected to the moving platform through the same controller output holder, and the first precision sensor is connected to the controller A through a switch , the second precision sensor is connected to the controller B through a switch, and the mode state machine is connected to the control terminal of the switch, so that the closing of the switch is controlled by the mode state machine to switch the controller.
- the controller after the switch will be switched to the controller corresponding to the precision requirement according to the need.
- Servo modes with different precisions have different requirements on controller capabilities. Switching between servo precision modes and switching controllers as needed helps to improve servo precision and switching process stability.
- the control output signal before the switch will be retained and inherited by the controller after the switch, and the controller after the switch will continue to output on the inherited output signal.
- This method can complete the switching process within one servo cycle, and can complete the continuous output of the controller before and after switching without a special smooth transition process, realize switching without delay, and meet any servo precision and real-time requirements;
- This method can eliminate the disturbance caused by the error signal before the switch to the system after the switch. Improve switching stability. This method is applicable to systems with or without sensor switching during the switching process.
- Fig. 1 is a diagram showing the connection relationship between different precision modes of a motion platform according to an embodiment of the present invention
- Fig. 2 is a flow chart showing the switching method between different precision modes of the high-precision motion table according to the embodiment of the present invention
- Fig. 3 is a control logic diagram showing the switching from servo mode s1 to s2 of the embodiment of the present invention
- Fig. 4 is a block diagram showing the switching device between different precision modes of the high-precision motion table according to the embodiment of the present invention.
- the connection relationship between different precision modes of the high-precision motion table is shown in Figure 1, the first precision sensor (corresponding to high-precision mode s1), and the second precision sensor (corresponding to low-precision mode s2) as the measurement system
- the measuring components of the two precision levels in the system are respectively connected with the motion platform (controlled object).
- Both controller A and controller B are connected to the motion table through the same controller output holder.
- the mode state machine is respectively connected with the first precision sensor and the second precision sensor, the first precision sensor and the controller A, and the second precision sensor and the controller B are respectively connected through switches.
- the mode state machine is connected to the control terminal of the switch, so that the closing of the switch can be controlled by the mode state machine, thereby switching the controller.
- this embodiment is described with high and low precision modes, but the application does not limit the number of precision modes, for example, there may be 3 precision modes, and switching back and forth between the 3 precision modes.
- Fig. 2 is a flowchart of a switching method between different precision modes of a high-precision motion table
- Fig. 3 is a control logic diagram for switching from servo mode s1 to servo mode s2, and this embodiment is described in conjunction with Fig. 2 and Fig. 3 .
- the method for switching between different precision modes of the high-precision motion table in this embodiment includes the following steps:
- Step S1 After the initialization of the moving platform is completed, enter the servo mode s1.
- the moving platform (controlled object) receives and analyzes the mode switching command M, confirms the servo mode s2 to be switched in, and sends Enter the mode state machine;
- Step S2 the mode state machine receives the mode switching instruction, completes the state switching required from mode s1 to s2 within the current servo cycle T1, and at the same time transmits the mode switching instruction to the controller output holder, and the controller output holder will T1 cycle
- the output CtrA(T1) of the controller A of the inner servo pattern s1 is latched for one cycle.
- the mode state machine is composed of a state register and a combinational logic circuit, which can perform state transition according to a preset state according to a mode switching instruction, and is a control center for coordinating related signal actions and completing specific operations.
- Step S3 the error tracker clears the tracking errors of the controllers A and B to zero within the T1 period, so that the tracking states of the two controllers at the time of switching are synchronized;
- Step S4 switch from the first precision sensor to the second precision sensor, because the servo precision changes, which requires the sensor of the feedback signal to change synchronously to match the sampling precision and servo precision;
- Step S5 switch from controller A to controller B.
- Different controllers have different control capabilities for servo precision. In different precision modes, select a controller that matches the precision requirements according to the precision requirements. Before and after switching, using a controller with precision and mode matching can improve the success rate of switching, effectively suppress the disturbance caused by the switching process, and protect precision instruments.
- step S6 the controller B of the servo mode s2 will start servo control based on the output CtrA(T1) of the controller A of the servo mode s1.
- t time
- M means servo mode, 0 means s1 mode, 1 means s2 mode.
- Cout(t) represents the output command of the current controller at time t
- CtrA(t) represents the output of controller A at time t
- CtrB(T1) represents the output of controller B at time T1 when switching occurs
- CtrB(t) represents the output of controller B at time t
- CtrA(T1) represents the output of controller A at time T1 when switching occurs.
- controller B When switching from servo mode s1 to servo mode s2, the current controller is controller B, and the output of controller B includes the output CtrA(T1) of controller A in T1 period, plus the output CtrB( t), to synthesize as the output of controller B.
- controller A When switching from servo mode s2 to servo mode s1, the current controller is controller A, and the output of controller A includes the output CtrB(T1) of controller B in the period T1, plus the output of controller A CtrA( t), to synthesize as the output of controller A.
- This method makes the original output of two different controllers A and B become continuous, and the switching is completed quickly.
- the existing controller switching methods generally have a transition process, which takes up a lot of servo cycles, reduces the real-time performance of the system and increases the control hardware. Burdened and switching is unstable.
- switching verification is also included, and switching verification is performed within 10 servo cycles after the switching is completed, and whether the switching is successful is determined according to servo precision and system stability. If it is judged that the switching fails, it will automatically switch back to the previous servo mode s1 to avoid accidents;
- the present invention also provides a switching device 100 between different precision modes of a high-precision motion table, including a switching instruction receiving module 101, an original output maintaining module 102, and a continuation control module 103.
- a switching instruction receiving module 101 can be placed in a storage medium, and the The processor executes each module to complete the same function as described in the above method, and the switching device includes:
- the switching instruction receiving module 101 is used to make the moving platform receive the mode switching instruction and send it to the mode state machine when the moving platform is running in the servo mode s1, wherein the servo mode s1 corresponds to the first precision sensor and the controller A, Servo mode s2 corresponds to the second precision sensor and controller B;
- the original output holding module 102 is used to make the mode state machine complete the state switching corresponding to the servo mode s1 switching to the servo mode s2 within the current servo cycle T1, and transmit the mode switching instruction to the controller output holding device, the
- the controller output holder latches the output CtrA (T1) of the controller A of the servo mode s1 in the T1 cycle for one cycle;
- control module 103 for switching from the first precision sensor to the second precision sensor, switching from controller A to controller B, and controller B performs servo control on the basis of the T1 period output CtrA (T1) of controller A .
- each module of the switching device is the same as the steps in the above switching method, and will not be described in detail here.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开一种高精密运动台不同精度模式之间的切换方法和装置,方法包括:在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应的状态切换,并将所述模式切换指令传送给控制器输出保持器,控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。本发明切换后的控制器将在继承的输出信号上继续输出,实现无延迟切换。
Description
本发明涉及半导体设备技术领域,具体地说,涉及一种高精密运动台不同精度模式之间的切换方法和装置。
高精密运动台在实际应用中,通常需要根据实际工况切换控制精度,切换控制精度将涉及反馈传感器、控制算法、控制器参数等相关切换,目前运动台在进行不同精度伺服模式的切换时,通常采用直接将高精度传感器切换为低精度传感器的方式,或低精度传感器直接切换为高精度传感器,高精度传感器和低精度传感器采用同一个控制器,而控制器并不进行切换,这种通过采样精度的改变实现运动台伺服精度的改变,具有以下缺陷:
(1)切换过程粗糙,对运动台冲击大,容易对运动台上的精密设备造成损害;
(2)切换过程需要较长时间的过渡过程,影响系统效率和实时性;
(3)切换过程控制难度大,容易发生伺服开环,甚至飞车事故。
而截至目前,暂未有较好的解决方案。
发明内容
为解决以上问题,本发明提供的高精密运动台不同精度模式之间的切换方法,采用控制器输出继承方法完成切换过程,实现运动台在不同精度伺服模式之间完成稳定、无延迟切换。具体的技术方案如下:
一种高精密运动台不同精度模式之间的切换方法,包括:
在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中所述伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;
模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应 的状态切换,并将所述模式切换指令传送给控制器输出保持器,所述控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;
从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。
可选地,控制器切换的输出函数如下:
其中,t表示时刻;
M表示伺服模式;
Cout(t)代表当前控制器在t时刻的输出,CtrA(t)代表控制器A在t时刻的输出,CtrB(T1)代表控制器B在切换发生的T1时刻的输出;
CtrB(t)代表控制器B在t时刻的输出,CtrA(T1)代表控制器A在切换发生的T1时刻的输出。
可选地,切换完成后的多个伺服周期内进行切换较验,根据伺服精度与系统稳定性确定是否切换成功,如果判断切换失败,则自动切换回伺服模式s1。
可选地,在从第一精度传感器切换为第二精度传感器之前,误差跟踪器在T1周期内将控制器A和控制器B的跟踪误差清零。
可选地,第一精度传感器、第二精度传感器分别与运动台连接,控制器A和控制器B都通过同一控制器输出保持器与运动台连接,第一精度传感器通过开关与控制器A连接,第二精度传感器通过开关与控制器B连接,模式状态机与所述开关的控制端连接,从而通过模式状态机来控制开关的闭合切换控制器。
可选地,在切换完成后的不少于10个伺服周期内进行切换较验。
可选地,所述运动台接收模式切换指令并传送到模式状态机之前,先对接收的模式切换指令进行解析。
本发明还提供一种高精密运动台不同精度模式之间的切换装置,包括:
切换指令接收模块,用于使得在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中所述伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;
原有输出保持模块,用于使得模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应的状态切换,并将所述模式切换指令传送给控制器输出保持器,所述控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;
继续控制模块,用于使得从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。
可选地,继续控制模块设置有控制器切换的输出函数如下:
其中,t表示时刻;
M表示伺服模式;
Cout(t)代表当前控制器在t时刻的输出,CtrA(t)代表控制器A在t时刻的输出,CtrB(T1)代表控制器B在切换发生的T1时刻的输出;
CtrB(t)代表控制器B在t时刻的输出,CtrA(T1)代表控制器A在切换发生的T1时刻的输出。
可选地,第一精度传感器、第二精度传感器分别与运动台连接,控制器A和控制器B都通过同一控制器输出保持器与运动台连接,第一精度传感器通过 开关与控制器A连接,第二精度传感器通过开关与控制器B连接,模式状态机与所述开关的控制端连接,从而通过模式状态机来控制开关的闭合切换控制器。
本发明的高精密运动台不同精度模式之间的切换方法和装置,具有以下有益效果:
(1)伺服控制器切换
伺服精度模式发生切换时,切换发生后的控制器将根据需要切换成对应精度需要的控制器。不通精度的伺服模式对控制器能力要求不同,伺服精度模式发生切换的同时根据需要切换控制器有助于提高伺服精度和切换过程稳定性。
(2)控制器输出继承
伺服精度模式发生切换时,切换发生前的控制输出信号将保留,并被切换发生后的控制器继承,切换后的控制器将在继承的输出信号上继续输出。该方法可实现将切换过程在1个伺服周期内完成,无需特殊平滑过渡过程即可完成切换前后控制器输出连续,实现无延迟切换,满足任意伺服精度和实时性要求;
(3)临界误差清零
伺服精度模式发生切换时,切换发生前后的控制器积累的误差信号将清零,然后在切换发生时刻重新开始误差计算,此方法可消除切换发生前误差信号对切换发生后的系统造成的扰动,提高切换稳定性。该方法对切换过程中发生传感器切换或不切换的系统都适用。
通过结合下面附图对其实施例进行描述,本发明的上述特征和技术优点将会变得更加清楚和容易理解。
图1是表示本发明实施例的运动台的不同精度模式之间的连接关系图;
图2是表示本发明实施例的高精密运动台不同精度模式之间的切换方法的流程图;
图3是表示本发明实施例的伺服模式s1切换到s2的控制逻辑图;
图4是表示本发明实施例的高精密运动台不同精度模式之间的切换装置 的模块构成图。
下面将参考附图来描述本发明所述的实施例。本领域的普通技术人员可以认识到,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式或其组合对所描述的实施例进行修正。因此,附图和描述在本质上是说明性的,而不是用于限制权利要求的保护范围。此外,在本说明书中,附图未按比例画出,并且相同的附图标记表示相同的部分。
本实施例中,高精密运动台的不同精度模式之间的连接关系如图1所示,第一精度传感器(对应高精度模式s1)、第二精度传感器(对应低精度模式s2)作为测量系统中的两种精度级别的测量元件,分别与运动台(被控对象)连接。控制器A和控制器B都通过同一个控制器输出保持器与运动台连接。模式状态机分别与第一精度传感器和第二精度传感器连接,第一精度传感器与控制器A之间,第二精度传感器与控制器B之间都分别通过开关连接。模式状态机与开关的控制端连接,从而可以通过模式状态机来控制开关的闭合,由此切换控制器。需要说明的是,本实施例是以高、低两种精度模式来说明的,但本申请并不限制精度模式的数量,例如可以是3种精度模式,在3种精度模式之间来回切换。
图2是高精密运动台不同精度模式之间的切换方法的流程图,图3是伺服模式s1切换到伺服模式s2的控制逻辑图,结合图2、图3来说明本实施例。本实施例的高精密运动台不同精度模式之间的切换方法,包括以下步骤:
步骤S1,运动台初始化完成后进入伺服模式s1,在运动台处于伺服模式s1运行的过程中,运动台(被控对象)接收模式切换指令M并解析,确认要切入的伺服模式s2,并送入模式状态机;
步骤S2,模式状态机接收模式切换指令,在当前伺服周期T1内完成要模式s1到s2所需的状态切换,同时将模式切换指令传送给控制器输出保持器,控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期。
所述模式状态机由状态寄存器和组合逻辑电路构成,能够根据模式切换指令按照预先设定的状态进行状态转移,是协调相关信号动作,完成特定操作 的控制中心。
步骤S3,误差跟踪器在T1周期内将控制器A和B的跟踪误差清零,从而使得两个控制器切换时刻的跟踪状态同步;
步骤S4,从第一精度传感器切换为第二精度传感器,因为伺服精度发生变化,这需要反馈信号的传感器同步改变,以匹配采样精度和伺服精度;
步骤S5,从控制器A切换为控制器B,不同的控制器,对伺服精度的控制能力不同,不同精度模式下,根据精度要求选择精度要求匹配的控制器。切换前后,使用精度与模式匹配的控制器可提高切换成功率,并有效抑制切换过程造成的扰动,保护精密仪器。
步骤S6,伺服模式s2的控制器B将在伺服模式s1的控制器A的输出CtrA(T1)基础上开始伺服控制。
控制器切换的输出函数如下:
其中,t表示时刻;
M表示伺服模式,0表示s1模式,1表示s2模式。
Cout(t)代表当前控制器在t时刻的输出指令,CtrA(t)代表控制器A在t时刻的输出,CtrB(T1)代表控制器B在切换发生的T1时刻的输出;
CtrB(t)代表控制器B在t时刻的输出,CtrA(T1)代表控制器A在切换发生的T1时刻的输出。
当从伺服模式s1切换到伺服模式s2时,当前控制器是控制器B,控制器B的输出包括控制器A在T1周期内的输出CtrA(T1),再加上控制器B的输出CtrB(t),来综合作为控制器B的输出。
当从伺服模式s2切换到伺服模式s1时,当前控制器是控制器A,控制器A 的输出包括控制器B在T1周期内的输出CtrB(T1),再加上控制器A的输出CtrA(t),来综合作为控制器A的输出。
此方式使A,B两种不同控制器原输出变的连续,快速完成切换,现有的控制器切换方法一般都有过渡过程,占用大量伺服周期,降低系统实时性的同时增加了控制硬件的负担且切换不稳定。
进一步地,还包括切换校验,切换完成后的10个伺服周期内进行切换较验,根据伺服精度与系统稳定性确定是否切换成功。如果判断切换失败,则自动切换回上一伺服模式s1,避免发生事故;
本发明还提供一种高精密运动台不同精度模式之间的切换装置100,包括切换指令接收模块101、原有输出保持模块102、继续控制模块103,各模块可以是置于存储介质中,由处理器来执行各模块,以完成与上述方法描述相同的功能,切换装置包括:
切换指令接收模块101,用于使得在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中所述伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;
原有输出保持模块102,用于使得模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应的状态切换,并将所述模式切换指令传送给控制器输出保持器,所述控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;
继续控制模块103,用于使得从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。
所述切换装置的各模块的功能与上述切换方法中的步骤相同,在此不再详述。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种高精密运动台不同精度模式之间的切换方法,其特征在于,包括:在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中所述伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应的状态切换,并将所述模式切换指令传送给控制器输出保持器,所述控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。
- 根据权利要求1所述的高精密运动台不同精度模式之间的切换方法,其特征在于,切换完成后的多个伺服周期内进行切换较验,根据伺服精度与系统稳定 性确定是否切换成功,如果判断切换失败,则自动切换回伺服模式s1。
- 根据权利要求1所述的高精密运动台不同精度模式之间的切换方法,其特征在于,在从第一精度传感器切换为第二精度传感器之前,误差跟踪器在T1周期内将控制器A和控制器B的跟踪误差清零。
- 根据权利要求1所述的高精密运动台不同精度模式之间的切换方法,其特征在于,第一精度传感器、第二精度传感器分别与运动台连接,控制器A和控制器B都通过同一控制器输出保持器与运动台连接,第一精度传感器通过开关与控制器A连接,第二精度传感器通过开关与控制器B连接,模式状态机与所述开关的控制端连接,从而通过模式状态机来控制开关的闭合切换控制器。
- 根据权利要求3所述的高精密运动台不同精度模式之间的切换方法,其特征在于,在切换完成后的不少于10个伺服周期内进行切换较验。
- 根据权利要求3所述的高精密运动台不同精度模式之间的切换方法,其特征在于,所述运动台接收模式切换指令并传送到模式状态机之前,先对接收的模式切换指令进行解析。
- 一种高精密运动台不同精度模式之间的切换装置,其特征在于,包括:切换指令接收模块,用于使得在运动台处于伺服模式s1运行的过程中,运动台接收模式切换指令并传送到模式状态机,其中所述伺服模式s1对应第一精度传感器和控制器A,伺服模式s2对应第二精度传感器和控制器B;原有输出保持模块,用于使得模式状态机在当前伺服周期T1内完成伺服模式s1切换到伺服模式s2对应的状态切换,并将所述模式切换指令传送给控制器输出保持器,所述控制器输出保持器将T1周期内伺服模式s1的控制器A的输出CtrA(T1)锁存一周期;继续控制模块,用于使得从第一精度传感器切换为第二精度传感器,从控制器A切换为控制器B,控制器B在控制器A的T1周期输出CtrA(T1)基础上进行伺服控制。
- 根据权利要求8所述的高精密运动台不同精度模式之间的切换装置,其特征在于,第一精度传感器、第二精度传感器分别与运动台连接,控制器A和控制器B都通过同一控制器输出保持器与运动台连接,第一精度传感器通过开关与控制器A连接,第二精度传感器通过开关与控制器B连接,模式状态机与所述开关的控制端连接,从而通过模式状态机来控制开关的闭合切换控制器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210103080.8A CN114464556A (zh) | 2022-01-27 | 2022-01-27 | 高精密运动台不同精度模式之间的切换方法和装置 |
CN202210103080.8 | 2022-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023142465A1 true WO2023142465A1 (zh) | 2023-08-03 |
Family
ID=81410932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/114249 WO2023142465A1 (zh) | 2022-01-27 | 2022-08-23 | 高精密运动台不同精度模式之间的切换方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114464556A (zh) |
WO (1) | WO2023142465A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114464556A (zh) * | 2022-01-27 | 2022-05-10 | 北京华卓精科科技股份有限公司 | 高精密运动台不同精度模式之间的切换方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010218530A (ja) * | 2009-02-19 | 2010-09-30 | Yaskawa Electric Corp | モーションコントロールシステム |
CN206317443U (zh) * | 2016-12-23 | 2017-07-11 | 南京埃斯顿自动化股份有限公司 | 伺服油压机高精度位置控制系统 |
CN113238518A (zh) * | 2021-05-06 | 2021-08-10 | 上海御微半导体技术有限公司 | 运动控制系统及驱动器切换方法 |
CN114464556A (zh) * | 2022-01-27 | 2022-05-10 | 北京华卓精科科技股份有限公司 | 高精密运动台不同精度模式之间的切换方法和装置 |
-
2022
- 2022-01-27 CN CN202210103080.8A patent/CN114464556A/zh active Pending
- 2022-08-23 WO PCT/CN2022/114249 patent/WO2023142465A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010218530A (ja) * | 2009-02-19 | 2010-09-30 | Yaskawa Electric Corp | モーションコントロールシステム |
CN206317443U (zh) * | 2016-12-23 | 2017-07-11 | 南京埃斯顿自动化股份有限公司 | 伺服油压机高精度位置控制系统 |
CN113238518A (zh) * | 2021-05-06 | 2021-08-10 | 上海御微半导体技术有限公司 | 运动控制系统及驱动器切换方法 |
CN114464556A (zh) * | 2022-01-27 | 2022-05-10 | 北京华卓精科科技股份有限公司 | 高精密运动台不同精度模式之间的切换方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114464556A (zh) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023142465A1 (zh) | 高精密运动台不同精度模式之间的切换方法和装置 | |
EP2789431B1 (en) | Control system and control method | |
US7424331B2 (en) | System for implementing intelligent and accurate updates to state-based advanced process control (APC) models | |
KR102076290B1 (ko) | 공정시작조건 검출이 가능한 센서 장착 웨이퍼와 그를 위한 장치 | |
JPH10105217A (ja) | ロボットのトラッキング制御方法およびロボット制御システム | |
CN110405750B (zh) | 一种机器人的运动控制方法、装置及机器人 | |
CN112001057B (zh) | 基于序分量提高电力系统混合仿真稳定性的方法及装置 | |
JP2872217B1 (ja) | 論理回路の遅延経路探索方法及びその装置並びにプログラムを記録した機械読み取り可能な記録媒体 | |
CN109188889B (zh) | 一种原子钟1pps时间同步方法和系统 | |
JP4491083B2 (ja) | モータ制御装置およびその同期方法 | |
CN104668493A (zh) | 一种连铸机结晶器的复合振动控制系统及其控制方法 | |
CN110442019A (zh) | 前馈伺服控制方法、交流伺服系统和可读存储介质 | |
CN110154025A (zh) | 验证基于机械手操作的工序组合是否合理的方法和装置 | |
WO1988006277A1 (en) | Method and apparatus for detecting absolute position | |
JPS63276604A (ja) | プロセス制御装置 | |
JPH06179152A (ja) | ロータリーテーブルの回転制御方法及び装置 | |
JP2000197382A (ja) | イナーシャ同定方法および装置 | |
CN110445357B (zh) | 一种并网逆变器谐波电流抑制方法及可读存储介质 | |
CN112286841B (zh) | 一种数据同步方法及寄存器 | |
JPH01270103A (ja) | デジタルサーボ回路 | |
RU16959U1 (ru) | Устройство адаптивного управления | |
JPH01106103A (ja) | プロセス制御装置 | |
Shaoguang et al. | Fuzzy PID Used in the Automatic Control System of Changed Feed Horn Based on Laser Orientation | |
JP2005114389A (ja) | Gps移動精度評価機とコンピュータ・ソフトウエア | |
SU1383292A1 (ru) | Адаптивна система управлени дл объектов с измен ющимс запаздыванием |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22923269 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |